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Abstract: Fluorescence imaging enables researchers to visualize a 

variety of biological tissues and processes with high spatial and 

temporal resolution. Near-infrared II (NIR-II) dyes are more desirable 

for imaging biological tissues than near-infrared I (NIR-I) dyes 

because of thier reduced light scattering and tissue autofluorescence, 

as well as deeper tissue penetration. Whilst the development of NIR-

II absorption and emission fluorophores is challenging, some 

advances have been made in this area. For example, cyanine 

derivatives and donor-acceptor-donor (D-A-D) structures with a 

benzobisthiadiazole core are reported as common NIR-II 

fluorophores. Besides these NIR-II fluorophores, NIR-II rhodamine 

analogues are also being realized for biological applications due to 

their ability to combine imaging with sensing. In this mini-review, we 

summarize the molecular engineering design strategies, optical 

properties, and applications of NIR-II fluorophores developed from 

rhodamine analogues. Finally, our outlook for the future of this field 

is presented. We believe this review will reveal the progress made, 

but also some challenges in developing NIR-II rhodamine analogues 

for effective and efficient sensing and imaging in biological tissues. 

Consequently, this review will interest researchers from biomedical, 

environmental, and other dye related communities. 

 

1. Introduction  
Fluorescence imaging represents a powerful tool for 

visualizing a variety of biological processes due to its many 

advantages such as high spatiotemporal resolution, real-time 

detection, non-invasiveness, and low cost.[1-3] Fluorescence in 

the second near-infrared window (NIR-II), between 900-1700 nm, 

has been rapidly growing in recent years due to the deeper 

penetration of biological tissues (approximately 5-20 mm), 

reduced background autofluorescence, and improved signal-to-

noise ratio (SNR) compared to the dyes in the visible (400-700 

nm) and first near-infrared (NIR-I, 700-900 nm) window.[4-12] 

Therefore, the development of NIR-II imaging materials has 

attracted significant attention within the dye community. To date, 

materials used for NIR-II imaging can be classified into inorganic 

and organic. Inorganic materials include single-walled carbon 

nanotubes (SWNT), quantum dots, and rare earth metals doped 

nanoparticles. The organic materials are based on two types of 

architectures, donor-acceptor-donor (D-A-D) and polymethine 

cyanine fluorophore (Figure 1). Both the inorganic and organic 

materials mentioned above are summarized in several 

reviews.[13-18] However, those review articles did not 

comprehensively cover a third class of NIR II dyes, which is 

based on the xanthene core. NIR-II xanthene dyes based on the 

rhodamine structure have been an essential fluorophore for 

biological applications as they can be used for both sensing and 

imaging. Consequently, this article covers NIR-II organic 

fluorophores based on the rhodamine structure. Xanthene-

based dyes, such as rhodamine and fluorescein, are classical 

fluorescent dyes with high photostability and fluorescent 

quantum yield, structures that are easily functionalized, and 

tunable luminescent properties.[19] Since their first discovery in 

1887, various rhodamine dyes have been extensively studied as 

imaging with fluorescent markers or probes,[20-21] and a wide 

variety of rhodamine dyes have been commercialized. For  
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Figure 1. Representative D-A-D (in red) and polymethine cyanine (in blue) structures with their 
absorption wavelength in parentheses 
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example, commercially available rhodamine 123 is used as a  

mitotracker.[22] However, conventional rhodamine dyes absorb 

and emit in the visible region, which overlap with the absorption 

and emission of biological tissues. Conventional rhodamine dyes 

also have lower imaging penetration depth in tissues (< 1 mm) 

and high light scattering; thus, they produce low resolution 

images, which seriously hampers their applications in vivo.[23-24] 

Fluorophores with longer excitation wavelength in the NIR region 

generally provides increased optical penetration within tissues, 

improved SNR, and minimized cell damage, which are all great 

advantages for in vivo imaging.[25-27] Over the past decades, 

researchers have committed great effort to shift the absorption 

and emission wavelengths of rhodamine dyes into the NIR 

region.[28] Extending the conjugation of the xanthene core or 

replacing the central oxygen atom with other elements such as 

C,[29] S/Se,[30-31] P,[32] Si/Ge/Sn[33] and Te[34] are common 

strategies to red-shift the photoluminescence wavelengths of 

rhodamine dyes. However, these efforts have only led to dyes in 

the deep-red and NIR-I regions (Figure 2). Although NIR-I region 

is defined as the “biological transparent window”, fluorescence 

imaging with NIR-I dyes still has the intrinsic issues of low tissue 

autofluorescence and marginal imaging depth (1-3.5 mm).[35] By 

contrast, fluorescence imaging with NIR-II dyes has significantly 

diminished the background noise and provides deeper tissue 

penetration depth (5-20 mm) due to the minimal photon 

scattering and low tissue absorption of NIR-II light.[8, 36] With 

these merits, fluorescence imaging with NIR-II dyes is able to 

visualize biological structures deep within tissues that are 

otherwise difficult to achieve for NIR-I dyes. As such, chemists 

have become inspired to develop novel rhodamine dyes that 

absorb and emit at wavelengths in the NIR-II region.  

 

2. Synthetic strategies for NIR-II rhodamine 
fluorophores 

Rhodamine 110, the simplest rhodamine dye, presents an 

absorption and emission maximum at 497 nm and 520 nm 

respectively, with a high quantum yield of 0.88 at emission 
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maximum.[37] Modification of its amine groups can greatly 

decrease the energy gap between the highest occupied 

molecular orbital (HOMO) and lowest unoccupied molecular 

orbital (LUMO) resulting in longer absorption and emission 

wavelengths. For example, the julolidine structure of rhodamine 

fluorophore (λabs 580 nm, λem 600 nm) has around an 80 nm 

bathochromic shift compared to rhodamine 110.[38] Surprisingly, 

further extension in conjugation of the julolidine structure by two 

benzene rings causes more than 300 nm red-shift in the 

spectrum of the fluorophore, resulting in the λabs and λem in the 

deep NIR-I region. Yang et al., constructed a new class of 

rhodamine analogues based on the bisbenzo-C-rhodamine unit 

(ECX) as shown in Scheme 1.[39] While both ECXb in CH2Cl2 and 

ECXi in water showed maximum absorption wavelengths around 

880 and 920 nm, respectively, their emission bands tailed in the 

NIR II region beyond 1100 nm (Figure 3a, b). This was the 

pioneering work of extending the wavelengths of rhodamine 

derivatives into the NIR-II window. The julolidine rings of ECX 

dyes prevent rotation around the nitrogen atoms; thus, they 

exhibited high fluorescence quantum yield (QY) in CH2Cl2 (7.6-

13.3%), where the QY of ECXb reached up to 13.3%. Besides, 

ECX dyes were more photostable than the commercial dye, 

naphthalocyaine, which was used as a reference. ECX dyes are 

also chemically stable; for example, ECXi showed excellent 

chemostability in aqueous solutions at pH values between 3-12. 

Furthermore, only minimal changes were observed in the 

absorbance and fluorescence spectra of ECXi when exposed to 

biological sulfides, reactive oxygen species, and hydrogen 

peroxide. Strong fluorescent signals of EXCb were observed 

from the Hela cells and the mouse in vivo images (Figure 3c, d, 

e). However, the excitations of the ECX dyes series are still 

restricted to the NIR-I region and the emission tail beyond 1000 

nm was very low. Inspired by indocyanine green (ICG) 

polymethine skeleton, Zhang et al., developed a series of NIR-II 

rhodamine version of the polymethine dyes (CX) via a one-step 

condensation reaction between compound 1 and electrophiles 2, 

3, and 4, yielding  CX-1, CX-2 and CX-3, respectively (Figure 

4A).[40] As the conjugation length of the fluorophore increases 

from CX-1 to CX-3, a bathochromic shift of about 100 nm in both 

the absorption and emission wavelengths was observed (Figure 

Scheme 1. Synthesis of ECX dyes. Adapted with permission from the Wiley-VCH Verlag GmbH & Co. 
KGaA.[34] 
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4B). CX-1, CX-2, and CX-3 exhibit maximum absorption 

wavelengths at 883, 981, and 1032 nm in CHCl3, respectively. 

The emission wavelengths in CHCl3 were 920, 1089, and 1140 

nm respectively with fluorescence quantum yields ranging from 

0.091-0.66% in the reverse order (CX-3 to CX-1). Due to the rigid 

polymethine chain, the CX dyes demonstrated great chemo- and 

photo-stabilities in aqueous media; however, it was presumed 

that the dyes aggregated in the aqueous media with increasing 

conjugation length leading to decreased absorbance intensity. 

The dyes and thier photophysical properties were recoverable 

with extraction into CHCl3. The dyes were encapsulated into 

DSPE-mPEG2000 micelle used to perform high-contrast in vivo 

bioimaging at a depth of 4 mm (Figure 5A). The authors also 

developed a NIR-II FRET probe with the combination of CX-1 

and CX-3 dyes for real-time monitoring of peroxynitrite (Figure 

5B).  

  

  

 

Figure 4. Synthetic routes of CX dyes (A) and normalized absorption and emission spectra of CX dyes (B). 
Adapted with permission from the Wiley-VCH Verlag GmbH & Co. KGaA.[35] 
 

Figure 3. The absorption and emission spectra of ECXb (a) and 

ECXi (b), cells imaging under white-light (c) and under 808 nm 

excitation with ECXb (d) and in vivo imaging with (e, left) and 

without (e, right) ECXb. Adapted with permission from the Wiley-

VCH Verlag GmbH & Co. KGaA.[34] 

 

Figure 5. A) Schematic illustration of in vitro multicolor imaging of dyes in capillaries as a function of tissue depth 

under 808 nm (CX-1, 850LP, blue), 965 nm (CX-2, 1000LP, green), or 1064 nm (CX-3, 1100 LP, red) excitation. B) 

the schematic illustration of the detection mechanism of PN1100 and images of mice liver. Adapted with permission 

from the Wiley-VCH Verlag GmbH & Co. KGaA.[35] 
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The cyanine dyes are known for NIR absorption and 

emission. However, it is difficult to design off-on switching 

cyanine-based probes using the ‘PET’ strategy due to the 

relatively high-lying highest occupied molecular orbital (HOMO) 

energy levels.[41] By contrast, the fluorescence of rhodamine 

dyes can be conveniently tuned by intramolecular cyclization. 

Therefore, chemists have constructed a series of NIR hybrid 

cyanine-rhodamine dyes, which retain the advantages of both 

rhodamine and cyanine dyes. For example, Lin’s group designed 

a series of rhodamines-indole/benzo[e]indole-based cyanine 

hybrid dyes;[42] however, the absorption maximum ranged from 

688 nm to 728 nm, and emission maximum ranged from 721 nm 

to 763 nm, which are in the NIR-I region. In a similar strategy, Li 

et al., synthesized a series of rhodamine-benz[c,d]indole-based 

cyanine hybrid dyes with different lengths of polyene bonds 

(Rh824, Rh926, and Rh1029) (Figure 6A).[43] This work have 

successfully tuned the absorption and emission wavelengths of 

hybrid cyanine-rhodamine dyes from the first near-infrared 

window to the second near-infrared window. With the increment 

of each vinylene bridge unit, the absorption and emission 

wavelengths red-shifted around 100 nm. Consequently, Rh824, 

Rh926, and Rh1029 displayed maximum absorptions at 824, 

926, and 1029 nm and emissions at 872, 975, and 1093 nm, 

respectively. Unfortunately, the fluorescence quantum yields for 

Rh824, Rh926, and Rh1029 were low, 1.30%, 0.76%, and 

0.33%, respectively (Figure 6B). The low fluorescence quantum 

yields were ascribed to the the flexibility and cis-trans 

isomerisation of the structures. To increase their fluorescence 

quantum yields and water solubilities, the authors enclosed the 

series of dyes into phosphatidylcholine (PC) and applied them to 

in vivo vascular imaging. The NIR-II fluorophore Rh1029-PC 

demonstrated superior clarity in vascular imaging compared to 

its NIR-I counterpart, Rh824-PC (Figure 7). 

Following a similar strategy, Zhang et al., also developed a 

new class of rhodamine analouges (NIRII-RT3 & NIRII-RT4) 

(Figure 8A),[44] but instead of suspending the benz[c,d]indolium 

on the rhodamine skeleton as reported by Li and co-workers, 

they used the 1,4-diethyl-decahydro-quinoxaline (DQ) 

benzopyran group, which is more sterically bulky and electron-

rich. The maximum absorption wavelengths of NIRII-RT3 and 

NIRII-RT4 in CH2Cl2 were 860 and 856 nm, respectively (Figure 

8C, D). Noteworthy, the fluorophores displayed two emission 

peaks at 922 and 999 nm for NIRII-RT3 and 929 and 989 nm for 

NIRII-RT3 (Figure 8B) with fluorescence quantum yields of 

2.03% and 1.42%, respectively. By taking advantage of the 

spirocyclization properties of xanthene core, the authors 

constructed a series of NIR-II fluorescent probes for pH, ATP, 

and Hg2+ (NIRII-RT-pH, NIRII-RT-ATP, and NIRII-RT-Hg) 

(Figure 9). So far, we have discussed the design strategies for 

constructing NIR-II rhodamine analogue fluorophores based 

Figure 6. Molecular structures (A) and photophysical 
properties (B) of Rh824, Rh926, and Rh1029. Adapted 
with permission from (ACS Materials Lett. 2019, 1, 418-
424.) Copyright (2019) American Chemical Society. 

Figure 7. Images of abdomen of mice intravenously 
injected with (A) Rh824-PC and  (B) Rh1029-PC. 
Adapted with permission from (ACS Materials Lett. 
2019, 1, 418-424). Copyright (2019) American 
Chemical Society. 
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predominately on extending the π-conjugation of the xanthene 

core through vinylene bridges. However, this strategy usually 

requires tedious synthesis or laborious purification steps. In 

addition, some of the resulting dyes suffer from poor chemical 

and photostability, small Stokes shifts, and solvatochromic 

quenching in biologically relevant systems. Encouraged by the 

Figure 8. A) the structures of NIRII-RT3 and NIRII-RT4. (B) Emission spectrum for various NIRII dyes including 
NIRII-RT3 and NIRII-RT4. (C) The absorption spectra of NIRII-RT3 and (D) NIRII-RT4 in different solvents. Adapted 
with permission from the Wiley-VCH Verlag GmbH & Co. KGaA.[39] 

Figure 9. A) Design and synthesis of probe NIRII-RT-pH. B) Fluorescence spectra of NIRII-RT-pH at different pH 
values. C) The pH titration curve was plotted by NIRII-RT-pH fluorescence as a function of pH. D) Synthesis of 
NIR II probes NIRII-RT-ATP and NIRII-RT-Hg. E) Fluorescence spectra of NIRII-RT-ATP responding to ATP. F) 
Fluorescence response of NIRII-RT-ATP toward various analytes. H) Fluorescence spectra of NIRII-RT-Hg 
responding to Hg2+. Adapted with permission from the Wiley-VCH Verlag GmbH & Co. KGaA.[39] 
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NIR-II fluorophores with D-A-D framework as shown in Figure 1, 

a D-A-D type NIR-II rhodamine dye, rhodindolizine, has been 

prepared by the C-H bond functionalization reaction of 1-methyl-

2-phenylindolizine with 3’,6’-dibromofluoran (Figure 10A).[45] It is 

worth nothing that the synthetic strategy to prepare this dye only 

required two to three steps, which is far less than the other 

attempts to prepare NIR-II rhodamine-based dyes. The 

nonfluorescent rhodindolizine spirolactone product was 

converted to the ethyl ester of the opened formed that resulted 

in the fluorophore absorbing at 920 nm with a very broad 

emission band extending to 1400 nm with the peak at 1092 nm, 

which are both in the NIR II region (Figure 10B and C). 

Unfortunately, the quantum yield of this dye was very low 

(0.03%) due to its instability in aqueous media, which is similar 

to previous NIR-II dyes. 

 

Conclusions & outlook 
Overall, chemists have successfully extended the 

absorption and emission wavelengths of rhodamine-based dyes 

into the NIR-II region. The strategies include extending 

conjugation/hyperconjugation of the xanthene ring, hybridization 

with other fluorophores, and forming D-A-D type. Although the 

former two strategies are effective to extend the emission 

wavelength of these rhodamine analogues from the red to the 

NIR-II region, the resulting molecules usually have large 

molecular weight, low solubility, and poor stability in biologically 

relevant media. By contrast, the D-A-D type rhodamine dyes 

developed by us have relatively smaller molecular weight. 

Besides the above strategies, there is another way to shift the 

absorption and emission wavelengths of rhodamine to obtain 

larger bathochromic shifts. Specifically, replacing the central 

oxygen atom with other elements such as Si,[33] P,[32] S[30] and 

Se[30] are common strategies to elicit a pronounced bathochromic 

shift in λex and λem. Although this strategy presently only results 

in NIR-I dyes, we envision that combining this strategy with D-A-

D approach will generate longer absorption and emission 

wavelengths than each single strategy alone. In our group, we 

are currently working on incorporating Si, and P into our D-A-D 

dyes to obtain dyes with λabs and λem well into the NIR-II region 

with good solubility, good stability in biological media, and high 

quantum yield for use in bioimaging applications. 

The photophysical properties of NIR-II fluorophores of 

rhodamine analogues have been presented. Many of these 

fluorophores demonstrate good photophysical performance, 

deep tissue penetration, and higher resolution in vivo imaging 

compared to their NIR-I counterparts. However, NIR-II 

rhodamine-based fluorophores are still in their infancy, with 

many limitations to overcome. For example, rhodamine-based 

fluorophores with NIR-II absorption and maximum emission 

wavelengths beyond 1000 nm are still lacking and those that 

possess these wavelengths have low quantum yields. Besides, 

the NIR-II rhodamine analogues usually adopt spirolactone form 

in nature, and opening of the lactone ring is sometimes difficult, 

which hampers their development as off-on NIR-II fluorescence 

probes. Finally, synthesis of many of these fluorophores require 

lengthy synthetic steps, which adds to the cost of their 

development. Consequently, continued studies are needed to 

address these limitations and develop highly emissive NIR-II 

rhodamine-based probes to meet clinical needs.  

A promising future research focus would be to expand the 

diversity of NIR-II rhodamine-based dyes and their applications 

as NIR-II dyes. Fluorescence imaging (Fl) possesses high 

spatiotemporal resolution for cells imaging and thereby makes it 

easier to monitor movement, location, and concentration of 

biomolecules at subcellular levels.[46] However, the photostability 

of the dyes limits their further application in dynamic and long-

term monitoring analysts in living systems.[47] On the other hand, 

photoacoustic imaging (PA) is an emerging technique capable of 

providing anatomical, functional, and molecular properties of 

biological tissue with high resolution.[48]  Thus, it offers the 

Figure 10. A) Synthesis of rhodindolizine B) Ring 
opening mechanism of rhodindolizine, C) Molar 
absorptivity and emission of rhodindolizine ethyl ester in 
dichloromethane. Adapted with permission from (J. Org. 
Chem. 2019, 84, 13186-13193). Copyright (2019) 
American Chemical Society.  
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opportunity to provide multimodal imaging with Fl. This approach 

is always attractive and desirable, since it can combine the 

strengths of several imaging modalities and is able to 

characterize biological tissue more completely, thus offering the 

possibility of precision diagnosis of diseases. Thus, developing 

NIR-II rhodamine-based dual-modality (Fl/PA) or even 

multimodal (Fl/PA/MRI) imaging agents should be another focus 

of future research. Finally, by taking advantage of NIR-II 

excitation (deep penetration), development of NIR-II rhodamine-

based photosensitizers for photodynamic therapy or 

photothermal therapy will be highly desired for treatment of deep-

seated tumors. [49-51] Therefore, there is still ample scope for the 

development of new NIR-II rhodamine dyes. 
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This mini-review summarizes the strategies to make NIR-II (900-1700 nm) fluorophores based on the rhodamine core, which furnish 

low background autofluorescence, reduced photon scattering, and higher resolution at the millimeter depth for bioimaging. These dyes 

are superior to rhodamine-based fluorophores in the visible (400-700 nm) and NIR-I (700-900 nm) regions. 

   
 


