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Abstract
Purpose – The purpose of this paper is as follows: to significantly reduce the computation time (by a factor
of 1,000 andmore) compared to known numerical techniques for real-world problems with complex interfaces;
and to simplify the solution by using trivial unfitted Cartesian meshes (no need in complicated mesh
generators for complex geometry).
Design/methodology/approach – This study extends the recently developed optimal local
truncation error method (OLTEM) for the Poisson equation with constant coefficients to a much more
general case of discontinuous coefficients that can be applied to domains with different material
properties (e.g. different inclusions, multi-material structural components, etc.). This study develops
OLTEM using compact 9-point and 25-point stencils that are similar to those for linear and quadratic
finite elements. In contrast to finite elements and other known numerical techniques for interface
problems with conformed and unfitted meshes, OLTEM with 9-point and 25-point stencils and
unfitted Cartesian meshes provides the 3-rd and 11-th order of accuracy for irregular interfaces,
respectively; i.e. a huge increase in accuracy by eight orders for the new ’quadratic’ elements
compared to known techniques at similar computational costs. There are no unknowns on interfaces
between different materials; the structure of the global discrete system is the same for homogeneous
and heterogeneous materials (the difference in the values of the stencil coefficients). The calculation of
the unknown stencil coefficients is based on the minimization of the local truncation error of the
stencil equations and yields the optimal order of accuracy of OLTEM at a given stencil width. The
numerical results with irregular interfaces show that at the same number of degrees of freedom,
OLTEM with the 9-points stencils is even more accurate than the 4-th order finite elements; OLTEM
with the 25-points stencils is much more accurate than the 7-th order finite elements with much wider
stencils and conformed meshes.
Findings – The significant increase in accuracy for OLTEM by one order for ’linear’ elements and by 8
orders for ’quadratic’ elements compared to that for known techniques. This will lead to a huge reduction in
the computation time for the problems with complex irregular interfaces. The use of trivial unfitted Cartesian
meshes significantly simplifies the solution and reduces the time for the data preparation (no need in
complicated mesh generators for complex geometry).
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Originality/value – It has been never seen in the literature such a huge increase in accuracy for the
proposed technique compared to existing methods. Due to a high accuracy, the proposed technique will allow
the direct solution of multiscale problems without the scale separation.

Keywords Cartesian meshes, Poisson equation with discontinuous coefficients, Irregular interfaces,
Local truncation error, Optimal accuracy

Paper type Research paper

1. Introduction
The Poisson equation for heterogeneous materials with interfaces is used for the description
of many important phenomena such as heat transfer, multiphase flows, neurosciences and
electrostatics. Therefore, many efforts are made for the development of accurate and
computationally effective numerical techniques for this equation (Vallaghe
and Papadopoulo, 2010; Crockett et al., 2011; Zhang et al., 2015; Guittet et al., 2015; Coco and
Russo, 2018; Gürkan and Massing, 2019; Zhang and Babuska, 2020; Guo and Lin, 2020; Li
et al., 2020; Xiao et al., 2020). The finite element method, the finite volume method, the
isogeometric elements, the spectral elements and similar techniques represent very powerful
tools for the solution of partial differential equations (PDEs) for a complex geometry.
However, for these techniques, it is difficult to control the quality of generated conformed
meshes that may include ‘bad’ elements (e.g. elements with small angles). Such ‘bad’
elements lead to the degradation of accuracy. We should also mention that the discrete
equations (e.g. based on the Galerkin approaches) of many numerical techniques do not
provide the optimal accuracy. There is a significant number of publications related to the
numerical solution of different PDEs on irregular domains with uniform embedded meshes.
For example, we can mention the following fictitious domain numerical methods that use
uniform embedded meshes: the embedded finite difference method, the cut finite element
method, the finite cell method, the Cartesian grid method, the immersed interface method,
the virtual boundary method, the embedded boundary method, etc. (Vos et al., 2008; Burman
and Hansbo, 2010; Rank et al., 2011; Rank et al., 2012; May and Berger, 2017; Main and
Scovazzi, 2018; Song et al., 2018; Kreisst and Petersson, 2006; Kreiss and Petersson, 2006;
Kreiss et al., 2004; McCorquodale et al., 2001; Johansen and Colella, 1998). These techniques
use unfitted meshes for irregular domains, the special treatment of small cut cells to avoid
the degradation of accuracy and tend to achieve the accuracy close to that for the techniques
with conformedmeshes. A stable generalized finite element method for the Poisson equation
was developed in Zhang and Babuska(2020) for heterogeneous materials with curved
interfaces and unfitted uniform meshes. The second order of accuracy in the energy norm
was achieved in Zhang and Babuska (2020) with two-dimensional quadratic finite elements
that form 25-point stencils. The order of accuracy p þ 1 for interface problems for the
Poisson equation on unfitted meshes was reported in (Xiao et al., 2020; Guo and Lin, 2019;
Cheung et al., 2020) for high-order immersed and extended finite elements of order p.

The development of robust numerical techniques for the solution of PDEs with complex
irregular interfaces that provide an optimal and high order of accuracy is still a challenging
problem.

Optimal local truncation error method (OLTEM) for the solution of PDEs with constant
coefficients on regular and irregular domains with Cartesian meshes has been recently
developed in our papers (Idesman, 2020; Dey and Idesman, 2020; Idesman and Dey, 2019;
Idesman and Dey, 2020c; Idesman and Dey, 2020b; Idesman and Dey, 2020a; Idesman and
Dey, 2020d). At the same structure of the semidiscrete or discrete equations, OLTEM
provides the optimal order of accuracy that exceeds the order of accuracy of many known
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numerical approaches on regular and irregular domains. For example, it was shown in
Idesman and Dey (2020) that OLTEMwith 25-point stencils for the two-dimensional Poisson
equation with constant coefficients can provide the 18-th order of accuracy on regular
domains. In our paper (Idesman and Dey, 2021), we have extended OLTEM with 9-point
stencils (similar to those for linear finite elements) and unfitted Cartesian meshes to a much
more general case of the two-dimensional time-dependent heat and wave equations with
discontinuous coefficients and we have obtained the third order of accuracy of the new
approach.

Here, we continue the development of OLTEM for heterogeneous materials with
irregular interfaces started in our paper (Idesman and Dey, 2021) and we consider the
development of OLTEM with 9-point and 25-point stencils (similar to those for linear and
quadratic finite elements) and unfitted Cartesian meshes for the two-dimensional time-
independent Poisson equation with discontinuous coefficients. Despite the different
equations and the derivations compared to those in our paper (Idesman and Dey, 2021), the
OLTEM with 9-point stencils also provides the third order of accuracy for the Poisson
equation. OLTEMwith 25-point stencils provides the 11-th order of accuracy for the Poisson
equation with interfaces (i.e. the increase by 8 orders compared to known approaches for
quadratic elements). We have never seen in the literature such a huge increase accuracy of
numerical techniques for a general geometry of interfaces.

The Poisson equation in a composite domain X = |Xl (l ¼ 1; 2; . . . ;N where N is the
total number of subdomains) can be written down in each subdomainXl as follows:

elr2ul ¼ fl ; (1)

where el is a constant in each subdomain Xl and can be discontinuous across the interfaces
between subdomains Xl (l ¼ 1; 2; . . . ;N ), fl xð Þ is the source term that can be also
discontinuous across the interfaces between subdomains Xl, ul is the field variable. We also
assume that the functions ul and fl are sufficiently smooth in each subdomain Xl. At the
interface G between any two subdomains, the following interface conditions (the continuity
of the function and the flux across the interface) are applied:

u*G � u**G ¼ 0 ; e* nx
@u*G
@x

þ ny
@u*G
@y

 !
� e** nx

@u**G
@x

þ ny
@u**G
@y

 !
¼ 0 ; (2)

where nx and ny are the x and y-components of the normal vector at the interface, e* (e**) is
the corresponding material constant, the symbols * and ** correspond to the quantities
on the opposite sides from the interface for the corresponding subdomains Xl. This means
that the functions ul are continuous across the interfaces but can have the discontinuous
spatial derivatives across the interfaces.

Remark 1. The derivations for the new approach can be easily extended to the case with
the discontinuous functions and fluxes across interfaces; i.e. when the right-hand sides in
equation (2) are the given functions. However, for simplicity, we consider equation (2) with
zero right-hand sides.

In this paper, the Dirichlet boundary conditions u = g1 are applied along the boundary C
where g1 is the given function. However, the Neumann boundary conditions can be also used
with the proposed approach (Idesman and Dey, 2020e; Idesman and Dey, 2020a). According
to OLTEM, the discrete system for the Poisson equation after the space discretization with a
Cartesian rectangular mesh can be represented as a system of algebraic equations. The
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algebraic equation of this system for each internal grid point of the domain is called the
stencil equation and can be written down for the case without interfaces as follows:

XM
i¼1

kiunumi ¼ f ; (3)

where unumi is the numerical solution for function ui at the grid points, ki are the unknown
stencil coefficients to be determined, f is the discretized source term (Sections 2), M is the
number of the grid points included into the stencil equation. Many numerical techniques
such as the finite difference method, the finite element method, the finite volume method, the
isogeometric elements, the spectral elements, different meshless methods and others can be
finally reduced to equation (3) with some specific coefficients ki. In the derivations below, we
will assume 9-point (M = 9) and 25-point (M = 25) stencils in the two-dimensional case that
are similar to 9-point and 25-point stencils of the two-dimensional linear and quadratic
quadrilateral finite elements on Cartesian meshes, respectively. Generally, the stencils with
any number of pointsM can be used with the suggested approach.

Let us introduce the local truncation error used with OLTEM. The replacement of the
numerical values of function unumi at the grid points in equation (3) by the exact solution ui to
the Poisson equation, equation (1), leads to the residual e of this equation called the local
truncation error of the discrete equation, equation (3):

e ¼
XM
i¼1

kiui � f : (4)

Calculating the difference between equations (4) and (3) we can get:

e ¼
XM
i¼1

ki ui � unumi

� � ¼
XM
i¼1

kieui ; (5)

where eui ¼ ui � unumi are the errors of function ui at the grid points i. As can be seen from
equation (5), the local truncation error e is a linear combination of the errors of the function u
at the grid points iwhich are included into the stencil equation.

In Section 2.1, OLTEM with 9-point and 25-point stencils is derived for the two-
dimensional Poisson equation with discontinuous coefficients and zero source term. Its
extension to nonzero source term is considered in Section 2.2. Two-dimensional numerical
examples with the different shapes of interfaces, as well as the comparison with FEM are
presented in Section 3. For the derivation of many analytical expressions presented below
we use the computational program “Mathematica.”

2. Optimal local truncation error method for the two-dimensional Poisson
equation with discontinuous coefficients
2.1 Zero source term fl = 0 in equation (1)
Let us consider a two-dimensional bounded domain and a Cartesian rectangular mesh with a
mesh size hwhere h is the size of the mesh along the x–axis, byh is the size of the mesh along
the y–axis (by is the aspect ratio of the mesh). To simplify derivations, below we consider
regular rectangular domains with irregular interfaces between different materials. However,
irregular domains can be also considered with OLTEM (Idesman, 2020; Dey and Idesman,
2020; Idesman and Dey, 2019). In the paper, we will consider two different stencils used for
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all internal grid points: 9-point uniform stencils that provide the third order of accuracy and
25-point uniform stencils that provide the 11-th order of accuracy. We should mention that
we use the same structure of stencils for homogeneous and composite materials (the
difference between homogeneous and composite materials is in the values of the stencil
coefficients only).

The spatial locations of the 8 degrees of freedom that are close to the internal degree of
freedom u5 and contribute to the 9-point stencil for this degree of freedom are shown in
Figure 1. The spatial locations of the 24 degrees of freedom that are close to the internal
degree of freedom u13 and contribute to the 25-point stencil for this degree of freedom are
shown in Figure 2. For convenience, the local numerations of the grid points from 1 to 9 and
from 1 to 25 are used in Figures 1 and 2, as well as in the derivations below.

The interface in Figures 1(b) and 2(b) divides the 9-point or 25-point uniform stencil into
two parts with different material properties. To impose the interface condition at the
interface, we select a small number of interface points as follows. First we select one point at
the interface with the coordinates xG ¼ xG;1 and yG ¼ yG;1. This point can be selected as the

Figure 1.
The spatial locations

of the degrees of
freedom up (p= 1,

2,. . ., 9) that contribute
to the 9-point uniform
stencil for the internal
degree of freedom u5

for homogeneous
material without

interface (a) and for
heterogeneous
material with
interface (b)

Figure 2.
The spatial locations

of the degrees of
freedom up (p= 1,

2,. . ., 25) that
contribute to the 25-
point uniform stencil
for the internal degree

of freedom u13 for
homogeneous

material without
interface (a) and for

heterogeneous
material with
interface (b)
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shortest distance from the internal grid point u5 for the 9-point stencil or u13 for the 25-point
stencil to the interface. Then, we additionally select n interface points to the left and to the
right from the point with the coordinates xG,1 and yG,1 at the same distances

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xG;iþ1 � xG;ið Þ2 þ yG;iþ1 � yG;ið Þ2

q
(i = 1,2,. . .,2n) from each other [Figures 1(b) and

2(b)]. The numerical experiments show that small distances h ¼ h=10 yield accurate results.
The total number of interface points used is NG = 2n þ 1 where NG = 5 for the 9-point
stencils andNG= 11 for the 25-point stencils [Figures 1(b) and 2(b)].

Let us describe the coordinates of the grid points of the 9-point and 25 point uniform
stencils (Figures 1 and 2) with respect to their central point u5 for the 9-point stencils and u13
for the 25-point stencils as follow:

xp ¼ x5 þ i � 2ð Þh ; yp ¼ y5 þ j� 2ð Þbyh ; (6)

for the 9-point stencils where p= 3(j – 1)þ iwith i, j= 1, 2, 3 and:

xp ¼ x13 þ i � 3ð Þh ; yp ¼ y13 þ j� 3ð Þbyh ; (7)

for the 25-point stencils where p= 5(j – 1)þ iwith i, j= 1,2,3,4,5.
To describe the coordinates of the selected NG points on the interface [Figures 1(b) and

2(b)] we introduce 2NG coefficients dx,p and dy,p (p = 1, 2, . . ., NG) with NG = 5 for the 9-point
stencils andNG= 11 for the 25-point stencils as follows [Figures 1(b) and 2(b)]:

xG;j ¼ xG þ dx;jh ; yG;j ¼ yG þ dy;jbyh ; j ¼ 1; 2; . . . ;NG : (8)

where dx;1 ¼ dy;1 ¼ 0 for the central interface point G = G1 with the coordinates xG ¼ xG;1
and yG ¼ yG;1 [Figures 1(b) and 2(b)].

Remark 2. Some of the interface points Gi (i = 1, 2, . . ., NG) can be located slightly
outside the 9-point or 25-point cells. The derivations presented below are also valid for
these cases.

The stencil equation [equation (3)] for composite materials with the 9-point (Figure 1) or
25-point (Figure 2) uniform stencil for the grid point u5 (for the 9-point stencils) or u13 (for the
25-point stencils) will be assumed in the following form:

XM
p¼1

kp apu
*;num
p þ 1� apð Þu**;nump

h i
¼ f ; (9)

where f ¼ 0 in the case of zero source fl = 0 in equation (1),M = 9 for the 9-point stencils
and M = 25 for the 25-point stencils, the unknown stencil coefficients kp (p = 1, 2, . . .,M)
are to be determined from the minimization of the local truncation error, the coefficients
ap = 1 if the grid point up belongs to material * or ap = 0 if the grid point up belongs to
another material ** (i.e. only one variable u*;nump or u**;nump is actually included into
equation (9) for each grid point; e.g. the coefficients ap for Figure 1(b) are:
a1 ¼ a2 ¼ a3 ¼ a5 ¼ a6 ¼ 1 and a4 ¼ a7 ¼ a8 ¼ a9 ¼ 0). The local truncation error e
follows from equation (9) by the replacement of the numerical solution u*;nump and u**;nump

by the exact solution u*p and u
**
p :

e ¼
XM
p¼1

kp apu*p þ 1� apð Þu**p
h i

� f : (10)
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One of the ideas of the new approach is to include the interface conditions for the exact
solution at a small number NG of the interface points in the expression for the local
truncation error in equation (10) as follows:

e ¼
XM
p¼1

kp apu*p þ 1� apð Þu**p
h i

þ
XNG

j¼1

q1;j u*G;j � u**G;j
� �8<

:
þ
XNG

j¼1

hq2;j e* nx;j
@u*G;j
@x

þ ny;j
@u*G;j
@y

 !
� e** nx;j

@u**G;j
@x

þ ny;j
@u**G;j
@y

 !" #)
� f ;

(11)

where nx,j and ny,j are the x and y-components of the normal vectors at the NG selected
interface points [Figures 1(b) and 2(b)], the coefficients q1,j and q2,j (j = 1, 2, . . . , NG) will be
used for the minimization of the local truncation error in equation (11) (see Section 2.1.2
below), the expressions in parenthesis after q1,j and q2,j are the interface conditions at theNG
selected interface points. Therefore, the expression in the curled brackets in equation (11) is
zero [equation (2)] and equations (10) and (11) yield the same local truncation error e. The
addition of the interface conditions at NG points in equation (11) with the unknown
coefficients q1;j; q2;j (j = 1,2,. . .,NG) allows us to obtain the analytical expressions for the
stencil coefficients for the horizontal interface, as well as to get a high accuracy for general
geometry of interfaces.

Remark 3. Only M þ 2NG – 1 out of the M þ 2NG coefficients kp, q1;j; q2;j
(p ¼ 1; 2; . . . ;M ; j ¼ 1; 2; . . . ;NG) in equation (11) can be considered as unknown
coefficients. This can be explained as follows. In the case of zero source fl = 0 and f ¼ 0,
equation (9) can be rescaled by the division of the left- and right-hand sides of equation (9) by
any scalar; i.e. one of the coefficients kp can be selected as unity and there will be onlyM þ
2NG – 1 unknown rescaled coefficients. The case of nonzero load f 6¼ 0 can be similarly
treated because the term f is a linear function of the stencil coefficients. For convenience, we
will scale the stencil coefficients in such a way that km is km = 1 wherem = 5 for the 9-point
stencils andm= 13 for the 25-point stencils.

To represent the local truncation error e as a Taylor series, let us expand the exact
solution at the grid points and the NG selected interface points in equation (11) into a Taylor
series at small h � 1 in the vicinity of the central interface point G for the 9-point stencils
and 25-point stencils as follows:

vp ¼ vG þ @vG
@x

i � 2ð Þ � dxG
� �

h
� �

þ @vG
@y

l � 2ð Þ � dyG
� �

byh
h i

þ @2vG
@x2

i � 2ð Þ � dxG
� �

h
� �2

2!
þ @2vG

@y2
l � 2ð Þ � dyG

� �
byh

h i2
2!

þ 2
@2vG
@x@y

i � 2ð Þ � dxG
� �

h
� �

l � 2ð Þ � dyG
� �

byh
h i
2!

þ . . . ; ; p ¼ 3 l � 1ð Þ

þ i with i; l ¼ 1; 2; 3

(12)

for the 9-point stencils with dxG ¼ xG�x5
h and dyG ¼ yG�y5

byh
,
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vp ¼ vG þ @vG
@x

i � 3ð Þ � dxG
� �

h
� �

þ @vG
@y

l � 3ð Þ � dyG
� �

byh
h i

þ @2vG
@x2

i � 3ð Þ � dxG
� �

h
� �2

2!
þ @2vG

@y2
l � 3ð Þ � dyG

� �
byh

h i2
2!

þ2
@2vG
@x@y

i � 3ð Þ � dxG
� �

h
� �

l � 3ð Þ � dyG
� �

byh
h i
2!

þ . . . ; ; p ¼ 5 l � 1ð Þ þ i with i; l ¼ 1; 2; 3; 4; 5

(13)

for the 25-point stencils with dxG ¼ xG�x13
h and dyG ¼ yG�y13

byh
and:

wj ¼ wG þ @wG

@x
dx;jh
� �þ @wG

@y
dy;jbyh
� �þ @2wG

@x2
dx;jh
� �2

2!

þ @2wG

@y2
dy;jbyh
� �2

2!
þ 2

@2wG

@x@y
dx;jh
� �� �

dy;jbyh
� �
2!

þ . . . ; : j ¼ 1; 2; . . . ;NG

(14)

In equations (12) and (13) the function vp is u*p; u
**
p , in equation (14) the function wj is

u*G;j; u
**
G;j;

@u*G;j
@x ;

@u**G;j
@x ;

@u*G;j
@y ;

@u**G;j
@y , NG is 5 for the 9-point stencils and 11 for the 25-point

stencils. The exact solution u*m and u**m to the Poisson equations, equation (1), at the central
interface point x= xG and y= yGmeets the following equations:

@2u*G
@x2

¼ � @2u*G
@y2

þ 1
e*
f * ;

@2u**G
@x2

¼ � @2u**G
@y2

þ 1
e**

f ** ; (15)

@ iþjþ2ð Þu*G
@yi@x 2þjð Þ ¼ � @ iþjþ2ð Þu*G

@y iþ2ð Þ@xj
þ 1
e*

@ iþjð Þf *

@yi@xj
;

@ iþjþ2ð Þu**G
@yi@x 2þjð Þ ¼ � @ iþjþ2ð Þu**G

@y iþ2ð Þ@xj
þ 1
e**

@ iþjð Þf **

@yi@xj

(16)

with i, j = 0,1,2,3,4,. . .. equation (16) is obtained by the differentiation of equation (15) with
respect to x and y. Inserting equations (12)–(16) with zero source term f * ¼ f ** ¼ 0 into
equation (11) we will get the following local truncation error in space e:

e ¼ b1u*G þ b2u**G þ h b3
@u*G
@y

þ b4
@u**G
@y

þ b5
@u*G
@x

þ b6
@u**G
@x

 !
þ h2 b7

@2u*G
@y2

þ b8
@2u**G
@y2

þ b9
@2u*G
@x@y

þ b10
@2u**G
@x@y

 !

þh3 b11
@3u*G
@y3

þ b12
@3u**G
@y3

þ b13
@3u*G
@x@y2

þ b14
@3u**G
@x@y2

 !
þ h4 b15

@4u*G
@y4

þ b16
@4u**G
@y4

þ b17
@4u*G
@x@y3

þ b18
@4u**G
@x@y3

 !
þ . . .

þh11 b43
@11u*G
@y11

þ b44
@11u**G
@y11

þ b45
@11u*G
@x@y10

þ b46
@11u**G
@x@y10

 !

þh12 b47
@12u*G
@y12

þ b48
@12u**G
@y12

þ b49
@12u*G
@x@y11

þ b50
@12u**G
@x@y11

 !
þ O h13ð Þ

(17)

where the coefficients bp (p = 1,2,. . .) are expressed in terms of the coefficients ki and q1;j; q2;j
(i ¼ 1; 2; . . . ;M; j ¼ 1; 2; . . . ;NG) and are given in A for the 9-point stencils and in the
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attached file ‘b-coef-25.nb’ for the 25 point stencils. Here we should mention that the
expression for the local truncation error, equation (17), includes only the first-order
derivatives with respect to x [the higher-order derivatives with respect to x are excluded
with the help of equations (15)–(16)].

2.1.1 Homogeneous materials (no interface). For homogeneous materials all aj (j =
1,2,. . .,M) coefficients are aj = 1 (see equation (9) if we consider material *), as well as all
q1;j ¼ q2;j ¼ 0 (j= 1,2,. . .,NG) are zero. In this case the derivation of the local truncation error
is similar to that in the previous section and is given in our paper (Idesman, 2020) for the 9-
point stencils and in our paper (Idesman and Dey, 2020) for the 25-point stencils. These
stencils coefficients can be analytically found and for the 9-point stencils they are:

k1 ¼ � 1
20

; k2 ¼
�5þ b2y

10 1þ b2y
� � ; k3 ¼ � 1

20
; k4 ¼

1� 5b2y

10 1þ b2y
� � ; k5 ¼ 1 ;

k6 ¼
1� 5b2y

10 1þ b2y
� � ; k7 ¼ � 1

20
; k8 ¼

�5þ b2y

10 1þ b2y
� � ; k9 ¼ � 1

20
:

(18)

with the following local truncation error (see our paper (Idesman, 2020) for details):

e ¼
h6b2y �1þ b2y

� �
400

@6u*5
@y6

þ
h8b2y 11� 32b2y þ 11b4y

� �
100800

@8u*5
@y8

þ O h9ð Þ ; (19)

As can be seen from equation (19), for homogeneous materials and square (by = 1) Cartesian
meshes the local truncation error is two orders higher compared to that for rectangular
(by= 1) Cartesian meshes.

For homogeneous materials with the 25-point stencils, the stencil coefficients are given in
B. They provide the following local truncation error (Idesman and Dey, 2020):

e ¼ � h16y1
y2

@16u*13
@y16

þ O h17ð Þ ; (20)

with:

y1 ¼ b4y 1þ b2y
� �2

791104� 6526608b2y þ 7168588b4y þ 81226757b6y � 288383192b8y
�

þ 409496702b10y � 288383192b12y þ 81226757b14y

þ 7168588b16y � 6526608b18y þ 791104b20y
�
;

y2 ¼ 169827840ð Þ 58288976� 12041600b2y � 1112834229b4y þ 805729100b6y
�

þ 7325265506b8y þ 805729100b10y � 1112834229b12y

� 12041600b14y þ 58288976b16y
�
:

Remark 4. It was also shown in (Idesman and Dey, 2020) that for homogeneous materials
with the 25-point uniform stencils on square (by = 1) Cartesian meshes, the local truncation
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error can be four orders higher compared to that given by equation (20) for rectangular
(by= 1) Cartesian meshes.

Remark 5. When the interface cuts just one grid point of the 9-point or 25-point stencils,
we can still use cut stencils for homogeneous materials. In this case, we have 8-point or 24-
point cut stencils for homogeneous materials.

The stencils coefficients of the cut stencils can be derived by zeroing ki = 0 (i is the
number of the grid point cut by the interface). Then, the stencil coefficients and the
corresponding local truncation errors of the cut stencils can be analytically found similar to
the procedure for the non-cut stencils (Idesman, 2020; Idesman and Dey, 2020). The orders of
the local truncation error of the cut stencils are 4 for the 8-point cut stencils and 14 for the 24-
point cut stencils (these orders are the same or higher compared to those considered below
for the stencils with interfaces).

2.1.2 Heterogeneous materials with an irregular interface. For the interface represented
by an inclined line, some analytical results for the 9-point and 25-point stencils that
include the grid points with different material properties can be obtained with the help of
Mathematica. We have found that the maximum order of the local truncation error is 4 for
the 9-point stencils and 12 for the 25-point stencils. The minimum number of interface
points needed for this accuracy is NG = 3 for the 9-point stencils and NG = 11 for the 25-
point stencils. However, numerical results show that for the 9-point stencils the absolute
accuracy (at the same order of accuracy) can be increased by the use of NG = 5. Therefore,
for our approach, we will use NG = 5 for the 9-point stencils and NG = 11 for the 25-point
stencils.

To obtain the same order of accuracy for the general shape of the interface we will use the
following procedure for the 9-point and 25-point stencils.a) 9-point stencils with an irregular
interface

We use the 18 unknown stencil coefficients ki (i = 1, 2, 3, 4, 6, 7, 8, 9 with k5 = 1) and
q1;j; q2;j (j = 1,2,. . .,5) to minimize the local truncation error, equation (17). First, we zero the
first 14 coefficients bp in equation (17) up to the third order with respect to h; i.e.

bp ¼ 0 ; p ¼ 1; 2; . . . ; 14 : (21)

Then, to have a sufficient number of equations for the calculation of the 18 unknown stencil
coefficients ki (i = 1, 2, 3, 4, 6, 7, 8, 9) and q1;j; q2;j (j = 1, 2,. . ., 5), we use the least square
method for the minimization of coefficients bp related to the fourth, fifth and sixth orders of
the local truncation error with the following residual R:

R ¼
X18
p¼15

b2p þ h1
X22
p¼19

b2p þ h2
X26
p¼23

b2p ; (22)

where h1 and h2 are the weighting factors to be selected (e.g. the numerical experiments
show that h1 ¼ h2 ¼ 0:1 yields accurate results). To minimize the residual R with the
constraints given by equation (21), we can form a new residual R with the Lagrange
multipliers l l:

R ¼
X14
l¼1

l lbl þ
X18
p¼15

b2p þ h1
X22
p¼19

b2p þ h2
X26
p¼23

b2p : (23)

The residualR is a quadratic function of the stencil coefficients ki (i = 1, 2,. . ., 9) and q1;j; q2;j
(j = 1, 2,. . ., 5) and a linear function of the Lagrange multipliers l l; i.e.
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R ¼ R ki; q1;j; q2;j; l l
� �

. In order minimize the residual R ¼ R ki; q1;j; q2;j; l l
� �

, the following
equations based on the least square method for the residualR can be written down:

@R
@ki

¼ 0 ;
@R
@q1;j

¼ 0 ;
@R
@q2;j

¼ 0 ;
@R
@l l

¼ 0 ;

i ¼ 1; 2; . . . ; 9 ; j ¼ 1; 2; . . . ; 5 ; l ¼ 1; 2; . . . ; 14 ;

(24)

where equation @R
@k5

¼ 0 in equation (24) should be replaced by k5 = 1; Remark 3
[equation (24)] forms a system of 33 linear algebraic equations with respect to 33 coefficients
ki (i = 1, 2,. . ., 9) and q1;j; q2;j(j = 1, 2,. . ., 5), as well as 14 Lagrange multipliers l l (l = 1,
2,. . ., 14). Solving these linear algebraic equations numerically, we can find the coefficients ki
(i = 1, 2,. . ., 9) for the 9-point uniform stencils, as well as q1;j; q2;j(j = 1, 2,. . ., 5). As can be
seen from equation (17), the presented procedure provides the fourth order of the local
truncation error for the 9-point uniform stencils with the general geometry of the interface.
The 9-point uniform stencils of OLTEM for a homogeneous material (without interface)
provide the sixth order of the local truncation error for rectangular meshes [equation (19)]. In
this case, the global error is defined by the order of accuracy of the 9-point stencils with
interfaces. This leads to the third order of accuracy of global solutions; see the numerical
examples below. Moreover, due to the minimization of the leading high-order terms bp of the
local truncation error in equation (23), at the same numbers of degrees of freedom the new
approach on irregular interfaces yields more accurate results than those obtained by high-
order finite elements (up to the fourth-order) with much wider stencils; see the numerical
examples below.

The global discrete system of equations includes the 9-point stencils for homogeneous
materials without interfaces and the 9-point stencils for heterogeneous materials with
interfaces between different materials (Figure 1) for all internal grid points located inside the
domain. The new approach does not use unknowns at the interfaces and the global discrete
system of equations has the same unknowns for homogeneous and heterogeneous materials
(the same structures of the sparse global matrices, the difference is only in the values of the
stencil coefficients kp of the global matrices for homogeneous and heterogeneous materials).
b) 25-point stencils with an irregular interface

We use the 46 unknown stencil coefficients ki (i ¼ 1; 2; . . . ; 12; 14; 15; . . . ; 25 with k13 =
1) and q1;j; q2;j (j = 1, 2,. . ., 11) to minimize the local truncation error [equation (17)]. The
analysis of the local truncation error for the inclined interface shows that some coefficients
bp starting with i > 30 are linearly dependent. Therefore, we will use the following
procedure. First, we will zero the first 30 coefficients bp in equation (17) up to the 7-th order
with respect to h; i.e.

bp ¼ 0 ; p ¼ 1; 2; . . . ; 30 : (25)

Then, to have a sufficient number of equations for the calculation of the 46 stencil
coefficients ki (i ¼ 1; 2; . . . ; 12; 14; 15; . . . ; 25) and q1;j; q2;j (j = 1, 2,. . ., 11), we use the least
square method for the minimization of coefficients bp related to the 8-th and higher orders of
the local truncation error with the following residual R:

R ¼
X34
p¼31

b2p þ h1
X38
p¼31

b2p þ h2
X42
p¼39

b2p þ h3
X46
p¼43

b2p þ h4
X50
p¼47

b2p ; (26)
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where h1, h2, h3, h4 are the weighting factors to be selected. Using larger values of hi (i = 1, 2,
3, 4) for the lower order terms in equation (26) we can practically zero the coefficients bp for
the lower order terms in equation (26) [e.g. the numerical experiments show that
h1 ¼ 0:1; h2 ¼ 0:01; h3 ¼ 0:001; h4 ¼ 0:0001 can practically zero bp (p = 31, 32,. . ., 46) up
to the 11-th order in equation (17)]. To minimize the residual Rwith the constraints given by
equation (25), we can form a new residualR with the Lagrangemultipliers l l:

R ¼
X30
l¼1

l lbl þ
X34
p¼31

b2p þ h1
X38
p¼31

b2p þ h2
X42
p¼39

b2p þ h3
X46
p¼43

b2p þ h4
X50
p¼47

b2p :

(27)

The residual R is a quadratic function of the stencil coefficients ki (i = 1, 2,. . ., 25) and
q1;j; q2;j (j = 1, 2,. . ., 11) and a linear function of the Lagrange multipliers l l; i.e.
R ¼ R ki; q1;j; q2;j; l l

� �
. In order minimize the residual R ¼ R ki; q1;j; q2;j; l l

� �
, the following

equations based on the least square method for the residualR can be written down:

@R
@ki

¼ 0 ;
@R
@q1;j

¼ 0 ;
@R
@q2;j

¼ 0 ;
@R
@l l

¼ 0 ;

i ¼ 1; 2; . . . ; 25 ; j ¼ 1; 2; . . . ; 11 ; l ¼ 1; 2; . . . ; 30 ;

(28)

where equation @R
@k13

¼ 0 in equation (28) should be replaced by k13 = 1; Remark 3
[equation (28)] forms a system of 77 linear algebraic equations with respect to 47 unknown
coefficients ki (i = 1, 2,. . ., 25) and q1;j; q2;j(j = 1, 2,. . ., 11), as well as 30 Lagrange multipliers
l l (l = 1, 2,. . ., 30). Solving these linear algebraic equations numerically, we can find the
coefficients ki (i= 1, 2,. . ., 25) for the 25-point uniform stencils, as well as q1;j; q2;j (j= 1, 2,. . .,
11). The presented procedure provides the 12-th order of the local truncation error for the 25-
point uniform stencils with the general geometry of the interface. The 25-point uniform
stencils of OLTEM for a homogeneous material (without interface) provide the 16-th order of
the local truncation error for rectangular meshes [equation (19)]. In this case the global error
is defined by the order of accuracy of the 25-point stencils with interfaces. This leads to the
11-th order of accuracy of global solutions; see the numerical examples below. Moreover, due
to the minimization of the leading high-order terms bp of the local truncation error in
equation (27), at the same numbers of degrees of freedom the new approach with irregular
interfaces yields more accurate results than those obtained by high-order finite elements (up
to the 7-th order) with much wider stencils; see the numerical examples below.
Unfortunately, we could not compare our results using finite elements with the 8-th and
higher orders because the 7-th order is the highest order of finite elements in the commercial
software ‘COMSOL.’

Remark 6. To estimate the computational costs of the solution of 33 (for the 9-point
stencils) and 77 (for the 25-point stencils) linear algebraic equations formed by equation (24)
for the 9-point stencils and by equation (28) for the 25-point stencils, we solved 106 such
systems of algebraic equations with the general MATLAB solver ‘pinv’ on a simple student
laptop computer (Processor: Intel (R) Core(TM) i5-4210U CPU @ 1.70GHz 2.40GHz). The
computation ‘wall’ time was T = 7,452.08 s and T = 45,774.63 s for 106 systems or the
average time for one system was 0.007452 s for the 9-point stencils and 0.045774 s for the 25-
point stencils. Because the coefficients ki are independently calculated for different stencils,
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the computation time of their calculation for different stencils can be significantly reduced
on modern parallel computers. This means that for large global systems of equations, the
computation time for the calculation of the coefficients ki is very small compared to that for
the solution of the global system of algebraic equations. We should mention that the
coefficients q1;j; q2;j calculated from the local system of equations, equations (24) and (28),
are only used for the calculation of non-zero right-hand side vector while the Lagrange
multipliers l l in the local system of equations, equations (24) and (28), are not used in the
global system of equations at all.

Remark 7. It is interesting to mention that the stencil coefficients can be also derived
using the central grid point with the coordinates x5 and y5 for the 9-point stencil or x13 and
y13 for the 25-point stencil in equations (12)–(17) instead of the interface point with the
coordinates xG and yG.

The global discrete system of equations includes the 25-point stencils for homogeneous
materials without interfaces and the 25-point stencils for heterogeneous materials with
interfaces between different materials (Figure 2) for all internal grid points located inside the
domain. The new approach does not use unknowns at the interfaces and the global discrete
system of equations has the same unknowns for homogeneous and heterogeneous materials
(the same structures of the sparse global matrices, the difference is only in the values of the
stencil coefficients kp [equation (9)] of the global matrices for homogeneous and
heterogeneous materials).

2.2 Nonzero source term fl = 0 in equation (1)
The inclusion of non-zero source term fl in the partial differential equations, equation (1),
leads to the non-zero term f in the stencil equation, equation (9) [similar to equation (3)]. As
we mentioned after equation (2), the functions fl can be discontinuous across the interfaces.
The expression for the term f can be calculated from the procedure used for the derivation of
the local truncation error in the case of zero source term as follows. Below we show the
derivations for the 9-point stencils (the derivations for the 25-point stencils are similar). In
the case of non-zero source term fl xð Þ 6¼ 0 and f 6¼ 0, the insertion of equations (12)–(16)
into equation (11) yields the following local truncation error in space ef:

ef ¼ e� ½f � 1
2
h2ððq1;2d2x;2 þ a1ðdxG þ 1Þ2k1 þ a3k3 þ a4k4 þ a6k6 þ a7k7 þ a9k9

þ dxGðdxGða2k2 þ a3k3 þ a4k4 þ a5k5 þ a6k6 þ a7k7 þ a8k8 þ a9k9Þ

� 2ða3k3 � a4k4 þ a6k6 � a7k7 þ a9k9ÞÞ þ 2dx;5e�nx;5q2;5 þ d2x;3q1;3 þ d2x;4q1;4

þ d2x;5q1;5 þ 2e�ðdx;2nx;2q2;2 þ dx;3nx;3q2;3 þ dx;4nx;4q2;4ÞÞð~f �GÞ

þ ð�q1;2d2x;2 � ða1 � 1ÞðdxG þ 1Þ2k1 � a3k3 þ k3 � a4k4 þ k4 � a6k6 þ k6 � a7k7

þ k7 � a9k9 þ k9 þ dxGð2ðða3 � 1Þk3 � a4k4 þ k4 þ ða6 � 1Þk6 � a7k7 þ k7 þ ða9 � 1Þk9Þ
þ dxGð�a2k2 þ k2 � a3k3 þ k3 � a4k4 þ k4 � a5k5 þ k5 � a6k6 þ k6 � a7k7 þ k7

� a8k8 þ k8 � a9k9 þ k9ÞÞ � 2dx;5e��nx;5q2;5 � d2x;3q1;3 � d2x;4q1;4 � d2x;5q1;5

� 2e��ðdx;2nx;2q2;2 þ dx;3nx;3q2;3 þ dx;4nx;4q2;4ÞÞð~f ��G ÞÞ � h3:::�; (29)
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where e is the local truncation error in space given by equation (17) for zero source term, ~f
*
G

and ~f
**
G designate functions f * x;yð Þ

e*
and f ** x;yð Þ

e**
calculated at the interface point with the

coordinates x = xG and y = yG. Equating to zero the expression in the square brackets in the
right-hand side of equation (29), we will get the expression for f :

f ¼ 1
2
h2ððq1;2d2x;2 þ a1ðdxG þ 1Þ2k1 þ a3k3 þ a4k4 þ a6k6 þ a7k7 þ a9k9

þ dxGðdxGða2k2 þ a3k3 þ a4k4 þ a5k5 þ a6k6 þ a7k7 þ a8k8 þ a9k9Þ
� 2ða3k3 � a4k4 þ a6k6 � a7k7 þ a9k9ÞÞ þ 2dx;5e�nx;5q2;5 þ d2x;3q1;3 þ d2x;4q1;4

þ d2x;5q1;5 þ 2e�ðdx;2nx;2q2;2 þ dx;3nx;3q2;3 þ dx;4nx;4q2;4ÞÞð~f �GÞ
þ ð�q1;2d2x;2 � ða1 � 1ÞðdxGþ1Þ2k1 � a3k3 þ k3 � a4k4 þ k4 � a6k6 þ k6 � a7k7 þ k7

� a9k9 þ k9

þ dxGð2ðða3 � 1Þk3 � a4k4 þ k4 þ ða6 � 1Þk6 � a7k7 þ k7 þ ða9 � 1Þk9Þ
þ dxGð�a2k2 þ k2 � a3k3 þ k3 � a4k4 þ k4 � a5k5 þ k5 � a6k6 þ k6 � a7k7 þ k7

� a8k8 þ k8 � a9k9 þ k9ÞÞ � 2dx;5e��nx;5q2;5 � d2x;3q1;3 � d2x;4q1;4 � d2x;5q1;5

� 2e��ðdx;2nx;2q2;2 þ dx;3nx;3q2;3 þ dx;4nx;4q2;4ÞÞð~f ��G ÞÞ þ h3:::;

(30)

as well as we will get the same local truncation errors ef = e for zero and non-zero source
term (see C for the detailed expression of f ). This means that the coefficients ki (i = 1, 2,. . .,
M) of the stencil equations are first calculated for zero source term fl = 0 as described in
Section 2.1. Then, the nonzero source term f given by equation (30) is used in the stencil
equation [equation (9)]. The explicit expression for f for the 25-point stencils is given in the
attached file ‘RHS-25.nb.’

3. Numerical examples
In this section, the computational efficiency of the OLTEM with the 9-point and 25-point
stencils developed for the solution of the Poisson equation with discontinuous coefficients
will be demonstrated and compared with conventional linear and high order (up to 7-th
order, the highest order in ‘COMSOL’) triangular and quadrilateral finite elements. In the
numerical results presented below ‘T’ and ‘Q’ refer to the triangular and quadrilateral finite
elements. For OLTEM with the 25 points stencils, the high-order numerical boundary
conditions similar to those developed in (Idesman, 2018) are used. For finite element
calculations, the commercial finite element software ‘COMSOL’ with isoparametric finite
elements is used. Similar to the finite element terminology, a grid point of a Cartesian mesh
used for OLTEM will be called a node. To compare the accuracy of OLTEM with FEM, the
following errors are considered in the sections below. The relative errors eju for the function
u at the j-th node is defined as:

eju ¼
junumj � uexactj j

uexactmax
; j ¼ 1; 2; . . . ;N : (31)
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Themaximum relative errors emax
u for the function u is defined as:

emax
u ¼ max

j
eju ; j ¼ 1; 2; . . . ;N : (32)

In equations (31)–(32) the superscripts ‘num’ and ‘exact’ correspond to the numerical and
exact solutions, N is the total number of the grid points used in calculations, uexactmax is the
maximum absolute value of the exact (reference) solution for the function over the entire
domain. The use of uexactmax instead of uexactj in the denominator of equation (31) allows us to
apply equation (31) even if the exact solution at grid point j is zero [equation (34)]. We also
use the L2 error norm for finite elements (Bathe, 1996) and the l2 error norm (Langtangen and
Linge, 2017) for OLTEM:

el
2

u ¼ dx dy
XNx

i¼0

XNy

j¼0

unum xi; yjð Þ � uexact xi; yjð Þ
h i28<

:
9=
;

1
2

=juexactjL2 ; (33)

where Nx and Ny are the numbers of Cartesian grid points along x- and y-axes, xi and yj are
the coordinates of Cartesian grid points.

3.1 Two-dimensional bi-material plate with inclined interface
Let us consider the two-dimensional Poisson equation with discontinuous coefficients for the
bi-material plateABCDEF shown in Figure 3(a). The plate consists of two trapezoidal plates
ABCF (subdomain XI) and CDEF (subdomain XII) connected through an inclined interface
EFwith u = 35°. The following material properties are used for the Poisson equation in two
subdomains: eI ¼ 1=g1 in XI and eII = 1 in XII where we vary the constant g1 to consider
different contrasts eII

eI
¼ g1.

We use the following exact solution to the Poisson equation for this problem:

u x; yð Þ ¼
cosf15 xcosu þ ysinuð Þgsinfg1 �xsinu þ ycosuð Þg in XI

cosf15 xcosu þ ysinuð Þgsin �xsinu þ ycosuð Þ in XII

(
(34)

and non-zero source fI x; yð Þ ¼ � 1
g1

g21 þ 225
� �

cosf15 xcosu þ ysinuð Þgsinfg1 �xsinuþð
ycosu Þg in XI and fII x; yð Þ ¼ �226cosf15 xcosu þ ysinuð Þgsin �xsinu þ ycosuð Þ in XII

calculated according to equation (1).

Figure 3.
A two-dimensional

bi-material plate
ABCDEFwith an

inclined interface FC
(a). Examples of a
Cartesian mesh for

OLTEM (b) as well as
meshes with

triangular (c) and
quadrilateral (d) finite

elements generated
by the commercial
software COMSOL
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The Dirichlet boundary conditions along AB, BD, DE and EA are imposed according to
the exact solution, equation (34). The problem is solved by OLTEM with the 9-point
and 25-point stencils for different contrasts eII

eI
. Figure 3(b) shows a typical square (by =

1) Cartesian mesh used for OLTEM. Figure 4 shows the distribution of the exact
solution for the function u with the contrast eII

eI
¼ 10, as well as the distribution of the

relative error in the numerical solutions for the function u obtained by OLTEM with the
9-point and 25-point stencils on a square (by = 1) Cartesian mesh of size h = 1/18. As can
be seen from Figure 4(b) and 4(c), the results obtained by OLTEM are accurate (the
errors are small). It can be also seen that the maximum error occurs close to the
interface. This can be explained by the difference of accuracy of the stencils used for
the grid points located far from the interface and the stencils affected by the interface
(Sections 2.1.1 and 2.1.2).

Figure 5 shows the maximum error emax
u as a function of the mesh size h in the

logarithmic scale for OLTEM with the 9-point [Figure 5(a)] and 25-point [Figure 5(b)]
stencils with different contrasts. As can be seen from Figure 5(a), the order of convergence of
OLTEM with the 9-point stencils is greater than three for all considered contrasts.
Figure 5(b) shows that the order of convergence of OLTEM with the 25-point stencils is
greater than 11 for different contrasts. This means OLTEM retains the order of convergence
regardless of the contrast. These observations are in agreement with the theoretical results
in Section 2.

To study the convergence and stability of the numerical results obtained by OLTEM in
more detail, Figure 6 presents the curves in Figure 5 at small changes of the Cartesian mesh
size hi [Curves 1, 2, 3, 4 in Figure 5(a) and 5(b) correspond to Curves 1, 2, 3, 4 in Figures 6(a)
and 6(b)]. For this study, we solve the test problem on 1001 Cartesian meshes using the
following equation for the mesh size hi (i= 1, 2,. . ., 1001):

Figure 4.
The distribution of
the exact solution for
the function u (a)
[equation (34)] and
the relative errors eu
(b, c) for the two-
dimensional plate
with the inclined
interface [Figure 3(a)].
The numerical
solutions of the two-
dimensional Poisson
equation with the
contrast eIIeI ¼ 10 are
obtained by OLTEM
with the 9-point (b)
and 25-point (c)
stencils on the square
(by= 1) Cartesian
mesh of size h= 1/18
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hi ¼ h1 þ h2 � h1ð Þ
1000

i � 1ð Þ ; i ¼ 1; 2; . . . ; 1001 (35)

where h1 and h2 are the maximum andminimummesh sizes that can be found from Figure 6
for different curves. As can be seen from Figure 6, the errors for OLTEM with the 9-point
and 25-point stencils smoothly decrease with the decrease in the mesh size h for the different
contrasts considered in the analysis. This means OLTEM yields stable and convergent
numerical results.

Next, for the contrast eII
eI
¼ 10 we compare the results obtained by OLTEM with the 9-

point and 25-point stencils with those obtained by linear and high-order finite elements.
Figure 3(c) and 3(d) shows examples of meshes with triangular and quadrilateral finite
elements generated by COMSOL. Figure 7 presents the error emax

u as a function of the
number N of degrees of freedom in the logarithmic scale at mesh refinement. As can be seen
from Figure 7, at the same N the numerical results obtained by OLTEM with the 25-point
stencils are much more accurate than those obtained by linear and high-order (up to the 7-th
order) finite elements. It can be also seen from Figure 7 that OLTEM with the 9-point
stencils yields more accurate results than those by obtained finite elements up to the 4-th
order. Furthermore, up to the engineering accuracy of 0.1% (–3 in the logarithmic scale

Figure 6.
The logarithm of the
maximum relative

errors emax
u as a

function of the mesh
size h for the two-
dimensional plate
with the inclined

interface [Figure 3(a)]

Figure 5.
Themaximum

relative errors emax
u as

a function of the mesh
size h at mesh

refinement in the
logarithmic scale for
the two-dimensional

plate with the
inclined interface

[Figure 3(a)]
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along the y-axis in Figure 7) the results obtained by OLTEM with the 9-point stencils
are more accurate than those obtained by finite elements up to the 7-th order. This huge
increase in accuracy by OLTEM compared to that for high-order finite elements is
impressive because high-order finite elements have much wider stencils and require a much
greater computation time. For example, the 7-th order (septic) quadrilateral finite element
have 225-point stencils on uniform meshes compared to OLTEM with the 9-point and 25-
point stencils used in the paper. A similar convergence for OLTEM and its comparison with
finite elements in the L2 error norm are obtained in Figure 8. As can be seen, the numerical
results obtained by OLTEM with the 25-point stencils are much more accurate than those
obtained by linear and high-order (up to the 7-th order) finite elements.

It is interesting to mention that at the same N triangular finite elements yield more
accurate results compared to those for quadrilateral finite elements; see curves 3–9 in
Figure 7(a) and 7(b). Therefore, we use triangular finite elements for the problem considered
in the next section.

Figure 7.
Themaximum
relative error emax

u as
a function of

ffiffiffiffi
N

p
in

the logarithmic scale
at mesh refinement
for the two-
dimensional plate
with the inclined
interface [Figure 3(a)];
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Figure 8.
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3.2 Two-dimensional bi-material plate with circular interface
Let us consider the two-dimensional Poisson equation with discontinuous coefficients for a
bi-material plate ABCD shown in Figure 9(a). The plate consists of an outer subdomain
(subdomain XI) and a circular inner subdomain centered at O(0.5, 0.5) with radius r = 0.25
(subdomain XII) connected through the circular interface. The coefficient e is eI = 5 for the
outer subdomain XI and eII = 1 for the circular subdomain XII with the contrast eII

eI
¼ 1=5.

The source term in the Poisson equation is chosen to be fI(x,y) = 0 for XI and
fII x; yð Þ ¼ 5000cos 15pxþ 9pyð Þ for XII. The following Dirichlet boundary conditions are

applied: u yð Þ ¼ 1þ 2sin 11py
2

� �
along the edge AD, u(y) = ycos(2py) along the edge BC,

u xð Þ ¼ 2x4 � 2x3 þ x2 � 2xþ 1 along the edge AB and u(x) = – cos(5px) along the edge
AB. The exact solution for this problem is unknown. Therefore, the numerical solution
obtained by the 7-th order triangular finite element on a mesh of 2, 626, 555 degrees of
freedom is used as the reference solution for the calculation of the errors. Figure 10(a) shows
the distribution of the function u for the reference solution.

This problem is solved by linear and high order triangular finite elements, as well as by
OLTEM with the 9-point and 25-point stencils. Figure 9(b) and 9(c) shows examples of a
Cartesian mesh used for OLTEM and a mesh with triangular linear finite elements
generated by COMSOL.

To estimate the order of convergence of OLTEM and to compare the accuracy of the
numerical solutions obtained by different techniques we select the point O(0.5, 0.5) and plot
the error eOu at this pointO; see Figure 10(b) with the errors plotted in the logarithmic scale at
mesh refinement. It can be seen from Figure 10(b) that at the same number N of degrees of
freedom, OLTEM with the 25-point stencils yields much more accurate results than those
obtained by linear and high-order finite elements (similar results can be obtained at other
points). On the other hand OLTEM with the 9-point stencils yields more accurate results
than those obtained by finite elements up to the 4-th order.

Furthermore, up to the engineering accuracy of 1% (–2 in the logarithmic scale along the
y-axis in Figure 10(b) the results obtained by OLTEM with the 9-point stencils are more
accurate than those obtained by finite elements up to the 7-th order. It can also be seen from
Figure 10(b) that OLTEM with the 9-point and 25-point stencils shows close to the 3-rd and

Figure 9.
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11-th order of accuracy at mesh refinement (the mesh size is approximately proportional toffiffiffiffi
N

p
).

3.3 Two-dimensional bi-material plate with elliptical interface
Let us consider the two-dimensional Poisson equation with discontinuous coefficients for a
bi-material plate ABCD shown in Figure 11(a). The plate consists of an outer subdomain
(subdomain XI) and an elliptical inner subdomain (subdomain XII) centered at (0, 0) with the
interface described by the following equation:

x2

a2 þ
y2

b 2 ¼ 1 ; (36)

where a = 0.25 and b = 0.08. The coefficient e is eI = 1 for the outer subdomain XI and eII =
50 for the elliptical subdomainXIIwith the contrast

eII
eI
¼ 50.

Using the method of manufactured solution, the following exact solution to the Poisson
equation is selected:

u x; yð Þ ¼
cos

x2

a2 þ
y2

b 2

 !
in XI

1
50

cos
x2

a2 þ
y2

b 2

 !
þ 49cos 1ð Þ

" #
in XII

8>>>>><
>>>>>:

(37)

This solution meets the interface conditions, equation (2). The source term in the Poisson
equation and the Dirichlet boundary conditions along AB, BC, CD and DA are calculated
according to the exact solution equation (37). This problem is solved by linear and high
order triangular finite elements, as well as by OLTEMwith the 9-point and 25-point stencils.

Figure 10.
a) Distribution of the
reference solution for
the function u for the
plate with the circular
interface. The
reference solution is
obtained by the 7-th
order triangular finite
elements with
2,626,555 degrees of
freedom; b) The
maximum relative
error eOu at pointO
(0.5, 0.5) as a function
of

ffiffiffiffi
N

p
in the

logarithmic scale at
mesh refinement for
the two-dimensional
plate with the circular
interface; N is the
number of degrees of
freedom
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Figure 11(b) and 11(c) shows examples of a Cartesian mesh used for OLTEM and a mesh
with linear triangular finite elements generated by COMSOL.

To estimate the order of convergence of OLTEM and to compare the accuracy of the
numerical solutions obtained by different techniques, Figure 12 shows the maximum
relative error emax

u and the L2 error norm eL
2

u as a function of number of degrees of freedom in
the logarithmic scale. As can be seen from Figure 12, at the same N the numerical results
obtained by OLTEM with the 25-point stencils are much more accurate than those obtained
by linear and high-order (up to the 7-th order) finite elements. It can be also seen from
Figure 12 that OLTEM with the 9-point stencils yields more accurate results than those by
obtained finite elements up to the 4-th order. Furthermore, up to the engineering accuracy of
1% (–2 in the logarithmic scale along the y-axis in Figure 12) the results obtained by
OLTEM with the 9-point stencils are more accurate than those obtained by finite elements
up to the 7-th order. This huge increase in accuracy by OLTEM compared to that for high-
order finite elements is impressive because high-order finite elements have much wider
stencils and require a much greater computation time.

To study the convergence and stability of the numerical results for the elliptical interface
obtained by OLTEM in more detail, Figure 13 presents the Curves 1 and 2 in Figure 12 at
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small changes of the Cartesian mesh size hi (Curve 1 in Figure 13(a) and 13(b) correspond to
Curves 2 and 1 in Figure 12(a). For this study, we solve the test problem on 1001 Cartesian
meshes with the mesh sizes hi (i = 1, 2,. . ., 1001) given by equation (35). As can be seen from
Figure 13, the errors for OLTEM with the 9-point and 25-point stencils smoothly decrease
(with small oscillations) with the decrease in the mesh size h. The small oscillations decrease
with the decrease in the mesh size h. This means OLTEM yields stable and convergent
numerical results.

4. Concluding remarks
OLTEM for the time-independent Poisson equation with irregular interfaces developed in
this paper is the extension of the technique considered in our paper (Idesman and Dey,
2021) for the time-dependent scalar wave and heat equations. Due to the absence of the
time variable, the stencil equations, the derivations, as well as the imposition of the
interface conditions for OLTEM are different for the Poisson equation compared to those
in our paper (Idesman and Dey, 2021) (see also the Introduction). Nevertheless, OLTEM
developed for the Poisson equation shares many advantages of OLTEM developed in our
paper (Idesman and Dey, 2021) for the time-dependent PDEs. One of the ideas that allows
the effective development of the new technique for heterogeneous materials is the
addition of the interface conditions at a small number of the interface points to the
expression for the local truncation error. The unknown stencil coefficients can be
numerically calculated from a small local system of algebraic equations for the general
geometry of interfaces. This procedure does not change the width of the stencil equation;
i.e. the size of the global discrete system of equations is the same for the Poisson equation
with constant or discontinuous coefficients. The calculation of the unknown stencil
coefficients is based on the minimization of the local truncation error of the stencil
equations and yields the optimal order of accuracy of the new technique at a given
stencil width. The increase in the computational costs for the calculation of the unknown
stencil coefficients from the local system is insignificant compared to the computational
costs for the solution of the global discrete system.

Themain advantages of the suggested technique can be summarized as follows:
� Many difficulties of the existing numerical techniques for irregular domains (e.g.

finite elements, spectral element, isogeometric elements, the finite volume method
and many other) are related to complicated mesh generators for conformed meshes
and the accuracy of ‘bad’ elements (e.g. the elements with small angles). In contrast

Figure 13.
The logarithm of the
maximum relative
errors emax

u as a
function of the mesh
size h for the two-
dimensional plate
with the elliptical
interface
[Figure 11(a)]
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to these techniques, OLTEM is based on trivial unfitted Cartesian meshes with a
trivial procedure for the formation of the 9-point and 25-point stencils for two-
dimensional domains with complex irregular interfaces.

� The new approach has the same width of the stencil equations and the same
structure of the sparse global discrete equations for the Poisson equation with the
constant and discontinuous coefficients. There are no unknowns on the interfaces
between different materials for the proposed technique; i.e. complex irregular
interfaces do not affect the structure of the global system of equations (they affect
just the values of the stencils coefficients).

� In contrast to the finite-difference techniques with the stencil coefficients calculated
through the approximation of separate partial derivatives, the entire partial
differential equation is used for the calculation of the stencil coefficients in OLTEM.
This leads to the optimal accuracy of the proposed technique. For example, the 9-
point and 25-point stencils of the new two-dimensional approach provide the
optimal accuracy that cannot be improved without changing the width of stencil
equations. In contrast to the 9-point and 25-point stencils of linear and quadratic
quadrilateral finite elements, OLTEM yields a much higher order of accuracy (the
increase in accuracy by one order with the 9-point stencils and by eight orders with
the 25-point stencils) compared to that for linear and quadratic finite elements for
the general geometry of interfaces.

� OLTEM with the 25-point stencils provides a huge increase in accuracy by 8 orders
compared to the recent numerical techniques (Zhang and Babuska, 2020; Xiao
et al.,2020; Guo and Lin, 2019; Cheung et al., 2020) with quadratic elements and
unfitted Cartesian meshes. All these techniques including OLTEM have the same
structure of sparse global matrices (the difference is only in the values of the matrix
coefficients for different techniques).

� The numerical results for irregular interfaces also show that at the same number of
degrees of freedom, OLTEM is even much more accurate than high-order (up to the
seventh order) finite elements with much wider stencils. This also means that at a
given accuracy, OLTEM significantly reduces the computation time compared to
that for linear and high-order finite elements.

� OLTEM does not require time consuming numerical integration for finding the
coefficients of the stencil equations; for example, as for the high-order finite, spectral
and isogeometric elements. The stencil coefficients are calculated analytically or
numerically (for the general geometry of interfaces) by the solution of small local
systems of linear algebraic equations. Numerical experiments show that the solution
of these small local systems of algebraic equations is fast. Moreover, these local
systems are independent of each other and can be efficiently solved on a parallel
computer.

In the future we plan to extend OLTEM with irregular interfaces to the three-dimensional
case. Another direction is the development of OLTEM with adaptive refinement similar to
h– and p– refinement for finite elements (e.g. it was shown in papers (Idesman and Dey,
2020a; Idesman and Dey, 2020d) that OLTEM can easily combine different stencils). We
plan to use quadtrees/octrees meshes that allow a simple refinement strategy with Cartesian
meshes. The extension of OLTEM to other PDEs with discontinuous coefficients, as well as
to non-linear PDEs will be also considered in the future.
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Appendix 1. Coefficients bp used in equation (17) for the 9-point stencils
The first ten coefficients bp (i = p, 2,. . ., 10) are presented below. All coefficients bp (i = 1, 2,. . ., 18) for
the 9-point stencils are given in the attached files ‘b-coef-9.nb.’

b1 ¼ a1k1 þ a2k2 þ a3k3 þ a4k4 þ a5k5 þ a6k6 þ a7k7 þ a8k8 þ a9k9 þ q1;1 þ q1;2 þ q1;3

þ q1;4 þ q1;5

b2 ¼ �a1k1 � a2k2 � a3k3 � a4k4 � a5k5 � a6k6 � a7k7 � a8k8 � a9k9 þ k1 þ k2 þ k3 þ k4

þ k5 þ k6 þ k7 þ k8 þ k9 � q1;1 � q1;2 � q1;3 � q1;4 � q1;5

b3 ¼ �a1k1 bydyG þ by
� �� a2k2 bydyG þ by

� �� a3bydyGk3 � a3byk3 � a4bydyGk4

� a5bydyGk5 � a6bydyGk6 � a7bydyGk7 þ a7byk7 � a8bydyGk8 þ a8byk8 � a9bydyGk9

þ a9byk9 þ dy;2q1;2 þ dy;3q1;3 þ dy;4q1;4 þ dy;5q1;5 þ e*ny;1q2;1 þ e*ny;2q2;2 þ e*ny;3q2;3

þ e*ny;4q2;4 þ e*ny;5q2;5

b4 ¼ bydyG a1 � 1ð Þk1 þ a2 � 1ð Þk2 þ a3k3 þ a4k4 þ a5k5 þ a6k6 þ a7k7 þ a8k8ð
þa9k9 � k3 � k4 � k5 � k6 � k7 � k8 � k9Þ
þby a1 � 1ð Þk1 þ a2 � 1ð Þk2 þ a3k3 � a7k7 � a8k8 � a9k9 � k3 þ k7 þ k8 þ k9ð Þ
�dy;2q1;2 � dy;3q1;3 � dy;4q1;4 � dy;5q1;5 � e**ny;1q2;1 � e**ny;2q2;2

�e**ny;3q2;3 � e**ny;4q2;4 � e**ny;5q2;5

b5 ¼ �a1 dxG þ 1ð Þk1 � a2dxGk2 � a3dxGk3 þ a3k3 � a4dxGk4 � a4k4 � a5dxGk5

�a6dxGk6 þ a6k6 � a7dxGk7 � a7k7

�a8dxGk8 � a9dxGk9 þ a9k9 þ dx;2q1;2 þ dx;3q1;3 þ dx;4q1;4 þ dx;5q1;5

þe*nx;1q2;1 þ e*nx;2q2;2 þ e*nx;3q2;3 þ e*nx;4q2;4 þ e*nx;5q2;5

b6 ¼ a1 � 1ð Þ dxG þ 1ð Þk1 þ dxGð a2 � 1ð Þk2 þ a3 � 1ð Þk3 þ a4k4
þa5k5 þ a6k6 þ a7k7 þ a8k8 þ a9k9 � k4 � k5 � k6 � k7 � k8 � k9Þ � a3k3 þ a4k4
�a6k6 þ a7k7 � a9k9 � dx;2q1;2 � dx;3q1;3 � dx;4q1;4 � dx;5q1;5 � e**nx;1q2;1
�e**nx;2q2;2 � e**nx;3q2;3 � e**nx;4q2;4 � e**nx;5q2;5 þ k3 � k4 þ k6 � k7 þ k9
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b7 ¼ 1
2
ða1k1ðby2dyG2 þ 2bybydyG þ by2 � dxG2 � 2dxG � 1Þ þ a2k2ðby2dyG2 þ 2bybydyG

þby2 � dxG2Þ þ a3by2dyG2k3 þ 2a3bybydyGk3 þ a3by2k3 � a3dxG2k3 þ 2a3dxGk3 � a3k3
þa4by2dyG2k4 � a4dxG2k4 � 2a4dxGk4 � a4k4 þ a5by2dyG2k5 � a5dxG2k5
þa6by2dyG2k6 � a6dxG2k6 þ 2a6dxGk6 � a6k6 þ a7by2dyG2k7 � 2a7bybydyGk7
þa7by2k7 � a7dxG2k7 � 2a7dxGk7 � a7k7 þ a8by2dyG2k8 � 2a8bybydyGk8
þa8by2k8 � a8dxG2k8 þ a9by2dyG2k9 � 2a9bybydyGk9 þ a9by2k9 � a9dxG2k9 þ 2a9dxGk9
�a9k9 � d2x;2q1;2 � 2dx;2e�nx;2q2;2 þ d2y;2q1;2 þ 2dy;2e�ny;2q2;2
�d2x;3q1;3 � 2dx;3e�nx;3q2;3 þ d2y;3q1;3 þ 2dy;3e�ny;3q2;3 � d2x;4q1;4 � 2dx;4e�nx;4q2;4
þd2y;4q1;4 þ 2dy;4e�ny;4q2;4 � d2x;5q1;5
�2dx;5e�nx;5q2;5 þ d2y;5q1;5 þ 2dy;5e�ny;5q2;5Þ

b8 ¼ 1
2
ð�ða1 � 1Þk1ðby2dyG2 þ 2bybydyG þ by2 � dxG2 � 2dxG � 1Þ � 2bybydyGðða2 � 1Þk2

þða3 � 1Þk3 � a7k7 � a8k8 � a9k9 þ k7 þ k8 þ k9Þ þ by2ð�a2k2 � a3k3 � a7k7 � a8k8
�a9k9 þ k2 þ k3 þ k7 þ k8 þ k9Þ � a2by2dyG2k2 þ a2dxG2k2 � a3by2dyG2k3
þa3dxG2k3 � 2a3dxGk3 þ a3k3 � a4by2dyG2k4 þ a4dxG2k4 þ 2a4dxGk4
þa4k4 � a5by2dyG2k5 þ a5dxG2k5 � a6by2dyG2k6 þ a6dxG2k6 � 2a6dxGk6
þa6k6 � a7by2dyG2k7 þ a7dxG2k7 þ 2a7dxGk7 þ a7k7 � a8by2dyG2k8 þ a8dxG2k8 � a9by2dyG2k9
þa9dxG2k9 � 2a9dxGk9 þ a9k9 þ by2dyG2k2 þ by2dyG2k3 þ by2dyG2k4 þ by2dyG2k5
þby2dyG2k6 þ by2dyG2k7 þ by2dyG2k8 þ by2dyG2k9 þ d2x;2q1;2 þ 2dx;2e��nx;2q2;2
�d2y;2q1;2 � 2dy;2e��ny;2q2;2 þ d2x;3q1;3 þ 2dx;3e��nx;3q2;3 � d2y;3q1;3
�2dy;3e��ny;3q2;3 þ d2x;4q1;4 þ 2dx;4e��nx;4q2;4 � d2y;4q1;4 � 2dy;4e��ny;4q2;4 þ d2x;5q1;5
þ2dx;5e��nx;5q2;5 � d2y;5q1;5 � 2dy;5e��ny;5q2;5 � dxG2k2 � dxG2k3 � dxG2k4
�dxG2k5 � dxG2k6 � dxG2k7 � dxG2k8 � dxG2k9 þ 2dxGk3 � 2dxGk4
þ2dxGk6 � 2dxGk7 þ 2dxGk9 � k3 � k4 � k6 � k7 � k9Þ

b9 ¼ a1 dxG þ 1ð Þk1 bydyG þ by
� �þ a2dxGk2 bydyG þ by

� �þ a3bydxGdyGk3 � a3bydyGk3
þ a3bydxGk3 � a3byk3 þ a4bydxGdyGk4 þ a4bydyGk4 þ a5bydxGdyGk5 þ a6bydxGdyGk6
� a6bydyGk6 þ a7bydxGdyGk7 þ a7bydyGk7 � a7bydxGk7 � a7byk7 þ a8bydxGdyGk8
� a8bydxGk8 þ a9bydxGdyGk9 � a9bydyGk9 � a9bydxGk9 þ a9byk9 þ dx;2dy;2q1;2
þ dx;2e*ny;2q2;2 þ dy;2e*nx;2q2;2 þ dx;3dy;3q1;3 þ dx;3e*ny;3q2;3 þ dy;3e*nx;3q2;3 þ dx;4dy;4q1;4

þ dx;4e*ny;4q2;4 þ dy;4e*nx;4q2;4 þ dx;5dy;5q1;5 þ dx;5e*ny;5q2;5 þ dy;5e*nx;5q2;5

b10 ¼ bydyG � a1 � 1ð Þ dxG þ 1ð Þk1 þ dxG �a2k2 � a3k3 � a4k4 � a5k5 � a6k6 � a7k7ð�
�a8k8 � a9k9 þ k2 þ k3 þ k4 þ k5 þ k6 þ k7 þ k8 þ k9Þ þ a3k3 � a4k4 þ a6k6
�a7k7 þ a9k9 � k3 þ k4 � k6 þ k7 � k9Þ þ by � a1 � 1ð Þ dxG þ 1ð Þk1 þ dxG �a2k2 � a3k3ð�
þa7k7 þ a8k8 þ a9k9 þ k2 þ k3 � k7 � k8 � k9Þ þ a3k3 þ a7k7 � a9k9 � k3 � k7 þ k9Þ
�dx;2dy;2q1;2 � dx;2e**ny;2q2;2 � dy;2e**nx;2q2;2 � dx;3dy;3q1;3 � dx;3e**ny;3q2;3
�dy;3e**nx;3q2;3 � dx;4dy;4q1;4 � dx;4e**ny;4q2;4 � dy;4e**nx;4q2;4
�dx;5dy;5q1;5 � dx;5e**ny;5q2;5 � dy;5e**nx;5q2;5
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Appendix 2. Coefficients kj (j = 1, 2,. . ., 25) for homogeneous materials with the 25-
point uniform stencils

k1 ¼ by2 þ 1
� �2

176656by12 � 185512by10 � 2284531by8 þ 4579274by6 � 2284531by4 � 185512by2 þ 176656
� �

36 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k2 ¼ � 4 44164by16 � 911975by14 þ 280624by12 þ 12099950by10 � 25914856by8 þ 6967025by6 þ 26422684by4 � 14930000by2 þ 2392384
� �

9 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k3 ¼ 176656by16 � 4919800by14 þ 83309881by12 � 441576750by10 þ 1159844496by8 � 1756955850by6 þ 1456399991by4 � 481727600by2 þ 58288976
6 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k4 ¼ � 4 44164by16 � 911975by14 þ 280624by12 þ 12099950by10 � 25914856by8 þ 6967025by6 þ 26422684by4 � 14930000by2 þ 2392384
� �

9 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k5 ¼ by2 þ 1
� �2

176656by12 � 185512by10 � 2284531by8 þ 4579274by6 � 2284531by4 � 185512by2 þ 176656
� �

36 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k6 ¼ � 4 2392384by16 � 14930000by14 þ 26422684by12 þ 6967025by10 � 25914856by8 þ 12099950by6 þ 280624by4 � 911975by2 þ 44164
� �

9 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k7 ¼ 16 2392384by16 � 14997200by14 � 178436by12 þ 228722825by10 � 597576646by8 þ 228722825by6 � 178436by4 � 14997200by2 þ 2392384
� �

9 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k8 ¼ � 8 2392384by16 � 15019600by14 þ 99039004by12 � 372886575by10 þ 369535584by8 þ 685156950by6 � 220654216by4 � 32365775by2 þ 14572244
� �

3 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k9 ¼ 16 2392384by16 � 14997200by14 � 178436by12 þ 228722825by10 � 597576646by8 þ 228722825by6 � 178436by4 � 14997200by2 þ 2392384
� �

9 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k10 ¼ � 4 2392384by16 � 14930000by14 þ 26422684by12 þ 6967025by10 � 25914856by8 þ 12099950by6 þ 280624by4 � 911975by2 þ 44164
� �

9 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k11 ¼ 58288976by16 � 481727600by14 þ 1456399991by12 � 1756955850by10 þ 1159844496by8 � 441576750by6 þ 83309881by4 � 4919800by2 þ 176656
6 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k12 ¼ � 8 14572244by16 � 32365775by14 � 220654216by12 þ 685156950by10 þ 369535584by8 � 372886575by6 þ 99039004by4 � 15019600by2 þ 2392384
� �

3 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k13 ¼ 1 ;

HFF



k14 ¼ � 8 14572244by16 � 32365775by14 � 220654216by12 þ 685156950by10 þ 369535584by8 � 372886575by6 þ 99039004by4 � 15019600by2 þ 2392384
� �

3 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k15 ¼ 58288976by16 � 481727600by14 þ 1456399991by12 � 1756955850by10 þ 1159844496by8 � 441576750by6 þ 83309881by4 � 4919800by2 þ 176656
6 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k16 ¼ � 4 2392384by16 � 14930000by14 þ 26422684by12 þ 6967025by10 � 25914856by8 þ 12099950by6 þ 280624by4 � 911975by2 þ 44164
� �

9 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k17 ¼ 16 2392384by16 � 14997200by14 � 178436by12 þ 228722825by10 � 597576646by8 þ 228722825by6 � 178436by4 � 14997200by2 þ 2392384
� �

9 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k18 ¼ � 8 2392384by16 � 15019600by14 þ 99039004by12 � 372886575by10 þ 369535584by8 þ 685156950by6 � 220654216by4 � 32365775by2 þ 14572244
� �

3 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k19 ¼ 16 2392384by16 � 14997200by14 � 178436by12 þ 228722825by10 � 597576646by8 þ 228722825by6 � 178436by4 � 14997200by2 þ 2392384
� �

9 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k20 ¼ � 4 2392384by16 � 14930000by14 þ 26422684by12 þ 6967025by10 � 25914856by8 þ 12099950by6 þ 280624by4 � 911975by2 þ 44164
� �

9 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k21 ¼ by2 þ 1
� �2

176656by12 � 185512by10 � 2284531by8 þ 4579274by6 � 2284531by4 � 185512by2 þ 176656
� �

36 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k22 ¼ � 4 44164by16 � 911975by14 þ 280624by12 þ 12099950by10 � 25914856by8 þ 6967025by6 þ 26422684by4 � 14930000by2 þ 2392384
� �

9 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k23 ¼ 176656by16 � 4919800by14 þ 83309881by12 � 441576750by10 þ 1159844496by8 � 1756955850by6 þ 1456399991by4 � 481727600by2 þ 58288976
6 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k24 ¼ � 4 44164by16 � 911975by14 þ 280624by12 þ 12099950by10 � 25914856by8 þ 6967025by6 þ 26422684by4 � 14930000by2 þ 2392384
� �

9 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;

k25 ¼ by2 þ 1
� �2

176656by12 � 185512by10 � 2284531by8 þ 4579274by6 � 2284531by4 � 185512by2 þ 176656
� �

36 58288976by16 � 12041600by14 � 1112834229by12 þ 805729100by10 þ 7325265506by8 þ 805729100by6 � 1112834229by4 � 12041600by2 þ 58288976
� � ;
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Appendix 3. Explicit expression for the term f in equation (30) in the case of nonzero
source term fl= 0 in the Poisson equation
The expression for f up to the fourth-order with respect to h:

f ¼ 1
2
ððq1;2d2x;2 þ a1ðdxG þ 1Þ2k1 þ a3k3 þ a4k4 þ a6k6 þ a7k7 þ a9k9 þ dxGðdxGða2k2

þa3k3 þ a4k4 þ a5k5 þ a6k6 þ a7k7 þ a8k8 þ a9k9Þ � 2ða3k3 � a4k4 þ a6k6 � a7k7 þ a9k9ÞÞ
þ2dx;5e�nx;5q2;5 þ d2x;3q1;3 þ d2x;4q1;4 þ d2x;5q1;5 þ 2e�ðdx;2nx;2q2;2 þ dx;3nx;3q2;3 þ dx;4nx;4q2;4ÞÞ
ð~f �GÞ þ ð�q1;2d2x;2 � ða1 � 1ÞðdxG þ 1Þ2k1 � a3k3 þ k3 � a4k4 þ k4 � a6k6 þ k6 � a7k7
þk7 � a9k9 þ k9 þ dxGð2ðða3 � 1Þk3 � a4k4 þ k4 þ ða6 � 1Þk6 � a7k7 þ k7 þ ða9 � 1Þk9Þ
þdxGð�a2k2 þ k2 � a3k3 þ k3 � a4k4 þ k4 � a5k5 þ k5 � a6k6 þ k6 � a7k7 þ k7 � a8k8
þk8 � a9k9 þ k9ÞÞ � 2dx;5e��nx;5q2;5 � d2x;3q1;3 � d2x;4q1;4 � d2x;5q1;5 � 2e��ðdx;2nx;2q2;2
þdx;3nx;3q2;3 þ dx;4nx;4q2;4ÞÞð~f ��G ÞÞh2 þ 1

6
ð3ðdy;2q1;2d2x;2 þ e�ny;2q2;2d2x;2 þ 2dy;2e�nx;2q2;2dx;2

�a1byðdxG þ 1Þ2ðdyG þ 1Þk1 � a2bydxG2ðdyG þ 1Þk2 � byða3ðdyG þ 1Þk3ðdxG � 1Þ2
þa9ðdyG � 1Þk9ðdxG � 1Þ2 þ a4ðdxG þ 1Þ2dyGk4 þ a5dxG2dyGk5 þ a6dxG2dyGk6
þa6dyGk6 � 2a6dxGdyGk6 � a7dxG2k7 � a7k7 � 2a7dxGk7 þ a7dxG2dyGk7 þ a7dyGk7
þ2a7dxGdyGk7 � a8dxG2k8 þ a8dxG2dyGk8Þ þ 2dx;5dy;5e�nx;5q2;5 þ d2x;5e�ny;5q2;5
þd2x;3dy;3q1;3 þ d2x;4dy;4q1;4 þ d2x;5dy;5q1;5 þ 2dx;3dy;3e�nx;3q2;3
þd2x;3e�ny;3q2;3 þ dx;4e�ð2dy;4nx;4 þ dx;4ny;4Þq2;4Þð~f �GÞð0;1Þ þ 3ð�dy;2q1;2d2x;2
þbyððða2 � 1ÞðdyG þ 1Þk2 þ ða3 � 1ÞðdyG þ 1Þk3 � a7k7 þ k7 � a8k8
þk8 � a9k9 þ k9 þ dyGðða4 � 1Þk4 þ ða5 � 1Þk5 þ ða6 � 1Þk6 þ ða7 � 1Þk7 þ ða8 � 1Þk8
þða9 � 1Þk9ÞÞdxG2 þ 2ð�ða3 � 1ÞðdyG þ 1Þk3 � a7k7 þ k7 þ ða9 � 1Þk9 þ dyGðða4 � 1Þk4 � a6k6
þk6 þ ða7 � 1Þk7 � a9k9 þ k9ÞÞdxG þ ða1 � 1ÞðdxG þ 1Þ2ðdyG þ 1Þk1 þ ða3 � 1Þk3 � a7k7
þða9 � 1Þk9ÞÞ � 2dx;5dy;5e��nx;5q2;5 � d2x;3dy;3q1;3 � d2x;4dy;4q1;4 � d2x;5ðe��ny;5q2;5
þdy;5q1;5Þ � e��ðdx;2ð2dy;2nx;2 þ dx;2ny;2Þq2;2 þ dx;3ð2dy;3nx;3 þ dx;3ny;3Þq2;3
þdx;4ð2dy;4nx;4 þ dx;4ny;4Þq2;4ÞÞð~f ��G Þð0;1Þ þ ðq1;2d3x;2 � a1ðdxG þ 1Þ3k1 þ a3k3 � a4k4
þa6k6 � a7k7 þ a9k9 � dxGð3ða3k3 þ a4k4 þ a6k6 þ a7k7 þ a9k9Þ
þdxGðdxGða2k2 þ a3k3 þ a4k4 þ a5k5 þ a6k6 þ a7k7 þ a8k8 þ a9k9Þ � 3ða3k3 � a4k4
þa6k6 � a7k7 þ a9k9ÞÞÞ þ 3d2x;5e�nx;5q2;5 þ d3x;3q1;3 þ d3x;4q1;4 þ d3x;5q1;5 þ 3e�ðnx;2q2;2d2x;2
þd2x;3nx;3q2;3 þ d2x;4nx;4q2;4ÞÞð~f

�
GÞð1;0Þ þ ð�q1;2d3x;2 þ ða1 � 1ÞðdxG þ 1Þ3k1 � a3k3 þ k3

þða4 � 1Þk4 � a6k6 þ k6 þ ða7 � 1Þk7 � a9k9 þ k9 þ dxGððða2 � 1Þk2 þ ða3 � 1Þk3
þða4 � 1Þk4 þ ða5 � 1Þk5 þ ða6 � 1Þk6 þ ða7 � 1Þk7 þ ða8 � 1Þk8 þ ða9 � 1Þk9ÞdxG2
�3ðða3 � 1Þk3 � a4k4 þ k4 þ ða6 � 1Þk6 � a7k7 þ k7 þ ða9 � 1Þk9ÞdxG þ 3ðða3 � 1Þk3
þða4 � 1Þk4 þ ða6 � 1Þk6 þ ða7 � 1Þk7 þ ða9 � 1Þk9ÞÞ � 3d2x;5e��nx;5q2;5 � d3x;3q1;3
�d3x;4q1;4 � d3x;5q1;5 � 3e��ðnx;2q2;2d2x;2 þ d2x;3nx;3q2;3 þ d2x;4nx;4q2;4ÞÞð~f

��
G Þð1;0ÞÞh3

þ
n 1
24

ðð�q1;2d4x;2 � 4e�nx;2q2;2d3x;2 þ 6d2y;2q1;2d
2
x;2 þ 12dy;2e�ny;2q2;2d2x;2 þ 12d2y;2e�nx;2q2;2dx;2 � a1ðdxG þ 1Þ2ððdxG þ 1Þ2

�6by2ðdyG þ 1Þ2Þk1 þ a2dxG2ð6by2ðdyG þ 1Þ2 � dxG2Þk2 � a3dxG4k3 þ 4a3dxG3k3 þ 6a3by2k3 þ 6a3by2dxG2k3 � 6a3dxG2k3
þ6a3by2dyG2k3 þ 6a3by2dxG2dyG2k3 � 12a3by2dxGdyG2k3 � a3k3 � 12a3by2dxGk3 þ 4a3dxGk3 þ 12a3by2dyGk3
þ12a3by2dxG2dyGk3 � 24a3by2dxGdyGk3 � a4dxG4k4 � 4a4dxG3k4 � 6a4dxG2k4 þ 6a4by2dyG2k4 þ 6a4by2dxG2dyG2k4
þ12a4by2dxGdyG2k4 � a4k4 � 4a4dxGk4 � a5dxG4k5 þ 6a5by2dxG2dyG2k5 � a6dxG4k6 þ 4a6dxG3k6 � 6a6dxG2k6
þ6a6by2dyG2k6 þ 6a6by2dxG2dyG2k6 � 12a6by2dxGdyG2k6 � a6k6 þ 4a6dxGk6 � a7dxG4k7 � 4a7dxG3k7 þ 6a7by2k7
þ6a7by2dxG2k7 � 6a7dxG2k7 þ 6a7by2dyG2k7 þ 6a7by2dxG2dyG2k7 þ 12a7by2dxGdyG2k7 � a7k7 þ 12a7by2dxGk7
�4a7dxGk7 � 12a7by2dyGk7 � 12a7by2dxG2dyGk7 � 24a7by2dxGdyGk7 � a8dxG4k8 þ 6a8by2dxG2k8 þ 6a8by2dxG2dyG2k8
�12a8by2dxG2dyGk8 � a9k9 þ a9ð6by2ðdxG � 1Þ2ðdyG � 1Þ2 � ðdxG � 2ÞdxGððdxG � 2ÞdxG þ 2ÞÞk9 � 4d3x;5e�nx;5q2;5
þ12dx;5d2y;5e�nx;5q2;5 þ 12d2x;5dy;5e�ny;5q2;5 � d4x;3q1;3 þ 6d2x;3d

2
y;3q1;3 � d4x;4q1;4 þ 6d2x;4d

2
y;4q1;4 � d4x;5q1;5 þ 6d2x;5d

2
y;5q1;5

�4d3x;3e�nx;3q2;3 þ 12dx;3d2y;3e�nx;3q2;3 þ 12d2x;3dy;3e�ny;3q2;3 þ 4dx;4e�ð�nx;4d2x;4 þ 3dy;4ny;4dx;4 þ 3d2y;4nx;4Þq2;4Þð~f
�
GÞð0;2Þ

þðq1;2d4x;2 � 6d2y;2q1;2d
2
x;2 þ ða1 � 1ÞðdxG þ 1Þ2ððdxG þ 1Þ2 � 6by2ðdyG þ 1Þ2Þk1 þ ða3 � 1Þk3 þ ða4 � 1Þk4 þ ða6 � 1Þ

k6 þ ða7 � 1Þk7 þ ða9 � 1Þk9 þ dxGððða2 � 1Þk2 þ ða3 � 1Þk3 þ ða4 � 1Þk4 þ ða5 � 1Þk5 þ ða6 � 1Þk6 þ ða7 � 1Þk7 þ ða8 � 1Þk8

HFF



þða9 � 1Þk9ÞdxG3 � 4ðða3 � 1Þk3 � a4k4 þ k4 þ ða6 � 1Þk6 � a7k7 þ k7 þ ða9 � 1Þk9ÞdxG2 þ 6ðða3 � 1Þk3 þ ða4 � 1Þ
k4 þ ða6 � 1Þk6 þ ða7 � 1Þk7 þ ða9 � 1Þk9ÞdxG � 4ðða3 � 1Þk3 � a4k4 þ k4 þ ða6 � 1Þk6 � a7k7 þ k7 þ ða9 � 1Þk9ÞÞ
�6by2ððða2 � 1Þk2ðdyG þ 1Þ2 þ ða3 � 1Þk3ðdyG þ 1Þ2 þ ða7 � 1Þk7 þ ða8 � 1Þk8 þ ða9 � 1Þk9 þ dyGðdyGðða4 � 1Þk4
þða5 � 1Þk5 þ ða6 � 1Þk6 þ ða7 � 1Þk7 þ ða8 � 1Þk8 þ ða9 � 1Þk9Þ þ 2ð�a7k7 þ k7 � a8k8 þ k8 � a9k9 þ k9ÞÞÞdxG2
þ2ððða4 � 1Þk4 � a6k6 þ k6 þ ða7 � 1Þk7 � a9k9 þ k9ÞdyG2 þ 2ð�a7k7 þ k7 þ ða9 � 1Þk9ÞdyG � ða3 � 1ÞðdyG þ 1Þ2k3
þða7 � 1Þk7 � a9k9 þ k9ÞdxG þ ða3 � 1ÞðdyG þ 1Þ2k3 þ ða7 � 1Þk7 þ ða9 � 1Þk9 þ dyGðdyGðða4 � 1Þk4 þ ða6 � 1Þ
k6 þ ða7 � 1Þk7 þ ða9 � 1Þk9Þ þ 2ð�a7k7 þ k7 � a9k9 þ k9ÞÞÞ þ 4d3x;5e��nx;5q2;5 � 12dx;5d2y;5e��nx;5q2;5 þ d4x;3q1;3
�6d2x;3d

2
y;3q1;3 þ d4x;4q1;4 � 6d2x;4d

2
y;4q1;4 þ d4x;5q1;5 � 6d2x;5dy;5ð2e��ny;5q2;5 þ dy;5q1;5Þ þ 4e��ðdx;2ðnx;2d2x;2 � 3dy;2ny;2dx;2 � 3d2y;2nx;2Þ

q2;2 þ dx;3ðnx;3d2x;3 � 3dy;3ny;3dx;3 � 3d2y;3nx;3Þq2;3 þ dx;4ðnx;4d2x;4 � 3dy;4ny;4dx;4 � 3d2y;4nx;4Þq2;4ÞÞð~f
��
G Þð0;2Þ

þ4ðdy;2q1;2d3x;2 þ e�ny;2q2;2d3x;2 þ 3dy;2e�nx;2q2;2d2x;2 þ a1byðdxG þ 1Þ3ðdyG þ 1Þk1 þ a2bydxG3ðdyG þ 1Þk2 þ byða3ðdyG þ 1Þ
k3ðdxG � 1Þ3 þ a9ðdyG � 1Þk9ðdxG � 1Þ3 þ a4ðdxG þ 1Þ3dyGk4 þ a5dxG3dyGk5 þ a6dxG3dyGk6 � 3a6dxG2dyGk6 � a6dyGk6
þ3a6dxGdyGk6 � a7dxG3k7 � 3a7dxG2k7 � a7k7 � 3a7dxGk7 þ a7dxG3dyGk7 þ 3a7dxG2dyGk7 þ a7dyGk7 þ 3a7dxGdyG
k7 � a8dxG3k8 þ a8dxG3dyGk8Þ þ 3d2x;5dy;5e�nx;5q2;5 þ d3x;5e�ny;5q2;5 þ d3x;3dy;3q1;3 þ d3x;4dy;4q1;4 þ d3x;5dy;5q1;5 þ 3d2x;3dy;3e�nx;3q2;3
þd3x;3e�ny;3q2;3 þ d2x;4e�ð3dy;4nx;4 þ dx;4ny;4Þq2;4Þð~f �GÞð1;1Þ þ 4ð�dy;2q1;2d3x;2 þ byðð�ða2 � 1ÞðdyG þ 1Þk2 � ða3 � 1ÞðdyG þ 1Þ
k3 þ ða7 � 1Þk7 þ ða8 � 1Þk8 þ ða9 � 1Þk9 þ dyGð�a4k4 þ k4 � a5k5 þ k5 � a6k6 þ k6 � a7k7 þ k7 � a8k8 þ k8 � a9k9 þ k9ÞÞdxG3
þ3ðða3 � 1ÞðdyG þ 1Þk3 þ ða7 � 1Þk7 � a9k9 þ k9 þ dyGð�a4k4 þ k4 þ ða6 � 1Þk6 � a7k7 þ k7 þ ða9 � 1Þk9ÞÞdxG2
þ3ð�ða3 � 1ÞðdyG þ 1Þk3 þ ða7 � 1Þk7 þ ða9 � 1Þk9 þ dyGð�a4k4 þ k4 � a6k6 þ k6 � a7k7 þ k7 � a9k9 þ k9ÞÞdxG
�ða1 � 1ÞðdxG þ 1Þ3ðdyG þ 1Þk1 þ ða3 � 1Þk3 þ ða7 � 1Þk7 � a9k9 þ k9 þ dyGðða3 � 1Þk3 � a4k4 þ k4 þ ða6 � 1Þ
k6 � a7k7 þ k7 þ ða9 � 1Þk9ÞÞ � 3d2x;5dy;5e��nx;5q2;5 � d3x;3dy;3q1;3 � d3x;4dy;4q1;4 � d3x;5ðe��ny;5q2;5 þ dy;5q1;5Þ
�e��ðð3dy;2nx;2 þ dx;2ny;2Þq2;2d2x;2 þ d2x;3ð3dy;3nx;3 þ dx;3ny;3Þq2;3 þ d2x;4ð3dy;4nx;4 þ dx;4ny;4Þq2;4ÞÞð~f ��G Þð1;1Þ þ ðq1;2d4x;2 þ a1ðdxG þ 1Þ4
k1 þ a3k3 þ a4k4 þ a6k6 þ a7k7 þ a9k9 þ dxGðdxGð6ða3k3 þ a4k4 þ a6k6 þ a7k7 þ a9k9Þ þ dxG
ðdxGða2k2 þ a3k3 þ a4k4 þ a5k5 þ a6k6 þ a7k7 þ a8k8 þ a9k9Þ � 4ða3k3 � a4k4 þ a6k6 � a7k7 þ a9k9ÞÞÞ � 4
ða3k3 � a4k4 þ a6k6 � a7k7 þ a9k9ÞÞ þ 4d3x;5e�nx;5q2;5 þ d4x;3q1;3 þ d4x;4q1;4 þ d4x;5q1;5 þ 4e�
ðnx;2q2;2d3x;2 þ d3x;3nx;3q2;3 þ d3x;4nx;4q2;4ÞÞð~f

�
GÞð2;0Þ þ ð�q1;2d4x;2 � ða1 � 1ÞðdxG þ 1Þ4k1 � a3k3 þ k3 � a4k4

þk4 � a6k6 þ k6 � a7k7 þ k7 � a9k9 þ k9 þ dxGðð�a2k2 þ k2 � a3k3 þ k3 � a4k4 þ k4 � a5k5 þ k5 � a6k6
þk6 � a7k7 þ k7 � a8k8 þ k8 � a9k9 þ k9ÞdxG3 þ 4ðða3 � 1Þk3 � a4k4 þ k4 þ ða6 � 1Þk6 � a7k7 þ k7
þða9 � 1Þk9ÞdxG2 � 6ðða3 � 1Þk3 þ ða4 � 1Þk4 þ ða6 � 1Þk6 þ ða7 � 1Þk7 þ ða9 � 1Þk9ÞdxG þ 4ðða3 � 1Þk3 � a4k4
þk4 þ ða6 � 1Þk6 � a7k7 þ k7 þ ða9 � 1Þk9ÞÞ � 4d3x;5e��nx;5q2;5 � d4x;3q1;3 � d4x;4q1;4 � d4x;5q1;5
�4e��ðnx;2q2;2d3x;2 þ d3x;3nx;3q2;3 þ d3x;4nx;4q2;4ÞÞð~f

��
G Þð2;0ÞÞh4

With ~f
*
G

� � i;jð Þ
¼ @iþj f *G

e*@xi@yj
and ~f

**
G

� � i;jð Þ
¼ @iþj f **G

e**@xi@yj
.
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