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ORIGINAL ARTICLE

Optimal local truncation error method for solution of elasticity problems for
heterogeneous materials with irregular interfaces and unfitted Cartesian meshes

A. Idesmana, B. Deyb, and M. Mobina

aDepartment of Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; bDepartment of Mechanical Engineering, University of
Utah, Salt Lake City, Utah, USA

ABSTRACT
The optimal local truncation error method (OLTEM) with unfitted Cartesian meshes was recently
developed for PDEs with homogeneous materials on regular and irregular domains as well as for
the scalar time-dependent wave and heat equations for heterogeneous materials with irregular
interfaces. Here, OLTEM is extended to a system of time-independent elastic PDEs for heteroge-
neous materials with irregular interfaces and unfitted Cartesian meshes. We show the develop-
ment of OLTEM for the 2D elasticity equations using compact 9-point stencils that are similar to
those for linear quadrilateral finite elements. The interface conditions on the interfaces where the
jumps in material properties occur are added to the expression for the local truncation error and
do not change the width of the stencils. There are no unknowns on interfaces between different
materials; the structure of the global discrete equations is the same for homogeneous and hetero-
geneous materials. The calculation of the unknown stencil coefficients is based on the minimiza-
tion of the local truncation error of the stencil equations and yields the optimal second order of
accuracy for OLTEM with 9-point stencils on unfitted Cartesian meshes. Numerical experiments for
elastic heterogeneous materials with irregular interfaces show that at the same number of degrees
of freedom: a) OLTEM with unfitted Cartesian meshes is more accurate than linear finite elements
with similar stencils and conformed meshes; b) up to engineering accuracy of 1%, OLTEM with
unfitted Cartesian meshes is even more computationally efficient than quadratic and cubic finite
elements with much wider stencils and conformed meshes. The proposed technique yields accur-
ate numerical results for heterogeneous materials with big contrasts in the material properties of
different components. Due to the computational efficiency and trivial unfitted Cartesian meshes
that are independent of irregular geometry, the proposed technique does not require remeshing
for the shape change of irregular geometry and it will be effective for many design and optimiza-
tion problems.
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1. Introduction

The finite element method, the finite volume method, the
isogeometric elements, the spectral elements, and similar
techniques represent very powerful tools for the solution of
partial differential equations (PDEs) for a complex geometry.
However, the generation of non-uniform meshes for a com-
plex geometry is not simple and may lead to the decrease in
accuracy of these techniques if ‘bad’ elements (e.g., elements
with small angles) appear in the mesh. Moreover, the con-
ventional derivation of discrete equations for these techni-
ques (e.g., based on the Galerkin approaches) does not lead
to the optimal accuracy. There is a significant number of
publications related to the numerical solution of different
PDEs on irregular domains with uniform embedded meshes.
For example, we can mention the following fictitious
domain numerical methods that use uniform embedded
meshes: the embedded finite difference method, the cut
finite element method, the finite cell method, the Cartesian
grid method, the immersed interface method, the virtual

boundary method, the embedded boundary method, etc.;
e.g., see [1–30] and many others. The main objective of
these techniques is to simplify the mesh generation for
irregular domains as well as to mitigate the effect of ‘bad’
elements. For example, the techniques based of the finite
element formulations (such as the cut finite element
method, the finite cell method, the virtual boundary method,
and others) yield the pþ 1 order of accuracy even with
small cut cells generated due to complex irregular bounda-
ries (e.g., see [2–5,9,28,29] and many others). The main
advantage of the embedded boundary method developed in
the articles [10–12,23,25] is the use of simple Cartesian
meshes. The boundary conditions or fluxes in this technique
are interpolated using the Cartesian grid points and this
leads to the increase in the stencil width for the grid points
located close to the boundary (the numerical techniques
developed in the articles [10–12,24,25] provide just the
second order of accuracy for the global solution). A stable
generalized finite element method for the Poisson equation
was developed in the article [31] for heterogeneous materials
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with curved interfaces and unfitted uniform meshes. The
second order of accuracy in the energy norm was achieved
in the article [31] with 2D quadratic finite elements that
form 25-point stencils. The development of different numer-
ical techniques (finite difference method, immersed finite
element method, and immersed meshfree method) for elasti-
city interface problems with unfitted meshes was recently
reported in the articles [32–34]. For example, unfitted
meshes in the article [32] lead to the increase in the stencil
widths for the grid points located close to the irregular
interfaces as well as to some difficulties with the finite dif-
ference approximations of the derivatives used in the inter-
face conditions. For the immersed finite element method in
the article [33], the second order of accuracy is reached with
a larger number of degrees of freedom in the stencil equa-
tion compared to that for the approach proposed in this
article. The immersed meshfree method in the article [34]
provides a low order of convergence (smaller than two) for
the problem with a circular inclusion (a similar problem is
considered in Section 3).

The development of robust numerical techniques for the
solution of PDEs for heterogeneous materials with complex
irregular interfaces that provide an optimal accuracy on sim-
ple unfitted meshes is still a challenging problem.

Recently in these articles [35–41], OLTEM has been
developed for the solution of PDEs with constant coeffi-
cients on regular and irregular domains with Cartesian
meshes. At the same structure of the semidiscrete or discrete
equations, the new technique provides the optimal order of
accuracy that exceeds the order of accuracy of many known
numerical approaches on regular and irregular domains. For
example, in our article [35], it was shown that OLTEM with
9-point stencils (similar to those for linear finite elements)
provides the second order of accuracy for the 2D elasticity
on regular domains. The second order of accuracy is the
optimal accuracy for all 9-point stencils independent of the
numerical method used for their derivations. Our article
[35] also shows that OLTEM with 25-point stencils (similar
to those for quadratic finite elements) provides the 10th
order of accuracy for the 2D elasticity on regular domains.
In our article [36], we have extended OLTEM with 9-point
stencils (similar to those for linear finite elements) and
unfitted Cartesian meshes to a much more general case of
the 2D time-dependent scalar heat and wave equations with
discontinuous coefficients and we have obtained the third
order of accuracy of the new approach.

Here, we continue the development of OLTEM for het-
erogeneous materials with irregular interfaces started in our
article [36] and we consider the development of OLTEM
with 9-point stencils (similar to those for linear elements)
and unfitted Cartesian meshes for a system of the 2D time-
independent elasticity equations with discontinuous coeffi-
cients. In contrast to our article [36] where the additional
time derivatives of the interface conditions are used for the
derivation of OLTEM and where the time derivatives in the
local truncation error are replaced by the space derivatives,
the time-independent elasticity equations do not include the
time variable and the derivation of OLTEM for the elasticity

is different from that in our article [36]. Even the stencil
equations are the ordinary differential equations in our art-
icle [36] but they are the algebraic equations in this article.
We should also mention that in contrast to our article [36]
where OLTEM with 9-point stencils for one scalar PDE (the
heat or wave equation) provides the third order of accuracy,
OLTEM with 9-point stencils for two elasticity PDEs simul-
taneously used for the derivation of the stencil coefficients
provides the second order of accuracy. Nevertheless, due to
the minimization of the leading terms of the local truncation
error, up to engineering accuracy of 1%, OLTEM with
unfitted Cartesian meshes is even more computationally
effective than quadratic and cubic finite elements with much
wider stencils and conformed meshes.

The idea of OLTEM for the solution of PDEs is very sim-
ple. First, an unfitted Cartesian mesh is selected independent
of the irregular domain under consideration. Then, stencil
equations of a discrete system are assumed for all internal
grid points of the Cartesian mesh located inside the domain.
The stencil equation for each internal grid point is a linear
combination of the numerical values of the unknown func-
tions at a number of grid points included into the stencil;
e.g., see Eq. (8) below. The stencil equations for all internal
grid points form the global discrete system of equations for
OLTEM. The coefficients of the stencil equations are
assumed to be unknown. These unknown coefficients are
determined by the minimization of the order of the local
truncation error for each stencil equation. This procedure
includes a Taylor series expansion of the unknown exact
solution at the grid points and its substitution into the sten-
cil equation. As a result, we obtain the local truncation error
in the form of a Taylor series. At this point, no information
about PDEs is used. Then, the corresponding PDEs are
applied at the grid points in order to exclude some partial
derivatives in the expression for the local truncation error.
Finally, the unknown coefficients of each stencil equation
are calculated from a small local system of algebraic equa-
tions. This local system is obtained by equating to zero the
lowest terms in the Taylor series expansion of the local
truncation error and by the minimization of the non-zero
leading terms of the local truncation error with the least
square method. The coefficients of the stencil equations are
similarly calculated for homogeneous (no interfaces) stencils
and for heterogeneous (with interfaces) stencils. The hetero-
geneous stencils additionally include the known interface
conditions at a small number of selected interface points
located on the irregular interface. There are no unknowns at
the interface points. Finally, a fully discrete global system
with unknowns at the internal grid points can be easily
solved. The structure of this system is the same for homoge-
neous and heterogeneous materials (the difference is in the
values of the stencil coefficients). The main advantages of
OLTEM are an optimal accuracy and the simplicity of the
formation of a discrete system for irregular interfaces with
unfitted Cartesian meshes. Changing the width of the stencil
equations, different linear and high-order numerical techni-
ques can be developed.
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The focus of this article is the development of 2D com-
pact 9-point stencils (similar to those for linear elements)
affected by irregular interfaces between different elastic
materials with simple unfitted Cartesian meshes.

The 2D time-independent elasticity equations in a com-
posite domain X ¼ [Xl (l ¼ 1, 2, :::, �N where �N is the total
number of subdomains) can be written down in each subdo-
main Xl as follows:

llr2ul þ ðll þ klÞ @2ul
@x2

þ @2vl
@x@y

 !
þ f lx ¼ 0 ,

llr2vl þ ðll þ klÞ @2vl
@y2

þ @2ul
@x@y

 !
þ f ly ¼ 0 ,

(1)

where ul ¼ ulðx, yÞ and vl ¼ vlðx, yÞ are the x� and y� com-
ponents of the displacement vector, f lx ¼ f lxðx, yÞ and f ly ¼
f lyðx, yÞ are the x� and y� components of the body forces
that can be discontinuous across interfaces, ll and kl are
Lame coefficients that can be also expressed in terms of
Young’s modulus E and Poisson’s ratio � as follows:

ll ¼
El

2ð1þ �lÞ , kl ¼ El�l
ð1þ �lÞð1� 2�lÞ : (2)

We also assume that the functions ul and fl are suffi-
ciently smooth in each subdomain Xl. At the interface G
between any two subdomains, the following interface condi-
tions (the continuity of the displacements and the tractive
forces across the interface) are applied:

u�G � u��G ¼ 0 , v�G � v��G ¼ 0 , (3)

t�x,G � t��x,G ¼ 0 , t�y,G � t��y,G ¼ 0 , (4)

where the symbols � and �� correspond to the quantities on
the opposite sides from the interface for the corresponding
subdomains Xl. The the x� and y� components of the trac-
tive forces tx,G and ty,G can be expressed in terms of the dis-
placements as follows:

tx,G ¼ nx ðkþ 2lÞ @u
@x

þ k
@v
@y

� �
þ nyl

@u
@y

þ @v
@x

� �
,

ty,G ¼ ny ðkþ 2lÞ @v
@y

þ k
@u
@x

� �
þ nxl

@u
@y

þ @v
@x

� �
,

(5)

where nx and ny are the x and y components of the normal
vector at the interface. According to Eqs. (3)–(5), the dis-
placements u and v are continuous across the interfaces but
they can have the discontinuous spatial derivatives across
the interfaces.

Remark 1. The derivation of the new approach can be easily
extended to the case with the discontinuous displacements
and tractive forces across interfaces; i.e., when the right-
hand sides in Eqs. (3) and (4) are the given functions.
However, for simplicity, we consider Eqs. (3) and (4) with
zero right-hand sides.

In this article, the Dirichlet boundary conditions u ¼ g1
and v ¼ g2 are applied along the external boundary C where
g1 and g2 are the given functions. However, the Neumann
boundary conditions (tractive forces) can be also used with

the proposed approach; e.g., see our articles [37,38].
According to OLTEM, the discrete system for the elasticity
equations, Eq. (1), after the space discretization with a
Cartesian rectangular mesh can be represented as a system
of linear algebraic equations. The algebraic equations of this
system for each internal grid point of the domain are called
the stencil equations. For the 2D elasticity equations, two
stencil equations can be written down for each grid point as
follows:

XL
i¼1

kj, iu
num
i þ

XL
i¼1

�kj, iv
num
i ¼ �f j , j ¼ 1, 2 , (6)

where unumi and vnumi are the numerical solution for the dis-
placements u and v at the ith grid point, kj, i and �kj, i are the
unknown stencil coefficients corresponding to the displace-
ments u and v (they should be determined), L is the number
of the grid points included into a stencil, �f j are the compo-
nents of the discretized body forces (see the next Sections).
Many numerical techniques such as the finite difference
method, the finite element method, the finite volume
method, the isogeometric elements, the spectral elements,
different meshless methods, and others can be finally
reduced to Eq. (6) with some specific coefficients kj, i and
�kj, i: In order to demonstrate a new technique, below we will
assume compact 9-point stencils (L¼ 9) in the 2D case that
correspond to the width of the stencils for linear quadrilat-
eral finite elements on Cartesian meshes and that require
similar computational costs as those for linear finite ele-
ments. However, the stencils with any width can be used
with the suggested approach.

Let us introduce the local truncation error used with
OLTEM. The replacement of the numerical values of the
displacements unumi and vnumi at the grid points in Eq. (6) by
the exact solution ui and vi to the elasticity equations, Eq.
(1), leads to the residual of these equations called the local
truncation error ej of the discrete equations, Eq. (6):

ej ¼
XL
i¼1

kj, iui þ
XL
i¼1

�kj, ivi � �f j , j ¼ 1, 2 : (7)

Calculating the difference between Eqs. (7) and (6), we
can get

ej ¼
XL
i¼1

fkj, i ui � unumi

� �þ �kj, i vi � vnumi

� �g
¼
XL
i¼1

ðkj, i�ei þ �kj, i�e
�
i Þ , j ¼ 1, 2 , (8)

where �ei ¼ ui � unumi and �e�i ¼ vi � vnumi are the errors in
the displacements u and v at the grid point i. As can be
seen from Eq. (8), the local truncation errors ej (j¼ 1, 2) are
a linear combination of the errors in the displacements u
and v at the grid points which are included into the sten-
cil equations.

In Section 2.1, OLTEM with 9-point compact stencils for
the 2D elasticity equations is derived for heterogeneous
materials with zero body forces. Its extension to nonzero
body forces is considered in Section 2.2. 2D numerical
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examples for elastic heterogeneous materials with an irregu-
lar interface and the different contrasts for Young’s moduli
as well as the comparison of OLTEM with FEM are pre-
sented in Section 3. For the derivation of many analytical
expressions presented below, we use the computational pro-
gram ‘Mathematica’.

2. OLTEM for the 2D elasticity equations with
discontinuous material properties

2.1. Zero body forces f lx50 and fly50 in Eq. (1)

Let us consider a 2D bounded domain and a Cartesian rect-
angular mesh with a mesh size h where h is the size of the
mesh along the x� axis, byh is the size of the mesh along
the y� axis (by is the aspect ratio of the mesh). To simplify
derivations, below we consider regular rectangular domains
with irregular interfaces between different materials.
However, irregular domains can be also considered with
OLTEM; see [39–41]. Here, we will develop 9-point uniform
stencils that provide the second order of accuracy. We
should mention that we use the same structure of stencils
for homogeneous and heterogeneous materials (the differ-
ence between homogeneous and heterogeneous materials is
in the values of the stencil coefficients only). The spatial
locations of the 8 degrees of freedom that are close to the
internal degree of freedom u5 and contribute to the 9-point
stencil for this degree of freedom are shown in Figure 1. For
convenience, the local numeration of the grid points from 1
to 9 is used in Figure 1 as well as in the derivations below.
The interface in Figure 1(b) divides the 9-point uniform
stencil into two parts with different material properties. In
order to impose the interface conditions at the interface, we
select a small number of interface points as follows. First,
we select one point at the interface with the coordinates xG, 1
and yG, 1: This point can be selected as the shortest distance
from the internal grid point u5 of the 9-point stencil to the
interface. Then, we additionally select n interface points
to the left and to the right from the point with the

coordinates xG, 1 and yG, 1 at the same distances �h ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxG, iþ1 � xG, iÞ2 þ ðyG, iþ1 � yG, iÞ2

q
(i ¼ 1, 2, :::, 2n) from

each other; e.g., see Figure 1(b) for 9-point stencils. The
numerical experiments show that small distances �h ¼ h=10
yield accurate results. The total number of selected interface
points is NG ¼ 2nþ 1 where NG ¼ 5 is used for the 9-point
stencils developed below.

Let us describe the coordinates of the grid points of the
9-point uniform stencils (see Figure 1) with respect to their
central point ðx5, y5Þ as follows:
xp ¼ x5 þ ði� 2Þh , yp ¼ y5 þ ðj� 2Þbyh ,

(9)

for the 9-point stencils where p ¼ 3ðj� 1Þ þ i with i, j ¼ 1, 2, 3:
To describe the coordinates of the NG points on the inter-

face (see Figure 1(b)), we introduce 2NG coefficients dx, p and
dy, p (p ¼ 1, 2, :::,NG) as follows (see also Figure 1(b)):

xG,m ¼ xG þ dx,mh, yG,m ¼ yG þ dy,mbyh,

m ¼ 1, 2, :::,NG:
(10)

Remark 2. Some of the interface points Gm

(m ¼ 1, 2, :::,NG) can be located slightly outside the 9-point
cell. The derivations presented below are also valid for
these cases.

The stencil equations, Eq. (6), for heterogeneous materials
with the 9-point uniform stencil for the grid point ðx5, y5Þ
(see Figure 1) will be assumed in the following form:

X9
p¼1

kj, p apu
�, num
p þ ð1� apÞu��, nump

h i

þ
X9
p¼1

�kj, p apv
�, num
p þ ð1� apÞv��, nump

h i

¼ �f j, 5, j ¼ 1, 2, (11)

where �f j, 5 ¼ 0 in the case of zero body forces f lx ¼ f ly ¼ 0 in
Eq. (1), the unknown coefficients kj, p and �kj, p
(p ¼ 1, 2, :::, 9) are to be determined from the minimization
of the local truncation error, the coefficients ap ¼ 1 if the
grid point up belongs to material � or ap ¼ 0 if the grid
point up belongs to another material �� (i.e., only two varia-
bles u�, nump , v�, nump or u��, nump , v��, nump are included into Eq.

Figure 1. The spatial locations of the degrees of freedom up and vp (p ¼ 1, 2, :::, 9) that contribute to the 9-point uniform stencil for the internal degrees of freedom
u5 and v5 for homogeneous material without interface (a) and for heterogeneous material with interface (b).
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(11) for each grid point; e.g., see Figure 1(b) with a1 ¼ a2 ¼
a3 ¼ a5 ¼ a6 ¼ 1 and a4 ¼ a7 ¼ a8 ¼ a9 ¼ 0).

Remark 3. Usually, stencil equations similar to Eq. (11)
include the coefficient h2 in the denominator in order to
express the second space derivatives in the elasticity equa-
tions, Eq. (1). However, for convenience, the stencil equa-
tions, Eq. (11), are multiplied by h2 in order to write down
them without 1

h2 : Therefore, the expressions for the local
truncation error used in this article are also multiplied
by h2.

The local truncation error e follows from Eq. (11) by the
replacement of the numerical solution u�, nump , u��, nump , v�, nump
and v��, nump by the exact solution u�p, u

��
p , v�p and v��p :

ej ¼
X9
p¼1

kj, p apu
�
p þ ð1� apÞu��p

h i

þ
X9
p¼1

�kj, p apv
�
p þ ð1� apÞv��p

h i
� �f j, 5,

j ¼ 1, 2:

(12)

One of the ideas of the new approach is to include the
interface conditions for the exact solution at a small number
of the interface points into Eq. (12) for the local truncation
error as follows:

ej ¼
X9
p¼1

kj,p apu
�
p þð1� apÞu��p

h i
þ
X9
p¼1

�kj,p apv
�
p þð1� apÞv��p

h i

þ
XNG

m¼1

q1,mðu�G,m� u��G,mÞþ
XNG

m¼1

q2,mðv�G,m� v��G,mÞ

þ
XNG

m¼1

hq3,m

(
nx,m ðk� þ 2l�Þ

@u�G,m
@x

þ k�
@v�G,m
@y

" #
þny,ml�

@u�G,m
@y

þ@v�G,m
@x

 !" #

� nx,m ðk�� þ 2l��Þ
@u��G,m
@x

þ k��
@v��G,m
@y

" #
þ ny,ml��

@u�G,m
@y

þ@v��G,m
@x

 !" #)

þ
XNG

m¼1

hq4,m

(
ny,m ðk� þ 2l�Þ

@v�G,m
@y

þ k�
@u�G,m
@x

" #
þnx,ml�

@u�G,m
@y

þ@v�G,m
@x

 !" #

� ny,m ðk�� þ 2l��Þ
@v��G,m
@y

þ k��
@u��G,m
@x

" #
þnx,ml��

@u��G,m
@y

þ@v��G,m
@x

 !" #)
��f j, 5, j¼ 1,2,

(13)

where nx,m and ny,m are the x and y-components of the nor-
mal vectors at the selected NG interface points (e.g., see
Figure 1(b)), the coefficients q1,m, q2,m, q3,m, and q4,m
(m¼ 1,2, :::,NG) will be used for the minimization of the
local truncation error in Eq. (13), the expressions in paren-
thesis after q1,m, q2,m, q3,m, and q4,m are the interface condi-
tions at the selected NG interface points and are equal to
zero (see Eqs. (3)–(5)). Therefore, Eqs. (12) and (13) yield
the same local truncation error ej. The addition of the inter-
face conditions at NG ¼ 5 points in Eq. (13) with the coeffi-
cients q1,m, q2,m, q3,m, and q4,m (m¼ 1,2, :::,NG) allows us to
get the second order of accuracy of OLTEM for general
geometry of interfaces; see below.

Remark 4. In Eq. (13), we consider two local truncation
errors for the first j¼ 1 and second j¼ 2 stencils. The coeffi-
cients q1,m, q2,m, q3,m , and q4,m (m ¼ 1, 2, :::,NG) are differ-
ent for these two stencils. However, in order to simplify the

notations we omit index j for the coefficients
q1,m, q2,m, q3,m , and q4,m:

Remark 5. Only 18þ 4NG � 1 out of the 18þ 4NG coeffi-
cients kj, p, �kj, p, q1,m, q2,m, q3,m, q4,m (p ¼ 1, 2, :::, 9, m ¼
1, 2, :::,NG) in Eq. (13) can be considered as unknown coef-
ficients. This can be explained as follows. In the case of zero
body forces �f j, 5 ¼ 0, Eq. (13) can be rescaled by the division
of the left- and right-hand sides of Eq. (13) by any scalar;
i.e., one of the coefficients can be selected as unity and there
will be only 18þ 4NG � 1 unknown rescaled coefficients.
The case of nonzero body forces �f j, 5 6¼ 0 can be similarly
treated because the term �f j, 5 is a linear function of the sten-
cil coefficients; see below. For convenience, we will scale the
stencil coefficients in such a way that k1, 5 is k1, 5 ¼ 1:
Moreover, similar to finite element stencils we select
�k1, 5 ¼ 0:
In order to represent the local truncation error ej as a

Taylor series, let us expand the exact solution at the grid
points and the selected NG interface points in Eq. (13) into
a Taylor series at small h � 1 in the vicinity of the central
interface point G as follows:

cp ¼ cG þ @cG
@x

ðði� 2Þ � dxGÞh½ � þ @cG
@y

ððl � 2Þ � dyGÞbyh
� �

þ @2cG
@x2

ðði� 2Þ � dxGÞh½ �2
2!

þ @2cG
@y2

ððl� 2Þ � dyGÞbyh
� �2

2!

þ 2
@2cG
@x@y

ðði� 2Þ � dxGÞh½ � ððl � 2Þ � dyGÞbyh
� �
2!

þ :::, p ¼ 3ðl� 1Þ þ i with i, l ¼ 1, 2, 3

(14)

wj ¼ wG þ @wG

@x
dx, jh
� �þ @wG

@y
dy, jbyh
� �þ @2wG

@x2
dx, jh
� �2

2!

þ @2wG

@y2
dy, jbyh
� �2

2!
þ 2

@2wG

@x@y

ðdx, jh
� �

dy, jbyh
� �
2!

þ ::: , j ¼ 1, 2, :::, 5

(15)

with dxG ¼ xG�x5
h and dyG ¼ yG�y5

byh
: In Eq. (14), the function

cp is u�p, u
��
p , v�p, v

��
p , in Eq. (15), the function wj is u�G, j,

u��G, j,
@u�G, j
@x ,

@u��G, j
@x ,

@u�G, j
@y ,

@u��G, j
@y , v�G, j, v

��
G, j,

@v�G, j
@x ,

@v��G, j
@x ,

@v�G, j
@y ,

@v��G, j
@y : The exact solution u�G, u

��
G , v�G and v��G to the elasticity

equations, Eq. (1), at the central interface point with the coor-
dinates x ¼ xG and y ¼ yG meets the following equations:

@2u�G
@x2

¼ � l�
ð2l� þ k�Þ

@2u�G
@y2

þ ðl� þ k�Þ
ð2l� þ k�Þ

@2v�G
@x@y

þ 1
ð2l� þ k�Þ f

�
G, x

" #
,

(16)

@2v�G
@x2

¼ � ð2l� þ k�Þ
l�

@2v�G
@y2

þ ðl� þ k�Þ
l�

@2u�G
@x@y

þ 1
l�

f �G, y

" #
,

(17)

@2u��G
@x2

¼ � l��
ð2l�� þ k��Þ

@2u��G
@y2

þ ðl�� þ k��Þ
ð2l�� þ k��Þ

@2v��G
@x@y

þ 1
ð2l�� þ k��Þ f

��
G, x

" #
,

(18)
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@2v��G
@x2

¼ � ð2l�� þ k��Þ
l��

@2v��G
@y2

þ ðl�� þ k��Þ
l��

@2u��G
@x@y

þ 1
l��

f ��G, y

" #
, (19)

@ð2þiþjÞu�G
@xð2þiÞ@yj

¼ � l�
ð2l� þ k�Þ

@ð2þiþjÞu�G
@xi@yð2þjÞ þ

ðlþ kÞ
ð2l� þ k�Þ

@ð2þiþjÞv�G
@xðiþ1Þ@yðjþ1Þ þ

1
ð2l� þ k�Þ

@ðiþjÞf �G, x
@xi@yj

" #
, (20)

@ð2þiþjÞv�G
@xð2þiÞ@yj

¼ � ð2l� þ k�Þ
l�

@ð2þiþjÞv�G
@xi@yð2þjÞ þ

ðl� þ k�Þ
l�

@ð2þiþjÞu�G
@xðiþ1Þ@yðjþ1Þ þ

1
l�

@ðiþjÞf �G, y
@xi@yj

" #
, (21)

@ð2þiþjÞu��G
@xð2þiÞ@yj

¼ � l��
ð2l�� þ k��Þ

@ð2þiþjÞu��G
@xi@yð2þjÞ þ

ðlþ kÞ
ð2l�� þ k��Þ

@ð2þiþjÞv��G
@xðiþ1Þ@yðjþ1Þ þ

1
ð2l�� þ k��Þ

@ðiþjÞf ��G, x
@xi@yj

" #
, (22)

@ð2þiþjÞv��G
@xð2þiÞ@yj

¼ � ð2l�� þ k��Þ
l��

@ð2þiþjÞv��G
@xi@yð2þjÞ þ

ðl�� þ k��Þ
l��

@ð2þiþjÞu��G
@xðiþ1Þ@yðjþ1Þ þ

1
l��

@ðiþjÞf ��G, y
@xi@yj

" #
, (23)

with i, j ¼ 0, 1, 2, 3, 4, :::: We should mention that Eqs. (16)–(19) directly follow from Eq. (1) while Eqs. (20)–(23) are
obtained by the differentiation of Eqs. (16)–(19) with respect to x and y.

Remark 6. In Eqs. (16)–(19), we have expressed the second x derivatives in terms of the second y derivatives and the
second mixed derivatives. However, similarly we can express the second y derivatives in terms of the second x derivatives
and the second mixed derivatives. This latter case (with the corresponding modifications of Eqs. (20)–(23) will be used for
the calculation of the local truncation error and the stencil coefficients for the second stencil equation with j¼ 2; see below.

Remark 7. It is interesting to mention that for anisotropic materials, each elasticity equation, Eq. (1), will include the all
partial derivatives @2

@x2 ,
@2

@y2 , and
@2

@x@y of the displacements u and v. Then, by the summation and the deduction of these two
equations multiplied by some coefficients, the term @2v

@x2 can be excluded from the first elasticity equation and the term @2u
@x2

can be excluded from the second elasticity equation; i.e., Eqs. (16) and (17) for anisotropic case can be similarly written
with some additional derivatives @2

@y2 and
@2

@x@y of the displacements u and v in the right-hand side of Eqs. (16) and (17). For
anisotropic materials the interface conditions, Eq. (5) includes the same partial derivatives of the displacements u and v with
different elastic constants. The extension of OLTEM to anisotropic materials will be considered in detail in the future.

Below, we consider the local truncation error for the first stencil equation, Eq. (13) with j¼ 1. The derivations of the local
truncation error for the second stencil equation, Eq. (13) with j¼ 2, can be done similarly (see also Remark 6). Inserting
Eqs. (14) and (15) and Eqs. (16)–(23) with zero body forces f �G, x ¼ f �G, y ¼ f ��G, x ¼ f ��G, y ¼ 0 into Eq. (13), we will get the fol-
lowing local truncation error in space e1:

e1 ¼ b1, 1u
�
G þ b1, 2v

�
G þ b1, 3u

��
G þ b1, 4v

��
G þ h b1, 5

@u�G
@x

þ b1, 6
@v�G
@x

þ b1, 7
@u��G
@x

þ b1, 8
@v��G
@x

þ b1, 9
@u�G
@y

þ b1, 10
@v�G
@y

þ b1, 11
@u��G
@y

þ b1, 12
@v��G
@y

� �

þ h2 b1, 13
@2u�G
@x@y

þ b1, 14
@2v�G
@x@y

þ b1, 15
@2u��G
@x@y

þ b1, 16
@2v��G
@x@y

þ b1, 17
@2u�G
@y2

þ b1, 18
@2v�G
@y2

þ b1, 19
@2u��G
@y2

þ b1, 20
@2v��G
@y2

 !

þ h3 b1, 21
@3u�G
@x@y2

þ b1, 22
@3v�G
@x@y2

þ b1, 23
@3u��G
@x@y2

þ b1, 24
@3v��G
@x@y2

þ b1, 25
@3u�G
@y3

þ b1, 26
@3v�G
@y3

þ b1, 27
@3u��G
@y3

þ b1, 28
@3v��G
@y3

 !

þ h4 b1, 29
@4u�G
@x@y3

þ b1, 30
@4v�G
@x@y3

þ b1, 31
@4u��G
@x@y3

þ b1, 32
@4v��G
@x@y3

þ b1, 33
@4u�G
@y4

þ b1, 34
@4v�G
@y4

þ b1, 35
@4u��G
@y4

þ b1, 36
@4v��G
@y4

 !

þ h5 b1, 37
@5u�G
@x@y4

þ b1, 38
@5v�G
@x@y4

þ b1, 39
@5u��G
@x@y4

þ b1, 40
@5v��G
@x@y4

þ b1, 41
@5u�G
@y5

þ b1, 42
@5v�G
@y5

þ b1, 43
@5u��G
@y5

þ b1, 44
@5v��G
@y5

 !

þ h6 b1, 45
@6u�G
@x@y5

þ b1, 46
@6v�G
@x@y5

þ b1, 47
@6u��G
@x@y5

þ b1, 48
@6v��G
@x@y5

þ b1, 49
@6u�G
@y6

þ b1, 50
@6v�G
@y6

þ b1, 51
@6u��G
@y6

þ b1, 52
@6v��G
@y6

 !
þ Oðh7Þ

(24)

where the coefficients b1, p (p ¼ 1, 2, :::) are expressed in terms of the coefficients k1, i, �k1, i and q1,m, q2,m, q3,m, q4,m
(i ¼ 1, 2, :::, 9, m ¼ 1, 2, :::,NG) and are given in Appendix A. Here, we should mention that the expression for the local
truncation error e1, Eq. (24), includes only the first-order derivatives with respect to x (the higher-order derivatives with
respect to x are excluded with the help of Eqs. (16)–(23)).
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2.1.1. Homogeneous materials (no interface)
For homogeneous materials all aj (j ¼ 1, 2, :::, 9) coefficients
are aj ¼ 1 (see Eq. (11) if we consider material �) as well as
all q1, j ¼ q2, j ¼ q3, j ¼ q4, j ¼ 0 (j ¼ 1, 2, :::, 5) coefficients are
zero. In this case, the derivation of the local truncation error
is similar to that in the previous section and is given in our
article [35]. The corresponding stencils coefficients can be
analytically found and they are (for convenience, the matrix
form is used below for the representation of these
coefficients):

with the following local truncation error for the first
stencil (see our article [35] for details):

e1 ¼
by2 by2 � 2

	 

l� k

	 

8 2by2kþ 4 by2 þ 1

	 

lþ k

	 
 @4u�G
@y4

h4 þ Oðh5Þ, (26)

i.e., the order of the local truncation error cannot exceed four
for any 9-point uniform stencils independent of the method
used for their derivation (the finite element method, the finite
volume method, the finite difference method, or any other
method). The fourth order of the local truncation error corre-
sponds to the second order of accuracy for the global numer-
ical solution (e.g., see our article [35]) and is the same as that
for linear finite elements. These results are different from the

application of OLTEM to the Poisson equation for which at
the same 9-point stencils the accuracy was improved by two
orders for rectangular meshes and by four orders for square
meshes compared to linear finite elements; see [42].

2.1.2. 9-Point stencils for heterogeneous materials with an
irregular interface

The formulas presented below can be used for the first j¼ 1
and second j¼ 2 stencils (they should be separately consid-

ered for j¼ 1 and j¼ 2). In order to minimize the order of
the local truncation error e1 in Eq. (24), we will zero the
first 20 coefficients bj, p in Eq. (24) up to the second order
with respect to h; i.e.,

bj, p ¼ 0, p ¼ 1, 2, :::, 20: (27)

Then, in order to have a sufficient number of equations
for the calculation of the 38 stencil coefficients of each sten-
cil including kj, i, �kj, i (i ¼ 1, 2, :::, 9) and q1,m, q2,m, q3,m, q4,m
(m ¼ 1, 2, :::, 5), we use the least square method for the
minimization of coefficients bj, p related to the third, fourth,
fifth, and sixth orders of the local truncation error with the
following residual Rj:

k1, 7 k1, 8 k1, 9

k1, 4 k1, 5 k1, 6

k1, 1 k1, 2 k1, 3

0
BBB@

1
CCCA ¼

�k2, 7 �k2, 8 �k2, 9

�k2, 4 �k2, 5 �k2, 6

�k2, 1 �k2, 2 �k2, 3

0
BBB@

1
CCCA

T

¼

�kby2 � 2lby2 þ kþ l

4 2kby2 þ kþ 4 by2 þ 1
	 


l
	 
 by2 � 1

	 

kþ 2 by2 � 2

	 

l

2 2eby2 þ kþ 4 by2 þ 1
	 


l
	 
 �kby2 � 2lby2 þ kþ l

4 2kby2 þ kþ 4 by2 þ 1
	 


l
	 


� 2kby2 þ 4lby2 þ kþ l

2 2kby2 þ kþ 4 by2 þ 1
	 


l
	 
 1 � 2kby2 þ 4lby2 þ kþ l

2 2kby2 þ kþ 4 by2 þ 1
	 


l
	 


�kby2 � 2lby2 þ kþ l

4 2kby2 þ kþ 4 by2 þ 1
	 


l
	 
 by2 � 1

	 

kþ 2 by2 � 2

	 

l

2 2kby2 þ kþ 4 by2 þ 1
	 


l
	 
 �kby2 � 2lby2 þ kþ l

4 2kby2 þ kþ 4 by2 þ 1
	 


l
	 


0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

,

�k1, 7 �k1, 8 �k1, 9

�k1, 4 �k1, 5 �k1, 6

�k1, 1 �k1, 2 �k1, 3

0
BBB@

1
CCCA ¼

k2, 7 k2, 8 k2, 9

k2, 4 k2, 5 k2, 6

k2, 1 k2, 2 k2, 3

0
BBB@

1
CCCA

T

¼

3byðkþ lÞ
8 2kby2 þ kþ 4 by2 þ 1

	 

l

	 
 0 � 3byðkþ lÞ
8 2kby2 þ kþ 4 by2 þ 1

	 

l

	 

0 0 0

� 3byðkþ lÞ
8 2kby2 þ kþ 4 by2 þ 1

	 

l

	 
 0
3byðkþ lÞ

8 2kby2 þ kþ 4 by2 þ 1
	 


l
	 


0
BBBBBBB@

1
CCCCCCCA

:

(25)
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Rj ¼
X28
p¼21

b2j, p þ h1
X36
p¼29

b2j, p þ h2
X44
p¼37

b2j, p þ h3
X52
p¼45

b2j, p,

(28)

where h1, h2, and h3 are the weighting factors to be selected
(e.g., the numerical experiments show that h1 ¼ h2 ¼ h3 ¼
0:1 yield accurate results). In order to minimize the residual
Rj with the constraints given by Eq. (27), we can form a
new residual Rj with the Lagrange multipliers kl:

�Rj ¼
X20
l¼1

klbj, l þ
X28
p¼21

b2j, p þ h1
X36
p¼29

b2j, p þ h2
X44
p¼37

b2j, p

þ h3
X52
p¼45

b2j, p:

(29)

The residual �Rj is a quadratic function of the stencil coeffi-
cients kj, i, �kj, i (i ¼ 1, 2, :::, 9) and q1,m, q2,m, q3,m, q4,m
(m ¼ 1, 2, :::, 5) and a linear function of the Lagrange multi-
pliers kl; i.e., �Rj ¼ �Rjðkj, i, �kj, i, q1,m, q2,m, q3,m, q4,m, klÞ: In
order to minimize the residual �Rj ¼ �Rjðkj, i, �kj, i, q1,m, q2,m,
q3,m, q4,m, klÞ, the following equations based on the least
square method for the residual �Rj can be written down:

@�Rj

@kj, i
¼ 0,

@�Rj

@�kj, i
¼ 0,

@�Rj

@q1,m
¼ 0,

@�Rj

@q2,m
¼ 0,

@�Rj

@q3,m
¼ 0,

@�Rj

@q4,m
¼ 0,

@�Rj

@kl
¼ 0,

i ¼ 1, 2, :::, 9, m ¼ 1, 2, :::, 5, l ¼ 1, 2, :::, 20,

(30)

where equations @R1
@k1, 5

¼ @R1

@�k1, 5
¼ 0 should be replaced by

k1, 5 ¼ 1 and �k1, 5 ¼ 0 for the first stencil with j¼ 1

( @R2
@k2, 5

¼ @R2

@�k2, 5
¼ 0 should be replaced by k2, 5 ¼ 0 and �k2, 5 ¼

1 for the second stencil with j¼ 2); see Remark 5. Eq. (30)
forms a system of 58 linear algebraic equations with respect
to 58 unknown coefficients kj, i, �kj, i (i ¼ 1, 2, :::, 9) and
q1,m, q2,m, q3,m, q4,m (m ¼ 1, 2, :::, 5) as well as 20 Lagrange
multipliers kl (l ¼ 1, 2, :::, 20). Solving these linear algebraic
equations numerically, we can find the coefficients kj, i, �kj, i
(i ¼ 1, 2, :::, 9) for the 9-point uniform stencils as well as
q1,m, q2,m, q3,m, q4,m (m ¼ 1, 2, :::, 5). As can be seen, the
presented procedure provides the third order of the local
truncation error for the 9-point uniform stencils with the
general geometry of the interface. The 9-point uniform
stencils of OLTEM for homogeneous materials (without
interface) provide the fourth order of the local truncation
error for rectangular meshes; see Eq. (26). This leads to the
second order of accuracy of global solutions; see the
numerical examples below. Moreover, due to the minimiza-
tion of the leading high-order terms bj, p of the local

truncation error with Eq. (29), at the same numbers of
degrees of freedom and the engineering accuracy, OLTEM
with irregular interfaces yields more accurate results than
those obtained by high-order finite elements (up to the
third order) with much wider stencils; see the numerical
examples below.

Remark 8. To estimate the computational costs for the solu-
tion of 58 linear algebraic equations formed by Eq. (30) for
the 9-point stencils, we solved 106 such systems with the gen-
eral MATLAB solver on a desktop computer (Processor: Intel
(R) Core(TN) i9-9900 CPU @3.10Hz 3.10HZ). The computa-
tion ‘wall’ time was T ¼ 7649:19s for 106 systems or the aver-
age time for one system was 0:007649s for the 9-point stencils.
Because the coefficients kj, i, �kj, i are independently calculated
for different grid points, the computation time of their calcu-
lation for different grid points can be significantly reduced on
modern parallel computers. This means that for large global
systems of discrete equations, the computation time for the
calculation of the coefficients kj, i, �kj, i is very small compared
to that for the solution of the global system of discrete equa-
tions. We should mention that the coefficients q1,m, q2,m,
q3,m, q4,m calculated from the local system of equations, Eq.
(30), are only used for the calculation of non-zero right-hand
side vector while the Lagrange multipliers kl in the local sys-
tem of equations, Eq. (30), are not used in the global system
of discrete equations at all.

Remark 9. It is interesting to mention that the stencil coef-
ficients can be also derived by using the central grid point
with the coordinates x5 and y5 in Eqs. (14)–(24) instead of
the interface point with the coordinates xG and yG.

The global system of discrete equations includes the 9-
point stencils for homogeneous materials without interfaces
and the 9-point stencils for heterogeneous materials with
interfaces between different materials (see Figure 1) for all
internal grid points located inside the domain. OLTEM does
not use unknowns at the interfaces and the global system of
discrete equations has the same unknowns kj, p, �kj, p (see Eq.
(11)) for homogeneous and heterogeneous materials (the
same structures of the global matrices, the difference are
only in the values of the stencil coefficients kj, i, �kj, i of the
global matrices).

2.2. Nonzero body forces f lx 6¼ 0 and f ly 6¼ 0 in Eq. (1)

The inclusion of non-zero body forces f lx 6¼ 0 and f ly 6¼ 0 in
the PDEs, Eq. (1), leads to the non-zero terms �f j, 5 in the
stencil equations, Eq. (11) (similar to Eq. (6)). As we men-
tioned after Eq. (1), the body forces f lx and f ly can be discon-
tinuous across the interfaces. The expressions for the terms
�f j, 5 can be calculated from the procedure used for the deriv-
ation of the local truncation error in the case of zero body
forces as follows (here, we will show the derivation of the
term �f 1, 5 for the first stencil equation, Eq. (11), with j¼ 1.)
The insertion of Eqs. (14) and (15) and Eqs. (16)–(23) with
non-zero body forces into Eq. (13) yields the following local
truncation error in space ef1 :
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ef1 ¼ e1 � ½�f 1, 5 þ h2ð 1
2k� þ 4l�

ððq1dx, 12 þ 2k�ny, 1q16dx, 1 þ 2k�nx, 1q6dx, 1 þ 4nx, 1k�q6dx, 1 þ a1k1 þ a3k3 þ a4k4 þ a6k6

þ a7k7 þ a9k9 þ 2dx, 5k�nx, 5q10 þ 4dx, 5nx, 5l�q10 þ 2dx, 2k�ny, 2q17 þ 2dx, 3k�ny, 3q18 þ 2dx, 4k�ny, 4q19 þ dx, 2
2q2 þ 2dx, 5k�ny, 5q20 þ dx, 3

2q3

þ dx, 4
2q4 þ dx, 5

2q5 þ 2dx, 2k�nx, 2q7 þ 4dx, 2nx, 2l�q7 þ 2dx, 3k�nx, 3q8 þ 4dx, 3nx, 3l�q8 þ 2dx, 4k�nx, 4q9 þ 4dx, 4nx, 4l�q9Þðf �G, xÞÞ
� 1
2l�

ððq11dx, 12 þ 2nx, 1k�q16dx, 1 þ 2ny, 1k�q6dx, 1 þ a1�k1 þ a3�k3 þ a4�k4 þ a6�k6 þ a7�k7 þ a9�k9

þ 2dx, 5ny, 5l�q10 þ dx, 2
2q12 þ dx, 3

2q13 þ dx, 4
2q14 þ dx, 5

2q15 þ 2dx, 2nx, 2l�q17
þ 2dx, 3nx, 3l�q18 þ 2dx, 4nx, 4l�q19 þ 2dx, 5nx, 5l�q20 þ 2dx, 2ny, 2l�q7 þ 2dx, 3ny, 3l�q8 þ 2dx, 4ny, 4l�q9Þðf �G, yÞÞ

þ 1
2ðk�� þ 2l��Þ

ððq1dx, 12 þ 2k��ny, 1q16dx, 1 þ 2k��nx, 1q6dx, 1 þ 4nx, 1l��q6dx, 1 þ ða1 � 1Þk1 þ ða3 � 1Þk3
þ a4k4 � k4 þ a6k6 � k6 þ a7k7 � k7 þ a9k9

� k9 þ 2dx, 5k��nx, 5q10 þ 4dx, 5nx, 5l��q10 þ 2dx, 2k��ny, 2q17 þ 2dx, 3k��ny, 3q18 þ 2dx, 4k��ny, 4q19 þ dx, 2
2q2

þ 2dx, 5k��ny, 5q20 þ dx, 3
2q3 þ dx, 4

2q4 þ dx, 5
2q5

þ 2dx, 2k��nx, 2q7 þ 4dx, 2nx, 2l��q7 þ 2dx, 3k��nx, 3q8 þ 4dx, 3nx, 3l��q8 þ 2dx, 4k��nx, 4q9 þ 4dx, 4nx, 4l��q9Þðf ��G, xÞÞ
þ 1
2l��

ððq11dx, 12 þ 2nx, 1l��q16dx, 1 þ 2ny, 1l��q6dx, 1 þ ða1 � 1Þ�k1 þ ða3 � 1Þ�k3 þ a4�k4 � �k4

þ a6�k6 � �k6 þ a7�k7 � �k7 þ a9�k9 � �k9 þ 2dx, 5ny, 5l��q10
þ dx, 2

2q12 þ dx, 3
2q13 þ dx, 4

2q14 þ dx, 5
2q15 þ 2dx, 2nx, 2l��q17 þ 2dx, 3nx, 3l��q18 þ 2dx, 4nx, 4l��q19 þ 2dx, 5nx, 5l��q20

þ 2dx, 2ny, 2l��q7 þ 2dx, 3ny, 3l��q8 þ 2dx, 4ny, 4l��q9Þðf ��G, yÞÞÞ þ h3:::� ,
(31)

where e1 is the local truncation error in space given by Eq. (24) for zero body forces, ~f
�
G, x,

~f
��
G, x,

~f
�
G, y and ~f

��
G, y designate the

body forces f �x , f
��
x , f �y and f ��y calculated at the central interface point with the coordinates x ¼ xG and y ¼ yG: Equating to

zero the expression in the square brackets in the right-hand side of Eq. (31), we will get the expression for �f 1, 5 :

�f 1, 5 ¼ �h2ð 1
2k� þ 4l�

ððq1dx, 12 þ 2k�ny, 1q16dx, 1 þ 2k�nx, 1q6dx, 1 þ 4nx, 1k�q6dx, 1 þ a1k1 þ a3k3 þ a4k4 þ a6k6

þ a7k7 þ a9k9 þ 2dx, 5k�nx, 5q10 þ 4dx, 5nx, 5l�q10 þ 2dx, 2k�ny, 2q17 þ 2dx, 3k�ny, 3q18 þ 2dx, 4k�ny, 4q19 þ dx, 2
2q2 þ 2dx, 5k�ny, 5q20 þ dx, 3

2q3

þ dx, 4
2q4 þ dx, 5

2q5 þ 2dx, 2k�nx, 2q7 þ 4dx, 2nx, 2l�q7 þ 2dx, 3k�nx, 3q8 þ 4dx, 3nx, 3l�q8 þ 2dx, 4k�nx, 4q9 þ 4dx, 4nx, 4l�q9Þðf �G, xÞÞ
� 1
2l�

ððq11dx, 12 þ 2nx, 1k�q16dx, 1 þ 2ny, 1k�q6dx, 1 þ a1�k1 þ a3�k3 þ a4�k4 þ a6�k6 þ a7�k7 þ a9�k9

þ 2dx, 5ny, 5l�q10 þ dx, 2
2q12 þ dx, 3

2q13 þ dx, 4
2q14 þ dx, 5

2q15 þ 2dx, 2nx, 2l�q17
þ 2dx, 3nx, 3l�q18 þ 2dx, 4nx, 4l�q19 þ 2dx, 5nx, 5l�q20 þ 2dx, 2ny, 2l�q7 þ 2dx, 3ny, 3l�q8 þ 2dx, 4ny, 4l�q9Þðf �G, yÞÞ

þ 1
2ðk�� þ 2l��Þ

ððq1dx, 12 þ 2k��ny, 1q16dx, 1 þ 2k��nx, 1q6dx, 1 þ 4nx, 1l��q6dx, 1

þ ða1 � 1Þk1 þ ða3 � 1Þk3 þ a4k4 � k4 þ a6k6 � k6 þ a7k7 � k7 þ a9k9
� k9 þ 2dx, 5k��nx, 5q10 þ 4dx, 5nx, 5l��q10 þ 2dx, 2k��ny, 2q17 þ 2dx, 3k��ny, 3q18
þ 2dx, 4k��ny, 4q19 þ dx, 2

2q2 þ 2dx, 5k��ny, 5q20 þ dx, 3
2q3 þ dx, 4

2q4 þ dx, 5
2q5

þ 2dx, 2k��nx, 2q7 þ 4dx, 2nx, 2l��q7 þ 2dx, 3k��nx, 3q8 þ 4dx, 3nx, 3l��q8 þ 2dx, 4k��nx, 4q9 þ 4dx, 4nx, 4l��q9Þðf ��G, xÞÞ
þ 1
2l��

ððq11dx, 12 þ 2nx, 1l��q16dx, 1 þ 2ny, 1l��q6dx, 1 þ ða1 � 1Þ�k1 þ ða3 � 1Þ�k3
þ a4�k4 � �k4 þ a6�k6 � �k6 þ a7�k7 � �k7 þ a9�k9 � �k9 þ 2dx, 5ny, 5l��q10
þ dx, 2

2q12 þ dx, 3
2q13 þ dx, 4

2q14 þ dx, 5
2q15 þ 2dx, 2nx, 2l��q17 þ 2dx, 3nx, 3l��q18 þ 2dx, 4nx, 4l��q19 þ 2dx, 5nx, 5l��q20

þ 2dx, 2ny, 2l��q7 þ 2dx, 3ny, 3l��q8 þ 2dx, 4ny, 4l��q9Þðf ��G, yÞÞÞ � h3::: ,

(32)

as well as we will get the same local truncation errors ef1 ¼ e1 for zero and non-zero body forces (see the attached file
‘RHS.nb’ for the detailed expression of �f 1, 5). This means that the coefficients kj, i, �kj, i (i ¼ 1, 2, :::, 9, j¼ 1, 2) of the stencil
equations are first calculated for zero body forces f �x ¼ f ��x ¼ f �y ¼ f ��y ¼ 0 as described in Section 2.1. Then, the nonzero
term �f 1, 5 given by Eq. (32) is used in the stencil equation, Eq. (11) for nonzero body forces.

Remark 10. The derivation of the term �f 2, 5 for the second stencil equation, Eq. (11), with j¼ 2 can be done similar to that
for �f 1, 5: To preserve symmetry in the derivations for the first and second stencils with respect to the x and y coordinates,
for the second stencil with j¼ 2, Eqs. (16)–(19) (with the corresponding modifications of Eqs. (20)–(23)) should express the
second y derivatives in terms of the second x derivatives and the second mixed derivatives (see the Remark 6).
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3. Numerical examples

In this section, the computational efficiency of OLTEM
developed for the 2� D time-independent elasticity interface
problems will be demonstrated and compared with conven-
tional linear (triangular T3 and quadrilateral Q4), quadratic
(triangular T6 and quadrilateral Q9), and cubic (triangular
T10 and quadrilateral Q16) finite elements. The commercial
finite element software ‘COMSOL’ is used for the finite
element simulations. Similar to FEM terminology, a grid
point of a Cartesian mesh will be called a node. In order to
compare the accuracy of the numerical results obtained by
OLTEM and by FEM, the relative error ejs at the jth node
and the maximum relative error emax

s for the variable s are
defined as:

ejs ¼
jsnumj � sexactj j

sexactmax
, emax

s ¼ max
j

ejs , j ¼ 1, 2, :::,N:

(33)

In Eq. (33) the superscripts 0num0 and 0exact0 correspond
to the numerical and exact solutions, N is the total number
of nodes used in calculations, sexactmax is the maximum absolute
value of the exact solution for the variable s over the entire
domain. We also use the relative error eL

2

s in the L2 norm

for finite elements (e.g., see [43]) and the relative error el
2

s in
the l2 norm (e.g., see [44]) for OLTEM:

el
2

s ¼ jjsexact � snumjjl2
jjsexactjjL2

, (34)

where jjsexact � snumjjl2 ¼ fdx dy
PNx

i¼0

PNy

j¼0 ½sexact ðxi , yjÞ �
snumðxi , yjÞ�2g

1
2: Nx and Ny are the numbers of Cartesian grid

points along the x and y axes, xi and yj are the coordinates
of Cartesian grid points. The displacements u and v are con-
sidered as variable s in Eqs. (33) and (34).

The numerical examples presented in this section are
organized as follows. First, a test problem with a vertical
interface is solved in Section 3.1. Then, a more complicated
circular interface problem is considered in Section 3.2.

3.1. A square plate with a vertical interface

Let us consider a square plate AEBCFD with dimensions
2� 2; see Figure 2(a). A vertical interface EF at x¼ 0 divides
the domain X into two subdomains: AEFD (subdomain XI)
and EBCF (subdomain XII). For the vertical interface the
components of the unit normal used in the interface condi-
tions equal nx ¼ 1 and ny ¼ 0 for all interface points.
Young’s modulus E and Poisson’s ratio � are selected to be
EI ¼ 1, �I ¼ 0:3 for XI (AEFD) and EII ¼ 0.5, �II ¼ 0:4 for
XII (EBCF). The Lame coefficients can be calculated as ki ¼

Ei�i
ð1þ�iÞð1�2�iÞ and li ¼ Ei

2ð1þ�iÞ with i ¼ I, II: Using the method
of manufactured solutions, the following exact solution (e.g.,
see [45]) is selected (this solution meets the interface condi-
tions, Eqs. (3) and (4)):

uIðx, yÞ ¼ x
kI þ 2lI

cos ð4xyÞ, vIðx, yÞ ¼ x
lI

cos ð4xyÞ in XI

uIIðx, yÞ ¼ x
kII þ 2lII

cos ð2xyÞ, vIIðx, yÞ ¼ x
lII

cos ð2xyÞ in XII :

(35)

The body forces can be calculated by the substitution of
the exact solution into the elasticity equations and are
given below:

The test problem is solved by OLTEM as well as by con-
ventional linear, quadratic and cubic finite elements on
square (by ¼ 1) Cartesian meshes. The Dirichlet boundary
conditions are imposed along the edges of the square plate
according to the exact solution, Eq. (35). Figure 2(c,d) shows
the distribution of the relative errors eu (Figure 2(c)) and ev
(Figure 2(d)) obtained by OLTEM on the mesh with size
h¼ 1/64. As can be seen from Figure 2(c,d), the errors are
very small for this mesh; i.e., OLTEM yields accurate results.

In order to compare the accuracy of the numerical solu-
tions obtained by different techniques, Figure 3 shows the
maximum relative errors emax

u , emax
v and the errors eL

2

u , e
L2
v in

the L2 norm as a function of the mesh size h. As can be
seen from Figure 3, at the same h the numerical results
obtained by OLTEM are much more accurate than those
obtained by linear finite elements; compare curves 1 and 2.

f Ix ðx, yÞ ¼
8ð Sin ð4xyÞðxkI þ ðxþ yÞlIÞ þ

2x Cos ð4xyÞðxyk2I þ yð3xþ yÞk1lI þ ðx2 þ 2xyþ 2y2Þl2I Þ
kI þ 2lI

Þ
lI

,

f Iy ðx, yÞ ¼
8 Sin ð4xyÞlIððxþ yÞkI þ ðxþ 2yÞlIÞ þ 16x Cos ð4xyÞðx2k2I þ ð4x2 þ xyþ y2ÞkIlI þ ð4x2 þ xyþ 2y2Þl2I Þ

lIðkI þ 2lIÞ
,

in XI

8>>>>>><
>>>>>>:

f IIx ðx, yÞ ¼
4ð Sin ð2xyÞðxkII þ ðxþ yÞlIIÞ þ

xCosð2xyÞðxyk2II þ yð3x þ yÞkIIlII þ ðx2 þ 2xyþ 2y2Þl2IIÞ
kII þ 2lII

Þ
lII

,

f IIy ðx, yÞ ¼
4 Sin ð2xyÞlIIððxþ yÞkII þ ðxþ 2yÞlIIÞ þ 4x Cos ð2xyÞðx2k2II þ ð4x2 þ xyþ y2ÞkIIlII þ ð4x2 þ xyþ 2y2Þl2IIÞ

lIIðkII þ 2lIIÞ
:

in XII

8>>>>><
>>>>>:
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In addition to that, up to the engineering accuracy of 1%
(–2 along the y-axis in Figure 3 corresponds to 1%),
OLTEM yields more accurate results than those for

quadratic finite elements and the results that are close to
those for cubic finite elements at the same mesh size. The
increase in accuracy by OLTEM is impressive considering

Figure 2. A square plate AEBCFD with a vertical interface EF at x¼ 0. Examples of a fitted Cartesian mesh (a) used by finite elements and OLTEM as well as an unfit-
ted Cartesian mesh (b) used by OLTEM. The distribution of the relative errors eu (c) and ev (d) obtained by OLTEM on a square Cartesian mesh with size h¼ 1/64.

Figure 3. The maximum relative errors emax
u (a), emax

v (b); and the errors eL
2

u (c), eL2v (d) in the L2 norm as a function of the mesh size h in the logarithmic scale. The
numerical solutions for the test problem with the vertical interface are obtained by OLTEM (curve 1) and by conventional linear (curve 2), quadratic (curve 3), and
cubic (curve 4) quadrilateral finite elements on square Cartesian meshes.

Figure 4. The logarithm of the maximum relative errors emax
u (curve 1 in (a)), emax

v (curve 2 in (a)) and the errors el
2

u (curve 1 in (b)), el
2

v (curve 2 in (b)) in the l2

norm as a function of the mesh size h. The numerical solutions for the test problem with the vertical interface are obtained by OLTEM on square Cartesian meshes.

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 11



the fact that quadratic and cubic finite elements have much
wider stencils compared to those for OLTEM (the width of
the stencils for OLTEM corresponds to that for linear quad-
rilateral finite elements). This means that up to the engin-
eering accuracy, OLTEM requires less computation time
compared to that for conventional finite elements up to the
third order on conformed meshes. The slopes of the curves
in Figure 3 correspond to the order of convergence of the
corresponding numerical techniques. As can be seen from
Figure 3, OLTEM provides the second order of convergence
at mesh refinement that is in agreement with the theoretical
results of Section 2.

In order to study, the convergence and stability of the
numerical results obtained by OLTEM in more detail,
Figure 4 presents the curves 1 in Figure 3 at small changes
of the mesh size h (curves 1 and 2 in Figure 4(a) correspond
to curves 1 in Figure 3(a,b); curves 1 and 2 in Figure 4(b)
correspond to curves 1 in Figure 3(c,d)). For this study, we
solve the test problem on 1001 Cartesian meshes with the
mesh sizes hi ¼ h1 þ ðh2�h1Þði�1Þ

1000 where h1 ¼ 1=2 ¼ 0:5, h2 ¼
1=32 ¼ 0:03125 and i ¼ 1, 2, :::, 1001: The grid lines of these
meshes along the sides AB and AD (see Figure 2(a)) are
fixed; i.e., almost all meshes and the interface are unfitted as
in Figure 2(b). As can be seen from Figure 4, the numerical
results obtained by OLTEM on these meshes converge with
the decrease in the grid size h. Small oscillations in Figure 4
decrease with the decrease in the mesh size. This oscillatory
behavior can be explained by the fact that at small variations
of the mesh size h, there is a discontinuous change in the
location of the grid points with respect to the interface (e.g.,
some grid points that belong to one material for the previ-
ous mesh can belong to another material for the next
mesh); this leads to the discontinuous change of some sten-
cils equations for the meshes with a small difference in h. It

is important to mention that small oscillations in numerical
convergence curves are typical for many numerical techni-
ques at small variations of h. For example, the change in the
angles of finite elements at small variations of the element
size h also leads to such oscillations in convergence curves
for finite element techniques.

3.2. A square plate with a circular interface

Let us consider a square plate ABCD with dimensions 2� 2;
see Figure 5. A circular interface with radius r0 ¼ p=8 cen-
tered at the origin O(0, 0) divides the domain X into two
subdomains: the circular subdomain XI and the remaining
subdomain XII. For the circular interface, the components of
the unit normal used in the interface conditions equal nx ¼
x
r0

and ny ¼ y
r0

for any interface point with the coordinates
(x, y). Using the method of manufactured solutions, the fol-
lowing exact solution (e.g., see [45]) is selected:

uIðx, yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p	 
a
kI

,

vIðx, yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p	 
b
kI

,

in XI

8>>>><
>>>>:

uIIðx, yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p	 
a
kII

þ 1
kI

� 1
kII

� � ffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ 1

q� �a

,

vIIðx, yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p	 
b
kII

þ 1
kI

� 1
kII

� � ffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ 1

q� �b

,

in XII

8>>>><
>>>>:

(36)

where a¼ 7, b¼ 10, and r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
: The body forces can

be calculated by the substitution of the exact solution into
the elasticity equations and are given below:

Figure 5. A square plate ABCD with a circular interface centered at O(0, 0) with a radius r0 ¼ p=8 (a). Examples of a square Cartesian mesh for OLTEM (b), of tri-
angular (c), and quadrilateral (d) finite element meshes generated by COMSOL. The distribution of the relative errors eu (e, g) and ev (f, h) obtained by OLTEM on a
square Cartesian mesh with size h¼ 1/64. The contrasts Ec ¼ 20 (e, f) and Ec ¼ 1

20 (g, h) are used.
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Six different combinations of Lame’s coefficients k and l
are used to solve this problem by OLTEM: 1) kI ¼ 10, kII ¼
5, lI ¼ 4, lII ¼ 2; 2) kI ¼ 100, kII ¼ 5, lI ¼ 40, lII ¼ 2; 3)
kI ¼ 1000, kII ¼ 5, lI ¼ 400, lII ¼ 2; 4) kI ¼ 5, kII ¼
10, lI ¼ 2, lII ¼ 4; 5) kI ¼ 5, kII ¼ 100, lI ¼ 2, lII ¼ 40
and 6) kI ¼ 5, kII ¼ 1000, lI ¼ 2, lII ¼ 400: They corres-
pond to the same Poisson’s ratio �I ¼ �II ¼ 5

14 ¼ 0:357 and
the following Young’s moduli EI ¼
76
7 ;

760
7 ; 76007 ; 387 ;

38
7 ;

38
7 , EII ¼ 38

7 ;
38
7 ;

38
7 ;

76
7 ;

760
7 ; 76007 with the fol-

lowing contrasts for Young’s moduli: Ec ¼ EI
EII

¼
2; 20; 200; 12 ;

1
20 ;

1
200 : The exact solution given by Eqs. (36)

with the selected material properties meets the interface con-
ditions, Eqs. (3) and (4).

The test problem is solved by OLTEM on square (by ¼
1) Cartesian meshes as well as by conventional linear, quad-
ratic, and cubic (triangular and quadrilateral) finite ele-
ments; see Figure 5(b) for an example of Cartesian mesh
used with OLTEM and see Figure 5(c,d) for examples of tri-
angular and quadrilateral finite element meshes generated
by COMSOL. The Dirichlet boundary conditions are
imposed along the edges of the square plate according to
the exact solution given by Eq. (36). Figure 5(e–h) shows
the distribution of the relative errors eu (5e,g) and ev (5f,h)
obtained by OLTEM on a square Cartesian mesh with size
h¼ 1/64. The contrasts Ec ¼ 20 and Ec ¼ 1

20 are used for the
results shown in Figure 5(e–h). As can be seen from Figure
5(e–h) the errors are very small for this mesh; i.e., OLTEM
yields accurate results.

In order to study, the convergence of the numerical
results obtained by OLTEM for different contrasts Ec, Figure
6 shows the maximum relative errors emax

u , emax
v and the

errors el
2

u , e
l2
v in the l2 norm as a function of the mesh size h

in the logarithmic scale. The slopes of the curves in Figure 6
correspond the order of convergence. As can be seen from
Figure 6, OLTEM provides the second order of convergence
for all selected contrasts Ec. This is in agreement of the the-
oretical results of Section 2.

In order to compare the accuracy of the numerical solu-
tions obtained by different techniques, Figure 7 shows the
maximum relative errors emax

u , emax
v and the errors eL

2

u , e
L2
v in

the L2 norm as a function of the number N of degrees of
freedom for the contrast Ec ¼ 1

20 : As can be seen from
Figure 7, at the same h the numerical results obtained by
OLTEM are much more accurate than those obtained by

linear finite elements; compare curve 1 with curves 2 and 5.
In addition to that, up to the engineering accuracy of 1%
(–2 along the y-axis in Figure 7 corresponds to 1%),
OLTEM yields more accurate results than those for quad-
ratic and cubic finite elements at the same N. The increase
in accuracy by OLTEM is impressive considering the fact
that the quadratic and cubic finite elements have much
wider stencils compared to those for OLTEM (the width of
the stencils for OLTEM corresponds to that for linear quad-
rilateral finite elements). This means that at the engineering
accuracy, OLTEM requires less computation time compared
to that for conventional finite elements up to the third order
on conformed meshes. We should mention that similar
numerical results and comparison with finite elements are
obtained for different contrasts Ec.

Similar to Figure 4 in Section 3.1, in order to study the
convergence and stability of the numerical results obtained
by OLTEM in more detail, Figure 8 presents the curves 1 in
Figure 7 at small changes of the mesh size h (curves 1 and 2
in Figure 8(a) correspond to curves 1 in Figure 7(a,b);
curves 1 and 2 in Figure 8(b) correspond to curves 1 in
Figure 7(c,d)). For this study, we solve the test problem on
1001 Cartesian meshes with the mesh sizes hi ¼ h1 þðh2�h1Þði�1Þ

1000 where h1 ¼ 1=4 ¼ 0:25, h2 ¼ 1=64 ¼ 0:015625
and i ¼ 1, 2, :::, 1001: As can be seen from Figure 8, the
numerical results obtained by OLTEM converge with the
decrease in the grid size h. Small oscillations in the conver-
gence curves in Figure 8 can be explained similar to those
in Figure 4. The amplitudes of these oscillations decrease
with the decrease in the mesh size. The detailed numerically
study presented in Figures 4 and 8 show that the solutions
obtained by OLTEM are stable and convergent.

It can be concluded that OLTEM developed for the 2D
time-independent elasticity interface problems, yields more
accurate results than linear finite elements with the same
width of the stencil equations. Moreover, at engineering
accuracy, OLTEM requires less computational costs than
those for quadratic and cubic finite elements.

4. Concluding remarks

OLTEM for the time-independent elasticity equations with
irregular interfaces developed in this article is the extension
of the technique considered in our article [36] for the time-

f Ix ðx, yÞ ¼ � xy
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p	 
bð�2þ bÞbðkI þ lIÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p	 
a
aðð1þ y2 þ x2ð�1þ aÞÞkI þ ð3þ y2ð1þ aÞ þ x2ð�1þ 2aÞÞlIÞ

ð1þ r2Þ2kI
,

f Iy ðx, yÞ ¼ � xy
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p	 
að�2þ aÞaðkI þ lIÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p	 
b
bðð1þ x2 þ y2ð�1þ bÞÞkI þ ð3þ x2ð1þ bÞ þ y2ð�1þ 2bÞÞlIÞ

ð1þ r2Þ2kI
,

in XI

8>>>>><
>>>>>:
f IIx ðx, yÞ ¼ � xy

ffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p	 
bð�2þ bÞbðkII þ lIIÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p	 
a
aðð1þ y2 þ x2ð�1þ aÞÞkII þ ð3þ y2ð1þ aÞ þ x2ð�1þ 2aÞÞlIIÞ

ð1þ r2Þ2kI
,

f IIy ðx, yÞ ¼ � xy
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p	 
að�2þ aÞaðkII þ lIIÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p	 
b
bðð1þ x2 þ y2ð�1þ bÞÞkII þ ð3þ x2ð1þ bÞ þ y2ð�1þ 2bÞÞlIIÞ

ð1þ r2Þ2kI
:

in XII

8>>>>><
>>>>>:
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dependent scalar wave and heat equations. Due to the
absence of the time variable, the stencil equations, the deri-
vations as well as the imposition of the interface conditions

for OLTEM are different for the elasticity equations com-
pared to those in our article [36] (see also the Introduction).
Nevertheless, OLTEM developed for the elasticity equations

Figure 7. The maximum relative errors emax
u (a), emax

v (b) and the errors eL
2

u (c), eL
2

v (d) in the L2 norm as a function of the N in the logarithmic scale (N is the number
of degrees of freedom). The numerical solutions for the plate with the circular interface are obtained by OLTEM (curve 1) and by conventional linear (curves 2 and
5), quadratic (curves 3 and 6), and cubic (curves 4 and 7) finite elements with triangular (curves 2–4) and quadrilateral (curves 5–7) elements. The contrast Ec ¼ 1

20
is used.

Figure 6. The maximum relative errors emax
u (a), emax

v (b) and the errors el
2

u (c), el
2

v (d) in the l2 norm as a function of the mesh size h in the logarithmic scale. The
numerical solutions for the test problem with the circular interface are obtained by OLTEM on square Cartesian meshes with the following contrasts: Ec ¼ 2 (curve
1); Ec ¼ 20 (curve 2); Ec ¼ 200 (curve 3); Ec ¼ 1

2 (curve 4); Ec ¼ 1
20 (curve 5) and Ec ¼ 1

200 (curve 6).
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shares many advantages of OLTEM developed in our article
[36] for the time-dependent PDEs. One of the ideas that
allow the effective development of the new technique for
heterogeneous materials is the addition of the interface con-
ditions at a small number of the interface points to the
expression for the local truncation error. The unknown sten-
cil coefficients of OLTEM are numerically calculated from a
small local system of algebraic equations for the general
geometry of interfaces. This procedure does not change the
width of the stencil equation; i.e., the locations of zero and
nonzero elements in the global discrete system of equations
are the same for homogeneous and heterogeneous materials.
The calculation of the unknown stencil coefficients is based
on the minimization of the local truncation error of the
stencil equations and yields the optimal order of accuracy of
the new technique at a given stencil width. The increase in
the computational costs for the calculation of the unknown
stencil coefficients from the local systems is insignificant
compared to the computational costs for the solution of the
global discrete system.

The main advantages of the suggested technique can be
summarized as follows:

� Many difficulties of the existing numerical techniques for
irregular domains (e.g., finite elements, spectral element,
isogeometric elements, the finite volume method, and
many other) are related to complicated mesh generators
and the accuracy of ‘bad’ elements (e.g., the elements with
small angles). In contrast to these techniques, OLTEM is
based on simple unfitted Cartesian meshes with a trivial
procedure for the formation of the 9-point stencils for 2D
domains with complex irregular interfaces.

� OLTEM has the same width of the stencil equations and
the same structure of the global discrete equations for the
elasticity equations for homogeneous and heterogeneous
materials. There are no unknowns on the interfaces
between different materials for the proposed technique;
i.e., complex irregular interfaces do not affect the sparse
structure of the global system of discrete equations (they
affect just the values of the stencils coefficients).

� In contrast to the finite-difference techniques with the
stencil coefficients calculated through the approximation
of the partial derivatives, the system of partial differential

elasticity equations is used for the calculation of the stencil
coefficients in OLTEM. This leads to the optimal accuracy
of the proposed technique. E.g., the 9-point stencils of
OLTEM provide the optimal second order of accuracy that
cannot be improved without changing the width of stencil
equations. The numerical results with irregular interfaces
show that at the same number of degrees of freedom: a)
OLTEM with unfitted Cartesian meshes is more accurate
than linear finite elements with similar stencils and con-
formed meshes; b) up to engineering accuracy of 1%,
OLTEM with unfitted Cartesian meshes is even more com-
putationally efficient than quadratic and cubic finite ele-
ments with much wider stencils and conformed meshes.

� OLTEM does not require time-consuming numerical
integration for finding the coefficients of the stencil
equations; e.g., as for the high-order finite, spectral, and
isogeometric elements. The stencil coefficients are calcu-
lated analytically or numerically (for the general geom-
etry of interfaces) by the solution of small local systems
of linear algebraic equations. Numerical experiments
show that the solution of these small local systems of
algebraic equations is fast. Moreover, these local systems
are independent of each other and can be efficiently
solved on a parallel computer.

� The proposed technique yields accurate numerical results
for heterogeneous materials with big contrasts in the
material properties of different components.

� Due to the computational efficiency and trivial unfitted
Cartesian meshes that are independent of irregular geom-
etry, the proposed technique does not require remeshing
for the shape change of irregular geometry and it will be
effective for many design and optimization problems.

In the future, we plan to extend OLTEM to the 3D elasti-
city equations for heterogeneous materials with irregular
interfaces. Another direction is the development of OLTEM
with adaptive refinement similar to h� and p� refinement
for finite elements (e.g., it was shown in our articles [46,47]
that OLTEM can easily combine different stencils). We plan
to use quadtrees/octrees meshes that allow a simple refine-
ment strategy with Cartesian meshes. The extension of
OLTEM to other PDEs for heterogeneous materials as well
as to non-linear PDEs will be also considered in the future.

Figure 8. The maximum relative errors emax
u (curve 1 in (a)), emax

v (curve 2 in (a)) and the errors el
2

u (curve 1 in (b)), el
2

v (curve 2 in (b)) in the l2 norm as a function of
the mesh size h in the logarithmic scale. The numerical solutions for the plate with the circular interface are obtained by OLTEM on 1001 square Cartesian meshes
for the contrast Ec ¼ 1

20 :
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Appendix A.: The coefficients b1,p used in Eq. (24) for the first stencils with j51

The first 10 coefficients b1, p (p ¼ 1, 2, :::, 10) used in Eq. (24) are presented below. All coefficients b1, p used in these formulas are given in the
attached file ‘b-coef.nb’. For simplicity of notations below, we use that

b1, i ¼ biði ¼ 1, 2, :::, 10Þ, k1, i ¼ ki, �k1, i ¼ �ki, ði ¼ 1, 2, :::, 9Þ,
q1, i ¼ qi, q2, i ¼ qiþ5, q3, i ¼ qiþ10, q4, i ¼ qiþ15 ði ¼ 1, 2, :::, 5Þ:

b1 ¼ a1k1 þ a2k2 þ a3k3 þ a4k4 þ a5k5 þ a6k6 þ a7k7 þ a8k8 þ a9k9 þ q1 þ q2 þ q3 þ q4 þ q5

b2 ¼ a1�k1 þ a2�k2 þ a3�k3 þ a4�k4 þ a5�k5 þ a6�k6 þ a7�k7 þ a8�k8 þ a9�k9 þ q11 þ q12 þ q13 þ q14 þ q15
b3 ¼ �a1k1 � a2k2 � a3k3 � a4k4 � a5k5 � a6k6 � a7k7 � a8k8 � a9k9 þ k1 þ k2 þ k3 þ k4 þ k5 þ k6 þ k7 þ k8 þ k9 � q1 � q2 � q3 � q4 � q5

b4 ¼ �a1�k1 � a2�k2 � a3�k3 � a4�k4 � a5�k5 � a6�k6 � a7�k7 � a8�k8 � a9�k9 þ �k1 þ �k2 þ �k3 þ �k4 þ �k5 þ �k6 þ �k7 þ �k8 þ �k9 � q11 � q12 � q13 � q14 � q15
b5 ¼ �a1k1 þ a3k3 � a4k4 þ a6k6 � a7k7 þ a9k9 þ dx, 1q1 þ dx, 2q2 þ dx, 3q3 þ dx, 4q4 þ dx, 5q5 þ k�nx, 1q6

þ k�nx, 2q7 þ k�nx, 3q8 þ k�nx, 4q9 þ k�nx, 5q10 þ k�ny, 1q16 þ k�ny, 2q17 þ k�ny, 3q18 þ k�ny, 4q19 þ k�ny, 5q20 þ 2nx, 1l�q6þ
þ 2nx, 2l�q7 þ 2nx, 3l�q8 þ 2nx, 4l�q9 þ 2nx, 5l�q10

b6 ¼ �a1�k1 þ a3�k3 � a4�k4 þ a6�k6 � a7�k7 þ a9�k9 þ dx, 1q11 þ dx, 2q12 þ dx, 3q13 þ dx, 4q14 þ dx, 5q15 þ nx, 1l�q16þ
nx, 2l�q17 þ nx, 3l�q18 þ nx, 4l�q19 þ nx, 5l�q20 þ ny, 1l�q6 þ ny, 2l�q7 þ ny, 3l�q8 þ ny, 4l�q9 þ ny, 5l�q10

b7 ¼ ða1 � 1Þk1 � a3k3 þ a4k4 � a6k6 þ a7k7 � a9k9 � dx, 1q1 � dx, 2q2 � dx, 3q3 � dx, 4q4 � dx, 5q5 � k��nx, 1q6�
k��nx, 2q7 � k��nx, 3q8 � k��nx, 4q9 � k��nx, 5q10 � k��ny, 1q16 � k��ny, 2q17 � k��ny, 3q18 � k��ny, 4q19 � k��ny, 5q20þ
k3 � k4 þ k6 � k7 þ k9 � 2nx, 1l��q6 � 2nx, 2l��q7 � 2nx, 3l��q8 � 2nx, 4l��q9 � 2nx, 5l��q10

b8 ¼ ða1 � 1Þ�k1 � a3�k3 þ a4�k4 � a6�k6 þ a7�k7 � a9�k9 � dx, 1q11 � dx, 2q12 � dx, 3q13 � dx, 4q14 � dx, 5q15 þ �k3�
�k4 þ �k6 � �k7 þ �k9 � nx, 1l��q16 � nx, 2l��q17 � nx, 3l��q18 � nx, 4l��q19 � nx, 5l��q20 � ny, 1l��q6 � ny, 2l��q7�
ny, 3l��q8 � ny, 4l��q9 � ny, 5l��q10

b9 ¼ �a1byk1 � a2byk2 � a3byk3 þ a7byk7 þ a8byk8 þ a9byk9 þ dy, 1q1 þ dy, 2q2 þ dy, 3q3 þ dy, 4q4 þ dy, 5q5þ
nx, 1l�q16 þ nx, 2l�q17 þ nx, 3l�q18 þ nx, 4l�q19 þ nx, 5l�q20 þ ny, 1l�q6 þ ny, 2l�q7 þ ny, 3l�q8 þ ny, 4l�q9 þ ny, 5l�q10

b10 ¼ �a1by�k1 � a2by�k2 � a3by�k3 þ a7by�k7 þ a8by�k8 þ a9by�k9 þ dy, 1q11 þ dy, 2q12 þ dy, 3q13 þ dy, 4q14þ
dy, 5q15 þ k�nx, 1q6 þ k�nx, 2q7 þ k�nx, 3q8 þ k�nx, 4q9 þ k�nx, 5q10 þ k�ny, 1q16 þ k�ny, 2q17 þ k�ny, 3q18 þ k�ny, 4q19þ
k�ny, 5q20 þ 2ny, 1l�q16 þ 2ny, 2l�q17 þ 2ny, 3l�q18 þ 2ny, 4l�q19 þ 2ny, 5l�q20
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