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Abstract

Here, we extend the optimal local truncation error method (OLTEM) recently developed in our papers to the 3D time-
independent Helmholtz equation on irregular domains. Trivial unfitted Cartesian meshes and simple 27-point discrete stencil
equations are used for 3D irregular domains. The stencil coefficients for the new approach are assumed to be unknown and
are calculated by the minimization of the local truncation error of the stencil equations. This provides the optimal order
of accuracy of the proposed technique. At similar 27-point stencils, the accuracy of OLTEM is two orders higher for the
Dirichlet boundary conditions and one order higher for the Neumann boundary conditions compared to that for linear finite
elements. The numerical results for irregular domains also show that at the same number of degrees of freedom, OLTEM is
even much more accurate than high-order (up to the fifth order) finite elements with much wider stencils. Compared to linear
finite elements with similar 27-point stencils, at accuracy of 0.1% OLTEM decreases the number of degrees of freedom by
a factor of greater than 1000. This leads to a huge reduction in computation time. The new approach can be equally applied

to the Helmholtz and screened Poisson equations.
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1 Introduction

Many physical phenomena in acoustics, seismology, elec-
tromagnetic radiation, nondestructive testing, medical imag-
ing and others can be modeled by the Helmholtz equation.
Therefore, many researchers are working on the develop-
ment of accurate numerical techniques for the solution of
the Helmholtz equation that has a lot of important civil and
military engineering applications. Many of these numerical
techniques finally reduce to a discrete system with compact
stencils; e.g., different modifications of the finite element
method (e.g., see [1-23]), the isogeometric elements (e.g.,
see [24-26]), the spectral element method (e.g., see [27]),
the finite difference method (e.g., see [28—35] and others).
The goal of these linear and high-order numerical techniques
is to provide reliable accurate solutions of the Helmholtz
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equation at reasonable computational costs. The finite ele-
ment method, the finite volume method, the isogeometric
elements, the spectral elements and similar techniques rep-
resent very powerful tools for the solution of PDEs for a
complex geometry. However, the generation of non-uniform
meshes for a complex geometry is not simple and may lead
to the decrease in accuracy of these techniques if ‘bad’ ele-
ments (e.g., elements with small angles) appear in the mesh.
Moreover, the conventional derivation of discrete equations
for these techniques (e.g., based on the Galerkin approaches)
does not lead to the optimal accuracy.

There is a significant number of publications related to the
numerical solution of different PDEs on irregular domains
with uniform embedded meshes. For example, we can men-
tion the following fictitious domain numerical methods that
use uniform embedded meshes: the embedded finite differ-
ence method, the cut finite element method, the finite cell
method, the Cartesian grid method, the immersed interface
method, the virtual boundary method, the embedded bound-
ary method, overlapping elements, etc; e.g., see [36-59] and
many others. The main objective of these techniques is to
simplify the mesh generation for irregular domains as well
as to mitigate the effect of ‘bad’ elements. For example, the
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techniques based of the finite element formulations (such
as the cut finite element method, the finite cell method, the
virtual boundary method and others) yield the p + 1 order
of accuracy even with small cut cells generated by the com-
plicated irregular boundary (e.g., see [36-38, 41, 56, 57,
60] and many others). The main advantage of the embedded
boundary method developed in [42, 43, 53, 61, 62] is the
use of a simple Cartesian mesh. The boundary conditions or
fluxes in this technique are interpolated using the Cartesian
grid points and this leads to the increase in the stencil width
for the grid points located close to the boundary (however,
the numerical techniques developed in [42, 43, 53, 61, 62]
provide just the second order of accuracy for the global
solution). An interesting high-order accurate approach is
suggested in [63] for the Helmholtz equation on irregular
domains that combines the method of difference potentials
with compact high-order finite difference schemes on Car-
tesian meshes. Summarizing, the development of robust
numerical techniques for the solution of PDEs on irregular
domains that provide an optimal and high order of accuracy
is still a challenging problem.

The numerical approach suggested in this paper for the
3D Helmholtz equation on irregular domains with unfitted
Cartesian meshes is the extension of our previous numerical
algorithm called the optimal local truncation error method
developed for the 2D Helmholtz equation; see [64]. For the
fictitious domain methods, the transition from the 2D to 3D
case is a challenging problem because instead of a curve
in the 2D case, the boundary becomes a surface in the 3D
case. Therefore, the treatment of the boundary conditions for
irregular domains with non-conforming meshes is signifi-
cantly more difficult in the 3D case (sometimes the transition
from the 2D to 3D case may lead to intractable algorithms).
In this paper we use 3D Cartesian meshes with simple
27-point uniform and non-uniform stencils that include the
Dirichlet and/or Neumann boundary conditions on com-
plex irregular boundary as well as provide a high accuracy
(much greater than that for other numerical approaches with
conforming or non-conforming meshes). It is interesting to
mention that the derivation of the new 3D approach for the
Helmholtz equation is different from that in our paper [64]
for the 2D case (see Remark 4 below) as well as different
from that in our papers [65, 66] for the 3D wave, heat and
Poisson equations (see Sect. 4 below).

The idea of the proposed OLTEM for the solution of
PDEs is very simple. First, a Cartesian mesh is selected
independent of the irregular domain under consideration.
Then, stencil equations of a discrete system are assumed
for all internal grid points of the Cartesian mesh located
inside the irregular domain. The stencil equation for each
internal grid point is a linear combination of the numeri-
cal values of the unknown function at a number of grid
points included into the stencil. The stencil equations for all
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internal grid points form the global discrete system of equa-
tions for OLTEM. The coefficients of the stencil equations
are assumed to be unknown. These unknown coefficients
are determined by the minimization of the order of the local
truncation error for each stencil equation. This procedure
includes a Taylor series expansion of the unknown exact
solution at the grid points and its substitution into the stencil
equation. As a result, we obtain the local truncation error
in the form of a Taylor series. At this point, no information
about partial differential equations is used. Then, the corre-
sponding partial differential equations are applied at the grid
points to exclude some partial derivatives in the expression
for the local truncation error. Finally, the unknown coef-
ficients of the stencil equation are calculated from a small
local system of algebraic equations obtained by equating to
zero the lowest terms in the Taylor series expansion of the
local truncation error and by the minimization of the non-
zero leading terms of the local truncation error with the least
square method. The coefficients of the stencil equations are
similarly calculated for the regular (uniform) stencils located
far from the boundary and for the cut (nonuniform) stencils
located close to the boundary. The nonuniform stencils (and
uniform stencils that are close to the boundary) include the
known boundary conditions at the selected boundary points
located at the intersection of the boundary of a complex
irregular domain with the horizontal, vertical and diago-
nal grid lines of the uniform Cartesian mesh. There are no
unknowns at the boundary points. Finally, a fully discrete
global system with unknowns at the internal grid points can
be easily solved. The main advantages of OLTEM are a high
optimal accuracy and the simplicity of the formation of a
discrete system for irregular domains with unfitted Carte-
sian meshes. Changing the width of the stencil equations,
different linear and high-order numerical techniques can be
developed.

In Sect. 2.2, we consider the development of OLTEM
for the 3D Helmholtz equation with zero loading term. The
imposition of the Dirichlet and Neumann boundary condi-
tions are described in Sect. 2.3. The extension of OLTEM
to the 3D Helmholtz equation with nonzero loading term
is presented in Sect. 2.4. Section 3 considers numerical
examples and the comparison of OLTEM with conventional
finite elements. For the derivation of many analytical expres-
sions presented below, we use the computational program
“Mathematica”.

2 OLTEM for the 3D Helmholtz equation

In this section, we first introduce the Helmholtz equation
and the local truncation error. Next, we derive OLTEM with
27-point stencils for the internal grid points located far from
the boundary as well as located close to the boundary with
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the Dirichlet boundary conditions in the case of zero load.
Then, we consider OLTEM with 27-point stencils for the
internal grid points located close to the boundary with the
Neumann boundary conditions. Finally, we take into account
nonzero load.

2.1 The Helmholtz equation and the local
truncation error

In the paper, we show the development of OLTEM for the
3D Helmholtz equation as well as for its simple modifica-
tion called the screened Poisson equation on an irregular
domain Q:

Viu+ap*u=f, (1)

where a = 1 for the Helmholtz equation, a = —1 for the
screened Poisson equation, f is the wave number for the
Helmholtz equation, f(x, y, z) is the loading term, u(x, y, z)
is the field variable. The Neumann boundary conditions
n-\/u =g, onI" and the Dirichlet boundary conditions
u = g, on I'" are applied, where g; (i = 1,2) are the given
functions, n is the outward unit normal on I'¥, and I'* and
I'* denote the boundaries with the Neumann and Dirichlet
boundary conditions, respectively.

According to OLTEM, we assume that after the space
discretization with a rectangular Cartesian mesh, the stencil
equation for Eq. (1) for each internal grid point can be writ-
ten as an algebraic equation:

L
D @p R ma™ + k™) =7, )
i=1
where #"™ is the numerical solution for function u at the
i-th grid point, m; and k; are the unknown stencil coeffi-
cients to be determined, L is the number of the grid points
included into a stencil, f is the discretized loading term (see
the next sections), & is the mesh size along the x-axis. The
local numeration of internal grid points included into the
stencil is used in Eq. (2). Many numerical techniques for the
Helmholtz equation such as the finite difference method, the
finite element method, the finite volume method, the isogeo-
metric elements, the spectral elements, different meshless
methods and others can be finally reduced to Eq. (2) with
some specific coefficients m; and k;. To demonstrate the new
technique, below we will assume 27-point stencils (L = 27)
in the 3D case that correspond to the width of the stencils for
the linear quadrilateral finite elements on Cartesian meshes.
However, the stencils with any width can be used with the
suggested approach.

Let us introduce the local truncation error used with
OLTEM. The replacement of the numerical values of the

num

function u;"™ at the grid points in Eq. (2) by the exact
solution u, to Eq. (1) leads to the residual of this equation
called the local truncation error e of the discrete equation,

Eq. (2):
L

e= Z(aﬁzhzmiui + k) - f, (3)
i=1

where we assume the existence of the exact solution as well
as that the function u(x, y, z) is sufficiently smooth (the
numerical results in Sect. 3.4 show that OLTEM can be also
used with non-smooth functions). Calculating the difference
between Eqgs. (3) and (2) we can get

L
e= Z{aﬁzhzmi[ui — "] + klw; — u"™ ]}

" 4)
=) (ap*’mg; + k),

i=1

MM are the errors of function u at the grid
points i. As can be seen from Eq. (4), the local truncation
error e is a linear combination of the errors of the function
u at the grid points i which are included into the stencil
equation.

wheree; = u; — u

2.2 Zeroloadf = 0inEq. (1)

Here, we present 27-point uniform stencils that will be used
for the internal grid points located far from the boundary
and 27-point non-uniform stencils that will be used for the
grid points located close to the boundary with the Dirichlet
boundary conditions. Let us consider a 3D bounded domain
and a Cartesian rectangular mesh with a mesh size & where
h is the size of the mesh along the x-axis, byh and b,h are
the sizes of the mesh along the y- and z-axes (b, and b,
are the aspect ratios of the mesh); see Fig. 1. The 27-point
stencil considered here is similar to that for the 3D linear
quadrilateral finite elements. The spatial locations of the
26 degrees of freedom that are close to the internal degree
of freedom u,, and contribute to the 27-point stencil for
this degree of freedom are shown in Fig. 1 for the case
when the boundary and the Cartesian mesh are matching
or when the degree of freedom u, is located far from the
boundary. In the case of non-matching grids when the grid
points do not coincide with the boundary, the grid points
that are located outside the physical domain are moved to
the boundary of the physical domain as shown in Fig. 2
and form 27-point nonuniform stencils for the internal grid
points u,, located close to the boundary. For convenience,
the local numeration of the grid points from 1 to 27 is used
in Figs. 1 and 2 as well as in the derivations below for
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Fig.1 The spatial locations of the degrees of freedom u,
(» =1,2,...,27) contributing to the 27-point uniform stencil for the

internal degree of freedom u,, located far from the boundary

Boundary

Fig.2 The spatial locations of the degrees of freedom u,

(»p=1,2,...,27) contributing to the 27-point nonuniform stencil for
the internal degree of freedom u,, located close to the boundary

the 27-point uniform and non-uniform stencils. To find the
locations of the abovementioned boundary points that are
included into the stencil for the degree of freedom u,, (see
Fig. 2) we join the central point u,, with the 26 closest grid
points of the Cartesian mesh; i.e., we have 26 straight lines
starting from point u,. If any of these lines intersects the
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boundary of the domain then the corresponding grid points
of the Cartesian mesh should be moved to the boundary.
E.g., Fig. 2 shows a particular case when only 3 lines out
of 26 intersect the boundary and three grid points ug, uq
and u,g (designated as o) are moved to the boundary and
become the boundary points (the new locations are desig-
nated as ). In our approach, for all internal points located
within the domain we use 27-point uniform (see Fig. 1) or
non-uniform (see Fig. 2) stencils. There are no stencils for
the boundary points; the boundary points just contribute to
the stencils for the internal grid points located close to the
boundary.

To describe the coordinates of the boundary points for
non-uniform stencils (see Fig. 2) we introduce 27 coef-
ficients 0 < dp <1l(p=12,...,27) as follows (see also
Fig. 2):

X, = X154+ (= 2)dyh,  y, =y +(—2)d,byh, S
z, =214 + (k= 2)d,b,h, (%)

where d,; =0, p=9%%k-1D+3¢G-1+i with
i,j,k =1,2,3. Equation (5) can be also used for the coor-
dinates of the grid points inside the domain with the cor-
responding coefficients d, equal to unity (d, = 1).E.g., only
three coefficients dg < 1, dy < 1 and d;g3 < 1 in Fig. 2 are
smaller than one and all other d, coefficients are equal to
unity,d, = 1(p=1,...,7,10,...,13,15,..., 17,19, ..., 27).

Equation (2) for the 27-point uniform (see Fig. 1) or
nonuniform (see Fig. 2) stencil for the grid point u,;, can
be explicitly rewritten as follows:

27 27
ap*h’ Z mpu;um + Z kp“;um = fia ©)
p=l1 p=1

where the right-hand side in Eq. (6) is zero, fi, = 0, in the
case of zero load f = 01in Eq. (1), the unknown coefficients
m, and kp (p=1,2,...,27) are to be determined from the
minimization of the local truncation error.

Remark 1 Only 53 out of the 54 coefficients m,, k[,
(»=1,2,...,27) in Eq. (6) can be considered as unknown
coefficients. This can be explained as follows. In the case
of zero load f = 0 and f;, = 0, Eq. (6) can be rescaled by
the division of the left- and right-hand sides of Eq. (6) by
any scalar a,. For example, let us select a; = k4. In this
case the rescaled coefficients m,, I_cp (p=1,2,...,27) of the
stencil equation are: m, = mp/k14(17 =1,2,...,27),k;, =1,
kp = kp/k14(p =1,2,...,13,15,...,27); i.e., there are only
53 unknown rescaled coefficients. The case of nonzero load
fi4 # 0 can be similarly treated because the term f, is a
linear function of the coefficients m, and k, (see Eq. (25)
below).
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Remark 2 The coefficients a and m, in Eq. (6) can be com-

P
bined into new m, coefficients (a = 1 for the Helmholtz
equation and a = —1 for the screened Poisson equation).

To simplify the notations, in the paper the formulas for
the m, coefficients are given for the Helmholtz equation
with a = 1. For the screened Poisson equation, the m, coef-
ficients equal to those for the Helmholtz equation with the
negative sign.

For the calculation of the local truncation error, let us
expand the exact solution u, Pp=12,...,13,15,16,...,27)
to the Helmholtz equation into a Taylor series at small 7 < 1
as follows (see also Eq. (5)):

ouy .
u, =uyy + g[(l —2)d,h]
duyy . Ouyy
+ _0y [ —2)d,byh] + 6_2[(k —2)d,b.h]

0%u,, [(i = 2)d, h]?
" Uy p

0x2 2!
, P 1= 2d,b A7
0y? 2! ;
uy, [(k— 2)dpbzh]2 @)
072 2!
202u14 [( = 2)d,hl[( — 2)d,byh]
dxady 2!
O G
0x0z 2!
262u14 [( — 2)d,b,h]l(k — 2)d,b,h] o
0yoz 2! ’

where p=9k —-1)+3(G—-1)+i with i,j,k=1,2,3; see
Fig. 2. The exact solution u;4 to Eq. (1) at x = x4, y = y4
and z = z;, meets the following equations:

621414 02u14 dzum )
= - - —ap uy, 8
o2 P 32 Bruyy (®

(i+j+k+2)
o Uy

OX 20y 97k =

a(i+j+k+2)u14 5 a(i+j+k)u14
oxioy/azk
€))
withi,j,k=0,1,2,3,4,....Here, Eq. (9) is directly obtained
by the differentiation of Eq. (8) with respect to x, y and z.
Similar to Eq. (3), inserting the exact solution given by
Egs. (7)-(9) into the stencil equation, Eq. (6), instead of the
numerical solution, we will get the following local trunca-
tion error in space e:

(i+j+k+2)
o Uiy

OxiQy 9zk+2

- Oxidyi+29zk

dutyy

dutyy 5”14]

u u
14 Ll
0x0z 0y?

Uy
+ by
'y

0’uyy 0%uy, 2

u Pu
+ 1 b, —2% + b 14
[ “dxayz lzaxdydz

4 4
0"uyy 0"uyy

+b +
2 0xdy20z 2 0xdyoz?

0'uy, 14 0*uyy
+b + +
Toy2022 " Boyaz P oz

*u *u 0%u
F by —2 + by P2 4 by, pP 22
308 oxdy 3P oz 2P 5

2 4
+ by B o2 + b3sfuyy

4 ‘35“14 as’414
+ 37 3 + 38 23.2
0x0y30z 0x0y?0z

3
0 uyy

Au o’u
+bsoB” == + b5y S + by —5
0yo0z

Pu Pu Pu
+bs, x“‘ + bssp* y“‘ + bsgp* 14]

0z

Uy
0x0y>

0
+ bnoﬁ%] +ht [bIZI

+ e+ bigsBPugy] + O,

+ o 4 b84ﬂ6u14] + h7[b85

duyy
0x0y°
Puyy
0x0y’

(10)
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where the coefficients bp (»=1,2,...165) are expressed
in terms of the coefficients m; and kj G=1,2,...,27); see
Appendix 1. Starting from the sixth order of the local trunca-
tion error, we do not show all coefficients b, in Eq. (10) (we
show only the first and last coefficients b, for the correspond-
ing order). Here we should mention that the expression for
the local truncation error, Eq. (10), includes the first-order
derivatives with respect to x only (the higher-order deriva-
tives with respect to x are excluded with the help of Egs. (8)—
(9)). We should also note that in Eq. (10) as well as in the
equations considered below, the symbol bp (p=12,...165)
designates the coefficients in the expression for the local
truncation error while the symbols b, and b, in Eq. (5) and
other parts of the paper designate the aspect ratios of Car-
tesian meshes.

To obtain the optimal order of accuracy of the local
truncation error in Eq. (10) at small 7 < 1, we will
equate to zero the coefficients b, in Eq. (10) for the
smallest orders of A. First, let us consider the case of
uniform stencils with d; =1(i =1,2,...,27); see Fig. 1.
In this case, the analytical study of coefficients b, with
the help of Mathematica shows that we can equate
to zero the first 56 coefficients bp p=12,...,56) in
Eq. (10). However, some of these coefficients are lin-
early dependent. Therefore, we will zero the following
b, coefficients:

b, =0,
p=12,...,20,22,23,25,26,27,29, ...,35,38,42,43,47, ...,
53,65,71,72,74,75,76,78, 102, 106, 107, 146,
an
as well as we use the condition k;, = 1 (see the Remark 1
after Eq. (6)). The analytical solution of the algebraic equa-
tions, Eq. (11), calculated with help of Mathematica yields

the following coefficients m; and k; (i = 1,2, ..., 27) of the
stencil equation, Eq. (6):

@ Springer

ki =ky =k; =ko =kyg
(5(b% + 1)b? + 5b2 +9)
~8(125(b2 + B2 + 12562+ 9)°

=ky =kys =ky; =

ky = kg = kg
(5(b2 = 5)b? — 252 +9)
kys = > - P ,
500(b2 + 1)b2 + 50007 + 36
ky = ke =k
(=25(6% + 1)b§ +5b2 +9)
= k = 5
7500002 + 1)b2 + 50062 + 36
((5 = 25b)b? = 25b% +9)
500(b2 + 1)b2 + 5002 + 36’
(25(b2 - 5)b? +25b% - 9)
ks = k3 = 2 > 2 ’
250(b2 + 1)b2 + 250 + 18
(2562 + Db? — 12562 - 9)
ky; = ,
725002 + 1)b2 + 25062 + 18
(=25(5b% — 1)b? +25b2 - 9)
kys = : ,
72502 + 1)b2 + 2502 + 18

kig =kip =kyg=kig =

ki =

ki3 =

kg =1,my =my = my =mg =myg =my = mys
(7(5b2 + 9)b2 + 63D + 183)
=My == 2 2 2 ’
672(125(bz + 1)by + 12519Z +9)

(7(25b% — 9)b§ — 63b2 + 195)
" 336(125(62 + 1)b? + 12562 +9)
(=35(5b2 + 9)b2 + 63b2 + 183)
#7336(125(02 + 1)b2 + 12562 +9)

(=7(25b% — 9)b? — 315b% + 183)
©336(125(b% + Db + 12562 +9)”
(=35(25b2 — 9)b? — 63b% + 195)

my = mg = Myy = My =

M4=m6=m22=m

Mg = My = Mg = Myg

" = T 68 (1252 + D6+ 12562+ 9)°
(=7(125b2 + 9)b? + 315b7 + 195)
ST T 6R(125 2 + D6 + 12562 +9)
(=35(256% — 9)b? + 3152 — 183)
myz =ms =

168(125(b2 + 1)b2 + 12562 +9)
5(7(125b7 + 9)b§ +63b? + 39)
14T TRA125(0 + D2 + 12567 + 9)

12)
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Inserting these coefficients m; and k; (i = 1,2, 3, ... ,27) from
Eq. (12) into Eq. (10), we will get the following local trunca-
tion error in space e for uniform stencils:

6L¢ 61,4
362b2H0((b* — 1)% + (b - 1){37” — BSu,y)

= + O,
¢ 81256252 + 1) + 12562 + 9) @

13)
i.e., the coefficients m; and k; (i = 1,2, ...,27) given by
Eq. (12) zero all coefficients b, (p = 1,2, ..., 56) in Eq. (10)
up to the fifth order and provide the global fourth order of
accuracy of OLTEM on regular domains.

Remark 3 1t is interesting to mention that 9-point stencils
in the 2D case and 27-point stencils in the 3D case can pro-
vide the global sixth order of accuracy for the Helmholtz
equation on regular domains; e.g., see [67, 68]. The optimal
global fourth order of accuracy of OLTEM with the 27-point
stencils on regular domains is explained by the form of the
stencil equations, Eq. (6). For example, we can also get the
global sixth order of accuracy for OLTEM with 27-point
stencils on regular domains if we assume that the stencil
coefficients m,, and k, in Eq. (6) are polynomial functions
of the mesh size & (e.g., see our paper [69] for the time-
dependent wave equation in the 2D case). However, in the
case of irregular domains, we can get the global fourth order
of accuracy for OLTEM and we use the simple 27-point
stencils given by Eq. (6) to simplify the derivations.

Next, let us consider non-uniform stencils; see Fig. 2.
If we equate to zero the first 35 coefficients b, =0
(»=1,2,...,15)in Eq. (10), then, at least, we could obtain
the fifth order of the local truncation error. However, for a
rectangular mesh with b, # 1 or/and b, # 1, the correspond-
ing system of 35 algebraic equations for some particular
cases (e.g., when one point of the 27-point regular stencil
lies outside the physical domain and we have a non-uniform
stencil with d; # 1, see Fig. 2) can be analytically solved
with the help of Mathematica. These solutions show that all
coefficients k; in this stencil equation are zeros; i.e., these
solutions are inappropriate. Therefore, the maximum pos-
sible order of the local truncation error for a non-uniform
stencil, Eq. (6), on a rectangular mesh corresponds to the
fourth order (this can be obtained by equating to zero the
first 20 coefficients bp =0(p=1,2,...,20) in Eq. (10)).

To zero the coefficients bp =1,2,...,20) for rectan-
gular meshes and minimize the values of the coefficients
bp (p = 21,22, ...,165) for the fourth, fifth, sixth, seventh
and eighth orders of the local truncation error for all non-
uniform stencils, we use the following procedure. First, let
us zero the following coefficients b,

b,=0, p=1.2,..,20. (14)

Then, for the coefficients bp related to the fourth, fifth, sixth,
seventh and eighth orders of the local truncation error, we
use the least square method with the following residual R:

35 56 84 120 165
_ 2 2 2 2 2
R= pr+h1 pr+h2 pr+h3 pr+h4 Z bp’
p=21 p=36 p=57 p=85 p=121
(15)

where hy, h,, h; and h, are the weighting factors to be
selected (e.g., the numerical experiments show that
hy, = hy = hy = h, = h yields accurate results). The inclu-
sion of the terms up to the eighth order is explained by the
fact that for uniform meshes, the inclusion of these terms
provides a sufficient number of equations for the calculation
of the coefficients m; and k; (i = 1,2, ..., 27); see Eq. (11).

Remark 4 1t is interesting to mention that OLTEM for the
2D Helmholtz equation in our paper [64] does not include
the coefficients b, related to the seventh and eighth orders
of the local truncation error.

To minimize the residual R with the constraints given by
Eq. (14), we can form a new residual R with the Lagrange
multipliers 4,

35 56 84 120
D _ 2 2 2 2
R= zﬂbp +h, Z;ﬁbp +hy 25:7”17 + hy %bp
pP= P= P= p=
165 20 (16)
+hy D b2+ Y Ab,.
p=121 p=1

The residual R is a quadratic function of coefficients m, and
k; (i=1,2,...,27) and a linear function of the Lagrange
multipliers 4,; i.e., R= I_Z(ml-, k;, /1,,). To minimize the resid-
ual R(m;, k;, /lp), the following equations based on the least
square method for the residual R can be written down:

oR oR
— =0, —=0, i=12,...,27,

am; ok, ! an
IR

— =0 =1,2,...,20,

o, 7 (18)

where equation % = 0 should be replaced by k;, =1
14

(because for the stencil equation, Eq. (6), one of the coeffi-
cients m; and k; (i = 1,2, ...,27) can be arbitrary selected;
e.g., k;, = 1; see Remark 1 after Eq. (6)). Equations (17) and
(18) form a system of 74 linear algebraic equations with
respect to 54 unknown stencil coefficients m; and k;
(i=1,2,...,27) and 20 Lagrange multipliers /1[,
(p=1,2,...,20). Solving these linear algebraic equations
numerically, we can find the coefficients m;, k;
(i=1,2,...,27) for the 27-point non-uniform stencils.

@ Springer
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Remark 5 To estimate the computation costs of the forma-
tion and solution of 74 linear algebraic equations formed
by Egs. (17) and (18) we solved 10 such systems with a
general MATLAB solver on a desktop computer (Processor:
Intel (R) Core(TN) i9-9900 CPU @3.10 Hz 3.10 HZ). The
computation ‘wall’ time was T = 356.76 s for 10 systems or
the average time for one system was 0.00035676 s. Because
the coefficients m; and k; (i = 1,2, ..., 27) are independently
calculated for different non-uniform stencils, the computa-
tion time of their calculation for different grid points can be
significantly reduced on modern parallel computers. This
means that for large global systems of equations, the com-
putation time for the calculation of the coefficients m; and
k; (i=1,2,...,27) is very small compared to that for the
solution of the global system of equations. For example, for
a relatively small 3D system with 216,595 degrees of free-
dom, the preparation and solution of the local systems took
t, = 3.06 s while the solution of the global discrete system
took t,= 66.84 s. With mesh refinement, the number of the
local systems for the stencils close to the boundary is pro-
portional to 1/h* while the number of degrees of freedom
for the global system is proportional to 1/A%; i.e., 1./t will
grow with mesh refinement.

OLTEM provides the fourth (with rectangular Carte-
sian meshes) or the fifth (with cubic by, = b, = 1 Cartesian
meshes) order of the local truncation error for the nonuni-
form stencils and the sixth order of the local truncation error
for the uniform stencils (see Eq. (13)). For the conventional
linear finite elements on uniform square meshes, the values
of the coefficients m; and k; (i = 1,2, ...,27) (e.g., see [70]
for the coefficients m; and k; used with the finite elements)
provide the fourth order of the local truncation error; i.e.,
OLTEM improves the local truncation error in space by two
orders compared to that for the conventional linear elements
on uniform square meshes. These orders of accuracy are
independent of the wave number f.

2.3 Boundary conditions
2.3.1 Dirichlet boundary conditions

The application of the Dirichlet boundary conditions in
OLTEM is trivial and similar to that for the finite elements. We
simply equate the boundary degrees of freedom of the uniform
and non-uniform stencils (see Figs. 1 and 2) to the values of a
given function g, (x, y, z) at the corresponding boundary points;
i.e., the Dirichlet boundary conditions are exactly imposed.
Here, g,(x, y, z) describes the Dirichlet boundary conditions.
The final global discrete system of equations includes the
27-point uniform and nonuniform stencil equations (see Figs. 1
and 2) for all internal grid points that are located inside the
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domain as well as the Dirichlet boundary conditions at the
boundary points. These 27-point uniform and nonuniform
stencils on square Cartesian meshes provide the fourth order
of accuracy of numerical solutions; see the numerical exam-
ples in Sect. 3.

Remark 6 As shown in [62], the boundary stencils may have
the local truncation error that is one order lower compared
to that for internal stencils (this does not worsen the order
of accuracy of the global solution).

Remark 7 The proposed technique yields accurate results
for the non-uniform stencils even with very small coeffi-
cients d; < 1. However, the new technique allows also to
exclude very small coefficients d; < 1from calculations. For
example, if d; < tol for some internal grid point (see Fig. 2)
where 70l is a small tolerance (e.g., tol = 10~3), then the non-
uniform stencil for this internal grid point can be removed
from the global system of equations and this point can be
moved to the boundary and treated as the boundary point for
other stencils. In this case, the corresponding coefficients d,
for this point in other stencils can be slightly greater than
one. According to the derivations in the previous section, all
equations will be valid also for d; > 1. The numerical experi-
ments with a small tolerance tol = 1073 show that if the point
with very small coefficients d; < 1is moved to the boundary
then the coefficients d; for this point in other stencils can be
taken as d; = 1 without introducing any significant errors.

2.3.2 Neumann boundary conditions

The imposition of the Neumann boundary conditions for
OLTEM is different from that for the Dirichlet boundary con-
ditions. Our goal is to use the same 27-point uniform and non-
uniform stencils equations as those in Figs. 1 and 2 because this
significantly simplifies the implementation of OLTEM with
unfitted Cartesian meshes. We suggest the following 27-point
stencil equations for the Neumann boundary conditions:

27 27
ap’n? Z mpu;“m + Z k,,u;“m
p=1 p=1
27
= laﬁ2h3 1,815,030 2,) (19)
p=1

27
+h Zl_cpgl(xp,yp,zp)] +f14,
p=1

where f,, = 0 in the case of zero load f = 0 in Eq. (1), the
expression in the square brackets in the right-hand side of
Eq. (19) is known and represents the Neumann boundary
conditions at the boundary points with the coordinates
X, ¥y 2, that are located on the boundary with the Neumann
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boundary conditions (see Fig. 2), the unknown stencil coef-
ficients my,, m,, kp, and l_cp (p=1,2,...,27) are to be deter-
mined from the minimization of the local truncation error,
the coefficients m, = 0 and k, = 0 if the stencil point with
the coordinates x s Yp> Zp is located on the boundary with
the Neumann boundary conditions; otherwise, /1, = 0 and
I_cp = 0 (this means that Eq. (19) includes only 54 non-zero
coefficients m,, m,, kp, and kl,), the central grid point with
the coordinates x,4, ¥4 and z;, is always the internal grid
point (therefore, m;, = 7{14 =0). Only 53 out of the 54
nonzero coefficients m,, m,, kp, and I_cp (p=12,...,9) in
Eq. (19) can be considered as unknown coefficients. This can
be explained similar to Remark 1 after Eq. (6).

The local truncation error e of the stencil equation, Eq. (19),
can be written down by the replacement of the numerical solu-

tion in Eq. (19) by the exact solution as follows:

27 27
e =ap*h’ Z nm,u, + Z k,u,
ou du
— af?h’ 2 (nlpa +n2pa"+ 3p a”) (20)

= ou, ou,, ou,
—h Zk <n1p oty t e > —Fian
p=

where ny s Ny, and ns, (p=1,2,...,27) are the x-, y- and
z-components of the outward unit normal vector n,, at the
boundary point p (see Fig. 2), function u(x, y, z) in Eq. (20)
corresponds to the exact solution, the Neumann boundary con-
ditions in the right-hand side of Eq. (19) are expressed in terms
of the function u(x, y, z) and are moved to the left-hand side.

The rest of derivations will be similar to those in Sect. 2.2.
Inserting Egs. (7)-(9) into Eq. (20), we will get the local
truncation error in space e that can be also expressed by
Eq. (10) with the coefficients bp (p=1,2,...,165) given
in Appendix 2. In contrast to Sect. 2.2, now the coefficients
b, (p=1,2,...,165) depend not only on m;, k; and d; but
also on 1, k,, ny iy and ny; (i = 1,2, ...,27); see Appen-
dix 2. For the calculations of the coefﬁments m;, m;, k;, k;
@i=1,2,...,27) for the uniform and non-uniform stencils, we
will use the least square method with Eqgs. (14)—(18). However,
Eq. (17) should be modified as follows:

i=12,...,27,

@
where the partial derivatives of R in Eq. (21) are considered
with respect to only non-zero coefficients m;, m;, k;, k; with
i=1,2,...,27 (see also the explanations for zero and non-
zero coefficients after Eq. (19)); i.e., Eq. (21) as well as
Eq. (17) provides 54 algebraic equations (similar to Eq. (17),
equation % = 0 should be replaced by k;, = 1). Finally,

solving 74 linear algebraic equations (Egs. (18) and (21))
numerically, we can find the coefficients m;, m;, k;, I_cl-
(i=1,2,...,27) for the 27-point uniform and non-uniform
stencils. Numerical experiments show that for the Neumann
boundary conditions, the coefficients A} = hy = hy = h, =1
in Eq. (15) provide accurate results.

Remark 8 In contrast to Sect. 2.2, the non-uniform stencils
with the Neumann boundary conditions provide the fourth-
order of the local truncation error on cubic (by =b,=1)
meshes (the same as on rectangular meshes). This corre-
sponds to the third order of accuracy of the numerical results
for OLTEM with the Neumann boundary conditions; see the
numerical examples in Sect. 3.

Remark 9 As can be seen from Eq. (19), the Neumann
boundary conditions at the selected boundary points contrib-
ute to the right-hand side of the stencil equations. Similarly,
the known Dirichlet boundary conditions at the selected
boundary points (see the previous section) can be moved
to the right-hand side of the stencil equations. This means
that there are no unknowns at the boundary points for the
proposed approach and the unknowns are calculated at all
internal grid points. The actual number of the internal Car-
tesian grid points with the unknowns u;“m (the stencil width)
included into the stencil equations with the boundary points
is smaller than 27.

2.4 Nonzeroloadf # 0in Eq. (1)

The inclusion of non-zero loading term f in the partial dif-
ferential equation, Eq. (1), leads to the non-zero term f;, in
the stencil equations, Egs. (6) and (19) (similar to Eq. (2)).
The expression for the term f,, can be calculated from the
procedure used for the derivation of the local truncation
error in the case of zero loading function.

In the case of non-zero loading function (f(x) # 0),
Eqgs. (8) and (9) for the exact solution at x = x4, y = y;, and
Z = 7,4 can be modified as follows:

2 2
uyy 0wy

52“14 2
FE R oz —afuyy + (X014 214)s (22)

i+j+k+2 i+j+k+2
ol )u1 4 ol )”1 4

Oxidyi+20zk
a(i+j+k+2)u a(i+j+k)u
L Y —. (23)
OxiQy/ dzk+2 0xi0y/ dzF
a(i+j+k)f(xi4’ Yi4s214)
0xidyi ozF

Oxi+20yi 9zk -
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withi,j,k =0,1,2,3,4,.... Then, inserting Egs. (7), (22) and
(23) with the exact solution to Eq. (1) into the stencil equa-
tion, Eq. (19), with non-zero f5 we will get the following
local truncation error in space e;:

e =e— [fm - { i?“(klazf = 2kyny dy + dookyg
+diky + dhkys + diskys + do kg + digkyg
+digkyg + d5 Ky + doyksy
+d5 koy + doskys + diskyy + d3ks + diky + dokg
+d3ky + dgky — 2dokigny 1o + 2dy5kpon,

- 251113]_<13’71,13 + 2‘1'15]_<15’11,15
= 2d,6kigm 16 + 2d 15k 15 = 2d19ki9my 1o
+ 25121]_‘21”1,21 - 2d22]_‘22”1,22

(24)

+ 2dz4]_<24”1,24 - 2‘1'25];25”1,25
+ 2dy7ky31) 57 + 2d3k3n 5 — 2dskyn 4
+ Zdel_%”l,e - 2d7/_<7”1,7

+ 2dokon, o) + B (-++) + -+ }]

where e is the local truncation error in space given by
Eq. (10), fi4 designates function f(x, y, z) calculated at
X = X4,y = y;4 and z = z,. Equating to zero the expression
in the square brackets in the right-hand side of Eq. (24), we
will get the expression for f,:

f14 = @
2

+ diokig + dLkyy + dkys + diskys + ds kg
+digkg + digkyg + d5 kyy + doykoy + d5 ko
+ d3skys + dokyy + d3ks + diky + doke + doky
+ diky = 2dyokygny 1o + 2d1okiany 1
= 2dy3ky3ny 13+ 2dyskysny s
- 2d16/_<16"1,16 + 2d18/_<18”1,18 - 25119/_‘19”1,19

+ 2‘121]‘21”1,21 - 2d22k22”1,22

(kyd? — 2kyn, \d,

(25)

+ 2‘124]_<24’11,24 - 2d25]_‘25”1,25
+ 2dyrkygny o7 + 2dskyny 3 = 2dkyny 4
+ 2dgkgn, o — 2d,kon, 5 + 2dokony o) + () + -

as well as we will get the same local truncation errors e, = ¢
for zero and non-zero loading functions; see the attached
files “RHS-Helm.pdf” and “RHS-Helm.nb” for the detailed
expression of f,,. This means that the coefficients m; and
k; of the stencil equations are first calculated for zero load
f = 0as described in Sects. 2.2 and 2.3. Then, the nonzero
loading term f,, given by Eq. (25) is used in the stencil equa-
tion, Egs. (6) and (19).

@ Springer

Remark 10 Equation (25) for the non-zero load can be
also used for the stencil given by Eq. (6). In this case,
the coefficients /m; and k; should be taken as m; = k; = 0
i=12,...,27).

3 Numerical examples

In this section, the computational efficiency of OLTEM devel-
oped for the 3D Helmbholtz and screened Poisson equations
will be demonstrated and compared with conventional FEM.
OLTEM is implemented as a Matlab code. The commercial
finite element software ‘COMSOL’ is used for the finite ele-
ment simulations. Similar to FEM terminology, a grid point
of a Cartesian mesh will be called a node. To compare the
accuracy of the numerical results obtained by OLTEM and
by FEM, the relative error ¢; at the jth node and the maximum
relative error e™* for the function u are defined as:

| u;lum _ u;xact |

6= — ™
J pexact j
max

(26)
In Eq. (26) the superscripts ‘num’ and ‘exact’ correspond to
the numerical and exact solutions, N is the total number of
nodes used in calculations, uf}fj}ft is the maximum absolute
value of the exact solution for the function u over the entire
domain. We also use the relative error ||e]|, in the L? norm
for finite elements (e.g., see [71]) and the relative error||e||,
in the /” norm (e.g., see [72]) for OLTEM:

” uexact _ unum ”2

llell, = ) 27)

e,

where e _ oy, = dcayac 5, DI I T RN B TCRP R
N,, Nyand N, are the numbers of Cartesian grid points along
x-, y- and z-axes, x;, Y and z; are the coordinates of Cartesian
grid points; for the grid point with the coordinates x;, Vjs Zis
the coefficient g, ;, = 1if the grid point is located inside the
domain and ¢, ;;, = 0 otherwise.

The efficiency of conventional FEM and OLTEM is com-
pared by the solution of two test problems with the following
smooth exact solutions to the Helmholtz equation (Eq. (2)

witha = 1):

u(x, y, z) = cos(2zx) cos(2xy) cos(2zz) (28)
with #2 = 1272 and zero loading function f = 0; and
u(x,y,z) = sin(Szx) cos[z(3y + 27)] (29)

with p>=100 and non-zero loading function
f(x,y,2) = (100 — 3872) sin(5zx) cos[z(3y +22)]  (see
Sects. 3.1-3.3) as well as a test problem with a non-smooth
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solution (see Sect. 3.4). For the screened Poisson equation
(Eq. (2) with a = —1), we consider another test problem with
the following exact solution:

u(x,y,z) = cos[r(2x + 3y)]e*" D (30)

with % =372 and zero loading function f=0 (see
Sect. 3.5).

First, in Sect. 3.1 we solve the Helmholtz equation with
nonzero loading on a regular cubic domain and the exact
solution given by Eq. (29). Then, we consider an irregular
domain represented by a prism ABCDOPQR with a spherical
hole; see Fig. 5a. Figure 5b shows the Cartesian mesh used
for OLTEM. For convenience, Cartesian meshes for the prism
are generated in such a way that three grid planes of the Car-
tesian mesh are always matched with the faces APOD, ABQP
and ABCD; depending on the mesh size % grid planes can be
matched or non-matched with the faces BCRQ and CDOR,
and the inclined face OPQOR and the spherical surface of the
hole are always non-matched with the Cartesian grid planes.
An example of a typical tetrahedral mesh for the prism gen-
erated by COMSOL for the conventional FEM is shown in
Fig. 5c, d. In Sect. 3.2, we solve the Helmholtz equation for
the 3D prism with the Dirichlet boundary conditions imposed
along the entire boundary. In Sect. 3.3, we solve the Helm-
holtz equation for the 3D prism with the combined Neumann
and Dirichlet boundary conditions. The Helmholtz equation
for the 3D prism with a non-smooth solution is considered in
Sect. 3.4. In Sect. 3.5, the screened Poisson equation for the
3D prism with the exact solution given by Eq. (30) is solved.
All boundary conditions for the problems in Sects. 3.1-3.3, 3.5
are calculated according to the exact solutions, Eqgs. (28)—(30).

3.1 The Helmholtz equation for a cubic domain

Here, we solve a test problem with the exact solution
given by Eq. (29) on a regular cubic domain of dimensions

=
81(by=bz=1)
©2(by=bz=1/2)
¥3(by=bz=1/3)
4(by=bz=1/4)
5(by=bz=1/5)

-1.6 -14 -1.2 -1 -0.8 -0.6
Logio h

(a)

Fig.3 The maximum relative error e™* (a) and the relative error
lell, (b) as a function of the mesh size & at mesh refinement in the
logarithmic scale. The numerical solutions of the 3D Helmholtz
equation for the cubic domain with non-zero loading functions and

1 x 1 X 1by OLTEM and conventional linear and high-order
finite elements. First, we solved the problem with the Dir-
ichlet boundary conditions along the entire boundary. Then,
we solve the same problem with the combined Dirichlet and
Neumann boundary conditions given as follows: the Neu-
mann boundary conditions are imposed on face z = 1 and
the Dirichlet boundary conditions are imposed along the
remaining boundaries; i.e., along the faces x =0, y =0,
z=0,x=1landy= 1

To show the effect of the aspect ratios of Cartesian
meshes on the accuracy of OLTEM, Fig. 3 presents the
maximum relative error e™ and the relative error ||e||, on
cubic (b, = b, = l—curve 1) and rectangular (b, = b, = 1 /2
—curve 2, by =b, =1/3—curve 3, by =b, =1/4—curve4,
b, = b, = 1/5—curve 5) Cartesian meshes at mesh refine-
ment. As can be seen from Fig. 3, the mesh refinement in the
y- and z-directions practically does not affect the accuracy
but increases the number of degrees of freedom. Therefore,
in all numerical examples considered below we use cubic
(b, = b, = 1) Cartesian meshes (the first two terms in the
nominator in Eq. (13) for the local truncation error become
zero in this case).

To compare the numerical solutions obtained by dif-
ferent techniques the maximum relative error e™* and the
relative error ||e||, are plotted as a function of the mesh
size h in Fig. 4 (the same uniform Cartesian meshes are
used for OLTEM and FEM). As can be seen from Fig. 4,
OLTEM yields more accurate numerical solutions than those
obtained by linear and high-order (up to the fifth order) finite
elements at the same mesh size. We should mention that for
the fourth and fifth-order elements this is valid for a large
range of accuracy up to 0.01% or Log,,e™* = —4 (for the
higher accuracy, the fourth- and fifth-order elements can
be more accurate than OLTEM; see Fig. 4). It can also be
seen that the order of accuracy of the numerical solution
obtained by OLTEM is close to four for the Dirichlet bound-
ary conditions and close to three for the Neumann boundary

1
—

P

_ o

52 7 Bl(by=bz=1)

= ©2(by=bz=1/2)
go-3 1 3 93(by=bz=1/3)
—

4(by=bz=1/4)
2 5(by=bz=1/5)
-1.6 -1.4 -1.2 -1 -0.8 -0.6
Logio h

(b)

1
N

the Dirichlet boundary conditions are obtained by OLTEM on cubic
(by =b, = l—curve 1) and rectangular (by =b,=1/2—curve 2,
b,=b,=1/3—curve 3, b,=b, =1/4—curve 4, b,=b, =1/5—
curve 5) Cartesian meshes
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S1(OLTEM)

+2(Linear FE)
3(Quadratic FE)

»4(Cubic FE)
’5(Quartic FE)
6(Quintic FE)

-0.8 -0.6

= 0 _
3 ,
+7"""/" p -
‘?.'2 o : 51(OLTEM)
o0 4 — +2(Linear FE)
S-3 x5 = 1 3(Quadratic FE)
. /yﬁS >4(Cubic FE)
45— 1 ©$5(Quartic FE)
5 [76(Quintic FE)
-1.6 -14 -1.2 -1 -0.8 06
Logo h
(c)

Fig.4 The maximum relative error e™* (a, c¢) and the relative error
llell, (b, d) as a function of the mesh size & at mesh refinement in
the logarithmic scale. The numerical solutions of the 3D Helmholtz
equation for the cubic domain with non-zero loading functions and
the Dirichlet (a, b) as well as combined Neumann and Dirichlet (¢, d)

conditions; see the slopes of curves 1 in Fig. 4a, c for the
Dirichlet boundary conditions and in Fig. 4b, d for the Neu-
mann boundary conditions. This is in agreement with the
theoretical results in Sect. 2.3.

Remark 11 The global matrices of the discrete equations for
linear finite elements and for OLTEM on the same Cartesian
mesh have the same structure (the same number and posi-
tions of zero and nonzero coefficients in the global matri-
ces); the only difference between OLTEM and linear finite
elements in this case is in the values of the nonzero coef-
ficients of the global matrices.

3.2 The Helmholtz equation for the 3D prism
with the Dirichlet boundary conditions

Two test problems for the 3D prism with a spherical hole
(see Fig. 5a) and the Dirichlet boundary conditions along
the entire boundary are solved by OLTEM and by conven-
tional FEM. The exact solutions for these problems are
given by Eqs. (28) and (29). The distribution of the exact
solution given by Eq. (28) with a lot of local minima and
maxima is also shown in Fig. 6a. Figure 6b, ¢ shows the
distribution of the relative error on the x = 0.6 and y = 0.4
planes for the numerical solution obtained by OLTEM on the

@ Springer

2
1
o 0 >
E -l _ ,,,+3,,
o-2 - B1(OLTEM)
63—3 ><//4 t2(Linear FE)
o | 3(Quadratic FE)
E %4(Cubic FE)
: 5(Quartic FE)
ZE/ | 6(Quintic FE)
-1.6 -1.4 12 N e J
Logio h
(b)
1 /Z
7, 51(OLTEM)
t2(Linear FE)

3(Quadratic FE)
>4(Cubic FE)
>5(Quartic FE)
6(Quintic FE)
-1.6 -1.4 -1.2 -1 -0.8 -0.6
Logioh

(d)

boundary conditions are obtained by OLTEM (curve 1) and by con-
ventional linear and high-order finite elements (curves 2—6) on cubic
(b, = b, = 1) Cartesian meshes. The slopes of curves 2-6 are: 1.88,
2.69, 3.40, 2.44, 5.75 in a; 1.97, 2.95, 3.49, 2.86, 5.80 in b; 1.87,
2.69, 3.40,2.43,5.79 in ¢; and 1.96, 2.94, 3.50, 2.87, 5.82 ind

cubic Cartesian mesh of size & = 1/20. It can be seen that
the maximum error occurs inside the domain and far from
the boundaries. To compare the accuracy of the numerical
solutions obtained by different numerical techniques, Fig. 7
shows the maximum relative error ¢™** and the relative error
|le]l, as a function of the number N of degrees of freedom
in the logarithmic scale. As can be seen from Fig. 7, at the
same N the numerical results obtained by OLTEM are much
more accurate than those obtained by linear and high-order
(up to the fifth order) finite elements. We should mention
that for the fourth- and fifth-order elements this is valid for
a large range of accuracy up to 0.01% or Log,e™* = —4 (for
the higher accuracy the fourth- and fifth-order elements can
be more accurate than OLTEM,; see Fig. 7). This increase in
accuracy is impressive considering the fact that high-order
finite elements have much wider stencils compared to those
for OLTEM (the width of the stencils used in OLTEM cor-
responds to that for conventional linear quadrilateral finite
elements). Therefore, at a given accuracy OLTEM requires
a significantly less computation time compared to that for
conventional finite elements. For example, at accuracy of
0.1%, OLTEM reduces the number of degrees of freedom
by a factor of greater than 1000 compared to that for linear
finite elements with similar stencils; see curves 1 and 2 in
Fig. 7 at Log,,e™* = —2. This leads to a huge decrease in



Engineering with Computers

Fig.5 a A 3D prism ABC-
DOPQR (A(0, 0, 0), B(1, 0, 0)
,C(1, 1, 0), D, 1,0), 00, 1
, 1), P(0, 0, 0.8), O(1, 0, 0.6),
R(1, 1, 0.8))) with a spherical
hole of radius 0.25 centered
at (0.4, 0.6, 0.3), b a cubic
Cartesian mesh for OLTEM,
¢ an example of a tetrahedral
finite element mesh generated
by the commercial software
COMSOL for the discretization
of the prism, d shows a part of
the mesh in the vicinity of the
spherical hole

00

(a)

(o)

computational time for OLTEM. The reduction in compu-
tational time for OLTEM will be even greater if a higher
accuracy is needed.

The order of accuracy of OLTEM is approximately
described by the slope of curve 1 at large N in Fig. 7 because
the mesh size % is approximately proportional to +ﬁ As can
be seen from Fig. 7 the order of accuracy for the numerical
solutions obtained by OLTEM is close to 4. This is in agree-
ment with the theoretical findings in Sect. 2.3 related to
OLTEM with the Dirichlet boundary conditions.

It is known that the use of the conventional finite ele-
ments with ‘cut cells’ on Cartesian meshes for irregular
domains leads to large condition numbers of the global
matrices at mesh refinement and, as a consequence, to inac-
curate solutions of the global systems of linear algebraic
equations on fine meshes. Figure 8 presents the condition

numbers cn = % of the global matrix of linear algebraic

equations for OLTEM on regular (see Sect. 3.1) and irregu-
lar (see Fig. 5a) domains as well as for linear finite elements
on regular (see Sect. 3.1) domains. Here, 4., and 4, are
the maximum and minimum eigenvalues of the global

=Nodes inside the domain 0 0
with uniform stencil (b)
. =Nodes on the boundary
=Nodes inside the domain
with non-uniform stencil
O =Nodes outside the domain

(d)

matrix. As can be seen from Fig. 8, at mesh refinement the
condition numbers for standard linear finite elements on
regular domains grows faster compared to that for OLTEM
on irregular domains (see the slopes of the curves 1 and 3 in
Fig. 8 where N'/3is proportional to / on Cartesian meshes).
This means that at mesh refinement, there are no issues with
the condition numbers for OLTEM on irregular domains.

3.3 The Helmholtz equation for the 3D prism
with the Neumann boundary conditions

Here, the same test problems for the 3D prism with a spheri-
cal hole (see Fig. 5a) as in Sect. 3.2 are solved with the
combined Neumann and Dirichlet boundary conditions. The
Neumann boundary conditions along the spherical hole and
inclined upper boundary face OPQR as well as the Dirichlet
boundary conditions along rest of the boundary are applied
in accordance with the exact solutions Eqs. (28)—(29).
Figure 9 shows the maximum relative error ¢™* and the
relative error ||e||, as a function of the number N of degrees
of freedom in the logarithmic scale (similar to Fig. 7). As
can be seen from Fig. 9, at the same N the numerical results
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Fig.6 The distribution of the
exact solution given by Eq. (28)
(a) as well as the distribution
of the relative error e (b, ¢) on
the x = 0.4 (b) and y = 0.6 (¢)
planes obtained by OLTEM on
the cubic Cartesian mesh of the
mesh size h = 1/20

z
Yl x

(b)

obtained by OLTEM are more accurate than those obtained
by linear and high-order (up to the fifth order) finite ele-
ments. We should mention that for the fourth- and fifth-order
elements this is valid for a large range of accuracy up t0 0.1%
or Log,,e™* = =3 (for the higher accuracy the fourth- and
fifth-order elements can be more accurate than OLTEM;
see Fig. 9). It can be also seen from Fig. 9 that the order of
accuracy for the numerical solutions obtained by OLTEM is
close to 3 (the slope of curve 1 at large N in Fig. 9 approxi-
mately describes the order of accuracy for OLTEM). This
is in agreement with the theoretical findings in Sect. 2.3.2
related to OLTEM with the Neumann boundary conditions.
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X axis 0

(c)

To study the convergence and stability of the numerical
results obtained by OLTEM in more detail, Fig. 10 pre-
sents the curves 1 in Figs. 7a and 9a at small changes of
the mesh size h (curves 1 and 2 in Fig. 10 correspond to
curves 1 in Figs. 7a and 9a, respectively). For this study,
we solve the test problems on 2000 Cartesian meshes with
the mesh sizes h;=h, + 25D with &, =1/10,
hy=1/30 and i =1,2,...,2000. As can be seen from
Fig. 10, the numerical results obtained by OLTEM show
small oscillations in the convergence curve. The amplitude
of these oscillations decreases with the decrease in the
mesh size A. This oscillatory behavior can be explained by
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Fig.7 The maximum relative error ¢™* (a, b) and the relative error
lell, (e, d) as a function of W at mesh refinement in the logarithmic
scale; N is the number of degrees of freedom. The numerical solu-
tions of the 3D Helmholtz equation for the prism (see Fig. 5a) with
zero (a, c¢), non-zero (b, d) loading functions and the Dirichlet bound-
ary conditions are obtained by OLTEM on cubic (by =b_=1) Carte-

3
4
Q
S 2
oo
S
§/1(Linear FE, regular domain)
1 BE2(OLTEM, regular domain) -
1 ©3(OLTEM, irregular domain)
0.8 1 1.2 1.4 1.6

Log1o YN

Fig.8 The condition number cn of the global matrix for OLTEM on
regular (curve 2) and irregular (curve 3) domains as well as for linear
finite elements on regular (curve 1) domains as a function of {/IV at
mesh refinement in the logarithmic scale; N is the number of degrees
of freedom. The slopes of curves 1, 2, 3 are: 2.89, 1.93, 1.94

(1) the complicated dependency of the leading terms of
the local truncation error on the coefficients d;; and (2) at
small changes in the mesh size h, there can be discontinu-
ous changes in the stencil equations due to the change of
the location of the nodes. For example, a node located

B81(OLTEM)

~+2(Linear tetrahedrals)
3(Quadratic tetrahedrals)
5 >¢4(Cubic tetrahedrals)

=2 [©5(Quartic tetrahedrals)

[5/6(Quintic tetrahedrals)
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LUwa

(b)

4
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2

BE1(OLTEM)
-+2(Linear tetrahedrals)
3(Quadratic tetrahedrals)
5 954(Cuhic tetrahedrals)
€>5(Quartic tetrahedrals)
[/6(Quintic tetrahedrals)

05 07 09 11 13 15 17
LOglUW

(d)

Logyollell,
T

1.9 21 23

sian meshes (curve 1) and by conventional linear and high-order finite
elements on tetrahedral meshes (curves 2-6). The slopes of curves
2-6 are: 1.78, 2.67, 3.95, 4.93, 7.03 in a; 1.95, 1.78, 3.87, 3.57, 6.06
in b; 1.99, 2.57, 3.38, 4.67, 6.90 in ¢; and 2.02, 2.62, 3.52,3.33, 6.26
ind

inside the domain or on the boundary for one mesh can be
moved outside the domain for the next mesh. It should be
noted that such oscillations in convergence curves are typi-
cal for numerical techniques for irregular domain. For
instance, the change in the angles of finite elements at
small variations of the element size & also leads to such
oscillations in the convergence curves for FEM. We should
also mention that similar convergence curves for OLTEM
have been obtained for the test problem with non-zero
loading function considered in this paper.

3.4 The Helmholtz equation for the 3D prism
with a non-smooth solution

The Helmholtz equation for the 3D prism with a spherical
hole (see Fig. 5), f? = 1222 and zero loading is considered.
The following combined Dirichlet (on faces ABCD, APOD,
BCRQ, APQOB, CROD and BORC) and Neumann (along the
spherical hole and face POQRO) boundary conditions are
applied:
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Fig.9 The maximum relative error ¢™* (a, b) and the relative error
llell, (e, d) as a function of VN at mesh refinement in the logarithmic
scale; N is the number of degrees of freedom. The numerical solu-
tions of the 3D Helmholtz equation for the prism (see Fig. 5a) with
zero (a, ¢), non-zero (b, d) loading functions and the combined Neu-
mann and Dirichlet boundary conditions are obtained by OLTEM on

—+
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cubic (b, = b, = 1) Cartesian meshes (curve 1) and by conventional
linear and high-order finite elements on tetrahedral (curves 2-6)
meshes. The slopes of curves 2-6 are: 1.88, 2.50, 4.81, 5.38, 7.17 in
a; 1.75, 2.47, 3.50, 4.65, 4.82 in b; 1.93, 2.99, 4.83, 6.00, 13.38 in c;
and 1.76, 2.54, 3.56,4.96, 7.04 ind

inside EFGH

inside circle M

€29

125

OnAPOD : uy.z)= | = 4y — D4y —3)4z ‘1)(4z 3) + cos(2xy) cos(2rz)
cos(2zy)cos(2zz) outside EFGH

—1)2 _1)2_16

On ABCD : u(x.y) = 49{2x-=1"+2y-1) . 25.} + cos(2zx) cos(2my)
cos(2zx) cos(2zy) outside circle M

On APQB : u(x,z) = cos(2rx) cos(2xz)

On BORC : u(y,z) = —cos(2ry) cos(2xz)

On CDOR : u(x,z) = —cos(2zx) cos(2zz)

On the spherical hole:n - Vu = —27

{(0.4 — x)sin(2rx)cosry)cos(2rz)

V(0.4 = x)2 + (0.6 — y)2 + (0.3 — 2)?

+ (0.6 — y) cos(2zx) sin(2zy) cos(2xz) + (0.3 — 2) cos(2zx) cos(2xy) sin(2xz)}

2r

27

OnOPQOR : n-Vu =

{sin(2zx) cos(2ry) cos(2xz) — cos(2zx) sin(2zy) cos(2zz) + 5 cos(2zx) cos(2xy) sin(2xz)},

see also Fig. 11. According to Eq. (31), on faces ABCD and
APOD the function u is continuous; however, the boundary
conditions on these faces have the discontinuous derivatives
along the internal lines that form the internal square EFGH
on face APOD (see Fig. 11a) and the internal circle M on
face ABCD (see Fig. 11b). For example, on the circle

@ Springer

centered at M on face ABCD: % = 196(2x — 1) — 27 sin(2xx) cos(27y)
inside the circle and % = —27 sin(2zx) cos(2xy) outside the
circle; i.e., along the circle line (x — 0.5)? + (y — 0.5)? = 0.42
these derivatives are discontinuous. Similarly, we have the
non-smooth derivatives 3—5 along the internal circle on the

face ABCD as well as the non-smooth derivatives % and ‘;—';



Engineering with Computers

—1(The Dirichlet BC)
—2(The Combined Neumann and Dirichlet BC)

0.03 0.04 0.05 0.06 }(1).07 0.08 0.09 0.1

Fig. 10 The logarithm of the maximum relative error e™** as a func-

tion of the mesh size h at mesh refinement. The numerical solutions
of the 3D Helmholtz equation for the prism (see Fig. 5a) with zero
loading function and the Dirichlet boundary conditions (curve 1) as
well as the combined Neumann and Dirichlet boundary conditions
(curve 2) are obtained by OLTEM on 2000 cubic (b, = b, = 1) Car-
tesian meshes with the gradual decrease of the mesh size i (see the
text)

()

along the internal square line EFGH on the face APOD. For
these boundary conditions with the non-smooth derivatives,
the exact solution is non-smooth and unknown. Therefore,
the numerical solution obtained by the quintic finite ele-
ments on a fine mesh with 2,922,089 degrees of freedom is
used below as the reference solution.

To compare the accuracy of the numerical solutions
obtained by FEM and OLTEM, the problem is solved by
OLTEM with unfitted Cartesian meshes and by conven-
tional linear and high-order (up to the fifth order) finite ele-
ments on tetrahedral meshes. Figure 12 shows the relative
errors eg at point S(x = 0.1,y = 0.7,z = 0.7) and e; at point
T(x=0.5,y=0.1,z = 0.1) as a function of the number N of
degrees of freedom in the logarithmic scale. As can be seen
from Fig. 12, at the same N the numerical results obtained
by OLTEM are much more accurate than those obtained by

(b)

Fig. 11 a The face APOD of the prism (see Fig. 5a) with an internal square EFGH of dimensions 0.5 X 0.5. b The face ABCD of the prism (see

Fig. 5a) with an internal circle centered at M with the radius of 0.4
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Fig. 12 The relative error eg at point S(0.1, 0.7, 0.7) (a) and e; at
point 7(0.5, 0.1, 0.1) (b) as a function of the number of degrees of
freedom N in the logarithmic scale. The numerical solutions of the
3D Helmholtz equation with zero loading function for the prism
and the boundary conditions described in Sect. 3.4 are obtained by

‘& 1(OLTEM)
-4 +2(Linear tetrahedrals)
©3(Quadratic tetrahedrals) |

Logyo er

><4(Cubic tetrahedrals)
> 5(Quartic tetrahedrals)
6 6(Quintic tetrahedrals) | |
1 1.2 1.4 1.6 1.8 2
Logio YN
(b)

OLTEM on square Cartesian meshes (curve 1) and by conventional
linear and high-order finite elements on tetrahedral meshes (curves
2-6). The slopes of curves 2-6 are: 1.79, 3.33, 4.20, 5.20, 6.56 in a;
and 2.07, 3.14,4.31, 5.15,6.05 in b
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Fig. 13 The maximum relative error e™** (a, ¢) and the relative error
lell, (b, d) as a function of W at mesh refinement in the logarithmic
scale; N is the number of degrees of freedom. The numerical solu-
tions of the 3D screened Poisson equation for the prism (see Fig. 5a)
with zero loading function and the Dirichlet (a, b) as well as com-

2
g
Em 3
g4
-5 —1(The Dirichlet BC)
6 —1(The Combined Neumann and Dirichlet BC)

0.03 0.04 005 0.06 0.07 008 0.09 0.1
h

Fig. 14 The logarithm of the maximum relative error ™ as a func-
tion of the mesh size i at mesh refinement. The numerical solutions
of the 3D screened Poisson equation for the prism (see Fig. 5a) with
zero loading function and the Dirichlet boundary conditions (curve 1)
as well as the combined Neumann and Dirichlet boundary conditions
(curve 2) are obtained by OLTEM on 2000 cubic (b, = b, = 1) Car-
tesian meshes with the gradual decrease of the mesh size & (see the
text)

linear and high-order (up to the fifth order) finite elements.
This is similar to the numerical results obtained in the previ-
ous sections. Figure 12 also shows that the order of accuracy
of OLTEM for this problem is close four.
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bined Neumann and Dirichlet (¢, d) boundary conditions are obtained
by OLTEM on cubic (by, = b, = 1) Cartesian meshes (curve 1) and by
conventional linear and high-order (up to the fifth order) finite ele-
ments on tetrahedral meshes (curves 2—6)

3.5 The screened Poisson equation for the 3D prism

First, a test problem for the 3D prism with a spherical hole
(see Fig. 5a) for the screened Poisson equation with the
Dirichlet boundary conditions along the entire boundary is
solved by OLTEM and by FEM. Then, the same test prob-
lem for the prism is solved with the combined Neumann
and Dirichlet boundary conditions. The Neumann bound-
ary conditions along the spherical hole and inclined upper
boundary face OPQR as well as the Dirichlet boundary con-
ditions along the remaining boundary are applied. These
boundary conditions are evaluated according to the exact
solution given by Eq. (30). Figure 13 shows the maximum
relative error e™ and the relative error ||e||, as a function of
the number N of degrees of freedom in the logarithmic scale.
As can be seen from Fig. 13a, at the same N the numerical
results obtained by OLTEM are much more accurate than
those obtained by linear and high-order (up to the fifth order)
finite elements. We should mention that for the fourth and
fifth order elements this is valid for a large range of accuracy
up t0 0.0001% or Log,e™* = —6 for the Dirichlet boundary
conditions (see Fig. 13a,b) and up to 0.1% or Log,,e™* = -3
for the Neumann boundary conditions; see Fig. 13c, d (for
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the higher accuracy the fourth- and fifth-order elements
can be more accurate than OLTEM; see Fig. 13). It can be
also seen from Fig. 13a ,b that the order of accuracy for the
numerical solutions obtained by OLTEM is close to 4 for the
Dirichlet boundary conditions. For the Neumann boundary
conditions the order of accuracy for the numerical solutions
obtained by OLTEM exceeds 3; see Fig. 13c, d. This is in
agreement with the theoretical findings in Sect. 2.3.

To study the convergence and stability of the numerical
results obtained by OLTEM in more detail, Fig. 14 presents
the curves 1 in Fig. 13a, c at small changes of the mesh
size h. Curves 1 and 2 in Fig. 14 correspond to curves 1
in Fig. 13a, c. For this study, we solve the test problem on
2000 Cartesian meshes with the gradual decrease in the
mesh sizes (as described in Sect. 3.3). As can be seen from
Fig. 14, the numerical results obtained by OLTEM show
small oscillations in the convergence curve. The amplitudes
of these oscillations decrease with the decrease in the mesh
size h at mesh refinement. This oscillatory behavior can be
explained similar to that in the previous section.

It can be concluded that for the 3D Helmholtz and
screened Poisson equations, OLTEM yields much more
accurate results compared to those obtained by linear and
high-order (up to the fifth order) finite elements at the same
number of degrees of freedom. It is worth to mention that
high-order finite elements have much wider stencils and
require a greater computational time compared to that for
OLTEM.

4 Concluding remarks

Most of the numerical techniques for the solution of partial
differential equations finally reduce to a system of discrete
or semi-discrete equations. However, in many cases the cor-
responding stencil equations of these systems do not provide
an optimal accuracy. The idea of OLTEM consists in the
direct optimization of the coefficients of the stencil equa-
tions and it is based on the minimization of the order of the
local truncation error. The form and width of the stencil
equations in OLTEM are assumed (e.g., as it is assumed for
the finite-difference method) or can be selected similar to
those for known numerical techniques (in this case, the accu-
racy of the known numerical techniques can be significantly
improved by the modification of the coefficients of the sten-
cil equations). Another idea of OLTEM is the use of simple
unfitted Cartesian meshes for complex irregular domain. In
the considered paper OLTEM has been applied to the space
discretization of the time-independent Helmholtz equation.
27-point stencils in the 3D case that are similar to those for
the linear quadrilateral finite elements are considered in the
paper. The main advantages of the suggested technique can
be summarized as follows:

The idea of the minimization of the order of the local
truncation error of stencil equations can be easily and
efficiently applied to the development of new numeri-
cal techniques with an optimal accuracy as well as to
the accuracy improvement of known numerical meth-
ods. Based on this idea, we have developed OLTEM for
the 3D Helmholtz equation on irregular domains with
Cartesian meshes and simple 27-points stencil equa-
tions that provide the optimal accuracy. The main two
advantages of the proposed technique are a high optimal
accuracy and the use of trivial unfitted Cartesian meshes
for irregular domains without the need of complex mesh
generators.

In contrast to many fictitious domain numerical methods,
OLTEM uses the exact Dirichlet and Neumann bound-
ary conditions at the actual boundary points without
their interpolation using the Cartesian grid points (usu-
ally such interpolations introduce additional errors and
increase the width of stencils equations for the grid points
close to the irregular boundary). The new technique is
based on simple 27-point uniform and non-uniform sten-
cils for all internal grid points (inside the domains as well
as located close to irregular boundaries).

In contrast to the finite-difference techniques with the
coefficients of the stencils calculated through the approx-
imation of separate partial derivatives, the entire partial
differential equation is used for the calculation of the
stencil coefficients in OLTEM. This along with the mini-
mization procedure lead to the optimal accuracy of the
proposed technique.

At the same computation costs, OLTEM yields a much
higher order of accuracy than other numerical tech-
niques; e.g., than the finite elements. For example, at
the similar 27-point stencils, the accuracy of OLTEM is
two orders higher than that for the linear finite elements.
The numerical results for irregular domains show that at
the same number of degrees of freedom and engineer-
ing accuracy, OLTEM is even much more accurate than
high-order (up to the fifth order !) finite elements with
much wider stencils. The numerical results also show
that at accuracy of 0.1%, the proposed technique reduces
the number of degrees of freedom by a factor of greater
than 1000 compared to that for linear finite elements with
similar 27-point stencils This leads to a huge decrease in
computational time. The reduction in computational time
for OLTEM will be even greater if a higher accuracy is
needed.

OLTEM does not require the time consuming numeri-
cal integration for finding the coefficients of the sten-
cil equations; e.g., as for high-order finite, spectral and
isogeometric elements. For the new technique, the coef-
ficients of the stencil equations for the grid points located
far from the boundary are calculated analytically. For
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the grid points located close to the boundary (with non-
uniform and cut stencils), the coefficients of the stencil
equations are calculated numerically by the solution of
small local systems of linear algebraic equations.

e In our papers [65, 66], we have developed OLTEM for
the 3D wave, heat and Poisson equations. Despite the
same idea, the stencils, derivations and the imposition of
the Neumann boundary conditions for the time-independ-
ent 3D Poisson equation (see [65, 66]) and the Helmholtz
equation (the current paper) are different. E.g., we use
27 stencil coefficients, minimize 45 b, coefficients in the
local truncation error (including up to the sixth-order
terms with respect to /) for the Poisson equations while
we use 54 stencil coefficients, minimize 165 b; coeffi-
cients in the local truncation error (including up to the
eighth-order terms with respect to /) for the Helmholtz
equation. For the same Neumann boundary conditions,
we use twice the number of stencil coefficients for the
Helmholtz equation compared to that for the Poisson
equation.

e It has been shown that the Helmholtz and screened Pois-
son equations can be uniformly treated with OLTEM.

In the future, we plan to consider the stencils with a
larger numbers of grid points for a higher order of
accuracy (similar to the high-order finite elements or
to the high-order finite-difference techniques), to con-
sider a mesh refinement with Cartesian meshes using
special stencils for the transition from a fine mesh to
a coarse mesh, to consider other boundary conditions
(e.g., the Robin conditions), to solve real-world problems
with OLTEM. We also plan to study the application of
OLTEM to more complicated scalar PDEs and systems
of PDEs that include mixed derivatives and higher-order
derivatives. For example, in [73, 74] we successfully
applied OLTEM on regular domains to a system of 2D
elasticity equations that include two PDEs with mixed
derivatives.
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Appendix 1: The coefficients b, used
in Eq. (10) in Sect. 2.2

The first five coefficients b, (p = 1,2, ..., 5) used in Eq. (10)

are presented below. All coefficients b, used in Eq. (10) are

given in the attached files ‘b-coeff-1.pdf” and ‘b-coeff-1.nb’.
Eq. (10):

=

=k, +kjg+ky Fhkp+hks+k,+ks+kg
+ kg kgt kgt ky +hyy+ky +ky+ky
+hyy + kys + kyg + kyy kg + kg + ks + kg + ky + kg + kg
by = —dky —dypkyg + dipkyy — di3ky3
+dyskis — digkis + digkig — digkig + dy k) — dipkyy + doyky
— dyskys + dyrkyq + dsks — dyk, + dkg — diky + dokg
by =b (=dk; —d\okyg — dy 1y — dyokyy
+dgkis + digkiy + digkg — digkig — dyky
— dyokyg — dy kg + dyskos + dyckos + dyrky;
— dsksy + dqky + dgkg + dgky)
by =b_(—d,k; + d\gkig — dyrk; + dagkyg
+ dy kg + dypkyy + dyskyz + dyskay + dyskys + dogkng
+ dyrkyy — diky — dyky — dsks — dgkg
— dyky — dgkg — dgkg)
bs =b(dk, + dj kg — dirky, — di kg
+digkig + digkig — d3 ko — doskos
+ dy kyy — diks — dok; + dko).

Appendix 2: The coefficients b, used
in Eq. (10) for the Neumann boundary
conditions in Sect. 2.3

The first five coefficients bp (p=1,2,...,5 used in Eq. (10)

are presented below. All coefficients bp used in Eq. (10) are

given in the attached files ‘b-coeff-2.pdf” and ‘b-coeff-2.nb’.
Equation (10):
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by =ki +kyg+ ki + ki + ki3 +kig+kis+ ke + kg + kg + kg + ky + kg
ko Fhyy + kg Fkyy ko5 + ko + ko kg +ky + ks + kg + kg + kg + kg

by = —dk; —dyokyg + diykiy — dsk3 + diskis — digkg + digkig — diokyg
+ dy kyy — dyykyy + dyskyy — dyskys + dyrkyy + dsky — dyky + dekg — drky
+ dokg + kyny g+ kygny g0+ kyyny gy + ki go 4 kisnyg s+ Kigng g+ ks s
+kighy 16+ kigng 17 + kigny gs + kiony g0 + Koty o + kagry o + kyyy
+ kgt gy + K3y o3+ kagtty o4 + kosy o5 + Kagity 6 + Koz o7 + Kany 3 + Kynyy
+ ksny s+ kgny g + kony 7 + kgny g + kony

by =b(=d,ky = dypkig = dy1kyy = diakyy + dy6kyg + digkyg + dighig — digkig — dak,
— dygkyg = dy Ky + dyskys + dygkag + dyrkyy — dsks + dyk; + dgky + doky)
+kyny g+ kigny 1o + ki gy + kiaity 1o + Kisng i3 + kiaig 14+ kysng g5
+kyghy 16 + kg 17 + kigho 15 + Kigny 1o + Koty 5 + kagitn oo + ki 1y 51 + kgt 5
+ K3t 03 + koutt 54 + Kasty s + Kagha a6 + kagttn o7 + kany 5 + kyny 4
+ksny s + kgny g + kyny 7 + kginy g + kony g

by =b (—d k| + digkig — drky + dyokng + dy kyy + dyykny + dy3kys + doykoy
+ daskys + dyskys + dagkyy — diky — dyky — dsks — dgkg — d7ky — dgkg — dgkg)
+kyny g+ kigns o + ki g+ kiong 1o + ki gy kians g+ kisng s + kigns g
+kygn 17 + kigng ig + kighy 19 + kot 5 + koo 59 + Koyt 01 + kot 5,
+ K33 03 + koutty 54 + st o5 + Kaghs a6 + kagtts o7 + Kyt 3 + kyny 4 + ksny 5
+ kehz 6 + kang 7 + kgny g + koiz o

bs =b,(d;k, — dkn, | + d; kg
- d10]_‘10"1,10 - dnl_‘n”l,n - d%zklz - d12]_<12”1,12 - dfﬁkm
+dykiny 16 + dizkigny 17 + d%gkIS +dghigny ig + d%9k19 — diokiony 19
- dzlzznl,z - d20];20n1,20 - d§1k21 - d217‘21”1,21 - dgskzs + d25]_<25”1,25
+ dygkagh o6 + digkyy + dygkagny 57 — diks — dsksny 5 — diky + dikgny 5 + dgkgn, g + dokg
+dokony o) — dikiny y — dyokigny 1o + diokiany 1o = dizkisng 5+ dyskysng g5
— digkigha 16 + digkigng 15 — digkigny 1o + da1ky 1y 51 = dopkayity 5y + doykogny o4
= dyskysiy 55 + dyrkygty 07 + dsksng 5 — dykyn, 4 + dgkeny g

- d7k7n2,7 + dgkgnz’g.
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