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Abstract
Here, we extend the optimal local truncation error method (OLTEM) recently developed in our papers to the 3D time-
independent Helmholtz equation on irregular domains. Trivial unfitted Cartesian meshes and simple 27-point discrete stencil 
equations are used for 3D irregular domains. The stencil coefficients for the new approach are assumed to be unknown and 
are calculated by the minimization of the local truncation error of the stencil equations. This provides the optimal order 
of accuracy of the proposed technique. At similar 27-point stencils, the accuracy of OLTEM is two orders higher for the 
Dirichlet boundary conditions and one order higher for the Neumann boundary conditions compared to that for linear finite 
elements. The numerical results for irregular domains also show that at the same number of degrees of freedom, OLTEM is 
even much more accurate than high-order (up to the fifth order) finite elements with much wider stencils. Compared to linear 
finite elements with similar 27-point stencils, at accuracy of 0.1% OLTEM decreases the number of degrees of freedom by 
a factor of greater than 1000. This leads to a huge reduction in computation time. The new approach can be equally applied 
to the Helmholtz and screened Poisson equations.
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1  Introduction

Many physical phenomena in acoustics, seismology, elec-
tromagnetic radiation, nondestructive testing, medical imag-
ing and others can be modeled by the Helmholtz equation. 
Therefore, many researchers are working on the develop-
ment of accurate numerical techniques for the solution of 
the Helmholtz equation that has a lot of important civil and 
military engineering applications. Many of these numerical 
techniques finally reduce to a discrete system with compact 
stencils; e.g., different modifications of the finite element 
method (e.g., see [1–23]), the isogeometric elements (e.g., 
see [24–26]), the spectral element method (e.g., see [27]), 
the finite difference method (e.g., see [28–35] and others). 
The goal of these linear and high-order numerical techniques 
is to provide reliable accurate solutions of the Helmholtz 

equation at reasonable computational costs. The finite ele-
ment method, the finite volume method, the isogeometric 
elements, the spectral elements and similar techniques rep-
resent very powerful tools for the solution of PDEs for a 
complex geometry. However, the generation of non-uniform 
meshes for a complex geometry is not simple and may lead 
to the decrease in accuracy of these techniques if ‘bad’ ele-
ments (e.g., elements with small angles) appear in the mesh. 
Moreover, the conventional derivation of discrete equations 
for these techniques (e.g., based on the Galerkin approaches) 
does not lead to the optimal accuracy.

There is a significant number of publications related to the 
numerical solution of different PDEs on irregular domains 
with uniform embedded meshes. For example, we can men-
tion the following fictitious domain numerical methods that 
use uniform embedded meshes: the embedded finite differ-
ence method, the cut finite element method, the finite cell 
method, the Cartesian grid method, the immersed interface 
method, the virtual boundary method, the embedded bound-
ary method, overlapping elements, etc; e.g., see [36–59] and 
many others. The main objective of these techniques is to 
simplify the mesh generation for irregular domains as well 
as to mitigate the effect of ‘bad’ elements. For example, the 
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techniques based of the finite element formulations (such 
as the cut finite element method, the finite cell method, the 
virtual boundary method and others) yield the p + 1 order 
of accuracy even with small cut cells generated by the com-
plicated irregular boundary (e.g., see [36–38, 41, 56, 57, 
60] and many others). The main advantage of the embedded 
boundary method developed in [42, 43, 53, 61, 62] is the 
use of a simple Cartesian mesh. The boundary conditions or 
fluxes in this technique are interpolated using the Cartesian 
grid points and this leads to the increase in the stencil width 
for the grid points located close to the boundary (however, 
the numerical techniques developed in [42, 43, 53, 61, 62] 
provide just the second order of accuracy for the global 
solution). An interesting high-order accurate approach is 
suggested in [63] for the Helmholtz equation on irregular 
domains that combines the method of difference potentials 
with compact high-order finite difference schemes on Car-
tesian meshes. Summarizing, the development of robust 
numerical techniques for the solution of PDEs on irregular 
domains that provide an optimal and high order of accuracy 
is still a challenging problem.

The numerical approach suggested in this paper for the 
3D Helmholtz equation on irregular domains with unfitted 
Cartesian meshes is the extension of our previous numerical 
algorithm called the optimal local truncation error method 
developed for the 2D Helmholtz equation; see [64]. For the 
fictitious domain methods, the transition from the 2D to 3D 
case is a challenging problem because instead of a curve 
in the 2D case, the boundary becomes a surface in the 3D 
case. Therefore, the treatment of the boundary conditions for 
irregular domains with non-conforming meshes is signifi-
cantly more difficult in the 3D case (sometimes the transition 
from the 2D to 3D case may lead to intractable algorithms). 
In this paper we use 3D Cartesian meshes with simple 
27-point uniform and non-uniform stencils that include the 
Dirichlet and/or Neumann boundary conditions on com-
plex irregular boundary as well as provide a high accuracy 
(much greater than that for other numerical approaches with 
conforming or non-conforming meshes). It is interesting to 
mention that the derivation of the new 3D approach for the 
Helmholtz equation is different from that in our paper [64] 
for the 2D case (see Remark 4 below) as well as different 
from that in our papers [65, 66] for the 3D wave, heat and 
Poisson equations (see Sect. 4 below).

The idea of the proposed OLTEM for the solution of 
PDEs is very simple. First, a Cartesian mesh is selected 
independent of the irregular domain under consideration. 
Then, stencil equations of a discrete system are assumed 
for all internal grid points of the Cartesian mesh located 
inside the irregular domain. The stencil equation for each 
internal grid point is a linear combination of the numeri-
cal values of the unknown function at a number of grid 
points included into the stencil. The stencil equations for all 

internal grid points form the global discrete system of equa-
tions for OLTEM. The coefficients of the stencil equations 
are assumed to be unknown. These unknown coefficients 
are determined by the minimization of the order of the local 
truncation error for each stencil equation. This procedure 
includes a Taylor series expansion of the unknown exact 
solution at the grid points and its substitution into the stencil 
equation. As a result, we obtain the local truncation error 
in the form of a Taylor series. At this point, no information 
about partial differential equations is used. Then, the corre-
sponding partial differential equations are applied at the grid 
points to exclude some partial derivatives in the expression 
for the local truncation error. Finally, the unknown coef-
ficients of the stencil equation are calculated from a small 
local system of algebraic equations obtained by equating to 
zero the lowest terms in the Taylor series expansion of the 
local truncation error and by the minimization of the non-
zero leading terms of the local truncation error with the least 
square method. The coefficients of the stencil equations are 
similarly calculated for the regular (uniform) stencils located 
far from the boundary and for the cut (nonuniform) stencils 
located close to the boundary. The nonuniform stencils (and 
uniform stencils that are close to the boundary) include the 
known boundary conditions at the selected boundary points 
located at the intersection of the boundary of a complex 
irregular domain with the horizontal, vertical and diago-
nal grid lines of the uniform Cartesian mesh. There are no 
unknowns at the boundary points. Finally, a fully discrete 
global system with unknowns at the internal grid points can 
be easily solved. The main advantages of OLTEM are a high 
optimal accuracy and the simplicity of the formation of a 
discrete system for irregular domains with unfitted Carte-
sian meshes. Changing the width of the stencil equations, 
different linear and high-order numerical techniques can be 
developed.

In Sect. 2.2, we consider the development of OLTEM 
for the 3D Helmholtz equation with zero loading term. The 
imposition of the Dirichlet and Neumann boundary condi-
tions are described in Sect. 2.3. The extension of OLTEM 
to the 3D Helmholtz equation with nonzero loading term 
is presented in Sect. 2.4. Section 3 considers numerical 
examples and the comparison of OLTEM with conventional 
finite elements. For the derivation of many analytical expres-
sions presented below, we use the computational program 
“Mathematica”.

2 � OLTEM for the 3D Helmholtz equation

In this section, we first introduce the Helmholtz equation 
and the local truncation error. Next, we derive OLTEM with 
27-point stencils for the internal grid points located far from 
the boundary as well as located close to the boundary with 
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the Dirichlet boundary conditions in the case of zero load. 
Then, we consider OLTEM with 27-point stencils for the 
internal grid points located close to the boundary with the 
Neumann boundary conditions. Finally, we take into account 
nonzero load.

2.1 � The Helmholtz equation and the local 
truncation error

In the paper, we show the development of OLTEM for the 
3D Helmholtz equation as well as for its simple modifica-
tion called the screened Poisson equation on an irregular 
domain Ω:

where a = 1 for the Helmholtz equation, a = −1 for the 
screened Poisson equation, � is the wave number for the 
Helmholtz equation, f(x, y, z) is the loading term, u(x, y, z) 
is the field variable. The Neumann boundary conditions 
n ⋅ ▽u = g1 on Γt and the Dirichlet boundary conditions 
u = g2 on Γu are applied, where gi (i = 1, 2) are the given 
functions, n is the outward unit normal on Γt , and Γt and 
Γu denote the boundaries with the Neumann and Dirichlet 
boundary conditions, respectively.

According to OLTEM, we assume that after the space 
discretization with a rectangular Cartesian mesh, the stencil 
equation for Eq. (1) for each internal grid point can be writ-
ten as an algebraic equation:

where unum
i

 is the numerical solution for function u at the 
i-th grid point, mi and ki are the unknown stencil coeffi-
cients to be determined, L is the number of the grid points 
included into a stencil, f̄  is the discretized loading term (see 
the next sections), h is the mesh size along the x-axis. The 
local numeration of internal grid points included into the 
stencil is used in Eq. (2). Many numerical techniques for the 
Helmholtz equation such as the finite difference method, the 
finite element method, the finite volume method, the isogeo-
metric elements, the spectral elements, different meshless 
methods and others can be finally reduced to Eq. (2) with 
some specific coefficients mi and ki . To demonstrate the new 
technique, below we will assume 27-point stencils (L = 27) 
in the 3D case that correspond to the width of the stencils for 
the linear quadrilateral finite elements on Cartesian meshes. 
However, the stencils with any width can be used with the 
suggested approach.

Let us introduce the local truncation error used with 
OLTEM. The replacement of the numerical values of the 

(1)∇2u + a�2u = f ,

(2)
L∑

i=1

(a𝛽2h2miu
num
i

+ kiu
num
i

) = f̄ ,

function unum
i

 at the grid points in Eq. (2) by the exact 
solution ui to Eq. (1) leads to the residual of this equation 
called the local truncation error e of the discrete equation, 
Eq. (2):

where we assume the existence of the exact solution as well 
as that the function u(x, y, z) is sufficiently smooth (the 
numerical results in Sect. 3.4 show that OLTEM can be also 
used with non-smooth functions). Calculating the difference 
between Eqs. (3) and (2) we can get

where ēi = ui − unum
i

 are the errors of function u at the grid 
points i. As can be seen from Eq. (4), the local truncation 
error e is a linear combination of the errors of the function 
u at the grid points i which are included into the stencil 
equation.

2.2 � Zero load f = 0 in Eq. (1)

Here, we present 27-point uniform stencils that will be used 
for the internal grid points located far from the boundary 
and 27-point non-uniform stencils that will be used for the 
grid points located close to the boundary with the Dirichlet 
boundary conditions. Let us consider a 3D bounded domain 
and a Cartesian rectangular mesh with a mesh size h where 
h is the size of the mesh along the x-axis, byh and bzh are 
the sizes of the mesh along the y- and z-axes ( by and bz 
are the aspect ratios of the mesh); see Fig. 1. The 27-point 
stencil considered here is similar to that for the 3D linear 
quadrilateral finite elements. The spatial locations of the 
26 degrees of freedom that are close to the internal degree 
of freedom u14 and contribute to the 27-point stencil for 
this degree of freedom are shown in Fig. 1 for the case 
when the boundary and the Cartesian mesh are matching 
or when the degree of freedom u14 is located far from the 
boundary. In the case of non-matching grids when the grid 
points do not coincide with the boundary, the grid points 
that are located outside the physical domain are moved to 
the boundary of the physical domain as shown in Fig. 2 
and form 27-point nonuniform stencils for the internal grid 
points u14 located close to the boundary. For convenience, 
the local numeration of the grid points from 1 to 27 is used 
in Figs. 1 and 2 as well as in the derivations below for 

(3)e =

L∑

i=1

(a𝛽2h2miui + kiui) − f̄ ,

(4)

e =

L∑

i=1

{a𝛽2h2mi[ui − unum
i

] + ki[ui − unum
i

]}

=

L∑

i=1

(a𝛽2h2miēi + kiēi),
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the 27-point uniform and non-uniform stencils. To find the 
locations of the abovementioned boundary points that are 
included into the stencil for the degree of freedom u14 (see 
Fig. 2) we join the central point u14 with the 26 closest grid 
points of the Cartesian mesh; i.e., we have 26 straight lines 
starting from point u14 . If any of these lines intersects the 

boundary of the domain then the corresponding grid points 
of the Cartesian mesh should be moved to the boundary. 
E.g., Fig. 2 shows a particular case when only 3 lines out 
of 26 intersect the boundary and three grid points u8 , u9 
and u18 (designated as ◦ ) are moved to the boundary and 
become the boundary points (the new locations are desig-
nated as ∙ ). In our approach, for all internal points located 
within the domain we use 27-point uniform (see Fig. 1) or 
non-uniform (see Fig. 2) stencils. There are no stencils for 
the boundary points; the boundary points just contribute to 
the stencils for the internal grid points located close to the 
boundary.

To describe the coordinates of the boundary points for 
non-uniform stencils (see Fig. 2) we introduce 27 coef-
ficients 0 ≤ dp ≤ 1 (p = 1, 2,… , 27) as follows (see also 
Fig. 2):

w h e r e  d14 = 0  ,  p = 9(k − 1) + 3(j − 1) + i  w i t h 
i, j, k = 1, 2, 3 . Equation (5) can be also used for the coor-
dinates of the grid points inside the domain with the cor-
responding coefficients dp equal to unity (dp = 1). E.g., only 
three coefficients d8 < 1, d9 < 1 and d18 < 1 in Fig. 2 are 
smaller than one and all other dp coefficients are equal to 
unity, dp = 1 (p = 1,… , 7, 10,… , 13, 15,… , 17, 19,… , 27).

Equation (2) for the 27-point uniform (see Fig. 1) or 
nonuniform (see Fig. 2) stencil for the grid point u14 can 
be explicitly rewritten as follows:

where the right-hand side in Eq. (6) is zero, f̄14 = 0 , in the 
case of zero load f = 0 in Eq. (1), the unknown coefficients 
mp and kp (p = 1, 2,… , 27) are to be determined from the 
minimization of the local truncation error.

Remark 1  Only 53 out of the 54 coefficients mp , kp 
(p = 1, 2,… , 27) in Eq. (6) can be considered as unknown 
coefficients. This can be explained as follows. In the case 
of zero load f = 0 and f̄14 = 0 , Eq. (6) can be rescaled by 
the division of the left- and right-hand sides of Eq. (6) by 
any scalar a1 . For example, let us select a1 = k14 . In this 
case the rescaled coefficients m̄p , k̄p (p = 1, 2,… , 27) of the 
stencil equation are: m̄p = mp∕k14 (p = 1, 2,… , 27), k14 = 1 , 
k̄p = kp∕k14 (p = 1, 2,… , 13, 15,… , 27); i.e., there are only 
53 unknown rescaled coefficients. The case of nonzero load 
f̄14 ≠ 0 can be similarly treated because the term f̄14 is a 
linear function of the coefficients mp and kp (see Eq. (25) 
below).

(5)
xp = x14 + (i − 2)dph, yp = y14 + (j − 2)dpbyh,

zp = z14 + (k − 2)dpbzh,

(6)a𝛽2h2
27∑

p=1

mpu
num
p

+

27∑

p=1

kpu
num
p

= f̄14,
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Fig. 1   The spatial locations of the degrees of freedom up 
(p = 1, 2,… , 27) contributing to the 27-point uniform stencil for the 
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Remark 2  The coefficients a and mp in Eq. (6) can be com-
bined into new mp coefficients ( a = 1 for the Helmholtz 
equation and a = −1 for the screened Poisson equation). 
To simplify the notations, in the paper the formulas for 
the mp coefficients are given for the Helmholtz equation 
with a = 1 . For the screened Poisson equation, the mp coef-
ficients equal to those for the Helmholtz equation with the 
negative sign.

For the calculation of the local truncation error, let us 
expand the exact solution up (p = 1, 2,… , 13, 15, 16,… , 27) 
to the Helmholtz equation into a Taylor series at small h ≪ 1 
as follows (see also Eq. (5)):

where p = 9(k − 1) + 3(j − 1) + i with i, j, k = 1, 2, 3 ; see 
Fig. 2. The exact solution u14 to Eq. (1) at x = x14 , y = y14 
and z = z14 meets the following equations:

with i, j, k = 0, 1, 2, 3, 4,… . Here, Eq. (9) is directly obtained 
by the differentiation of Eq. (8) with respect to x, y and z. 
Similar to Eq. (3), inserting the exact solution given by 
Eqs. (7)–(9) into the stencil equation, Eq. (6), instead of the 
numerical solution, we will get the following local trunca-
tion error in space e:

(7)

up =u14 +
�u14

�x
[(i − 2)dph]

+
�u14

�y
[(j − 2)dpbyh] +

�u14

�z
[(k − 2)dpbzh]

+
�2u14

�x2

[(i − 2)dph]
2

2!

+
�2u14

�y2

[(j − 2)dpbyh]
2

2!

+
�2u14

�z2

[(k − 2)dpbzh]
2

2!

+ 2
�2u14

�x�y

[(i − 2)dph][(j − 2)dpbyh]

2!

+ 2
�2u14

�x�z

[(i − 2)dph][(k − 2)dpbzh]

2!

+ 2
�2u14

�y�z

[(j − 2)dpbyh][(k − 2)dpbzh]

2!
+⋯ ,

(8)
�2u14

�x2
= −

�2u14

�y2
−

�2u14

�z2
− a�2u14,

(9)

�(i+j+k+2)u14

�xi+2�yj�zk
= −

�(i+j+k+2)u14

�xi�yj+2�zk
−

�(i+j+k+2)u14

�xi�yj�zk+2
− a�2

�(i+j+k)u14

�xi�yj�zk

(10)

e =b1u14 + h

[
b2

�u14

�x
+ b3

�u14

�y
+ b4

�u14

�z

]

+ h2
[
b5
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where the coefficients bp (p = 1, 2,… 165) are expressed 
in terms of the coefficients mj and kj (j = 1, 2,… , 27); see 
Appendix 1. Starting from the sixth order of the local trunca-
tion error, we do not show all coefficients bp in Eq. (10) (we 
show only the first and last coefficients bp for the correspond-
ing order). Here we should mention that the expression for 
the local truncation error, Eq. (10), includes the first-order 
derivatives with respect to x only (the higher-order deriva-
tives with respect to x are excluded with the help of Eqs. (8)–
(9)). We should also note that in Eq. (10) as well as in the 
equations considered below, the symbol bp (p = 1, 2,… 165) 
designates the coefficients in the expression for the local 
truncation error while the symbols by and bz in Eq. (5) and 
other parts of the paper designate the aspect ratios of Car-
tesian meshes.

To obtain the optimal order of accuracy of the local 
truncation error in Eq.  (10) at small h ≪ 1 , we will 
equate to zero the coefficients bp in Eq.  (10) for the 
smallest orders of h. First, let us consider the case of 
uniform stencils with di = 1 (i = 1, 2,… , 27); see Fig. 1. 
In this case, the analytical study of coefficients bp with 
the help of Mathematica shows that we can equate 
to zero the first 56 coefficients bp (p = 1, 2,… , 56) in 
Eq. (10). However, some of these coefficients are lin-
early dependent. Therefore, we will zero the following 
bp coefficients:

as well as we use the condition k14 = 1 (see the Remark 1 
after Eq. (6)). The analytical solution of the algebraic equa-
tions, Eq. (11), calculated with help of Mathematica yields 
the following coefficients mi and ki (i = 1, 2,… , 27) of the 
stencil equation, Eq. (6):

(11)

bp = 0,

p = 1, 2,… , 20, 22, 23, 25, 26, 27, 29,… , 35, 38, 42, 43, 47,… ,

53, 65, 71, 72, 74, 75, 76, 78, 102, 106, 107, 146,

(12)

k1 = k3 = k7 = k9 = k19

= k21 = k25 = k27 = −
(5(b2

z
+ 1)b2

y
+ 5b2

z
+ 9)

8(125(b2
z
+ 1)b2

y
+ 125b2

z
+ 9)

,

k2 = k8 = k20

= k26 =
(5(b2

z
− 5)b2

y
− 25b2

z
+ 9)

500(b2
z
+ 1)b2

y
+ 500b2

z
+ 36

,

k4 = k6 = k22

= k24 =
(−25(b2

z
+ 1)b2

y
+ 5b2

z
+ 9)

500(b2
z
+ 1)b2

y
+ 500b2

z
+ 36

,

k10 = k12 = k16 = k18 =
((5 − 25b2

z
)b2

y
− 25b2

z
+ 9)

500(b2
z
+ 1)b2

y
+ 500b2

z
+ 36

,

k5 = k23 =
(25(b2

z
− 5)b2

y
+ 25b2

z
− 9)

250(b2
z
+ 1)b2

y
+ 250b2

z
+ 18

,

k11 = k17 =
(25(b2

z
+ 1)b2

y
− 125b2

z
− 9)

250(b2
z
+ 1)b2

y
+ 250b2

z
+ 18

,

k13 = k15 =
(−25(5b2

z
− 1)b2

y
+ 25b2

z
− 9)

250(b2
z
+ 1)b2

y
+ 250b2

z
+ 18

,

k14 = 1,m1 = m3 = m7 = m9 = m19 = m21 = m25

= m27 = −
(7(5b2

z
+ 9)b2

y
+ 63b2

z
+ 183)

672(125(b2
z
+ 1)b2

y
+ 125b2

z
+ 9)

,

m2 = m8 = m20 = m26 = −
(7(25b2

z
− 9)b2

y
− 63b2

z
+ 195)

336(125(b2
z
+ 1)b2

y
+ 125b2

z
+ 9)

,

m4 = m6 = m22 = m24 =
(−35(5b2

z
+ 9)b2

y
+ 63b2

z
+ 183)

336(125(b2
z
+ 1)b2

y
+ 125b2

z
+ 9)

,

m10 = m12 = m16 = m18 =
(−7(25b2

z
− 9)b2

y
− 315b2

z
+ 183)

336(125(b2
z
+ 1)b2

y
+ 125b2

z
+ 9)

,

m5 = m23 =
(−35(25b2

z
− 9)b2

y
− 63b2

z
+ 195)

168(125(b2
z
+ 1)b2

y
+ 125b2

z
+ 9)

,

m11 = m17 =
(−7(125b2

z
+ 9)b2

y
+ 315b2

z
+ 195)

168(125(b2
z
+ 1)b2

y
+ 125b2

z
+ 9)

,

m13 = m15 =
(−35(25b2

z
− 9)b2

y
+ 315b2

z
− 183)

168(125(b2
z
+ 1)b2

y
+ 125b2

z
+ 9)

,

m14 = −
5(7(125b2

z
+ 9)b2

y
+ 63b2

z
+ 39)

84(125(b2
z
+ 1)b2

y
+ 125b2

z
+ 9)

.
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Inserting these coefficients mi and ki (i = 1, 2, 3,… , 27) from 
Eq. (12) into Eq. (10), we will get the following local trunca-
tion error in space e for uniform stencils:

i.e., the coefficients mi and ki (i = 1, 2,… , 27) given by 
Eq. (12) zero all coefficients bp (p = 1, 2,… , 56) in Eq. (10) 
up to the fifth order and provide the global fourth order of 
accuracy of OLTEM on regular domains.

Remark 3  It is interesting to mention that 9-point stencils 
in the 2D case and 27-point stencils in the 3D case can pro-
vide the global sixth order of accuracy for the Helmholtz 
equation on regular domains; e.g., see [67, 68]. The optimal 
global fourth order of accuracy of OLTEM with the 27-point 
stencils on regular domains is explained by the form of the 
stencil equations, Eq. (6). For example, we can also get the 
global sixth order of accuracy for OLTEM with 27-point 
stencils on regular domains if we assume that the stencil 
coefficients mp and kp in Eq. (6) are polynomial functions 
of the mesh size h (e.g., see our paper [69] for the time-
dependent wave equation in the 2D case). However, in the 
case of irregular domains, we can get the global fourth order 
of accuracy for OLTEM and we use the simple 27-point 
stencils given by Eq. (6) to simplify the derivations.

Next, let us consider non-uniform stencils; see Fig. 2. 
If we equate to zero the first 35 coefficients bp = 0 
(p = 1, 2,… , 15) in Eq. (10), then, at least, we could obtain 
the fifth order of the local truncation error. However, for a 
rectangular mesh with by ≠ 1 or/and bz ≠ 1 , the correspond-
ing system of 35 algebraic equations for some particular 
cases (e.g., when one point of the 27-point regular stencil 
lies outside the physical domain and we have a non-uniform 
stencil with d1 ≠ 1 , see Fig. 2) can be analytically solved 
with the help of Mathematica. These solutions show that all 
coefficients ki in this stencil equation are zeros; i.e., these 
solutions are inappropriate. Therefore, the maximum pos-
sible order of the local truncation error for a non-uniform 
stencil, Eq. (6), on a rectangular mesh corresponds to the 
fourth order (this can be obtained by equating to zero the 
first 20 coefficients bp = 0 (p = 1, 2,… , 20) in Eq. (10)).

To zero the coefficients bp (p = 1, 2,… , 20) for rectan-
gular meshes and minimize the values of the coefficients 
bp (p = 21, 22,… , 165) for the fourth, fifth, sixth, seventh 
and eighth orders of the local truncation error for all non-
uniform stencils, we use the following procedure. First, let 
us zero the following coefficients bp:

(13)

e =
3b2

y
b2
z
h6((b4

y
− 1)

�6u14

�y6
+ (b4

z
− 1)

�6u14

�z6
− �6u14)

8(125b2
y
(b2

z
+ 1) + 125b2

z
+ 9)

+ O(h8),

(14)bp = 0, p = 1, 2,… , 20.

Then, for the coefficients bp related to the fourth, fifth, sixth, 
seventh and eighth orders of the local truncation error, we 
use the least square method with the following residual R:

where h1 , h2 , h3 and h4 are the weighting factors to be 
selected (e.g., the numerical experiments show that 
h1 = h2 = h3 = h4 = h yields accurate results). The inclu-
sion of the terms up to the eighth order is explained by the 
fact that for uniform meshes, the inclusion of these terms 
provides a sufficient number of equations for the calculation 
of the coefficients mi and ki (i = 1, 2,… , 27); see Eq. (11).

Remark 4  It is interesting to mention that OLTEM for the 
2D Helmholtz equation in our paper [64] does not include 
the coefficients bp related to the seventh and eighth orders 
of the local truncation error.

To minimize the residual R with the constraints given by 
Eq. (14), we can form a new residual R̄ with the Lagrange 
multipliers �p:

The residual R̄ is a quadratic function of coefficients mi and 
ki (i = 1, 2,… , 27) and a linear function of the Lagrange 
multipliers �p ; i.e., R̄ = R̄(mi, ki, 𝜆p) . To minimize the resid-
ual R̄(mi, ki, 𝜆p) , the following equations based on the least 
square method for the residual R̄ can be written down:

where equation 𝜕R̄

𝜕k14
= 0 should be replaced by k14 = 1 

(because for the stencil equation, Eq. (6), one of the coeffi-
cients mi and ki (i = 1, 2,… , 27) can be arbitrary selected; 
e.g., k14 = 1 ; see Remark 1 after Eq. (6)). Equations (17) and 
(18) form a system of 74 linear algebraic equations with 
respect to 54 unknown stencil coefficients mi and ki 
( i = 1, 2,… , 27 ) and 20 Lagrange multipliers �p 
( p = 1, 2,… , 20 ). Solving these linear algebraic equations 
numerically, we can find the coefficients mi , ki 
( i = 1, 2,… , 27 ) for the 27-point non-uniform stencils.

(15)

R =

35∑

p=21

b2
p
+ h1

56∑

p=36

b2
p
+ h2

84∑

p=57

b2
p
+ h3

120∑

p=85

b2
p
+ h4

165∑

p=121

b2
p
,

(16)

R̄ =

35∑

p=21

b2
p
+ h1

56∑

p=36

b2
p
+ h2

84∑

p=57

b2
p
+ h3

120∑

p=85

b2
p

+ h4

165∑

p=121

b2
p
+

20∑

p=1

𝜆pbp.

(17)
𝜕R̄

𝜕mi

= 0,
𝜕R̄

𝜕ki
= 0, i = 1, 2,… , 27,

(18)
𝜕R̄

𝜕𝜆p
= 0, p = 1, 2,… , 20,
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Remark 5  To estimate the computation costs of the forma-
tion and solution of 74 linear algebraic equations formed 
by Eqs. (17) and (18) we solved 106 such systems with a 
general MATLAB solver on a desktop computer (Processor: 
Intel (R) Core(TN) i9-9900 CPU @3.10 Hz 3.10 HZ). The 
computation ‘wall’ time was T = 356.76 s for 106 systems or 
the average time for one system was 0.00035676 s . Because 
the coefficients mi and ki ( i = 1, 2,… , 27 ) are independently 
calculated for different non-uniform stencils, the computa-
tion time of their calculation for different grid points can be 
significantly reduced on modern parallel computers. This 
means that for large global systems of equations, the com-
putation time for the calculation of the coefficients mi and 
ki ( i = 1, 2,… , 27 ) is very small compared to that for the 
solution of the global system of equations. For example, for 
a relatively small 3D system with 216,595 degrees of free-
dom, the preparation and solution of the local systems took 
tl = 3.06 s while the solution of the global discrete system 
took tg = 66.84 s . With mesh refinement, the number of the 
local systems for the stencils close to the boundary is pro-
portional to 1∕h2 while the number of degrees of freedom 
for the global system is proportional to 1∕h3 ; i.e., tg∕tl will 
grow with mesh refinement.

OLTEM provides the fourth (with rectangular Carte-
sian meshes) or the fifth (with cubic by = bz = 1 Cartesian 
meshes) order of the local truncation error for the nonuni-
form stencils and the sixth order of the local truncation error 
for the uniform stencils (see Eq. (13)). For the conventional 
linear finite elements on uniform square meshes, the values 
of the coefficients mi and ki ( i = 1, 2,… , 27 ) (e.g., see [70] 
for the coefficients mi and ki used with the finite elements) 
provide the fourth order of the local truncation error; i.e., 
OLTEM improves the local truncation error in space by two 
orders compared to that for the conventional linear elements 
on uniform square meshes. These orders of accuracy are 
independent of the wave number �.

2.3 � Boundary conditions

2.3.1 � Dirichlet boundary conditions

The application of the Dirichlet boundary conditions in 
OLTEM is trivial and similar to that for the finite elements. We 
simply equate the boundary degrees of freedom of the uniform 
and non-uniform stencils (see Figs. 1 and 2) to the values of a 
given function g2(x, y, z) at the corresponding boundary points; 
i.e., the Dirichlet boundary conditions are exactly imposed. 
Here, g2(x, y, z) describes the Dirichlet boundary conditions. 
The final global discrete system of equations includes the 
27-point uniform and nonuniform stencil equations (see Figs. 1 
and 2) for all internal grid points that are located inside the 

domain as well as the Dirichlet boundary conditions at the 
boundary points. These 27-point uniform and nonuniform 
stencils on square Cartesian meshes provide the fourth order 
of accuracy of numerical solutions; see the numerical exam-
ples in Sect. 3.

Remark 6  As shown in [62], the boundary stencils may have 
the local truncation error that is one order lower compared 
to that for internal stencils (this does not worsen the order 
of accuracy of the global solution).

Remark 7  The proposed technique yields accurate results 
for the non-uniform stencils even with very small coeffi-
cients di ≪ 1 . However, the new technique allows also to 
exclude very small coefficients di ≪ 1 from calculations. For 
example, if di ≪ tol for some internal grid point (see Fig. 2) 
where tol is a small tolerance (e.g., tol = 10−3 ), then the non-
uniform stencil for this internal grid point can be removed 
from the global system of equations and this point can be 
moved to the boundary and treated as the boundary point for 
other stencils. In this case, the corresponding coefficients di 
for this point in other stencils can be slightly greater than 
one. According to the derivations in the previous section, all 
equations will be valid also for di > 1 . The numerical experi-
ments with a small tolerance tol = 10−3 show that if the point 
with very small coefficients di ≪ 1 is moved to the boundary 
then the coefficients di for this point in other stencils can be 
taken as di = 1 without introducing any significant errors.

2.3.2 � Neumann boundary conditions

The imposition of the Neumann boundary conditions for 
OLTEM is different from that for the Dirichlet boundary con-
ditions. Our goal is to use the same 27-point uniform and non-
uniform stencils equations as those in Figs. 1 and 2 because this 
significantly simplifies the implementation of OLTEM with 
unfitted Cartesian meshes. We suggest the following 27-point 
stencil equations for the Neumann boundary conditions:

where f̄14 = 0 in the case of zero load f = 0 in Eq. (1), the 
expression in the square brackets in the right-hand side of 
Eq. (19) is known and represents the Neumann boundary 
conditions at the boundary points with the coordinates 
xp, yp, zp that are located on the boundary with the Neumann 

(19)

a𝛽2h2
27∑

p=1

mpu
num

p
+

27∑

p=1

kpu
num

p

=

[
a𝛽2h3

27∑

p=1

m̄pg1(xp, yp, zp)

+ h

27∑

p=1

k̄pg1(xp, yp, zp)

]
+ f̄14,
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boundary conditions (see Fig. 2), the unknown stencil coef-
ficients mp , m̄p , kp , and k̄p ( p = 1, 2,… , 27 ) are to be deter-
mined from the minimization of the local truncation error, 
the coefficients mp = 0 and kp = 0 if the stencil point with 
the coordinates xp, yp, zp is located on the boundary with 
the Neumann boundary conditions; otherwise, m̄p = 0 and 
k̄p = 0 (this means that Eq. (19) includes only 54 non-zero 
coefficients mp , m̄p , kp , and k̄p ), the central grid point with 
the coordinates x14 , y14 and z14 is always the internal grid 
point (therefore, m̄14 = k̄14 = 0 ). Only 53 out of the 54 
nonzero coefficients mp , m̄p , kp , and k̄p ( p = 1, 2,… , 9 ) in 
Eq. (19) can be considered as unknown coefficients. This can 
be explained similar to Remark 1 after Eq. (6).

The local truncation error e of the stencil equation, Eq. (19), 
can be written down by the replacement of the numerical solu-
tion in Eq. (19) by the exact solution as follows:

where n1,p , n2,p and n3,p ( p = 1, 2,… , 27 ) are the x-, y- and 
z-components of the outward unit normal vector np at the 
boundary point p (see Fig. 2), function u(x, y, z) in Eq. (20) 
corresponds to the exact solution, the Neumann boundary con-
ditions in the right-hand side of Eq. (19) are expressed in terms 
of the function u(x, y, z) and are moved to the left-hand side.

The rest of derivations will be similar to those in Sect. 2.2. 
Inserting Eqs. (7)–(9) into Eq. (20), we will get the local 
truncation error in space e that can be also expressed by 
Eq. (10) with the coefficients bp ( p = 1, 2,… , 165 ) given 
in Appendix 2. In contrast to Sect. 2.2, now the coefficients 
bp ( p = 1, 2,… , 165 ) depend not only on mi , ki and di but 
also on m̄i , k̄i , n1,i,n2,i and n3,i ( i = 1, 2,… , 27 ); see Appen-
dix 2. For the calculations of the coefficients mi , m̄i , ki , k̄i 
( i = 1, 2,… , 27 ) for the uniform and non-uniform stencils, we 
will use the least square method with Eqs. (14)–(18). However, 
Eq. (17) should be modified as follows:

where the partial derivatives of R̄ in Eq. (21) are considered 
with respect to only non-zero coefficients mi , m̄i , ki , k̄i with 
i = 1, 2,… , 27 (see also the explanations for zero and non-
zero coefficients after Eq. (19)); i.e., Eq. (21) as well as 
Eq. (17) provides 54 algebraic equations (similar to Eq. (17), 
equation 𝜕R̄

𝜕k14
= 0 should be replaced by k14 = 1 ). Finally, 

(20)

e =a𝛽2h2
27∑

p=1

mpup +

27∑

p=1

kpup

− a𝛽2h3
27∑

p=1

m̄p

(
n1,p

𝜕up

𝜕x
+ n2,p

𝜕up

𝜕y
+ n3,p

𝜕up

𝜕z

)

− h

27∑

p=1

k̄p

(
n1,p

𝜕up

𝜕x
+ n2,p

𝜕up

𝜕y
+ n3,p

𝜕up

𝜕z

)
− f̄14,

(21)

𝜕R̄

𝜕mi

= 0,
𝜕R̄

𝜕m̄i

= 0,
𝜕R̄

𝜕ki
= 0,

𝜕R̄

𝜕k̄i
= 0, i = 1, 2,… , 27,

solving 74 linear algebraic equations (Eqs. (18) and (21)) 
numerically, we can find the coefficients mi , m̄i , ki , k̄i 
( i = 1, 2,… , 27 ) for the 27-point uniform and non-uniform 
stencils. Numerical experiments show that for the Neumann 
boundary conditions, the coefficients h1 = h2 = h3 = h4 = 1 
in Eq. (15) provide accurate results.

Remark 8  In contrast to Sect. 2.2, the non-uniform stencils 
with the Neumann boundary conditions provide the fourth-
order of the local truncation error on cubic ( by = bz = 1 ) 
meshes (the same as on rectangular meshes). This corre-
sponds to the third order of accuracy of the numerical results 
for OLTEM with the Neumann boundary conditions; see the 
numerical examples in Sect. 3.

Remark 9  As can be seen from Eq.  (19), the Neumann 
boundary conditions at the selected boundary points contrib-
ute to the right-hand side of the stencil equations. Similarly, 
the known Dirichlet boundary conditions at the selected 
boundary points (see the previous section) can be moved 
to the right-hand side of the stencil equations. This means 
that there are no unknowns at the boundary points for the 
proposed approach and the unknowns are calculated at all 
internal grid points. The actual number of the internal Car-
tesian grid points with the unknowns unum

p
 (the stencil width) 

included into the stencil equations with the boundary points 
is smaller than 27.

2.4 � Nonzero load f ≠ 0 in Eq. (1)

The inclusion of non-zero loading term f in the partial dif-
ferential equation, Eq. (1), leads to the non-zero term f̄14 in 
the stencil equations, Eqs. (6) and (19) (similar to Eq. (2)). 
The expression for the term f̄14 can be calculated from the 
procedure used for the derivation of the local truncation 
error in the case of zero loading function.

In the case of non-zero loading function ( f (x) ≠ 0 ), 
Eqs. (8) and (9) for the exact solution at x = x14 , y = y14 and 
z = z14 can be modified as follows:

(22)
�2u14

�x2
= −

�2u14

�y2
−

�2u14

�z2
− a�2u14 + f (x14, y14, z14),

(23)

�(i+j+k+2)u14

�xi+2�yj�zk
= −

�(i+j+k+2)u14

�xi�yj+2�zk

−
�(i+j+k+2)u14

�xi�yj�zk+2
− a�2

�(i+j+k)u14

�xi�yj�zk

+
�(i+j+k)f (x14, y14, z14)

�xi�yj�zk
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with i, j, k = 0, 1, 2, 3, 4,… . Then, inserting Eqs. (7), (22) and 
(23) with the exact solution to Eq. (1) into the stencil equa-
tion, Eq. (19), with non-zero f̄5 we will get the following 
local truncation error in space ef :

where e is the local truncation error in space given by 
Eq.  (10), f14 designates function f(x, y, z) calculated at 
x = x14 , y = y14 and z = z14 . Equating to zero the expression 
in the square brackets in the right-hand side of Eq. (24), we 
will get the expression for f̄14:

as well as we will get the same local truncation errors ef = e 
for zero and non-zero loading functions; see the attached 
files “RHS-Helm.pdf” and “RHS-Helm.nb” for the detailed 
expression of f̄14 . This means that the coefficients mi and 
ki of the stencil equations are first calculated for zero load 
f = 0 as described in Sects. 2.2 and 2.3. Then, the nonzero 
loading term f̄14 given by Eq. (25) is used in the stencil equa-
tion, Eqs. (6) and (19).

(24)

ef = e −

[
f̄14 −

{
h2f14

2
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2
1
− 2k̄1n1,1d1 + d2

10
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7
k7 + d2

9
k9 − 2d10k̄10n1,10 + 2d12k̄12n1,12

− 2d13k̄13n1,13 + 2d15k̄15n1,15

− 2d16k̄16n1,16 + 2d18k̄18n1,18 − 2d19k̄19n1,19

+ 2d21k̄21n1,21 − 2d22k̄22n1,22

+ 2d24k̄24n1,24 − 2d25k̄25n1,25

+ 2d27k̄27n1,27 + 2d3k̄3n1,3 − 2d4k̄4n1,4

+ 2d6k̄6n1,6 − 2d7k̄7n1,7

+ 2d9k̄9n1,9) + h3(⋯) +⋯

}]
,

(25)

f̄14 =
h2f14

2
(k1d
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1
− 2k̄1n1,1d1

+ d2
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k10 + d2
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k13 + d2
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+ d2
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k18 + d2

19
k19 + d2
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k21 + d2
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k22 + d2
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k24

+ d2
25
k25 + d2

27
k27 + d2

3
k3 + d2

4
k4 + d2

6
k6 + d2

7
k7

+ d2
9
k9 − 2d10k̄10n1,10 + 2d12k̄12n1,12

− 2d13k̄13n1,13 + 2d15k̄15n1,15

− 2d16k̄16n1,16 + 2d18k̄18n1,18 − 2d19k̄19n1,19

+ 2d21k̄21n1,21 − 2d22k̄22n1,22

+ 2d24k̄24n1,24 − 2d25k̄25n1,25

+ 2d27k̄27n1,27 + 2d3k̄3n1,3 − 2d4k̄4n1,4

+ 2d6k̄6n1,6 − 2d7k̄7n1,7 + 2d9k̄9n1,9) + h3(⋯) +⋯

Remark 10  Equation  (25) for the non-zero load can be 
also used for the stencil given by Eq.  (6). In this case, 
the coefficients m̄i and k̄i should be taken as m̄i = k̄i = 0 
( i = 1, 2,… , 27).

3 � Numerical examples

In this section, the computational efficiency of OLTEM devel-
oped for the 3D Helmholtz and screened Poisson equations 
will be demonstrated and compared with conventional FEM. 
OLTEM is implemented as a Matlab code. The commercial 
finite element software ‘COMSOL’ is used for the finite ele-
ment simulations. Similar to FEM terminology, a grid point 
of a Cartesian mesh will be called a node. To compare the 
accuracy of the numerical results obtained by OLTEM and 
by FEM, the relative error ej at the jth node and the maximum 
relative error emax for the function u are defined as:

In Eq. (26) the superscripts ‘num’ and ‘exact’ correspond to 
the numerical and exact solutions, N is the total number of 
nodes used in calculations, uexact

max
 is the maximum absolute 

value of the exact solution for the function u over the entire 
domain. We also use the relative error ‖e‖2 in the L2 norm 
for finite elements (e.g., see [71]) and the relative error ‖e‖2 
in the l2 norm (e.g., see [72]) for OLTEM:

where ‖uexact − unum‖2 = {dx dy dz
∑Nx

i=0

∑Ny

j=0

∑Nz

k=0
ai,j,k[u

exact (xi , yj , zk) − unum(xi , yj , zk)]
2}

1

2
 ; 

Nx , Ny and Nz are the numbers of Cartesian grid points along 
x-, y- and z-axes, xi , yj and zk are the coordinates of Cartesian 
grid points; for the grid point with the coordinates xi, yj, zk , 
the coefficient ai,j,k = 1 if the grid point is located inside the 
domain and ai,j,k = 0 otherwise.

The efficiency of conventional FEM and OLTEM is com-
pared by the solution of two test problems with the following 
smooth exact solutions to the Helmholtz equation (Eq. (2) 
with a = 1):

with �2 = 12�2 and zero loading function f = 0 ; and

with �2 = 100  and non-zero loading funct ion 
f (x, y, z) = (100 − 38�2) sin(5�x) cos[�(3y + 2z)]  ( s e e 
Sects. 3.1–3.3) as well as a test problem with a non-smooth 

(26)

ej =
∣ unum

j
− uexact

j
∣

uexact
max

, emax = max
j

ej, j = 1, 2,… ,N.

(27)‖e‖2 =
‖uexact − unum‖2

‖uexact‖2
,

(28)u(x, y, z) = cos(2�x) cos(2�y) cos(2�z)

(29)u(x, y, z) = sin(5�x) cos[�(3y + 2z)]
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solution (see Sect. 3.4). For the screened Poisson equation 
(Eq. (2) with a = −1 ), we consider another test problem with 
the following exact solution:

with �2 = 3�2 and zero loading function f = 0 (see 
Sect. 3.5).

First, in Sect. 3.1 we solve the Helmholtz equation with 
nonzero loading on a regular cubic domain and the exact 
solution given by Eq. (29). Then, we consider an irregular 
domain represented by a prism ABCDOPQR with a spherical 
hole; see Fig. 5a. Figure 5b shows the Cartesian mesh used 
for OLTEM. For convenience, Cartesian meshes for the prism 
are generated in such a way that three grid planes of the Car-
tesian mesh are always matched with the faces APOD, ABQP 
and ABCD; depending on the mesh size h grid planes can be 
matched or non-matched with the faces BCRQ and CDOR; 
and the inclined face OPQR and the spherical surface of the 
hole are always non-matched with the Cartesian grid planes. 
An example of a typical tetrahedral mesh for the prism gen-
erated by COMSOL for the conventional FEM is shown in 
Fig. 5c, d. In Sect. 3.2, we solve the Helmholtz equation for 
the 3D prism with the Dirichlet boundary conditions imposed 
along the entire boundary. In Sect. 3.3, we solve the Helm-
holtz equation for the 3D prism with the combined Neumann 
and Dirichlet boundary conditions. The Helmholtz equation 
for the 3D prism with a non-smooth solution is considered in 
Sect. 3.4. In Sect. 3.5, the screened Poisson equation for the 
3D prism with the exact solution given by Eq. (30) is solved. 
All boundary conditions for the problems in Sects. 3.1–3.3, 3.5 
are calculated according to the exact solutions, Eqs. (28)–(30).

3.1 � The Helmholtz equation for a cubic domain

Here, we solve a test problem with the exact solution 
given by Eq. (29) on a regular cubic domain of dimensions 

(30)u(x, y, z) = cos[�(2x + 3y)]e4�(z−1)

1 × 1 × 1 by OLTEM and conventional linear and high-order 
finite elements. First, we solved the problem with the Dir-
ichlet boundary conditions along the entire boundary. Then, 
we solve the same problem with the combined Dirichlet and 
Neumann boundary conditions given as follows: the Neu-
mann boundary conditions are imposed on face z = 1 and 
the Dirichlet boundary conditions are imposed along the 
remaining boundaries; i.e., along the faces x = 0 , y = 0 , 
z = 0 , x = 1 and y = 1.

To show the effect of the aspect ratios of Cartesian 
meshes on the accuracy of OLTEM, Fig. 3 presents the 
maximum relative error emax and the relative error ‖e‖2 on 
cubic ( by = bz = 1—curve 1) and rectangular ( by = bz = 1∕2

—curve 2, by = bz = 1∕3—curve 3, by = bz = 1∕4—curve 4, 
by = bz = 1∕5—curve 5) Cartesian meshes at mesh refine-
ment. As can be seen from Fig. 3, the mesh refinement in the 
y- and z-directions practically does not affect the accuracy 
but increases the number of degrees of freedom. Therefore, 
in all numerical examples considered below we use cubic 
( by = bz = 1 ) Cartesian meshes (the first two terms in the 
nominator in Eq. (13) for the local truncation error become 
zero in this case).

To compare the numerical solutions obtained by dif-
ferent techniques the maximum relative error emax and the 
relative error ‖e‖2 are plotted as a function of the mesh 
size h in Fig. 4 (the same uniform Cartesian meshes are 
used for OLTEM and FEM). As can be seen from Fig. 4, 
OLTEM yields more accurate numerical solutions than those 
obtained by linear and high-order (up to the fifth order) finite 
elements at the same mesh size. We should mention that for 
the fourth and fifth-order elements this is valid for a large 
range of accuracy up to 0.01% or Log10emax = −4 (for the 
higher accuracy, the fourth- and fifth-order elements can 
be more accurate than OLTEM; see Fig. 4). It can also be 
seen that the order of accuracy of the numerical solution 
obtained by OLTEM is close to four for the Dirichlet bound-
ary conditions and close to three for the Neumann boundary 

Fig. 3   The maximum relative error emax (a) and the relative error 
‖e‖2 (b) as a function of the mesh size h at mesh refinement in the 
logarithmic scale. The numerical solutions of the 3D Helmholtz 
equation for the cubic domain with non-zero loading functions and 

the Dirichlet boundary conditions are obtained by OLTEM on cubic 
( by = bz = 1—curve 1) and rectangular ( by = bz = 1∕2—curve 2, 
by = bz = 1∕3—curve 3, by = bz = 1∕4—curve 4, by = bz = 1∕5—
curve 5) Cartesian meshes
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conditions; see the slopes of curves 1 in Fig. 4a, c for the 
Dirichlet boundary conditions and in Fig. 4b, d for the Neu-
mann boundary conditions. This is in agreement with the 
theoretical results in Sect. 2.3.

Remark 11  The global matrices of the discrete equations for 
linear finite elements and for OLTEM on the same Cartesian 
mesh have the same structure (the same number and posi-
tions of zero and nonzero coefficients in the global matri-
ces); the only difference between OLTEM and linear finite 
elements in this case is in the values of the nonzero coef-
ficients of the global matrices.

3.2 � The Helmholtz equation for the 3D prism 
with the Dirichlet boundary conditions

Two test problems for the 3D prism with a spherical hole 
(see Fig. 5a) and the Dirichlet boundary conditions along 
the entire boundary are solved by OLTEM and by conven-
tional FEM. The exact solutions for these problems are 
given by Eqs. (28) and (29). The distribution of the exact 
solution given by Eq. (28) with a lot of local minima and 
maxima is also shown in Fig. 6a. Figure 6b, c shows the 
distribution of the relative error on the x = 0.6 and y = 0.4 
planes for the numerical solution obtained by OLTEM on the 

cubic Cartesian mesh of size h = 1∕20 . It can be seen that 
the maximum error occurs inside the domain and far from 
the boundaries. To compare the accuracy of the numerical 
solutions obtained by different numerical techniques, Fig. 7 
shows the maximum relative error emax and the relative error 
‖e‖2 as a function of the number N of degrees of freedom 
in the logarithmic scale. As can be seen from Fig. 7, at the 
same N the numerical results obtained by OLTEM are much 
more accurate than those obtained by linear and high-order 
(up to the fifth order) finite elements. We should mention 
that for the fourth- and fifth-order elements this is valid for 
a large range of accuracy up to 0.01% or Log10emax = −4 (for 
the higher accuracy the fourth- and fifth-order elements can 
be more accurate than OLTEM; see Fig. 7). This increase in 
accuracy is impressive considering the fact that high-order 
finite elements have much wider stencils compared to those 
for OLTEM (the width of the stencils used in OLTEM cor-
responds to that for conventional linear quadrilateral finite 
elements). Therefore, at a given accuracy OLTEM requires 
a significantly less computation time compared to that for 
conventional finite elements. For example, at accuracy of 
0.1% , OLTEM reduces the number of degrees of freedom 
by a factor of greater than 1000 compared to that for linear 
finite elements with similar stencils; see curves 1 and 2 in 
Fig. 7 at Log10emax = −2 . This leads to a huge decrease in 

Fig. 4   The maximum relative error emax (a, c) and the relative error 
‖e‖2 (b, d) as a function of the mesh size h at mesh refinement in 
the logarithmic scale. The numerical solutions of the 3D Helmholtz 
equation for the cubic domain with non-zero loading functions and 
the Dirichlet (a, b) as well as combined Neumann and Dirichlet (c, d) 

boundary conditions are obtained by OLTEM (curve 1) and by con-
ventional linear and high-order finite elements (curves 2–6) on cubic 
(by = bz = 1) Cartesian meshes. The slopes of curves 2–6 are: 1.88, 
2.69, 3.40, 2.44, 5.75 in a; 1.97, 2.95, 3.49, 2.86, 5.80 in b; 1.87, 
2.69, 3.40, 2.43, 5.79 in c; and 1.96, 2.94, 3.50, 2.87, 5.82 in d 
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computational time for OLTEM. The reduction in compu-
tational time for OLTEM will be even greater if a higher 
accuracy is needed.

The order of accuracy of OLTEM is approximately 
described by the slope of curve 1 at large N in Fig. 7 because 
the mesh size h is approximately proportional to 1

3
√
N

 . As can 
be seen from Fig. 7 the order of accuracy for the numerical 
solutions obtained by OLTEM is close to 4. This is in agree-
ment with the theoretical findings in Sect. 2.3 related to 
OLTEM with the Dirichlet boundary conditions.

It is known that the use of the conventional finite ele-
ments with ‘cut cells’ on Cartesian meshes for irregular 
domains leads to large condition numbers of the global 
matrices at mesh refinement and, as a consequence, to inac-
curate solutions of the global systems of linear algebraic 
equations on fine meshes. Figure 8 presents the condition 
numbers cn =

∣�max∣

∣�min∣
 of the global matrix of linear algebraic 

equations for OLTEM on regular (see Sect. 3.1) and irregu-
lar (see Fig. 5a) domains as well as for linear finite elements 
on regular (see Sect. 3.1) domains. Here, �max and �min are 
the maximum and minimum eigenvalues of the global 

matrix. As can be seen from Fig. 8, at mesh refinement the 
condition numbers for standard linear finite elements on 
regular domains grows faster compared to that for OLTEM 
on irregular domains (see the slopes of the curves 1 and 3 in 
Fig. 8 where N1∕3 is proportional to h on Cartesian meshes). 
This means that at mesh refinement, there are no issues with 
the condition numbers for OLTEM on irregular domains.

3.3 � The Helmholtz equation for the 3D prism 
with the Neumann boundary conditions

Here, the same test problems for the 3D prism with a spheri-
cal hole (see Fig. 5a) as in Sect. 3.2 are solved with the 
combined Neumann and Dirichlet boundary conditions. The 
Neumann boundary conditions along the spherical hole and 
inclined upper boundary face OPQR as well as the Dirichlet 
boundary conditions along rest of the boundary are applied 
in accordance with the exact solutions Eqs. (28)–(29).

Figure 9 shows the maximum relative error emax and the 
relative error ‖e‖2 as a function of the number N of degrees 
of freedom in the logarithmic scale (similar to Fig. 7). As 
can be seen from Fig. 9, at the same N the numerical results 

Fig. 5   a A 3D prism ABC-
DOPQR (A(0, 0, 0), B(1, 0, 0)
, C(1, 1, 0), D(0, 1, 0), O(0, 1
, 1), P(0, 0, 0.8), Q(1, 0, 0.6), 
R(1, 1, 0.8))) with a spherical 
hole of radius 0.25 centered 
at (0.4, 0.6, 0.3),  b a cubic 
Cartesian mesh for OLTEM, 
c an example of a tetrahedral 
finite element mesh generated 
by the commercial software 
COMSOL for the discretization 
of the prism, d shows a part of 
the mesh in the vicinity of the 
spherical hole
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obtained by OLTEM are more accurate than those obtained 
by linear and high-order (up to the fifth order) finite ele-
ments. We should mention that for the fourth- and fifth-order 
elements this is valid for a large range of accuracy up to 0.1% 
or Log10emax = −3 (for the higher accuracy the fourth- and 
fifth-order elements can be more accurate than OLTEM; 
see Fig. 9). It can be also seen from Fig. 9 that the order of 
accuracy for the numerical solutions obtained by OLTEM is 
close to 3 (the slope of curve 1 at large N in Fig. 9 approxi-
mately describes the order of accuracy for OLTEM). This 
is in agreement with the theoretical findings in Sect. 2.3.2 
related to OLTEM with the Neumann boundary conditions.

To study the convergence and stability of the numerical 
results obtained by OLTEM in more detail, Fig. 10 pre-
sents the curves 1 in Figs. 7a and 9a at small changes of 
the mesh size h (curves 1 and 2 in Fig. 10 correspond to 
curves 1 in Figs. 7a and 9a, respectively). For this study, 
we solve the test problems on 2000 Cartesian meshes with 
the mesh sizes hi = h1 +

(h2−h1)(i−1)

1999
 with h1 = 1∕10 , 

h2 = 1∕30 and i = 1, 2,… , 2000 . As can be seen from 
Fig. 10, the numerical results obtained by OLTEM show 
small oscillations in the convergence curve. The amplitude 
of these oscillations decreases with the decrease in the 
mesh size h. This oscillatory behavior can be explained by 

Fig. 6   The distribution of the 
exact solution given by Eq. (28) 
(a) as well as the distribution 
of the relative error e (b, c) on 
the x = 0.4 (b) and y = 0.6 (c) 
planes obtained by OLTEM on 
the cubic Cartesian mesh of the 
mesh size h = 1∕20
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(1) the complicated dependency of the leading terms of 
the local truncation error on the coefficients di ; and (2) at 
small changes in the mesh size h, there can be discontinu-
ous changes in the stencil equations due to the change of 
the location of the nodes. For example, a node located 

inside the domain or on the boundary for one mesh can be 
moved outside the domain for the next mesh. It should be 
noted that such oscillations in convergence curves are typi-
cal for numerical techniques for irregular domain. For 
instance, the change in the angles of finite elements at 
small variations of the element size h also leads to such 
oscillations in the convergence curves for FEM. We should 
also mention that similar convergence curves for OLTEM 
have been obtained for the test problem with non-zero 
loading function considered in this paper.

3.4 � The Helmholtz equation for the 3D prism 
with a non‑smooth solution

The Helmholtz equation for the 3D prism with a spherical 
hole (see Fig. 5), �2 = 12�2 and zero loading is considered. 
The following combined Dirichlet (on faces ABCD, APOD, 
BCRQ, APQB, CROD and BQRC) and Neumann (along the 
spherical hole and face PQRO) boundary conditions are 
applied:

Fig. 7   The maximum relative error emax (a, b) and the relative error 
‖e‖2 (c, d) as a function of 3

√
N at mesh refinement in the logarithmic 

scale; N is the number of degrees of freedom. The numerical solu-
tions of the 3D Helmholtz equation for the prism (see Fig. 5a) with 
zero (a, c), non-zero (b, d) loading functions and the Dirichlet bound-
ary conditions are obtained by OLTEM on cubic (by = bz = 1) Carte-

sian meshes (curve 1) and by conventional linear and high-order finite 
elements on tetrahedral meshes (curves 2–6). The slopes of curves 
2–6 are: 1.78, 2.67, 3.95, 4.93, 7.03 in a; 1.95, 1.78, 3.87, 3.57, 6.06 
in b; 1.99, 2.57, 3.38, 4.67, 6.90 in c; and 2.02, 2.62, 3.52,3.33, 6.26 
in d 

Fig. 8   The condition number cn of the global matrix for OLTEM on 
regular (curve 2) and irregular (curve 3) domains as well as for linear 
finite elements on regular (curve 1) domains as a function of 3

√
N at 

mesh refinement in the logarithmic scale; N is the number of degrees 
of freedom. The slopes of curves 1, 2, 3 are: 2.89, 1.93, 1.94



	 Engineering with Computers

1 3

see also Fig. 11. According to Eq. (31), on faces ABCD and 
APOD the function u is continuous; however, the boundary 
conditions on these faces have the discontinuous derivatives 
along the internal lines that form the internal square EFGH 
on face APOD (see Fig. 11a) and the internal circle M on 
face ABCD (see Fig.  11b). For example, on the circle 

(31)

On APOD ∶ u(y, z) =

� 125

32
(4y − 1)(4y − 3)(4z − 1)(4z − 3) + cos(2�y) cos(2�z) inside EFGH

cos(2�y) cos(2�z) outside EFGH

On ABCD ∶ u(x, y) =

�
49{(2x − 1)2 + (2y − 1)2 −

16

25
} + cos(2�x) cos(2�y) inside circle M

cos(2�x) cos(2�y) outside circle M

On APQB ∶ u(x, z) = cos(2�x) cos(2�z)

On BQRC ∶ u(y, z) = − cos(2�y) cos(2�z)

On CDOR ∶ u(x, z) = − cos(2�x) cos(2�z)

On the spherical hole:n ⋅ ∇u =
−2�

√
(0.4 − x)2 + (0.6 − y)2 + (0.3 − z)2

{(0.4 − x)sin(2�x)cos(2�y)cos(2�z)

+ (0.6 − y) cos(2�x) sin(2�y) cos(2�z) + (0.3 − z) cos(2�x) cos(2�y) sin(2�z)}

On OPQR ∶ n ⋅ ∇u =
2�
√
27

{sin(2�x) cos(2�y) cos(2�z) − cos(2�x) sin(2�y) cos(2�z) + 5 cos(2�x) cos(2�y) sin(2�z)},

centered at M on face ABCD: �u
�x

= 196(2x − 1) − 2� sin(2�x) cos(2�y) 
inside the circle and �u

�x
= −2� sin(2�x) cos(2�y) outside the 

circle; i.e., along the circle line (x − 0.5)2 + (y − 0.5)2 = 0.42 
these derivatives are discontinuous. Similarly, we have the 
non-smooth derivatives �u

�y
 along the internal circle on the 

face ABCD as well as the non-smooth derivatives �u
�x

 and �u
�y

 

Fig. 9   The maximum relative error emax (a, b) and the relative error 
‖e‖2 (c, d) as a function of 3

√
N at mesh refinement in the logarithmic 

scale; N is the number of degrees of freedom. The numerical solu-
tions of the 3D Helmholtz equation for the prism (see Fig. 5a) with 
zero (a, c), non-zero (b, d) loading functions and the combined Neu-
mann and Dirichlet boundary conditions are obtained by OLTEM on 

cubic (by = bz = 1) Cartesian meshes (curve 1) and by conventional 
linear and high-order finite elements on tetrahedral (curves 2–6) 
meshes. The slopes of curves 2–6 are: 1.88, 2.50, 4.81, 5.38, 7.17 in 
a; 1.75, 2.47, 3.50, 4.65, 4.82 in b; 1.93, 2.99, 4.83, 6.00, 13.38 in c; 
and 1.76, 2.54, 3.56, 4.96, 7.04 in d 
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along the internal square line EFGH on the face APOD. For 
these boundary conditions with the non-smooth derivatives, 
the exact solution is non-smooth and unknown. Therefore, 
the numerical solution obtained by the quintic finite ele-
ments on a fine mesh with 2,922,089 degrees of freedom is 
used below as the reference solution.

To compare the accuracy of the numerical solutions 
obtained by FEM and OLTEM, the problem is solved by 
OLTEM with unfitted Cartesian meshes and by conven-
tional linear and high-order (up to the fifth order) finite ele-
ments on tetrahedral meshes. Figure 12 shows the relative 
errors eS at point S(x = 0.1, y = 0.7, z = 0.7) and eT at point 
T(x = 0.5, y = 0.1, z = 0.1) as a function of the number N of 
degrees of freedom in the logarithmic scale. As can be seen 
from Fig. 12, at the same N the numerical results obtained 
by OLTEM are much more accurate than those obtained by 

Fig. 10   The logarithm of the maximum relative error emax as a func-
tion of the mesh size h at mesh refinement. The numerical solutions 
of the 3D Helmholtz equation for the prism (see Fig. 5a) with zero 
loading function and the Dirichlet boundary conditions (curve 1) as 
well as the combined Neumann and Dirichlet boundary conditions 
(curve 2) are obtained by OLTEM on 2000 cubic (by = bz = 1) Car-
tesian meshes with the gradual decrease of the mesh size h (see the 
text)

Fig. 11   a The face APOD of the prism (see Fig. 5a) with an internal square EFGH of dimensions 0.5 × 0.5 . b The face ABCD of the prism (see 
Fig. 5a) with an internal circle centered at M with the radius of 0.4

Fig. 12   The relative error eS at point S(0.1,  0.7,  0.7) (a) and eT at 
point T(0.5,  0.1,  0.1) (b) as a function of the number of degrees of 
freedom N in the logarithmic scale. The numerical solutions of the 
3D Helmholtz equation with zero loading function for the prism 
and the boundary conditions described in Sect.  3.4 are obtained by 

OLTEM on square Cartesian meshes (curve 1) and by conventional 
linear and high-order finite elements on tetrahedral meshes (curves 
2–6). The slopes of curves 2–6 are: 1.79, 3.33, 4.20, 5.20, 6.56 in a; 
and 2.07, 3.14, 4.31, 5.15, 6.05 in b 
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linear and high-order (up to the fifth order) finite elements. 
This is similar to the numerical results obtained in the previ-
ous sections. Figure 12 also shows that the order of accuracy 
of OLTEM for this problem is close four.

3.5 � The screened Poisson equation for the 3D prism

First, a test problem for the 3D prism with a spherical hole 
(see Fig. 5a) for the screened Poisson equation with the 
Dirichlet boundary conditions along the entire boundary is 
solved by OLTEM and by FEM. Then, the same test prob-
lem for the prism is solved with the combined Neumann 
and Dirichlet boundary conditions. The Neumann bound-
ary conditions along the spherical hole and inclined upper 
boundary face OPQR as well as the Dirichlet boundary con-
ditions along the remaining boundary are applied. These 
boundary conditions are evaluated according to the exact 
solution given by Eq. (30). Figure 13 shows the maximum 
relative error emax and the relative error ‖e‖2 as a function of 
the number N of degrees of freedom in the logarithmic scale. 
As can be seen from Fig. 13a, at the same N the numerical 
results obtained by OLTEM are much more accurate than 
those obtained by linear and high-order (up to the fifth order) 
finite elements. We should mention that for the fourth and 
fifth order elements this is valid for a large range of accuracy 
up to 0.0001% or Log10emax = −6 for the Dirichlet boundary 
conditions (see Fig. 13a,b) and up to 0.1% or Log10emax = −3 
for the Neumann boundary conditions; see Fig. 13c, d (for 

Fig. 13   The maximum relative error emax (a, c) and the relative error 
‖e‖2 (b, d) as a function of 3

√
N at mesh refinement in the logarithmic 

scale; N is the number of degrees of freedom. The numerical solu-
tions of the 3D screened Poisson equation for the prism (see Fig. 5a) 
with zero loading function and the Dirichlet (a, b) as well as com-

bined Neumann and Dirichlet (c, d) boundary conditions are obtained 
by OLTEM on cubic (by = bz = 1) Cartesian meshes (curve 1) and by 
conventional linear and high-order (up to the fifth order) finite ele-
ments on tetrahedral meshes (curves 2–6)

Fig. 14   The logarithm of the maximum relative error emax as a func-
tion of the mesh size h at mesh refinement. The numerical solutions 
of the 3D screened Poisson equation for the prism (see Fig. 5a) with 
zero loading function and the Dirichlet boundary conditions (curve 1) 
as well as the combined Neumann and Dirichlet boundary conditions 
(curve 2) are obtained by OLTEM on 2000 cubic (by = bz = 1) Car-
tesian meshes with the gradual decrease of the mesh size h (see the 
text)
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the higher accuracy the fourth- and fifth-order elements 
can be more accurate than OLTEM; see Fig. 13). It can be 
also seen from Fig. 13a ,b that the order of accuracy for the 
numerical solutions obtained by OLTEM is close to 4 for the 
Dirichlet boundary conditions. For the Neumann boundary 
conditions the order of accuracy for the numerical solutions 
obtained by OLTEM exceeds 3; see Fig. 13c, d. This is in 
agreement with the theoretical findings in Sect. 2.3.

To study the convergence and stability of the numerical 
results obtained by OLTEM in more detail, Fig. 14 presents 
the curves 1 in Fig. 13a, c at small changes of the mesh 
size h. Curves 1 and 2 in Fig. 14 correspond to curves 1 
in Fig. 13a, c. For this study, we solve the test problem on 
2000 Cartesian meshes with the gradual decrease in the 
mesh sizes (as described in Sect. 3.3). As can be seen from 
Fig. 14, the numerical results obtained by OLTEM show 
small oscillations in the convergence curve. The amplitudes 
of these oscillations decrease with the decrease in the mesh 
size h at mesh refinement. This oscillatory behavior can be 
explained similar to that in the previous section.

It can be concluded that for the 3D Helmholtz and 
screened Poisson equations, OLTEM yields much more 
accurate results compared to those obtained by linear and 
high-order (up to the fifth order) finite elements at the same 
number of degrees of freedom. It is worth to mention that 
high-order finite elements have much wider stencils and 
require a greater computational time compared to that for 
OLTEM.

4 � Concluding remarks

Most of the numerical techniques for the solution of partial 
differential equations finally reduce to a system of discrete 
or semi-discrete equations. However, in many cases the cor-
responding stencil equations of these systems do not provide 
an optimal accuracy. The idea of OLTEM consists in the 
direct optimization of the coefficients of the stencil equa-
tions and it is based on the minimization of the order of the 
local truncation error. The form and width of the stencil 
equations in OLTEM are assumed (e.g., as it is assumed for 
the finite-difference method) or can be selected similar to 
those for known numerical techniques (in this case, the accu-
racy of the known numerical techniques can be significantly 
improved by the modification of the coefficients of the sten-
cil equations). Another idea of OLTEM is the use of simple 
unfitted Cartesian meshes for complex irregular domain. In 
the considered paper OLTEM has been applied to the space 
discretization of the time-independent Helmholtz equation. 
27-point stencils in the 3D case that are similar to those for 
the linear quadrilateral finite elements are considered in the 
paper. The main advantages of the suggested technique can 
be summarized as follows:

•	 The idea of the minimization of the order of the local 
truncation error of stencil equations can be easily and 
efficiently applied to the development of new numeri-
cal techniques with an optimal accuracy as well as to 
the accuracy improvement of known numerical meth-
ods. Based on this idea, we have developed OLTEM for 
the 3D Helmholtz equation on irregular domains with 
Cartesian meshes and simple 27-points stencil equa-
tions that provide the optimal accuracy. The main two 
advantages of the proposed technique are a high optimal 
accuracy and the use of trivial unfitted Cartesian meshes 
for irregular domains without the need of complex mesh 
generators.

•	 In contrast to many fictitious domain numerical methods, 
OLTEM uses the exact Dirichlet and Neumann bound-
ary conditions at the actual boundary points without 
their interpolation using the Cartesian grid points (usu-
ally such interpolations introduce additional errors and 
increase the width of stencils equations for the grid points 
close to the irregular boundary). The new technique is 
based on simple 27-point uniform and non-uniform sten-
cils for all internal grid points (inside the domains as well 
as located close to irregular boundaries).

•	 In contrast to the finite-difference techniques with the 
coefficients of the stencils calculated through the approx-
imation of separate partial derivatives, the entire partial 
differential equation is used for the calculation of the 
stencil coefficients in OLTEM. This along with the mini-
mization procedure lead to the optimal accuracy of the 
proposed technique.

•	 At the same computation costs, OLTEM yields a much 
higher order of accuracy than other numerical tech-
niques; e.g., than the finite elements. For example, at 
the similar 27-point stencils, the accuracy of OLTEM is 
two orders higher than that for the linear finite elements. 
The numerical results for irregular domains show that at 
the same number of degrees of freedom and engineer-
ing accuracy, OLTEM is even much more accurate than 
high-order (up to the fifth order !) finite elements with 
much wider stencils. The numerical results also show 
that at accuracy of 0.1% , the proposed technique reduces 
the number of degrees of freedom by a factor of greater 
than 1000 compared to that for linear finite elements with 
similar 27-point stencils This leads to a huge decrease in 
computational time. The reduction in computational time 
for OLTEM will be even greater if a higher accuracy is 
needed.

•	 OLTEM does not require the time consuming numeri-
cal integration for finding the coefficients of the sten-
cil equations; e.g., as for high-order finite, spectral and 
isogeometric elements. For the new technique, the coef-
ficients of the stencil equations for the grid points located 
far from the boundary are calculated analytically. For 
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the grid points located close to the boundary (with non-
uniform and cut stencils), the coefficients of the stencil 
equations are calculated numerically by the solution of 
small local systems of linear algebraic equations.

•	 In our papers [65, 66], we have developed OLTEM for 
the 3D wave, heat and Poisson equations. Despite the 
same idea, the stencils, derivations and the imposition of 
the Neumann boundary conditions for the time-independ-
ent 3D Poisson equation (see [65, 66]) and the Helmholtz 
equation (the current paper) are different. E.g., we use 
27 stencil coefficients, minimize 45 bi coefficients in the 
local truncation error (including up to the sixth-order 
terms with respect to h) for the Poisson equations while 
we use 54 stencil coefficients, minimize 165 bi coeffi-
cients in the local truncation error (including up to the 
eighth-order terms with respect to h) for the Helmholtz 
equation. For the same Neumann boundary conditions, 
we use twice the number of stencil coefficients for the 
Helmholtz equation compared to that for the Poisson 
equation.

•	 It has been shown that the Helmholtz and screened Pois-
son equations can be uniformly treated with OLTEM.

In the future, we plan to consider the stencils with a 
larger numbers of grid points for a higher order of 
accuracy (similar to the high-order finite elements or 
to the high-order finite-difference techniques), to con-
sider a mesh refinement with Cartesian meshes using 
special stencils for the transition from a fine mesh to 
a coarse mesh, to consider other boundary conditions 
(e.g., the Robin conditions), to solve real-world problems 
with OLTEM. We also plan to study the application of 
OLTEM to more complicated scalar PDEs and systems 
of PDEs that include mixed derivatives and higher-order 
derivatives. For example, in [73, 74] we successfully 
applied OLTEM on regular domains to a system of 2D 
elasticity equations that include two PDEs with mixed 
derivatives.

Appendix 1: The coefficients bp used 
in Eq. (10) in Sect. 2.2

The first five coefficients bp ( p = 1, 2,… , 5 ) used in Eq. (10) 
are presented below. All coefficients bp used in Eq. (10) are 
given in the attached files ‘b-coeff-1.pdf’ and ‘b-coeff-1.nb’.

Eq. (10):

Appendix 2: The coefficients bp used 
in Eq. (10) for the Neumann boundary 
conditions in Sect. 2.3

The first five coefficients bp ( p = 1, 2,… , 5 ) used in Eq. (10) 
are presented below. All coefficients bp used in Eq. (10) are 
given in the attached files ‘b-coeff-2.pdf’ and ‘b-coeff-2.nb’.

Equation (10):

b1 =k1 + k10 + k11 + k12 + k13 + k14 + k15 + k16

+ k17 + k18 + k19 + k2 + k20 + k21 + k22 + k23

+ k24 + k25 + k26 + k27 + k3 + k4 + k5 + k6 + k7 + k8 + k9

b2 = − d1k1 − d10k10 + d12k12 − d13k13

+ d15k15 − d16k16 + d18k18 − d19k19 + d21k21 − d22k22 + d24k24

− d25k25 + d27k27 + d3k3 − d4k4 + d6k6 − d7k7 + d9k9

b3 =by(−d1k1 − d10k10 − d11k11 − d12k12

+ d16k16 + d17k17 + d18k18 − d19k19 − d2k2

− d20k20 − d21k21 + d25k25 + d26k26 + d27k27

− d3k3 + d7k7 + d8k8 + d9k9)

b4 =bz(−d1k1 + d19k19 − d2k2 + d20k20

+ d21k21 + d22k22 + d23k23 + d24k24 + d25k25 + d26k26

+ d27k27 − d3k3 − d4k4 − d5k5 − d6k6

− d7k7 − d8k8 − d9k9)

b5 =by(d
2
1
k1 + d2

10
k10 − d2

12
k12 − d2

16
k16

+ d2
18
k18 + d2

19
k19 − d2

21
k21 − d2

25
k25

+ d2
27
k27 − d2

3
k3 − d2

7
k7 + d2

9
k9).
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b1 =k1 + k10 + k11 + k12 + k13 + k14 + k15 + k16 + k17 + k18 + k19 + k2 + k20

+ k21 + k22 + k23 + k24 + k25 + k26 + k27 + k3 + k4 + k5 + k6 + k7 + k8 + k9

b2 = − d1k1 − d10k10 + d12k12 − d13k13 + d15k15 − d16k16 + d18k18 − d19k19

+ d21k21 − d22k22 + d24k24 − d25k25 + d27k27 + d3k3 − d4k4 + d6k6 − d7k7

+ d9k9 + k̄1n1,1 + k̄10n1,10 + k̄11n1,11 + k̄12n1,12 + k̄13n1,13 + k̄14n1,14 + k̄15n1,15

+ k̄16n1,16 + k̄17n1,17 + k̄18n1,18 + k̄19n1,19 + k̄2n1,2 + k̄20n1,20 + k̄21n1,21

+ k̄22n1,22 + k̄23n1,23 + k̄24n1,24 + k̄25n1,25 + k̄26n1,26 + k̄27n1,27 + k̄3n1,3 + k̄4n1,4

+ k̄5n1,5 + k̄6n1,6 + k̄7n1,7 + k̄8n1,8 + k̄9n1,9

b3 =by(−d1k1 − d10k10 − d11k11 − d12k12 + d16k16 + d17k17 + d18k18 − d19k19 − d2k2

− d20k20 − d21k21 + d25k25 + d26k26 + d27k27 − d3k3 + d7k7 + d8k8 + d9k9)

+ k̄1n2,1 + k̄10n2,10 + k̄11n2,11 + k̄12n2,12 + k̄13n2,13 + k̄14n2,14 + k̄15n2,15

+ k̄16n2,16 + k̄17n2,17 + k̄18n2,18 + k̄19n2,19 + k̄2n2,2 + k̄20n2,20 + k̄21n2,21 + k̄22n2,22

+ k̄23n2,23 + k̄24n2,24 + k̄25n2,25 + k̄26n2,26 + k̄27n2,27 + k̄3n2,3 + k̄4n2,4

+ k̄5n2,5 + k̄6n2,6 + k̄7n2,7 + k̄8n2,8 + k̄9n2,9

b4 =bz(−d1k1 + d19k19 − d2k2 + d20k20 + d21k21 + d22k22 + d23k23 + d24k24

+ d25k25 + d26k26 + d27k27 − d3k3 − d4k4 − d5k5 − d6k6 − d7k7 − d8k8 − d9k9)

+ k̄1n3,1 + k̄10n3,10 + k̄11n3,11 + k̄12n3,12 + k̄13n3,13 + k̄14n3,14 + k̄15n3,15 + k̄16n3,16

+ k̄17n3,17 + k̄18n3,18 + k̄19n3,19 + k̄2n3,2 + k̄20n3,20 + k̄21n3,21 + k̄22n3,22

+ k̄23n3,23 + k̄24n3,24 + k̄25n3,25 + k̄26n3,26 + k̄27n3,27 + k̄3n3,3 + k̄4n3,4 + k̄5n3,5

+ k̄6n3,6 + k̄7n3,7 + k̄8n3,8 + k̄9n3,9

b5 =by(d
2

1
k1 − d1k̄1n1,1 + d2

10
k10

− d10k̄10n1,10 − d11k̄11n1,11 − d2
12
k12 − d12k̄12n1,12 − d2

16
k16

+ d16k̄16n1,16 + d17k̄17n1,17 + d2
18
k18 + d18k̄18n1,18 + d2

19
k19 − d19k̄19n1,19

− d2k̄2n1,2 − d20k̄20n1,20 − d2
21
k21 − d21k̄21n1,21 − d2

25
k25 + d25k̄25n1,25

+ d26k̄26n1,26 + d2
27
k27 + d27k̄27n1,27 − d2

3
k3 − d3k̄3n1,3 − d2

7
k7 + d7k̄7n1,7 + d8k̄8n1,8 + d2

9
k9

+ d9k̄9n1,9) − d1k̄1n2,1 − d10k̄10n2,10 + d12k̄12n2,12 − d13k̄13n2,13 + d15k̄15n2,15

− d16k̄16n2,16 + d18k̄18n2,18 − d19k̄19n2,19 + d21k̄21n2,21 − d22k̄22n2,22 + d24k̄24n2,24

− d25k̄25n2,25 + d27k̄27n2,27 + d3k̄3n2,3 − d4k̄4n2,4 + d6k̄6n2,6

− d7k̄7n2,7 + d9k̄9n2,9.
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