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ABSTRACT

Recently the optimal local truncation error method (OLTEM) has been developed for the 2-D Poisson equation for
heterogeneous materials with irregular interfaces and unfitted Cartesian meshes. Here we extend it to the general
3-D case. 27-point stencils that are similar to those for linear finite elements are used with OLTEM. The interface
conditions at a small number of selected interface points where the jumps in material properties occur are added
to the expression for the local truncation error and do not change the width of the stencils. There are no un-
knowns on interfaces between different materials; the structure of the global discrete equations is the same for
homogeneous and heterogeneous materials. The calculation of the unknown stencil coefficients is based on the
minimization of the local truncation error of the stencil equations, includes the entire PDE for the derivations and
yields the optimal third order of accuracy of OLTEM with the 27-point stencils. The 3-D numerical results for
heterogeneous materials with irregular interfaces and different material contrasts show that at the same number
of degrees of freedom, OLTEM is even much more accurate than high-order (up to the 6th order) finite elements
with much wider stencils. Compared to linear finite elements with similar 27-point stencils, at the engineering
accuracy of 0.1% OLTEM decreases the number of degrees of freedom by a factor of greater than 3500. This leads
to a huge reduction in computation time.

For the first time, a new post-processing procedure has been developed with OLTEM for the calculation of the
spatial derivatives of numerical solutions. The spatial derivatives for each grid point are calculated with the help
of one compact 27-point stencil (the same as for basic computations) for the corresponding grid point and the use
of the original PDE. The spatial derivatives of the OLTEM solutions calculated with the new post-processing
procedure are much more accurate compared to those obtained by high-order (up to the 7th order) finite ele-
ments with much wider stencils. At the engineering accuracy of 0.1% for the spatial derivatives, OLTEM de-
creases the number of degrees of freedom by a factor of greater than 10° compared to linear finite elements. The
new post-processing procedure can be equally applied to the calculation of the partial derivatives obtained by
other numerical methods as well as to the numerical results for other PDEs.

Due to the huge reduction in the computation time compared to existing methods and the use of trivial un-
fitted Cartesian meshes that are independent of irregular geometry, the proposed technique does not require
remeshing for the shape change of irregular geometry and it will be effective for many design and optimization
problems as well as for multiscale problems without the scale separation.

1. Introduction

accurate and computationally efficient numerical techniques for this
equation; e.g., see [1-10] and many others. The finite element method,

The Poisson equation for heterogeneous materials with interfaces is the finite volume method, the isogeometric elements, the spectral ele-
used for the description of many important phenomena such as heat ments and similar techniques represent very powerful tools for the so-
transfer, multiphase flows, neurosciences, electrostatics and many lution of partial differential equations (PDEs) for a complex geometry.
others. Therefore, many efforts are made for the development of However, the generation of non-uniform meshes for a complex geometry

* Corresponding author.
E-mail address: alexander.idesman@ttu.edu (A.

https://doi.org/10.1016/j.advengsoft.2022.103103

Idesman).

Received 8 January 2022; Accepted 21 February 2022

Available online 2 March 2022

0965-9978/© 2022 Elsevier Ltd. All rights reserved.


mailto:alexander.idesman@ttu.edu
www.sciencedirect.com/science/journal/09659978
https://www.elsevier.com/locate/advengsoft
https://doi.org/10.1016/j.advengsoft.2022.103103
https://doi.org/10.1016/j.advengsoft.2022.103103
https://doi.org/10.1016/j.advengsoft.2022.103103
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2022.103103&domain=pdf

A. Idesman and M. Mobin

is not simple and may lead to the decrease in accuracy of these tech-
niques if "bad’ elements (e.g., elements with small angles) appear in the
mesh. Moreover, the conventional derivation of discrete equations for
these techniques (e.g., based on the Galerkin approaches) does not lead
to the optimal accuracy. There is a significant number of publications
related to numerical techniques for different PDEs on irregular domains
with uniform embedded meshes. For example, we can mention the
following fictitious domain numerical methods that use uniform
embedded meshes: the embedded finite difference method, the cut finite
element method, the finite cell method, the Cartesian grid method, the
immersed interface method, the virtual boundary method, the
embedded boundary method, etc. The main objective of these tech-
niques is to simplify the mesh generation for irregular domains as well as
to mitigate the effect of ’bad’ elements. For example, the techniques
based on the finite element formulations (such as the cut finite element
method, the finite cell method, the virtual boundary method and others)
yield the p + 1 order of accuracy even with small cut cells generated due
to complex irregular boundaries (e.g., see [11-17] and many others).
The main advantage of the embedded boundary method developed in
[18-22] is the use of simple Cartesian meshes. The boundary conditions
or fluxes in this technique are interpolated using the Cartesian grid
points and this leads to the increase in the stencil width for the grid
points located close to the boundary (the numerical techniques devel-
oped in [18-22] provide just the second order of accuracy for the global
solution). A stable generalized finite element method for the Poisson
equation was developed in [7] for heterogeneous materials with curved
interfaces and unfitted uniform meshes. The second order of accuracy in
the energy norm was achieved in [7] with 2-D quadratic finite elements
that form 25-point stencils. The order of accuracy p +1 for interface
problems for the Poisson equation on unfitted meshes was reported in
[10,23-26] for high-order immersed and extended finite elements of
order p.

The development of robust numerical techniques for the solution of
PDEs with complex irregular interfaces that provide an optimal and high
order of accuracy is still a challenging problem.

Recently we have developed OLTEM with compact stencils for the
solution of PDEs with constant coefficients (homogeneous materials) on
regular and irregular domains (e.g., see [27-33]) as well as OLTEM with
compact stencils for the solution of the scalar wave, heat and Poisson
equations in the 2-D case for heterogeneous materials with irregular
interfaces (see [34,35]). The main advantages of OLTEM are the optimal
accuracy of discrete equations and the use of unfitted Cartesian meshes
for irregular geometry. For many existing techniques the optimal ac-
curacy of the discrete equations even is not known. For example, we
already mentioned that finite elements of order p provide the p +1 order
of accuracy. However, in our papers [30,33] we showed that for the
same structure of the discrete equations, quadratic elements (p = 2)
provide the 18th order of accuracy for the Poisson equation and the 10th
order of accuracy for the elasticity equations on regular domains with
uniform meshes.

In this paper, we extend OLTEM developed in our paper [35] for the
2-D Poisson equation with heterogeneous materials to the general 3-D
case. It is known that the transition from the 2-D geometry to the 3-D
geometry is a challenging problem due to the complexity of 3-D irreg-
ular geometry. Due to the complexity of analytical expressions of
OLTEM, their derivations for the 3-D Poisson equation with irregular
interfaces is also a challenge (see also Remark 4 below). Another novelty
of the paper is the development of a new post-processing procedure for
the accurate calculations of the spatial derivatives of numerical solu-
tions. For example, it is known that due to piecewise continuous shape
functions of conventional finite elements, the spatial derivatives are
discontinuous across finite element boundaries and special
post-processing procedures are necessary for their accurate calculations;
e.g., see [36-38]. Here we show that OLTEM with compact stencils can
accurately calculate the spatial derivatives of numerical solutions as
well. The proposed post-processing procedure developed here for the
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Poisson equation can be also extended to different PDEs (e.g., for the
calculation of stresses for the elasticity equations) as well as it can be
applied to other techniques (e.g., for post-processing finite element
results).

The Poisson equation in a composite domain Q = UQ; [ =1,2,...,N
where N is the total number of subdomains) can be written down in each
subdomain ©; as follows:

eV =f, (@)

where ¢ is a constant in each subdomain €; and can be discontinuous
across the interfaces between subdomains Q; (I = 1,2,...,N), fi(x) is the
source term that can be also discontinuous across the interfaces between
subdomains €, u; is the field variable. We also assume that the functions
y and f; are sufficiently smooth in each subdomain €;. At the interface G
between any two subdomains, the following interface conditions (the
continuity of the function and the flux across the interface) are applied:

. » ou ou; ou; ouis s out
2

where ny, n, and n, are the x— , y- and z-components of the normal
vector at the interface, e, (e..) is the corresponding material constant,
the symbols * and ** correspond to the quantities on the opposite sides
from the interface for the corresponding subdomains €. This means that
the functions u; are continuous across the interfaces but can have the
discontinuous spatial derivatives across the interfaces.

Remark 1. The derivations for the new approach can be easily
extended to the case with the discontinuous functions and fluxes across
interfaces; i.e., when the right-hand sides in Eq. (2) are the given func-
tions. However, for simplicity we consider Eq. (2) with zero right-hand
sides.

In this paper the Dirichlet boundary conditions u = g; are applied
along the boundary I where g is the given function. However, the
Neumann boundary conditions can be also used with the proposed
approach; e.g., see our paper [39]. According to OLTEM, the discrete
system for the Poisson equation after the space discretization with a
Cartesian rectangular mesh can be represented as a system of algebraic
equations. The algebraic equation of this system for each internal grid
point of the domain is called the stencil equation and can be written
down for the case without interfaces as follows:

M —
> kafm =7, (3)
pa
where u™™ is the numerical solution for function u; at the grid points, k;

are the unknown stencil coefficients to be determined, f is the dis-
cretized source term (see the next Sections), M is the number of the grid
points included into the stencil equation. Many numerical techniques
such as the finite difference method, the finite element method, the
finite volume method, the isogeometric elements, the spectral elements,
different meshless methods and others can be finally reduced to Eq. (3)
with some specific coefficients k;. In the derivations below, we will as-
sume 27-point (M = 27) stencils in the 3-D case that are similar to 27-
point stencils of 3-D linear quadrilateral finite elements on Cartesian
meshes. Generally, the stencils with any number of points M can be used
with the suggested approach.

Let us introduce the local truncation error used with OLTEM. The
replacement of the numerical values of function u/*™ at the grid points in
Eq. (3) by the exact solution u; to the Poisson equation, Eq. (1), leads to
the residual e of this equation called the local truncation error of the
discrete equation, Eq. (3):

M
e = ;kiui ~f. (€)]
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Calculating the difference between Egs. (4) and (3) we can get

M
e = Z k,' [ui - u;’”m} = Zl k,?:l s (5)

i=1

where g = u; — u™™ are the errors of function y; at the grid points i. As
can be seen from Eq. (5), the local truncation error e is a linear combi-
nation of the errors of the function u at the grid points i which are
included into the stencil equation.

In Section 2.1, OLTEM with 27-point stencils is derived for the 3-D
Poisson equation with discontinuous coefficients and zero source term.
Its extension to nonzero source term is considered in Section 2.2. The
development of OLTEM for the calculation of the spatial derivatives of
numerical solutions (post-processing) is presented in Section 3. Nu-
merical examples for a 3-D domain with an irregular interface and un-
fitted Cartesian meshes as well as the comparison with FEM are
presented in Section 4. For the derivation of many analytical expressions
presented below we use the computational program "Mathematica”.

2. OLTEM for the 3-D Poisson equation with discontinuous
coefficients

2.1. Zero source term f; = 0 in Eq. (1)

Let us consider a 3-D bounded domain and a Cartesian rectangular
mesh with a mesh size h where h is the size of the mesh along the x —
axis, byh, b;h ares the sizes of the mesh along the y — and z — axes (b,
and b, are the aspect ratios of the mesh). To simplify derivations, below
we consider regular rectangular domains with irregular interfaces be-
tween different materials. However, irregular domains can be also
considered with OLTEM; see [27-29]. In the paper we will consider
27-point uniform stencils that are similar to those for linear quadrilat-
eral finite elements. We should mention that we use the same structure
of stencils for homogeneous and composite materials (the difference
between homogeneous and composite materials is in the values of the
stencil coefficients only). The spatial locations of the 26 degrees of
freedom that are close to the internal degree of freedom u;4 and
contribute to the 27-point stencil for this degree of freedom are shown in
Fig. 1. For convenience, the local numeration of the grid points from 1 to
27 isused in Fig. 1 as well as in the derivations below. If all grid points of
the 27-point stencil belong to the same material than this stencil is
treated as that for homogeneous materials (see Fig. 1a) otherwise as for

Z
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heterogeneous materials (see Fig. 1b). The interface in Fig. 1b divides
the 27-point uniform stencil into two parts with different material
properties. In order to impose the interface conditions at the interface,
we select a small number of interface points as follows. First we select
one point at the interface with the coordinates x¢ = x¢1, Y6 = Y1 and
2z¢ = 2g1. This point can be selected as the shortest distance from the
internal grid point u;4 of the 27-point stencil to the interface. Then, we
additionally select 24 interface points in two perpendicular directions; i.
e., we use totally Ng = 25 interface points for each stencil with in-
We select the distances h=

terfaces. same

\/ (xgj — xG,i)2 + (yej — ij)2 + (265 — zG_i)2 between the interface
points where i and j designate the neighboring interface points; e.g., see
Fig. 1b (we are not able to show all 25 interface points in Fig. 1b). The
numerical experiments show that small distances h = h/5 yield accurate
results.

Let us describe the coordinates of the grid points of the 27 point
uniform stencils (see Fig. 1) with respect to their central point u;4 for the
27-point stencils as follow:

X, = Xig + reph = x4+ (i —2)h,
Yia + U_Z)byh7

Yp = Yia + rypbyh
p = 14 + rz‘pbzh = zi4 + (t_ 2>bzh, (6)

for the 27-point stencils where the coefficients ry,, 1y, 17 are:
Yxp = (172) Yyp = (]72) Yep = (t72)7 (7)

andp=9(t-1)+3(-1) +iwithijt=123.
To describe the coordinates of the selected Ng points on the interface
(see Fig. 1b) we introduce 3N coefficients dy,, dyp and d;p, (p =1,2,...,

Ng) with Ng = 25 for the 27-point stencils as follows (see also Fig. 1b):

XG +dx)1'h,
= I,Z,AA.,NG.

XGj Ye; = Yo + dybyh, 26j = 26 +djb:h, J

(®

where dy; = d,1 = d;1 = O for the central interface point G = G; with
the coordinates x¢ = X¢1, Y6 =Yc1 and 2g = 2g,1; see Fig. 1b.

Remark 2. Some of the interface points G; (i = 1,2, ..., Ng) can be
located slightly outside the 27-point cells. The derivations presented
below are also valid for these cases.

The stencil equation, Eq. (3), for composite materials with the 27-

(b)

Fig. 1. The spatial locations of the degrees of freedom u, (p = 1,2, ...,27) that contribute to the 27-point uniform stencil for the internal degree of freedom u;4 for
homogeneous material without interface (a) and for heterogeneous material with interface (b).
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point uniform stencil for the grid point u; 4 (see Fig. 1) will be assumed in
the following form:

Skl + (1 - )] =7 ©

p=1

where f = 0 in the case of zero source f; = 0 in Eqs (1), the unknown
stencil coefficients k, (p = 1,2, ...,27) are to be determined from the
minimization of the local truncation error, the coefficients a, = 1 if the
grid point u, belongs to material x or a, = 0 if the grid point u, belongs
to another material + (i.e., only one variable u;™™ or u;*™™ is actually
included into Eq. (9) for each grid point; e.g., the coefficients a, for
Fig. lbare:aq; =1( =1,2,...,6,10,11,...,16,19,20,...,27) and a; = 0 (i
=7,8,9,17,18)). The local truncation error e follows from Eq. (9) by the
replacement of the numerical solution u;™™ and uy;*™™ by the exact
solution u; and u;":

e—Zk [au +

)u;*} _7. (10)
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proposed method for general geometry of interfaces; see below.

Remark 3. Only 27 4+ 2N — 1 out of the 27 + 2Ng coefficients k;, g1,
Q2 @ =1,2,...,27,j = 1,2,...,,Ng) in Eq. (11) can be considered as
unknown coefficients. This can be explained as follows. In the case of
zero source f; = 0 and f = 0, Eq. (9) can be rescaled by the division of
the left- and right-hand sides of Eq. (9) by any scalar; i.e., one of the
coefficients k, can be selected as unity and there will be only 27 + 2N —
1 unknown rescaled coefficients. The case of nonzero load f # 0 can be
similarly treated because the term f is a linear function of the stencil
coefficients; see below. For convenience, we will scale the stencil co-
efficients in such a way that kq4 is k14 = 1.

In order to represent the local truncation error e as a Taylor series, let
us expand the exact solution at the grid points and at the N selected
interface points in Eq. (11) into a Taylor series at small h<1 in the vi-
cinity of the central interface point G for the 27-point stencils as follows:

v v ov,
v =6+ 52 (g = dvo)h] + 521y = dyo) by + 52 [(rp — )b
T (O g O 5 ) O O (e W @
o 2! + 0y 2! o7 2!
02"6 [(rx,p — de)h} [(ry.p — dyG)byh] . S
0xz3y o +..,p=90—-1)+3(G—1)+i with i,j,r=1,2,3
One of the ideas of the new approach is to include the interface condi- with dxg = *5%, dye = ysb;%”’ and dzg = 31, and
tions for the exact solution at a small number N of the interface points
0 0 Pw [dojh]’
Wy =+ [dh] + :)V > dbih] + azG [dejbh] + a;vzc [ ijl ]
' 13)
Pwe [dybh])®  Pwe [dybh])®  Pwe [(dh) [dyibyh] o
ayz 72' azz 72' +26x()y 72‘ + _]71727...,NG

in the expression for the local truncation error in Eq. (10) as follows:

7
e= ka {apu; +(1- llp)u;*}

ou’, . o, . o,
+{ Z q1, (ucj qu> + thhJ {6‘* (”w O %4 ”yJ% + 1 l;:/>

J=1 J=1

. 0u** . _
— €. <nMWGJ + nNW +n, a?)} =7,

where nyj, ny,; and n,; are the x-, y-, and z-components of the normal
vectors at the Ng selected interface points (e.g., see Fig. 1b), the co-
efficients q1; and q2; (j = 1,2,...,Ng) are unknown and will be used for
the minimization of the local truncation error in Eq. (11) (see Section
2.1.2 below), the expressions in parenthesis after q;; and q»; are the
interface conditions at the Ng selected interface points. Therefore, the
expression in the curled brackets in Eq. (11) is zero (see Eq. (2)) and Eqgs.
(10) and (11) yield the same local truncation error e. The addition of the
interface conditions at Ng points in Eq. (11) with the unknown co-
efficients q1 4, g2;  =1,2,...,Ng) allows us to get a high accuracy of the

1D

In Eq. (12) the function v, is u, u, in Eq. (13) the function w; is ugj, u’gj,
B ]

i %, %, %, %, and Ng = 25. The exact solution v, and u;

to the Poisson equations, Eq. (1), at the central interface point x = xg,

y =y and z = z; meets the following equations:

Fu: Fus.  Fu 1., Fusr Fuzr Fu 1.,

oo T Tl TH_ TG ThiLr aw
Ox dy 07 e. ox dy 0z e,
a(i+j+t+2)u* a([+j+r+2)u* ()(HHHZ)MZ 1 a(i+j+t)f*

07oy'ox®P ooy Dax oz Dayiax | e, o7y X s
a([+j+z+2)ug B a(i+j+l+2)u>:g B a(i+j+z+2)u*c* 1 a([+/‘+z)fw as)
Aoy oxP) T Aoyt o 9D dyiar | en. dZ'dy'on

with i,j,t =0,1,2,3,4,.... Eq. (15) is obtained by the differentiation of
Eq. (14) with respect to x, y and z. Inserting Eqgs. (12)-(15) with zero
source term f* = f** = 0 into Eq. (11) we get the following local trun-
cation error in space e:
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- o
e = biug + boug

(0204 p 2 2 2 e G e (5,21
+ bma; 2 + b11§3g;2 + b12§3‘;; + hm();y; + bmaz G | b”::a;
R e S O
+ bzu‘;s”* + bn‘)g &y + ij % *2 + b24§3352b250;y3 + bzﬁ‘f”g
e ST SRR A
+ b3zg;gxc* )+ H (b33d; ; + bma;'::g +...+ b49§4;: + b50i3;02>

Fu Fu i, Fur Fu,
W bs—=L+b b b m( b
+ 5laz5+sza5+ +7laa4+ 726(3‘y>+ 73aZ

6 ok 6* 66

a°+ A by =% + bog=—% )+0(h7)

b
b oy axay

(16)

where the coefficients b, (p = 1,2, ...) are expressed in terms of the
coefficients k; and g1, q2; (i =1,2,...,27,j =1,2,...,Ng) and are given
in Appendix A. Here we should mention that the expression for the local
truncation error, Eq. (16), includes only the first order derivatives with
respect to x (the higher order derivatives with respect to x are excluded
with the help of Egs. (14)-(15)).

2.1.1. Homogeneous materials (without interface)

For homogeneous materials all a; j = 1,2,...,27) coefficients are q;
= 1(see Eq. (9) if we consider material x) aswell asall q1; = g2; = 0( =
1,2,...,Ng) are zero. In this case the derivation of the local truncation
error is similar to that in the previous section with b, = 0 (p=2,4,6,8,...)
in Eq. (16) if we consider material x. The stencils coefficients k; (i = 1,2,

.,27) can be analytically found from the following system of 27 alge-
braic equations:

b, =0, p=1,3,57,9,11,13,15,17,19,21,23,25,27,29,31,33, 35,
37,41,45,47,53,55,67,77 a7

k14 = 1 (18)

and they are:

(5(b2+1)b> +5b,> +9)
ki = 2 3 2 ) ky
8(125(b.” + 1)b,” + 125b.> +9)

(5(b.> —5)b,> —25b,> +9)
= 5 > > e 19)
500(b.* + 1)b,> + 500b.% + 36

(see Appendix C for the expressions for the all stencil coefficients k;, i
=1,2,...,27) with the following local truncation error (see our paper
[29] for details):
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B 32200
8(0+125(82 + b2 4 03072))
66M14 aﬁuM
4 4
{<71+b),) 5° +(=1+8) 026}
b2b2h8 8
(11— 2102 = 215 + 119) it
672(9+ 125 (bz + b2+ 0307 oy
Fu dFu
2 4 2 14 14
+ (- 19212 + 210 (— 1 +bf))ayﬁaz2_ TRt (=19
u
4 2 4 14 2 4
205 2163~ 1+ 8Y) ) g T (11 =210 =210
+119) ”‘4]+0( .
(20)

As can be seen from Eq. (20), for homogeneous materials and cubic (b, =
b, = 1) Cartesian meshes the local truncation error is two order higher
compared to that for rectangular (b, #1 or/and b, # 1) Cartesian
meshes.

2.1.2. Heterogeneous materials with an irregular interface

For the interface represented by an inclined plane, some analytical
results for the 27-point stencils that include the grid points with different
material properties can be obtained with the help of Mathematica. We
have found that the maximum order of the local truncation error for the
27-point stencils is 4. In order to obtain the same order of accuracy for
the general shape of the interface we will use the following procedure.

We use the 76 unknown stencil coefficients k; (i = 1,2, ...,27 with
ki4 = 1), and q1j, g2 G = 1,2, ...,25) in order to minimize the local
truncation error. First, we zero the first 32 coefficients b, in Eq. (16) up
to the third order with respect to h; i.e.,

b,=0, p=1,2,..,32. (@)
Then, in order to have a sufficient number of equations for the calcu-
lation of the 76 unknown stencil coefficients k; i =i = 1,2,...,27) and
q14, 92 G = 1,2,...,25), we use the least square method for the mini-
mization of coefficients b, related to the fourth, fifth and sixth orders of
the local truncation error with the following residual R:

50 72 98
R=Y "0 +mY b +hYy b, (22)
p=33 p=51 p=73

where h; and h;y are the weighting factors to be selected (e.g., the nu-
merical experiments show that h; = hy = 0.1 yields accurate results). In
order to minimize the residual R with the constraints given by Eq. (21),
we can form a new residual R with the Lagrange multipliers 1;:

98
R= leb,+2b2+hlz +hy b (23)
=33 p=T3

p=51

The residual R is a quadratic function of the stencil coefficients k; (i =1,
2,...,27) and qq, q2; (j = 1,2, ..., 25) and a linear function of the
Lagrange multipliers 4; i.e., R = R(k;,q1,92;,4). In order minimize the
residual R = R(k;,q1,92,4), the following equations based on the least
square method for the residual R can be written down:

R R R R

B, R, R R

ok; 0q:, 0q2, 0 24)
i=1,2,..27, j=12,..25  [=1.2,..32,

where equation & = 0 in Eq. (24) should be replaced by k14 = 1; see

Remark 3. Eq. (24) forms a system of 109 linear algebraic equations with
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respect to 77 coefficients k; (i =1,2,...,27) and q1, 2;(j = 1,2,...,25) as
well as 32 Lagrange multipliers 4; (I = 1,2,...,32). Solving these linear
algebraic equations numerically, we can find the coefficients k; (i = 1,2,
...,27) for the 27-point uniform stencils as well as g1, g2; G = 1,2,...,
25). As can be seen from Eq. (16), the presented procedure provides the
fourth order of the local truncation error for the 27-point uniform
stencils with the general geometry of the interface. The 27-point uni-
form stencils of OLTEM for a homogeneous material (without interface)
provide the sixth order of the local truncation error for rectangular
meshes; see Eq. (20). In this case the global error is defined by the order
of accuracy of the 27-point stencils with interfaces. This leads to the
third order of accuracy of global solutions; see the numerical examples
below. Moreover, due to the minimization of the leading high-order
terms b, of the local truncation error in Eq. (23), at the same numbers
of degrees of freedom the new approach on irregular interfaces yields
more accurate results than those obtained by high-order finite elements
(up to the sixth order) with much wider stencils; see the numerical ex-
amples below.

Remark 4. We should mention that the representation of the co-
efficients b; in Eq. (16) as b; = Z]?leijkj + Z]zfl (cjqrj+eiazy),i=1,2,
..., 98 as well as the explicit analytical formulas for g—,i_‘i, %‘j, %, g—fl_‘l (see
Eq. (24)) in terms of the coefficients s, cilj and cl% (see Appendix B)
significantly simplify the derivations and allowed us to extend our
approach to the 3-D case.

The global discrete system of equations includes the 27-point stencils
for homogeneous materials without interfaces and the 27-point stencils
for heterogeneous materials with interfaces between different materials
(see Fig. 1) for all internal grid points located inside the domain. The

L - - 2] - - -
= hz{ > 3 (rej — dxo) (af g + (1 — @)fg )k + ) [Ed,f.j@ —fo )@ +dyn(ef —efc )‘hj)
=

new approach does not use unknowns at the interfaces and the global
discrete system of equations has the same unknowns for homogeneous
and heterogeneous materials (the same structures of the sparse global
matrices, the difference is only in the values of the stencil coefficients k,
(see Eq. (9)) of the global matrices for homogeneous and heterogeneous
materials).

Remark 5. To estimate the computation costs of the formation and
solution of 109 linear algebraic equations given by Eq. (24) we formed
and solved 10* such systems with a general MATLAB solver on a desktop
computer (Processor: Intel (R) Core(TN) i9-9900 CPU @3.10Hz 3.10
HZ). The computation *wall’ time was T = 49.89s for 10* systems or the
average time for one system was 0.004989s. Because the coefficients k,
are independently calculated for different stencils, the computation time
of their calculation for different stencils can be significantly reduced on
modern parallel computers. These local systems are solved only for the
grid points located close to the interface (for heterogeneous stencils).
This means that for large global systems of equations, the computation
time for the calculation of the coefficients k, is very small compared to
that for the solution of the global system of algebraic equations. We
should mention that the coefficients qj, g2; calculated from the local
system of equations, Eq. (24), are only used for the calculation of non-
zero right-hand side vector (see below Section 2.2) while the Lagrange
multipliers 4; in the local system of equations, Eq. (24), are not used in
the global system of equations at all.
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Remark 6. It is interesting to mention that the stencil coefficients can
be also derived using the Taylor series expansion about the central grid
point with the coordinates x14, y14 and 214 instead of the interface point
with the coordinates xg, y¢ and zg.

2.2. Nongzero source term f; # 0 in Eq. (1)

The inclusion of non-zero source term f; in the partial differential
equation, Eq. (1), leads to the non-zero term f in the stencil equation,
Eq. (9) (similar to Eq. (3)). As we mentioned after Eq. (2), the functions f;

can be discontinuous across the interfaces. The expression for the term f
can be calculated from the procedure used for the derivation of the local
truncation error in the case of zero source term as follows. In the case of

non-zero source term f;(x) # 0 and f # 0, the insertion of Eqs. (12)-(15)
into Eq. (11) yields the following local truncation error in space es:

gz [f_hz{ Z%(’x-f—dxc) (afg+ (1= )6 )k,

=

5 - N
+ Zl |:Ed§.j(fc —fe )@+ dun(efo —e.fo )42.j>] } ..,
=
(25)

where e is the local truncation error in space given by Eq. (16) for zero

source term, f, and f,, designate functions 2¥%) and (ex”) calculated

at the interface point with the coordinates x = xg, y =y and z = 2.
Equating to zero the expression in the square brackets in the right-hand

side of Eq. (25), we will get the expression for f:

27 25
F=Y 0k + Z(ﬁ‘lu*fffiu)
Jj=1 =1

(26)
bt

as well as we will get the same local truncation errors e; = e for zero and

1 ~2 ~3
non-zero source term. The coefficients f; (j =1,2,...,27), f; and f; (j =
1,2,...,25) in Eq. (26) are:

fr =1

S

(roj — dxg) (af g + (1 = a)f g ) +1°...,

N =

~2

1 ke ~3 ~ i
fi :hz(idi,(fa —fo)+W...  f, =Wdyn(efs—enfg) +1...,

27)

~1 =2
see the attached file 'RHS.nb’ for the detailed expressions of f;, f; and

;"\;. This means that the coefficients k; (i = 1, 2, ..., 27) of the stencil
equations are first calculated for zero source term f; = 0 as described in
Section 2.1. Then, the nonzero source term f given by Eq. (26) is used in
the stencil equation, Eq. (9).

3. OLTEM for post-processing of numerical results - calculations
of spatial derivatives

For the analysis of engineering problems the calculations of the
spatial derivatives of primary functions are necessary in many cases; e.
g., the spatial derivatives of function y; in Eq. (1). Therefore, after the
calculation of the numerical solution for the primary functions, many
computer codes include special post-processing procedures for the
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calculation of the spatial derivatives of the numerical solution for the
primary functions. Here we show the application of OLTEM with the
compact 27-point stencils (the same as we used in the previous section;

o ounum o
dx 4 and u

calculations of these three derivatives are 51m11ar then we show the
au,.um

see also Fig. 1) for the calculation of . Because the

procedure in detail for

du

The compact 27- pomt stencils for the calculation of 22— at the cen-

tral stencil point with the coordinates x14, y14 and 214 (see Flg. 1) can be
selected similar to Eq. (9) as follows:

}h+Zk [ cm

p) *,num 0 * num

é; +(1—au)

— |d14

ap) M** num:| :f’
(28)

where a;4 = 1 if the central stencil point belongs to material « and a;4 =
0 if the central stencil point belongs to material xx. The local truncation
error e, for Eq. (28) can be obtained by the replacement of the numerical
solution ul*,'”“’" and L%*’m‘m in Eq. (28)by the exact solution up and 1.9;*:

0 ot 27 ) _
e, =— aMg—Jr (1—ay) au;}h + ka {apu; +(1 711‘,)14;*} —f.
p=1
(29)

Similar to Eq. (11) in Section 2, we include the interface conditions for
the exact solution at the same small number N of the interface points in
the expression for the local truncation error in Eq. (29) as follows:
ou’
€p = — |:HI4J+ (1 —

o 7
pe 4) %] h+ Z ky [apu; + (1 - ap)u;*]
+{ Z i (ucj “m) + thzJ {e* (nw p

(o)

see the corresponding explanations in Section 2.1. Similar to Section 2,

(30)

first we consider the case of zero source term f; = f = 0. For the accurate

qu™m
ox

cation error e, in Eq. (30). Repeating the procedure described in Section
2.1 and using Eqgs. (12) - (15) with zero source term f* = f** = 0 we will
get the following local truncation error in space e,:

calculation of the derivative we should minimize the local trun-

* o
e, = byug; + byug

oug oug; oug oug oug oug ) 02Ltc
+h<bza a +b50 +b6 ay +b70 +b86 +h b9
Fut 03]4* Putt Fu ()2 - FPu
+b1002 +h“50y2+b12 2+b136y L+ b ()yz +b]53z0x2
cuy o ouy
by aa T g ot “‘axoy> T

(31

where similar to Eq. (16) the coefficients b, (p =1,2,...) are expressed in
terms of the coefficients k; and q1, q2; (i =1,2,...,27,j =1,2,...,Ng)
and are given in the file *b-coef-post.nb’.

For homogeneous materials (without interfaces), the coefficients q, ;
=0g2; =0( =1,2,...,Ng) are zero and the stencils coefficients k; (i =
1,2,...,27) can be analytically found similar to those in Section 2.1.1. In
this case we use the following system of 27 algebraic equations:

b, =0, p=13,579,11,13,15,17,19,21,23,25,27,29,31,33,35,37, 41,
45,47,53,55,67,73,77 (32)

where in contrast to Egs. (17) and (18) from Section 2.1.1, here we
replace Eq. (18) by equation by3 = 0. The solution of Eq. (32) yields the
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stencil coefficients given in Appendix D. These coefficients yields the
following local truncation error ep:

hS
360

(7-552) AT
oxoz*

€ =

S
+(7-582) g S‘j} +0(h"). 33)

For heterogeneous materials with interfaces, the stencil coefficients
ki and q.j, q2; (i =1,2,...,27,j =1,2,...,Ng) are calculated similar to
those in Section 2.1.2 from 109 linear algebraic equations formed by Eq.
(24) In contrast to Section 2.1.2, in Eq. (24) we do not replace equation
0;(1 . =0bykiy =
geneous materials provide the 4th order of accuracy for the local trun-
cation error e,.

The case of zero source term f; # 0 is treated similar to that in Sec-

1. Due to Eq. (21), the stencil coefficients for hetero-

tion 2.2. The final expression for the termf in Eq. (28) is also described
by Eq. (26); see the attached file "RHS-post.nb’ for the detailed expres-

. A1 -2 -3
sions of f;, f; and f;.

To summarize, for the calculation of the derivative 2= using OLTEM
with the 27-point stencils, we should follow the followmg procedure:

e Calculate the stencil coefficients k; and q1 5, q2; (i =1,2,...,27,j =1,
2,...,Ng) for each internal grid point as described above in Section 3
for homogeneous (without interfaces) and heterogeneous (with in-
terfaces) materials.

 Using these stencil coefficients, calculate the right-hand side f in Eq.
(28) for each internal grid point using Eq. (26).

u""’"

e Calculate the derivative

from Eq. (28) for each internal grid
point as follow:

[Zk [apu*"“m (1- ap)u;*="“m] —f] : (34)

*,num
‘)”14

if the central stencil point belongs to material * (a;4 = 1) and

{Zk [y 4 (1= ay )y | f} : (35)

a Hk num

if the central stencil point belongs to material xx (a;4 = 0).

The calculation of the derivatives ”‘f;y”" and %" can be done similar

e

to the calculation of the derivative % & as described above.

Remark 7. If any of the grid points included into the stencil is located
on the boundary with the Dirichlet boundary conditions then for this
point p in Egs. (34) and (35) we use the exact value of u;™™ or uy*"™™
defined by the boundary conditions. In the case of the Neumann
boundary conditions, the procedure can be modified similar to that in
our paper [39] for OLTEM with irregular boundaries and the Neumann
boundary conditions.

It is interesting to note that for homogeneous materials the post-
processing procedure described above can be also used for the calcula-
tion of the spatial derivatives without the application of the partial
differential equation as in other post-processing techniques (e.g., see
[36-38] for finite and isogeometric elements). Let us assume that we can
W™ at the internal grid point in terms of the
values of the function u"”’" at the neighboring grid points. For simplicity,
we will use a uniform Cartesian mesh and 27 grid points for the calcu-

calculate the derivative

lation of the derivative azg-;
follows:
0 num
M14 + Z k]) e — (36)

with the following local truncation error:
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27
e =—h—"= ku,. (37)

Repeating the procedure described in Section 2.1 without the use of Eqgs.
(14) and (15) and zeroing the corresponding coefficients b, in the Taylor
expansion of the local truncation error e,, we can show that k;5 =1 /2
and ki3 = —1/2 (all otherk; =0,i =,1,2,...,12,14,16,17,...,27) in Eq.
(36) yield the optimal order of e, in Eq. (37):

+o(t). 38)

e, = —

h_303u14
6 ox?

In this case we have the well-known finite-difference approximation of
the derivative. Comparing Eqs. (38) and (33) we can see that the use of
PDE for post-processing improves the accuracy of the spatial derivative
by two orders for the same 27-point compact stencils. We should also
mention that the approximation given by Eq. (36) cannot be used for the
stencils with interfaces (as those in Fig. 1b).

To summarize, the proposed post-processing procedure provides the
optimal accuracy of the spatial derivatives of primary functions calcu-
lated with the help of compact stencils. It can be developed with or
without the use of PDEs. However, the use of PDEs significantly im-
proves the accuracy of the spatial derivatives for the given stencils.
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Despite the fact that we have applied the proposed post-processing
technique to the stencils defined on Cartesian meshes, it can be also
used for non-uniform meshes with the corresponding coefficients ryp,
Typ> Tzp in Eq. (6) (similar to OLTEM developed in our papers [27,29,39]
for irregular boundaries). Finally, the post-processing procedure devel-
oped can be independently used with any known numerical technique
(e.g., with finite elements).

4. Numerical examples

In this section the computational efficiency of OLTEM with the 27-
point stencils developed for the solution of the 3-D Poisson equation
with discontinuous coefficients will be demonstrated and compared
with conventional linear and high order (up to 7th order, the highest
order in ‘COMSOL’) tetrahedral finite elements. For finite element cal-
culations, the commercial finite element software ‘COMSOL’ with iso-
parametric finite elements is used. In order to compare the accuracy of
OLTEM with FEM, the following errors are considered below. The

relative error ¢}, for the function w at the jth grid point is defined as:

num __ xact
v wj

d, =

, j=12,...,N. (39

exact
Winax

C)

Fig. 2. A 3-D cube with a spherical inclusion (a), the examples of an unfitted Cartesian mesh for OLTEM (b) and a conformed tetrahedral finite element mesh

generated by the commercial software COMSOL (c).
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Fig. 3. The maximum relative error ¢** (a) and the 2 error norm ef (b) as a function of the mesh size h at mesh refinement in the logarithmic scale. The numerical
solutions of the 3-D Poisson equation for the cube with the spherical inclusion (see Fig. 2a) are obtained by OLTEM on square (b, = 1 and b, = 1) Cartesian meshes

with the following material contrasts: &

The maximum relative error e[ for the function w is defined as:

max __ Jj
e, =maxe,,

j=1,2,...,N. (40)
In Egs. (39)-(40) the superscripts ‘num’ and ‘exact’ correspond to the
numerical and exact solutions, N is the total number of the grid points
used in calculations, w9 is the maximum absolute value of the exact

solution over the entire domain for the function w. We also use the L?
error norm for finite elements (e.g., see [40]) and the I? error norm (e.g.,

see [41]) for OLTEM:
1
2
eXAC] 2 exact
W (x5, 37,21 ] }/Iw 12

N Ny N
= {dxdydz Z Z Z (W™ (xi,3,2) —
(41)

=0 j=0 k=0

where Ny, N, and N; are the numbers of Cartesian grid points along x, y
and z-axes, x;, y; and z. are the coordinates of Cartesian grid points,

respectively. As function w in Eqs. (39)—(41) we consider u, 35 U and %,

4.1. 3-D Bi-material cube with a spherical inclusion

Let us consider the 3-D Poisson equation with discontinuous co-
efficients for the bi-material cube with dimensions 2 x2 x2 as shown in
Fig. 2a. The cube consists of a spherical inclusion (subdomain ;) at the
center of the cube and the matrix (subdomain Qj) with the circular
interface described by the following equation:

eyt =r, (42)

where r = 0.4 is the radius of the circular interface The following ma-
50, 100 200, 50; 100; 200 in Q; and ey

terial properties are assumed: e; =

max
u
]
W

T

1

1

1

-4 S 1(OLTEM)
S 2(Linear Tetrahedrals)
_ 5 3(Quadratic Tetrahedrals),
74(Cubic Tetrahedrals)
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_6 % 6(Quintic Tetrahedrals)
7(Sextic Tetrahedrals) : T4
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Logio N
a)

Logype

= 50 (curve 1), & &= 100 (curve 2), & a= 200 (curve 3), ¢ e’ =50 (curve 4), ¢ e’ =100 (curve 5) and e’ = 200 (curve 6).

=1 in Qy with the material contrasts & = o 1657 755; 50; 100; 200.
Using the method of manufactured solution, the following exact solution

to the Poisson equation is selected:

2 2 2
cos C—z + )r)—z + i—2> in Q;

u(x,y,z) = s . (43)
e Xy oz e .
:HCOS(F+?+P> - (e—nf 1>c0s(1) in Qy

This solution meets the interface conditions, Eq. (2). The source terms
can be calculated by the substitution of the exact solution into the
Poisson equation, Eq. (1), and are given below:

fi(x,y,2) = —2e; {r% (,2 +5 )cos (rz +% ) + (,%) sin (’,‘—f+{—j+ﬁ—§)}

in QI
fu(x,y,2)=—2e; {r% ( +y2 )cos (r2 +y +% ) + (%)sin (JSJH,'; %)}
in QH

The Dirichlet boundary conditions along all faces of the cube are
imposed according to the exact solution, Eq. (43). The problem is solved
by OLTEM with the 27-point stencils as well as by linear and high order
(up to the 7th order) finite elements for different material contrasts :T’l
Figure 2b,c shows a typical unfitted Cartesian mesh with aspects ratios
by = b, = 1 used for OLTEM as well as a typical conformed tetrahedral
finite element mesh.

First, we present the application of OLTEM to the solution of the
Poisson equation for heterogeneous materials with different material
contrasts
norm e’ as a function of the mesh size h in the logarithmic scale for
OLTEM with the 27-point stencils and the material contrasts ;- =

&, Figure 3 shows the maximum error e an e [¢ error
4 F 3 shows th ma and the 12

L2
Logio ey
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Fig. 4. The maximum relative error e** (a) and the L? error norm eﬁz (b) as a function of /N at mesh refinement in the logarithmic scale (N is the number of degrees
of freedom). The numerical solutions of the 3-D Poisson equation for the cube with the spherical inclusion and the material contrast eeTI, = % (see Fig. 2a) are obtained

by OLTEM on square (b, = 1 and b, = 1) Cartesian meshes (curve 1) as well as by linear and high-order tetrahedral finite elements (curves 2 - 8). Curves 2, 3, ...,8

correspond to linear, quadratic,..., and the 7th order elements.
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Fig. 5. The logarithm of the maximum relative errors e** (a) and the 2 error norm eff (b) as a function of the mesh size h. The numerical solutions of the 3-D Poisson
equation for the cube with the spherical inclusion (see Fig. 2a) are obtained by OLTEM on square (by = 1 and b, = 1) Cartesian meshes with the material contrast e%’l =
%. Each curve is calculated on 1001 meshes; see the text.
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Fig. 6. The maximum relative errors ef"* of the x-derivative of the function u (a), ex™ of the y-derivative of the function u (c) and ef*™* of the z-derivative of the
ax ay oz

function u (e) as well as the L2 error norm eﬁj of the x-derivative of the function u (b), e‘,ﬂf of the y-derivative of the function u (d), and e5 of the z-derivative of the
ax dy £

function u (f) as a function of /N at mesh refinement in the logarithmic scale (N is the number of degrees of freedom). The numerical solutions of the 3-D Poisson

equation for the cube with the spherical inclusion and the material contrast {& = 25 (see Fig. 2a) are obtained by OLTEM on square (b, = 1 and b, = 1) Cartesian

meshes (curve 1) as well as by linear and high-order tetrahedral finite elements (curves 2-8). Curves 2, 3, ...,8 correspond to linear, quadratic,..., and the 7th
order elements.

1 1 1

20' 100> 2000 003 100; 200. As can be seen from Fig. 3, OLTEM yields with the theoretical results in the previous Section 2.
convergent results with the order of convergence close or greater than Next, we present the accuracy comparison of OLTEM with linear and
three for all material contrasts. These observations are in agreement high order (up to the 7th order - the highest order in COMSOL) finite

10
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elements for the material contrast :—,’I = 51—0

obtained for other material contrasts). Figure 4 shows the maximum

(similar results can be also

relative errors e™ and the errors €5’ in the L norm as a function of the
number N of degrees of freedom in the logarithmic scale for the nu-
merical results obtained by OLTEM and by finite elements. As can be
seen from Fig. 4, at the same N the numerical results obtained by OLTEM
are much more accurate than those obtained by linear and higher order
finite elements (up to the 7th order elements for the maximum relative

errors e™ and up to the 6th order elements for the L? error norm eX’; see
Fig. 4a,b). In addition to that, up to the accuracy of 0.0001% (—6 in the
logarithmic scale along the y-axis in Fig. 4b) OLTEM yields more accu-
rate results than those obtained by finite elements up to the 7th order.
This increase in accuracy by OLTEM is impressive considering the fact
that higher order finite elements have much wider stencils compared to
those for OLTEM (the width of the stencils for OLTEM corresponds to
that for linear finite elements) and require a much greater computation
time. We should also mention that at the computational costs of linear
finite elements, at the engineering accuracy of 0.1%, OLTEM reduces the
number N of degrees of freedom by a factor of greater than 3500 for the
maximum relative error e™ and greater than 250 for the L2 error norm

eﬁz compared to that for linear finite elements; see Fig. 4a,b. This will
lead to a huge reduction in the computation time for OLTEM compared
to linear finite elements at a given accuracy.

The detailed study of the convergence and stability of the numerical
results obtained by OLTEM is shown in Fig. 5. For this study, we solve
the test problem with the material contrast 2 = 25 on 1001 Cartesian

meshes with the mesh sizes h; = h; + %

tion of the mesh size hwhereh; =1/5 =0.2,h, =1/10=0.1andi =1,
2,...,1001. For these meshes, three grid planes always coincide with the
left, bottom and rear faces of the cubical domain and at the small vari-
ation of the mesh size h we have very different locations of the circular
interface with respect to the grid points. The curves in Fig. 5 correspond
to curves 1 in Fig. 3. As can be seen from Fig. 5, the numerical results
obtained by OLTEM on these meshes converge with the decrease in the
grid size h. Small oscillations in Fig. 5 decrease with the decrease in the
mesh size. This oscillatory behavior can be explained by the fact that at
small variations of the mesh size h, there is a discontinuous change in the
location of the grid points with respect to the interface (e.g., some grid
points that belong to one material for the previous mesh can belong to
another material for the next mesh; this leads to the discontinuous
change of some stencils equations for the meshes with a small difference
in h). It is important to mention that small oscillations in numerical
convergence curves are typical for many numerical techniques at small
variations of h. For example, the change in the angles of finite elements
at small variations of the element size h also leads to such oscillations in
convergence curves for finite element techniques.

The application of the new post-processing procedure for the calcu-
lation of the spatial derivatives of numerical solutions is presented in
Fig. 6. Here, we solve the test problem with the material contrast £ = =
by OLTEM as well as by linear and high order finite elements and
compare the accuracy of the spatial derivatives 24, "“(,";m and %" of the
numerical solutions u™™. Figure 6 shows the maximum relative errors

and a very small varia-

. . . 2 2 2 . .
emax emax emax and the errors ek , ek, ek in the L2 norm as a function of
ox oy Oz ox ay 0z

ox o 0z

the number N of degrees of freedom for different techniques. As can be
seen from Fig. 6, at the same N the spatial derivatives 24, %% ac
obtained by OLTEM are much more accurate than those obtained by
linear and high-order (up to the 7th order) finite elements for the both

selected error norms. The numerical results also show that the order of

Juum - gyhum gunum

ox 2 oy 0z
norm is higher than that for the maximum relative error; compare the
slopes of the curves in Fig. 6a,c,e with those in Fig. 6b,d,f. We should
also mention that at the engineering accuracy of 0.1% for the spatial

and

convergence of the spatial derivatives and for the L? error
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derivatives, OLTEM reduces the number N of degrees of freedom by a
factor of greater than 2.9 x 10° for the maximum relative error and
greater than 1.15 x 106 for the L2 error norm compared to that for linear
finite elements; see Fig. 6). In order to find the intersection of curves 2 in
Fig. 6 with the horizontal lines -3 along the vertical axis (for the accu-
racy of 0.1%) and to estimate this reduction in N, we extrapolated the
curves 2 using the constant slope. Due to the new post-processing pro-

cedure, OLTEM is even more efficient for the calculation of the spatial
guum gyum
ox 2 ody
elements. This will lead to a huge reduction in the computation time for
the calculation of the spatial derivatives by OLTEM compared to those

obtained by finite elements at a given accuracy.

derivatives and %:m compared to linear and high order finite

5. Concluding remarks

OLTEM developed in our paper [35] for the 2-D Poisson equation with
heterogeneous materialsis here extended to the general 3-D case. 27-point
stencils (similar to those for linear finite elements) and unfitted Cartesian
meshes for irregular geometry are used. One of the main ideas of the
proposed approach for heterogeneous materials with interfaces is the
addition of the interface conditions at a small number of interface points to
the expression for the local truncation error. The unknown stencil co-
efficients are numerically calculated from a small local system of algebraic
equations for the general geometry of interfaces. OLTEM does not change
the width of the stencil equations; i.e., the size of the global discrete system
of equations is the same for the Poisson equation with constant or
discontinuous coefficients. The calculation of the unknown stencil co-
efficients is based on the minimization of the local truncation error of the
stencil equations and yields the optimal order of accuracy of the new
technique ata given stencil width. The increase in the computational costs
for the calculation of the unknown stencil coefficients from the local
system is insignificant compared to the computational costs for the solu-
tion of the global discrete system. Another novelty of the paper is the
development of a new post-processing procedure for the accurate calcu-
lations of the spatial derivatives of numerical solutions. We show that
OLTEM with compact stencils can significantly improve the accuracy of
the spatial derivatives of numerical solutions as well. The proposed
post-processing includes the use of the partial differential equations and
the solution of the local systems of algebraic equations similar to those
used for the calculations of the stencils coefficients in the basic approach.

The main advantages of the suggested technique can be summarized
as follows:

e Many difficulties of the existing numerical techniques for irregular
domains (e.g., finite elements, spectral element, isogeometric ele-
ments, the finite volume method, and many other) are related to
complicated mesh generators for conformed meshes and the accu-
racy of 'bad’ elements (e.g., the elements with small angles). In
contrast to these techniques, OLTEM is based on trivial unfitted

Cartesian meshes with a trivial procedure for the formation of the 27-

point stencils for 3-D domains with complex irregular interfaces.

The new approach has the same width of the stencil equations and

the same structure of the sparse global discrete equations for the

Poisson equation with constant and discontinuous coefficients. There

are no unknowns on the interfaces between different materials for

the proposed technique; i.e., complex irregular interfaces do not
affect the structure of the global system of equations (they affect just
the values of the stencils coefficients).

e In contrast to the finite-difference techniques with the stencil co-
efficients calculated through the approximation of separate partial
derivatives, the entire partial differential equation is used for the
calculation of the stencil coefficients in OLTEM. This leads to the
optimal accuracy of the proposed technique. E.g., the 27-point stencils
of the new 3-D approach provide the optimal accuracy that cannot be
improved without changing the width of stencil equations. In contrast
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to the 27-point stencils of linear quadrilateral finite elements, OLTEM

yields a higher order of accuracy (by one order) compared to that for

linear finite elements for the general geometry of interfaces.
e The numerical results for irregular interfaces also show that at the same
number of degrees of freedom, OLTEM is even much more accurate than
high-order (up to the sixth order) finite elements with much wider
stencils. This also means that at a given accuracy, OLTEM significantly
reduces the computation time compared to that for linear and high-order
finite elements. For example, at accuracy of 0.1% OLTEM decreases the
number of degrees of freedom by a factor of greater than 3500 compared
to linear finite elements with similar stencils and conformed meshes.
OLTEM does not require time consuming numerical integration for
finding the coefficients of the stencil equations; e.g., as for high-order
finite, spectral and isogeometric elements. The stencil coefficients are
calculated analytically or numerically (for the general geometry of in-
terfaces) by the solution of small local systems of linear algebraic equa-
tions. Numerical experiments show that the solution of these small local
systems of algebraic equations is fast. Moreover, these local systems are
independent of each other and can be efficiently solved on a parallel
computer.
It was shown that OLTEM with the 27-point compact stencils used for
the basic computations can be also applied (with small modifica-
tions) to the calculation of the spatial derivatives of numerical so-
lutions at post-processing. The proposed post-processing procedure
includes the use of the partial differential equation and the solutions
of the small local systems of equations. Numerical experiments show
that OLTEM with 27-point stencils used for basic computations and
post-processing yields much more accurate results for the spatial
derivatives of the numerical solution than those obtained by linear
and high-order (up to the 7th order) finite elements with much wider
stencils. At the engineering accuracy of 0.1% for the spatial de-
rivatives, OLTEM decreases the number of degrees of freedom by a
factor of greater than 10° compared to linear finite elements.
The proposed post-processing procedure provides the optimal accu-
racy of the spatial derivatives of the numerical solution for the
selected compact stencils. It can be developed with or without the
use of PDEs. However, the use of PDEs significantly improves the
accuracy of the spatial derivatives for the given stencils (e.g., by two
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orders for the same 27-point stencils). Despite the fact that we have
applied OLTEM to the stencils defined on Cartesian meshes, the
proposed post-processing technique can be equally used for non-
uniform meshes (similar to OLTEM developed in our papers [27,
29,39] for irregular boundaries). Finally, the post-processing pro-
cedure developed can be independently used with any known nu-
merical technique (e.g., with finite elements).

Due to the huge reduction in the computation time compared to
existing methods and the use of trivial unfitted Cartesian meshes that
are independent of irregular geometry, the proposed technique does
not require remeshing for the shape change of irregular geometry
and it will be effective for many design and optimization problems as
well as for multiscale problems without the scale separation.

In the future we plan to develop OLTEM with adaptive mesh
refinement similar to h— and p— mesh refinements for finite elements (e.
g., it was shown in papers [31,33] that OLTEM can easily combine
different stencils). We plan to use quadtrees/octrees meshes that allow a
simple refinement strategy with Cartesian meshes. The extension of
OLTEM to other PDEs with discontinuous coefficients as well as to
non-linear PDEs will be also considered in the future. We plan to extend
the new post-processing procedure with OLTEM to other PDEs including
accurate stress calculations for elasticity equations.
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Appendix A. The coefficients b, used in Eq. (16) for the 27-point stencils.

The first 10 coefficients b, (p = 1,2,...,10) are presented below. Please see also Appendix B and the attached file 'b-coef.nb’.

b =Y aki+ P
by =7 (1 - @)k — 2 q1;
bs = 37, bui(ray — dzo)ki+ S0 (dajdnj + €q2;)

by =Y 71b(1 — @)(raj — dze)ki — 322 (dzjqrj + €azjG2,)

bs = Y7 byaj(ry; — dye)kj+ 320 (dyq1j + €.y qa;)

bs = 1'2:71by(1 = aj)(ry; — dyc)kj — 212:51 (dyjq1j + ewlyjq2;)

by = Y7 1bxaj(rej — dxo)kj+ 37 (dejdrj + €.nxjqa;)

bs = 371 be(1l — @) (rej — dxe)kj — 7% (dejqrj + €.miejga,)

by = 5740 b0 dac)? — (g — e+ 5% (3 — By + e (e — )

bio = Y741 (1 — @) [b2(rzj — dza)® — (rj — dye) Tk — 32 {% (&) — &))q1j + e (daynyj — zJ"x.j)CIzj}

Appendix B. The explicit form of Eqs. (24) for the determination of the stencil coefficients.

The coefficients b; in Eq. (16) can be represented as a linear function of the stencil coefficients k;, g1 and q,; as follows:

27 25
b=y skt (chay+ o) i=1,2,0098,
=1 =

12

(B.1)
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where the coefficients s;, cilj and cizj can be found from the expressions for the coefficients b;; see Appendix A and the attached file 'b-coef.nb’.
Then using Eq. (B.1), the local system of linear algebraic equations for finding the stencil coefficients, Eq. (24), can be rewritten as follows:

ob X b,
Zz, 2 Z : dk Z b, ak,/n}

=33

27 50
- leslm+2[ Z < Z Spjspm + hl Z Spjspm + hZ E Sp/spm> \j

j=1 \ p=33 p=51 =13 (B.2)
25
Z(Z jSom & ZCPJSI”” +h ZC‘”W> e Z(ZCP!S’"” +h ZCPJSP'” + Z spm> =0
=1\ p=33 p=s1 =73 =1 \ p=33 p=51 =73
m=1,2,..27,
abl 50
5 +2 b ”+h b, +h ) by
=2 2y Z o Za
32 27 [ 50
- Ziw}ﬁZ[Z( WD RS R
=1 =1 \ p=33 =51 (B.3)
5 98 25 [/ 50
a1
Z(Z Cpj Pm + I Z Cpj Pm + hzZ‘p/“pm>q1/+Z<Z i Pm + Z i pm + hzz i lml>q2J 0,
=1 \ p=33 p=s1 =73 =1 \ p=33 51 =73
m=1,2,...,25,
=Saia| S n oy P
I 1
0q2m =1 p=33 p=s1 pa =73 pa q2.m
32 27 [/ 50
= Z/l,c,zm+2[z<23pjcpm + hy Zspjcpm + hy Z%fﬁm)
=1 = \ = =51 =73 (B.4)
25 50 25 50
Z(Z‘I’JLPW + I chcpm + hzz Cpj pm> g1+ Z(Z‘m Com T h chcpm + hzz i pm> 92,1 =0,
=1 \ p=33 p=sl =1 33 51 =73
m=1,2,..25,
va,k,+2(m,ql/+cqu,)—0, m=1,2,...32, ®5)

where Egs. (B.2)-(B.5) form a system of 109 linear algebraic equations for the determination of the stencil coefficients k; (j =1,2,...,27), q1j and g2 (j
=1,2,...,25) as well as 32 Lagrange multiplier 4; (I = 1,2,...,32).

13



A. Idesman and M. Mobin Advances in Engineering Software 167 (2022) 103103

Appendix C. The coefficients k; (j = 1,2, ...,27) of the 27-point uniform stencils for homogeneous materials

(5(b7 + 1)b,> +5b,> +9) (5(b.> —5)b,> —25b,> +9)
S R G )b F 12567 +9) 7 T 500(6 + 1)b, § 50067 136
z y 4
(5(b.> + 1)b,* 4 5b.7 +9) (—25(b.2 + 1)b> +5b.° +9)
S R0 F )b F 12557 +9) T T S00(67 1 1)b,” 1 50067 136
z y z z
_ (25(b.7 = 5)b* +25b.7 - 9) o (—25(b2 +1)b,> +5b> +9)
P 250(b + 1)b, 425067 + 18 " 500(b.2 + 1)b,> +500b.% +36
o — (5(b.2 +1)b,* +5b.2 +9) ~(5(6.2—=5)p, —25b.2 +9)
T 8(125(b2 + 1)b2 + 12567 +9) T 500(b. + 1)b,% + 5006.% +36
(5(b. + 1)b,> +5b.° +9) (5(5b.° — 1)b,” +25b,> — 9)
b= 8(125(b.2 + 1)b,* + 125> +9) ' b0 = 500(b.2 + 1)b,* + 5006.> +36
Z y z z y 2
(25(b.7 + 1)b,* — 125b,> - 9) (5(5b.7 — 1)b,* +25b,> — 9)
NS 050(67 1 1)b 125060 1187 7 T TS00(67 + 1)b, + 50067 1 36
~ (—25(5b. — 1)b,* +25b.> - 9) re 1 e (—25(5b. — 1)b,* +25b,> — 9)
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~ (5(5b. — 1)b,> +25b.° - 9) (256 + 1)b,* — 125b7 - 9)
7 500(b2 + 1)b,2 + 50062 367 T 250(b.2 + 1)b,7 +250b.% + 18

(5(5b.> — 1)b,> +25b,> — 9)

kig =

(5(b.> + 1)b,* + 5b.% +9)

kg =

500(b,* + 1)b,” + 500b.% + 36’ 8(125(b.” + 1)b,* +125b,> +9) ’
~ (5(b2 —5)b> —25b. +9) P (5(b.> + 1)b,* +5b.% +9)
* T 500(b7 + )b +50062 360 o 8(125(b.7 + 1)b> + 12557 +9)
_ (—25(b> 4+ 1)b, +5b.> +9) _ (25(b7 = 5)b* +25b.7 —9)
27 500(b.2 + 1)b,* + 5006, + 36 27 250(b7 + 1)b,” + 25067 + 18
(—25(b.° +1)b> +5b,> +9) (5(b% +1)b,* 4+ 5b,> +9)
koy = - kos =

500(b,> + 1)b,” + 500b,” + 36

(5(b.> —5)b,> —25b,> +9)

26 —

Appendix D. The coefficientsk; j =1,2,...,

500(b.> + 1)b,” + 500b.” + 36’

8(125(b.% + 1)b,* + 12562 +9) ’

(5(b. + 1)b> +5b,> +9)

27 =

8(125(b.” +

1)b,* +125b,> +9)

27) of the 27-point uniform stencils for homogeneous materials used for the calculation of the

derivatives %", fhgy"m and %"
ki G =1,2,...,27) for the calculation of %"
b= e B0 k= i 4:%, k=0, kﬁz%ﬁlzz,
k7:ﬁyzbzz7 ks =0, gz—m, lo:%, ki =0, k12:%§g7
7 7
kBZ%) bﬁbyzlslfﬁ% . ku=0, ks = 91*0 lsbvzbzz+15(b123>
ho= DPE T 0 k= I e T k=00 k= -
180b,%b. 180b,%b, 3605, b, 3600, b,
k227%7 ks = 0, k24:%7 25:360[77W7 kos = 0, k2777360b7w'
kj G =1,2,...,27) for the calculation of %47
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b b b b
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Supplementary material

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.advengsoft.2022.103103.
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