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with irregular interfaces and unfitted Cartesian meshes as well as for 
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A B S T R A C T   

Recently the optimal local truncation error method (OLTEM) has been developed for the 2-D Poisson equation for 
heterogeneous materials with irregular interfaces and unfitted Cartesian meshes. Here we extend it to the general 
3-D case. 27-point stencils that are similar to those for linear finite elements are used with OLTEM. The interface 
conditions at a small number of selected interface points where the jumps in material properties occur are added 
to the expression for the local truncation error and do not change the width of the stencils. There are no un
knowns on interfaces between different materials; the structure of the global discrete equations is the same for 
homogeneous and heterogeneous materials. The calculation of the unknown stencil coefficients is based on the 
minimization of the local truncation error of the stencil equations, includes the entire PDE for the derivations and 
yields the optimal third order of accuracy of OLTEM with the 27-point stencils. The 3-D numerical results for 
heterogeneous materials with irregular interfaces and different material contrasts show that at the same number 
of degrees of freedom, OLTEM is even much more accurate than high-order (up to the 6th order) finite elements 
with much wider stencils. Compared to linear finite elements with similar 27-point stencils, at the engineering 
accuracy of 0.1% OLTEM decreases the number of degrees of freedom by a factor of greater than 3500. This leads 
to a huge reduction in computation time. 

For the first time, a new post-processing procedure has been developed with OLTEM for the calculation of the 
spatial derivatives of numerical solutions. The spatial derivatives for each grid point are calculated with the help 
of one compact 27-point stencil (the same as for basic computations) for the corresponding grid point and the use 
of the original PDE. The spatial derivatives of the OLTEM solutions calculated with the new post-processing 
procedure are much more accurate compared to those obtained by high-order (up to the 7th order) finite ele
ments with much wider stencils. At the engineering accuracy of 0.1% for the spatial derivatives, OLTEM de
creases the number of degrees of freedom by a factor of greater than 106 compared to linear finite elements. The 
new post-processing procedure can be equally applied to the calculation of the partial derivatives obtained by 
other numerical methods as well as to the numerical results for other PDEs. 

Due to the huge reduction in the computation time compared to existing methods and the use of trivial un
fitted Cartesian meshes that are independent of irregular geometry, the proposed technique does not require 
remeshing for the shape change of irregular geometry and it will be effective for many design and optimization 
problems as well as for multiscale problems without the scale separation.   

1. Introduction 

The Poisson equation for heterogeneous materials with interfaces is 
used for the description of many important phenomena such as heat 
transfer, multiphase flows, neurosciences, electrostatics and many 
others. Therefore, many efforts are made for the development of 

accurate and computationally efficient numerical techniques for this 
equation; e.g., see [1–10] and many others. The finite element method, 
the finite volume method, the isogeometric elements, the spectral ele
ments and similar techniques represent very powerful tools for the so
lution of partial differential equations (PDEs) for a complex geometry. 
However, the generation of non-uniform meshes for a complex geometry 
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is not simple and may lead to the decrease in accuracy of these tech
niques if ’bad’ elements (e.g., elements with small angles) appear in the 
mesh. Moreover, the conventional derivation of discrete equations for 
these techniques (e.g., based on the Galerkin approaches) does not lead 
to the optimal accuracy. There is a significant number of publications 
related to numerical techniques for different PDEs on irregular domains 
with uniform embedded meshes. For example, we can mention the 
following fictitious domain numerical methods that use uniform 
embedded meshes: the embedded finite difference method, the cut finite 
element method, the finite cell method, the Cartesian grid method, the 
immersed interface method, the virtual boundary method, the 
embedded boundary method, etc. The main objective of these tech
niques is to simplify the mesh generation for irregular domains as well as 
to mitigate the effect of ’bad’ elements. For example, the techniques 
based on the finite element formulations (such as the cut finite element 
method, the finite cell method, the virtual boundary method and others) 
yield the p + 1 order of accuracy even with small cut cells generated due 
to complex irregular boundaries (e.g., see [11–17] and many others). 
The main advantage of the embedded boundary method developed in 
[18–22] is the use of simple Cartesian meshes. The boundary conditions 
or fluxes in this technique are interpolated using the Cartesian grid 
points and this leads to the increase in the stencil width for the grid 
points located close to the boundary (the numerical techniques devel
oped in [18–22] provide just the second order of accuracy for the global 
solution). A stable generalized finite element method for the Poisson 
equation was developed in [7] for heterogeneous materials with curved 
interfaces and unfitted uniform meshes. The second order of accuracy in 
the energy norm was achieved in [7] with 2-D quadratic finite elements 
that form 25-point stencils. The order of accuracy p +1 for interface 
problems for the Poisson equation on unfitted meshes was reported in 
[10,23–26] for high-order immersed and extended finite elements of 
order p. 

The development of robust numerical techniques for the solution of 
PDEs with complex irregular interfaces that provide an optimal and high 
order of accuracy is still a challenging problem. 

Recently we have developed OLTEM with compact stencils for the 
solution of PDEs with constant coefficients (homogeneous materials) on 
regular and irregular domains (e.g., see [27–33]) as well as OLTEM with 
compact stencils for the solution of the scalar wave, heat and Poisson 
equations in the 2-D case for heterogeneous materials with irregular 
interfaces (see [34,35]). The main advantages of OLTEM are the optimal 
accuracy of discrete equations and the use of unfitted Cartesian meshes 
for irregular geometry. For many existing techniques the optimal ac
curacy of the discrete equations even is not known. For example, we 
already mentioned that finite elements of order p provide the p +1 order 
of accuracy. However, in our papers [30,33] we showed that for the 
same structure of the discrete equations, quadratic elements (p = 2) 
provide the 18th order of accuracy for the Poisson equation and the 10th 
order of accuracy for the elasticity equations on regular domains with 
uniform meshes. 

In this paper, we extend OLTEM developed in our paper [35] for the 
2-D Poisson equation with heterogeneous materials to the general 3-D 
case. It is known that the transition from the 2-D geometry to the 3-D 
geometry is a challenging problem due to the complexity of 3-D irreg
ular geometry. Due to the complexity of analytical expressions of 
OLTEM, their derivations for the 3-D Poisson equation with irregular 
interfaces is also a challenge (see also Remark 4 below). Another novelty 
of the paper is the development of a new post-processing procedure for 
the accurate calculations of the spatial derivatives of numerical solu
tions. For example, it is known that due to piecewise continuous shape 
functions of conventional finite elements, the spatial derivatives are 
discontinuous across finite element boundaries and special 
post-processing procedures are necessary for their accurate calculations; 
e.g., see [36–38]. Here we show that OLTEM with compact stencils can 
accurately calculate the spatial derivatives of numerical solutions as 
well. The proposed post-processing procedure developed here for the 

Poisson equation can be also extended to different PDEs (e.g., for the 
calculation of stresses for the elasticity equations) as well as it can be 
applied to other techniques (e.g., for post-processing finite element 
results). 

The Poisson equation in a composite domain Ω = ∪Ωl (l = 1, 2, …, N 
where N is the total number of subdomains) can be written down in each 
subdomain Ωl as follows: 

el∇
2ul = fl , (1)  

where el is a constant in each subdomain Ωl and can be discontinuous 
across the interfaces between subdomains Ωl (l = 1,2,…,N), fl(x) is the 
source term that can be also discontinuous across the interfaces between 
subdomains Ωl, ul is the field variable. We also assume that the functions 
ul and fl are sufficiently smooth in each subdomain Ωl. At the interface G 
between any two subdomains, the following interface conditions (the 
continuity of the function and the flux across the interface) are applied: 

u∗
G −u∗∗

G =0, e∗

(

nx
∂u∗

G

∂x
+ny

∂u∗
G

∂y
+nz

∂u∗
G

∂z

)

−e∗∗

(

nx
∂u∗∗

G

∂x
+ny

∂u∗∗
G

∂y
+nz

∂u∗∗
G

∂z

)

=0,

(2)  

where nx, ny and nz are the x − , y- and z-components of the normal 
vector at the interface, e∗ (e∗∗) is the corresponding material constant, 
the symbols ∗ and ∗∗ correspond to the quantities on the opposite sides 
from the interface for the corresponding subdomains Ωl. This means that 
the functions ul are continuous across the interfaces but can have the 
discontinuous spatial derivatives across the interfaces. 

Remark 1. The derivations for the new approach can be easily 
extended to the case with the discontinuous functions and fluxes across 
interfaces; i.e., when the right-hand sides in Eq. (2) are the given func
tions. However, for simplicity we consider Eq. (2) with zero right-hand 
sides. 

In this paper the Dirichlet boundary conditions u = g1 are applied 
along the boundary Γ where g1 is the given function. However, the 
Neumann boundary conditions can be also used with the proposed 
approach; e.g., see our paper [39]. According to OLTEM, the discrete 
system for the Poisson equation after the space discretization with a 
Cartesian rectangular mesh can be represented as a system of algebraic 
equations. The algebraic equation of this system for each internal grid 
point of the domain is called the stencil equation and can be written 
down for the case without interfaces as follows: 

∑M

i=1
kiunum

i = f , (3)  

where unum
i is the numerical solution for function ui at the grid points, ki 

are the unknown stencil coefficients to be determined, f is the dis
cretized source term (see the next Sections), M is the number of the grid 
points included into the stencil equation. Many numerical techniques 
such as the finite difference method, the finite element method, the 
finite volume method, the isogeometric elements, the spectral elements, 
different meshless methods and others can be finally reduced to Eq. (3) 
with some specific coefficients ki. In the derivations below, we will as
sume 27-point (M = 27) stencils in the 3-D case that are similar to 27- 
point stencils of 3-D linear quadrilateral finite elements on Cartesian 
meshes. Generally, the stencils with any number of points M can be used 
with the suggested approach. 

Let us introduce the local truncation error used with OLTEM. The 
replacement of the numerical values of function unum

i at the grid points in 
Eq. (3) by the exact solution ui to the Poisson equation, Eq. (1), leads to 
the residual e of this equation called the local truncation error of the 
discrete equation, Eq. (3): 

e =
∑M

i=1
kiui − f . (4) 
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Calculating the difference between Eqs. (4) and (3) we can get 

e =
∑M

i=1
ki

[
ui − unum

i

]
=

∑M

i=1
kieu

i , (5)  

where eu
i = ui − unum

i are the errors of function ui at the grid points i. As 
can be seen from Eq. (5), the local truncation error e is a linear combi
nation of the errors of the function u at the grid points i which are 
included into the stencil equation. 

In Section 2.1, OLTEM with 27-point stencils is derived for the 3-D 
Poisson equation with discontinuous coefficients and zero source term. 
Its extension to nonzero source term is considered in Section 2.2. The 
development of OLTEM for the calculation of the spatial derivatives of 
numerical solutions (post-processing) is presented in Section 3. Nu
merical examples for a 3-D domain with an irregular interface and un
fitted Cartesian meshes as well as the comparison with FEM are 
presented in Section 4. For the derivation of many analytical expressions 
presented below we use the computational program ”Mathematica”. 

2. OLTEM for the 3-D Poisson equation with discontinuous 
coefficients 

2.1. Zero source term fl = 0 in Eq. (1) 

Let us consider a 3-D bounded domain and a Cartesian rectangular 
mesh with a mesh size h where h is the size of the mesh along the x −

axis, byh, bzh ares the sizes of the mesh along the y − and z − axes (by 

and bz are the aspect ratios of the mesh). To simplify derivations, below 
we consider regular rectangular domains with irregular interfaces be
tween different materials. However, irregular domains can be also 
considered with OLTEM; see [27–29]. In the paper we will consider 
27-point uniform stencils that are similar to those for linear quadrilat
eral finite elements. We should mention that we use the same structure 
of stencils for homogeneous and composite materials (the difference 
between homogeneous and composite materials is in the values of the 
stencil coefficients only). The spatial locations of the 26 degrees of 
freedom that are close to the internal degree of freedom u14 and 
contribute to the 27-point stencil for this degree of freedom are shown in 
Fig. 1. For convenience, the local numeration of the grid points from 1 to 
27 is used in Fig. 1 as well as in the derivations below. If all grid points of 
the 27-point stencil belong to the same material than this stencil is 
treated as that for homogeneous materials (see Fig. 1a) otherwise as for 

heterogeneous materials (see Fig. 1b). The interface in Fig. 1b divides 
the 27-point uniform stencil into two parts with different material 
properties. In order to impose the interface conditions at the interface, 
we select a small number of interface points as follows. First we select 
one point at the interface with the coordinates xG = xG,1, yG = yG,1 and 
zG = zG,1. This point can be selected as the shortest distance from the 
internal grid point u14 of the 27-point stencil to the interface. Then, we 
additionally select 24 interface points in two perpendicular directions; i. 
e., we use totally NG = 25 interface points for each stencil with in

terfaces. We select the same distances h =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xG,j − xG,i)
2

+ (yG,j − yG,i)
2

+ (zG,j − zG,i)
2

√

between the interface 
points where i and j designate the neighboring interface points; e.g., see 
Fig. 1b (we are not able to show all 25 interface points in Fig. 1b). The 
numerical experiments show that small distances h = h/5 yield accurate 
results. 

Let us describe the coordinates of the grid points of the 27 point 
uniform stencils (see Fig. 1) with respect to their central point u14 for the 
27-point stencils as follow: 

xp = x14 + rx,ph = x14 + (i − 2)h , yp = y14 + ry,pbyh

= y14 + (j − 2)byh , zp = z14 + rz,pbzh = z14 + (t − 2)bzh , (6)  

for the 27-point stencils where the coefficients rx,p, ry,p, rz,p are: 

rx,p = (i − 2) , ry,p = (j − 2) , rz,p = (t − 2) , (7)  

and p = 9(t −1) + 3(j −1) + i with i, j, t = 1,2,3. 
To describe the coordinates of the selected NG points on the interface 

(see Fig. 1b) we introduce 3NG coefficients dx,p, dy,p and dz,p (p = 1,2,…,

NG) with NG = 25 for the 27-point stencils as follows (see also Fig. 1b): 

xG,j = xG + dx,jh , yG,j = yG + dy,jbyh , zG,j = zG + dz,jbzh , j

= 1, 2, …, NG .

(8)  

where dx,1 = dy,1 = dz,1 = 0 for the central interface point G = G1 with 
the coordinates xG = xG,1, yG = yG,1 and zG = zG,1; see Fig. 1b. 

Remark 2. Some of the interface points Gi (i = 1, 2, …, NG) can be 
located slightly outside the 27-point cells. The derivations presented 
below are also valid for these cases. 

The stencil equation, Eq. (3), for composite materials with the 27- 

Fig. 1. The spatial locations of the degrees of freedom up (p = 1,2, …, 27) that contribute to the 27-point uniform stencil for the internal degree of freedom u14 for 
homogeneous material without interface (a) and for heterogeneous material with interface (b). 
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point uniform stencil for the grid point u14 (see Fig. 1) will be assumed in 
the following form: 

∑27

p=1
kp

[
apu∗,num

p +
(
1 − ap

)
u∗∗,num

p

]
= f , (9)  

where f = 0 in the case of zero source fl = 0 in Eqs (1), the unknown 
stencil coefficients kp (p = 1, 2, …, 27) are to be determined from the 
minimization of the local truncation error, the coefficients ap = 1 if the 
grid point up belongs to material ∗ or ap = 0 if the grid point up belongs 
to another material ∗∗ (i.e., only one variable u∗,num

p or u∗∗,num
p is actually 

included into Eq. (9) for each grid point; e.g., the coefficients ap for 
Fig. 1b are: ai = 1 (i = 1,2,…,6,10,11,…,16,19,20,…,27) and ai = 0 (i 
= 7,8,9,17,18)). The local truncation error e follows from Eq. (9) by the 
replacement of the numerical solution u∗,num

p and u∗∗,num
p by the exact 

solution u∗
p and u∗∗

p : 

e =
∑27

p=1
kp

[
apu∗

p +
(
1 − ap

)
u∗∗

p

]
− f . (10)  

One of the ideas of the new approach is to include the interface condi
tions for the exact solution at a small number NG of the interface points 

in the expression for the local truncation error in Eq. (10) as follows: 

e =
∑27

p=1
kp

[
apu∗

p +
(
1 − ap

)
u∗∗

p

]

+{
∑NG

j=1
q1,j

(
u∗

G,j − u∗∗
G,j

)
+

∑NG

j=1
hq2,j

[

e∗

(

nx,j
∂u∗

G,j

∂x
+ ny,j

∂u∗
G,j

∂y
+ nz,j

∂u∗
G,j

∂z

)

− e∗∗

(

nx,j
∂u∗∗

G,j

∂x
+ ny,j

∂u∗∗
G,j

∂y
+ nz,j

∂u∗∗
G,j

∂z

)]

}−f ,

(11)  

where nx,j, ny,j and nz,j are the x-, y-, and z-components of the normal 
vectors at the NG selected interface points (e.g., see Fig. 1b), the co
efficients q1,j and q2,j (j = 1,2,…,NG) are unknown and will be used for 
the minimization of the local truncation error in Eq. (11) (see Section 
2.1.2 below), the expressions in parenthesis after q1,j and q2,j are the 
interface conditions at the NG selected interface points. Therefore, the 
expression in the curled brackets in Eq. (11) is zero (see Eq. (2)) and Eqs. 
(10) and (11) yield the same local truncation error e. The addition of the 
interface conditions at NG points in Eq. (11) with the unknown co
efficients q1,j, q2,j (j = 1,2,…,NG) allows us to get a high accuracy of the 

proposed method for general geometry of interfaces; see below. 

Remark 3. Only 27 + 2NG − 1 out of the 27 + 2NG coefficients kp, q1,j, 
q2,j (p = 1, 2, …, 27, j = 1, 2, …, NG) in Eq. (11) can be considered as 
unknown coefficients. This can be explained as follows. In the case of 
zero source fl = 0 and f = 0, Eq. (9) can be rescaled by the division of 
the left- and right-hand sides of Eq. (9) by any scalar; i.e., one of the 
coefficients kp can be selected as unity and there will be only 27 + 2NG −

1 unknown rescaled coefficients. The case of nonzero load f ∕= 0 can be 
similarly treated because the term f is a linear function of the stencil 
coefficients; see below. For convenience, we will scale the stencil co
efficients in such a way that k14 is k14 = 1. 

In order to represent the local truncation error e as a Taylor series, let 
us expand the exact solution at the grid points and at the NG selected 
interface points in Eq. (11) into a Taylor series at small h≪1 in the vi
cinity of the central interface point G for the 27-point stencils as follows:    

with dxG = xG−x14
h , dyG =

yG−y14
byh , and dzG = zG−z14

bzh , and  

In Eq. (12) the function vp is u∗
p, u∗∗

p , in Eq. (13) the function wj is u∗
G,j, u∗∗

G,j, 
∂u∗

G,j
∂x , 

∂u∗∗
G,j

∂x , 
∂u∗

G,j
∂y , 

∂u∗∗
G,j

∂y , 
∂u∗

G,j
∂z , 

∂u∗∗
G,j

∂z , and NG = 25. The exact solution u∗
m and u∗∗

m 

to the Poisson equations, Eq. (1), at the central interface point x = xG, 
y = yG and z = zG meets the following equations: 

∂2u∗
G

∂x2 = −
∂2u∗

G

∂y2 −
∂2u∗

G

∂z2 +
1
e∗

f ∗ ,
∂2u∗∗

G

∂x2 = −
∂2u∗∗

G

∂y2 −
∂2u∗∗

G

∂z2 +
1

e∗∗

f ∗∗ , (14)  

∂(i+j+t+2)u∗
G

∂zt∂yi∂x(2+j) = −
∂(i+j+t+2)u∗

G

∂zt∂y(i+2)∂xj −
∂(i+j+t+2)u∗

G

∂z(t+2)∂yi∂xj +
1
e∗

∂(i+j+t)f ∗

∂zt∂yi∂xj ,

∂(i+j+t+2)u∗∗
G

∂zt∂yi∂x(2+j) = −
∂(i+j+t+2)u∗∗

G

∂zt∂y(i+2)∂xj −
∂(i+j+t+2)u∗∗

G

∂z(t+2)∂yi∂xj +
1

e∗∗

∂(i+j+t)f ∗∗

∂zt∂yi∂xj

(15)  

with i, j, t = 0,1,2,3,4, …. Eq. (15) is obtained by the differentiation of 
Eq. (14) with respect to x, y and z. Inserting Eqs. (12)–(15) with zero 
source term f∗ = f∗∗ = 0 into Eq. (11) we get the following local trun
cation error in space e: 

vp = vG +
∂vG

∂x
[(

rx,p − dxG
)
h
]

+
∂vG

∂y
[
(
ry,p − dyG

)
byh +

∂vG

∂z
[(

rz,p − dzG
)
bzh

]

+
∂2vG

∂x2

[(
rx,p − dxG

)
h
]2

2!
+

∂2vG

∂y2

[(
ry,p − dyG

)
byh

]2

2!
+

∂2vG

∂z2

[(
rz,p − dzG

)
bzh

]2

2!

+2
∂2vG

∂x∂y

[(
rx,p − dxG

)
h
][(

ry,p − dyG
)
byh

]

2!
+ …, p = 9(t − 1) + 3(j − 1) + i with i, j, t = 1, 2, 3

(12)   

wj = wG +
∂wG

∂x
[
dx,jh

]
+

∂wG

∂y
[
dy,jbyh

]
+

∂wG

∂z
[
dz,jbzh

]
+

∂2wG

∂x2

[
dx,jh

]2

2!

+
∂2wG

∂y2

[
dy,jbyh

]2

2!
+

∂2wG

∂z2

[
dz,jbzh

]2

2!
+ 2

∂2wG

∂x∂y

[(
dx,jh

][
dy,jbyh

]

2!
+ … , . j = 1, 2, …, NG

(13)   
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e = b1u∗
G + b2u∗∗

G 

+h
(

b3
∂u∗

G

∂z
+ b4

∂u∗∗
G

∂z
+ b5

∂u∗
G

∂y
+ b6

∂u∗∗
G

∂y
+ b7

∂u∗
G

∂x
+ b8

∂u∗∗
G

∂x

)

+ h2
(
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∂2u∗

G

∂z2

+ b10
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∂y2 + b14
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G

∂z∂x2

+ b16
∂3u∗∗

G

∂z∂x2 + b17
∂2u∗

G
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+ b18

∂2u∗∗
G

∂x∂y

)

+ h3(b19
∂3u∗

G

∂z3 + b20
∂3u∗∗

G

∂z3

+ b21
∂3u∗

G

∂z2∂y
+ b22

∂3u∗∗
G

∂z2∂y
+ b23

∂3u∗
G

∂z∂y2 + b24
∂3u∗∗

G

∂z∂y2b25
∂3u∗

G

∂y3 + b26
∂3u∗∗

G

∂y3

+ b27
∂3u∗

G

∂z2∂x
+ b28

∂3u∗∗
G

∂z2∂x
+ b29

∂3u∗
G

∂z∂y∂x
+ b30

∂3u∗∗
G

∂z∂y∂x
+ b31

∂3u∗
G

∂x∂y2

+ b32
∂3u∗∗

G

∂x∂y2 ) + h4
(

b33
∂4u∗

G

∂z4 + b34
∂4u∗∗

G

∂z4 + … + b49
∂4u∗

G

∂x∂y3 + b50
∂4u∗∗

G

∂x∂y3

)

+ h5
(

b51
∂5u∗

G

∂z5 + b52
∂5u∗∗

G

∂z5 + … + b71
∂5u∗

G

∂x∂y4 + b72
∂5u∗∗

G

∂x∂y4

)

+ h6
(

b73
∂6u∗

G

∂z6

+ b74
∂6u∗∗

G

∂z6 + … + b97
∂6u∗

G

∂x∂y5 + b98
∂6u∗∗

G

∂x∂y5

)

+ O
(
h7)

(16)  

where the coefficients bp (p = 1, 2, …) are expressed in terms of the 
coefficients ki and q1,j, q2,j (i = 1,2,…,27, j = 1,2,…,NG) and are given 
in Appendix A. Here we should mention that the expression for the local 
truncation error, Eq. (16), includes only the first order derivatives with 
respect to x (the higher order derivatives with respect to x are excluded 
with the help of Eqs. (14)-(15)). 

2.1.1. Homogeneous materials (without interface) 
For homogeneous materials all aj (j = 1,2, …,27) coefficients are aj 

= 1 (see Eq. (9) if we consider material ∗) as well as all q1,j = q2,j = 0 (j =
1, 2, …, NG) are zero. In this case the derivation of the local truncation 
error is similar to that in the previous section with bp = 0 (p=2,4,6,8,...) 
in Eq. (16) if we consider material ∗. The stencils coefficients ki (i = 1,2,

…, 27) can be analytically found from the following system of 27 alge
braic equations: 

bp = 0 , p = 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35,

37, 41, 45, 47, 53, 55, 67, 77 (17)  

k14 = 1 (18)  

and they are: 

k1 = −

(
5
(
bz

2 + 1
)
by

2 + 5bz
2 + 9

)

8
(
125

(
bz

2 + 1
)
by

2 + 125bz
2 + 9

) , k2

=

(
5
(
bz

2 − 5
)
by

2 − 25bz
2 + 9

)

500
(
bz

2 + 1
)
by

2 + 500bz
2 + 36

, … (19) 

(see Appendix C for the expressions for the all stencil coefficients ki, i 
= 1, 2, …, 27) with the following local truncation error (see our paper 
[29] for details): 

e =
3b2

yb2
z h6

8
(

9 + 125
(

b2
z + b2

y + b2
yb2

z

))

[(
− 1 + b4

y

) ∂6u14

∂y6 +
(

− 1 + b4
z

) ∂6u14

∂z6

]

+
b2

yb2
z h8

672
(

9 + 125
(

b2
z + b2

y + b2
yb2

z

)) [
(

11 − 21b2
y − 21b4

y + 11b6
y

) ∂8u14

∂y8

+
(

− 19 − 21b2
z + 21b4

y

(
− 1 + b2

z

)) ∂8u14

∂y6∂z2 − 60
∂8u14

∂y4∂z4 +
(

− 19

− 21b4
z + 21b2

y

(
− 1 + b4

z

)) ∂8u14

∂y2∂z6 +
(
11 − 21b2

z − 21b4
z

+ 11b6
z

) ∂8u14

∂z8 ] + O
(
h10)

.

(20)  

As can be seen from Eq. (20), for homogeneous materials and cubic (by =

bz = 1) Cartesian meshes the local truncation error is two order higher 
compared to that for rectangular (by ∕= 1 or/and bz ∕= 1) Cartesian 
meshes. 

2.1.2. Heterogeneous materials with an irregular interface 
For the interface represented by an inclined plane, some analytical 

results for the 27-point stencils that include the grid points with different 
material properties can be obtained with the help of Mathematica. We 
have found that the maximum order of the local truncation error for the 
27-point stencils is 4. In order to obtain the same order of accuracy for 
the general shape of the interface we will use the following procedure. 

We use the 76 unknown stencil coefficients ki (i = 1, 2, …, 27 with 
k14 = 1), and q1,j, q2,j (j = 1, 2, …, 25) in order to minimize the local 
truncation error. First, we zero the first 32 coefficients bp in Eq. (16) up 
to the third order with respect to h; i.e., 

bp = 0 , p = 1, 2, …, 32 . (21)  

Then, in order to have a sufficient number of equations for the calcu
lation of the 76 unknown stencil coefficients ki (i = i = 1,2,…,27) and 
q1,j, q2,j (j = 1, 2, …, 25), we use the least square method for the mini
mization of coefficients bp related to the fourth, fifth and sixth orders of 
the local truncation error with the following residual R: 

R =
∑50

p=33
b2

p + h1

∑72

p=51
b2

p + h2

∑98

p=73
b2

p , (22)  

where h1 and h2 are the weighting factors to be selected (e.g., the nu
merical experiments show that h1 = h2 = 0.1 yields accurate results). In 
order to minimize the residual R with the constraints given by Eq. (21), 
we can form a new residual R with the Lagrange multipliers λl: 

R =
∑32

l=1
λlbl +

∑50

p=33
b2

p + h1

∑72

p=51
b2

p + h2

∑98

p=73
b2

p . (23)  

The residual R is a quadratic function of the stencil coefficients ki (i = 1,

2, …, 27) and q1,j, q2,j (j = 1, 2, …, 25) and a linear function of the 
Lagrange multipliers λl; i.e., R = R(ki,q1,j,q2,j,λl). In order minimize the 
residual R = R(ki,q1,j,q2,j,λl), the following equations based on the least 
square method for the residual R can be written down: 

∂R
∂ki

= 0 ,
∂R

∂q1,j
= 0 ,

∂R
∂q2,j

= 0 ,
∂R
∂λl

= 0 ,

i = 1, 2, …, 27 , j = 1, 2, …, 25 , l = 1, 2, …, 32 ,

(24)  

where equation ∂R
∂k14

= 0 in Eq. (24) should be replaced by k14 = 1; see 
Remark 3. Eq. (24) forms a system of 109 linear algebraic equations with 
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respect to 77 coefficients ki (i = 1,2,…,27) and q1,j, q2,j(j = 1,2,…,25) as 
well as 32 Lagrange multipliers λl (l = 1,2, …,32). Solving these linear 
algebraic equations numerically, we can find the coefficients ki (i = 1,2,

…, 27) for the 27-point uniform stencils as well as q1,j, q2,j (j = 1, 2, …,

25). As can be seen from Eq. (16), the presented procedure provides the 
fourth order of the local truncation error for the 27-point uniform 
stencils with the general geometry of the interface. The 27-point uni
form stencils of OLTEM for a homogeneous material (without interface) 
provide the sixth order of the local truncation error for rectangular 
meshes; see Eq. (20). In this case the global error is defined by the order 
of accuracy of the 27-point stencils with interfaces. This leads to the 
third order of accuracy of global solutions; see the numerical examples 
below. Moreover, due to the minimization of the leading high-order 
terms bp of the local truncation error in Eq. (23), at the same numbers 
of degrees of freedom the new approach on irregular interfaces yields 
more accurate results than those obtained by high-order finite elements 
(up to the sixth order) with much wider stencils; see the numerical ex
amples below. 

Remark 4. We should mention that the representation of the co
efficients bi in Eq. (16) as bi =

∑27
j=1sijkj +

∑25
j=1(c1

ijq1,j +c2
ijq2,j) , i = 1, 2,

…, 98 as well as the explicit analytical formulas for ∂R
∂ki

, ∂R
∂q1,j

, ∂R
∂q2,j

, ∂R
∂λl 

(see 

Eq. (24)) in terms of the coefficients sij, c1
ij and c2

ij (see Appendix B) 
significantly simplify the derivations and allowed us to extend our 
approach to the 3-D case. 

The global discrete system of equations includes the 27-point stencils 
for homogeneous materials without interfaces and the 27-point stencils 
for heterogeneous materials with interfaces between different materials 
(see Fig. 1) for all internal grid points located inside the domain. The 

new approach does not use unknowns at the interfaces and the global 
discrete system of equations has the same unknowns for homogeneous 
and heterogeneous materials (the same structures of the sparse global 
matrices, the difference is only in the values of the stencil coefficients kp 
(see Eq. (9)) of the global matrices for homogeneous and heterogeneous 
materials). 

Remark 5. To estimate the computation costs of the formation and 
solution of 109 linear algebraic equations given by Eq. (24) we formed 
and solved 104 such systems with a general MATLAB solver on a desktop 
computer (Processor: Intel (R) Core(TN) i9-9900 CPU @3.10Hz 3.10 
HZ). The computation ’wall’ time was T = 49.89s for 104 systems or the 
average time for one system was 0.004989s. Because the coefficients kp 

are independently calculated for different stencils, the computation time 
of their calculation for different stencils can be significantly reduced on 
modern parallel computers. These local systems are solved only for the 
grid points located close to the interface (for heterogeneous stencils). 
This means that for large global systems of equations, the computation 
time for the calculation of the coefficients kp is very small compared to 
that for the solution of the global system of algebraic equations. We 
should mention that the coefficients q1,j, q2,j calculated from the local 
system of equations, Eq. (24), are only used for the calculation of non- 
zero right-hand side vector (see below Section 2.2) while the Lagrange 
multipliers λl in the local system of equations, Eq. (24), are not used in 
the global system of equations at all. 

Remark 6. It is interesting to mention that the stencil coefficients can 
be also derived using the Taylor series expansion about the central grid 
point with the coordinates x14, y14 and z14 instead of the interface point 
with the coordinates xG, yG and zG. 

2.2. Nonzero source term fl ∕= 0 in Eq. (1) 

The inclusion of non-zero source term fl in the partial differential 
equation, Eq. (1), leads to the non-zero term f in the stencil equation, 
Eq. (9) (similar to Eq. (3)). As we mentioned after Eq. (2), the functions fl 
can be discontinuous across the interfaces. The expression for the term f 
can be calculated from the procedure used for the derivation of the local 
truncation error in the case of zero source term as follows. In the case of 
non-zero source term fl(x) ∕= 0 and f ∕= 0, the insertion of Eqs. (12)–(15) 
into Eq. (11) yields the following local truncation error in space ef : 

ef = e −

[

f − h2

{
∑27

j=1

1
2

(
rx,j − dxG

)(
ajf̃

∗

G +
(
1 − aj

)
f̃

∗∗

G

)
kj 

+
∑25

j=1

[
1
2
d2

x,j

(
f̃

∗

G − f̃
∗∗

G

)
q1,j + dx,jnx,j

(
e∗ f̃

∗

G − e∗∗ f̃
∗∗

G

)
q2,j

)]}

− h3…] ,

(25)  

where e is the local truncation error in space given by Eq. (16) for zero 
source term, ̃f

∗

G and ̃f
∗∗

G designate functions f
∗(x,y,z)

e∗
and f

∗∗(x,y,z)

e∗∗
calculated 

at the interface point with the coordinates x = xG, y = yG and z = zG. 
Equating to zero the expression in the square brackets in the right-hand 
side of Eq. (25), we will get the expression for f :  

as well as we will get the same local truncation errors ef = e for zero and 

non-zero source term. The coefficients f̂
1
j (j = 1,2,…,27), ̂f

2
j and f̂

3
j (j =

1,2, …, 25) in Eq. (26) are: 

f̂
1
j = h2(

1
2

(
rx,j − dxG

)(
ajf̃

∗

G +
(
1 − aj

)
f̃

∗∗

G

)
+ h3… ,

f̂
2
j = h2(

1
2
d2

x,j

(
f̃

∗

G − f̃
∗∗

G

)
+ h3… , f̂

3
j = h2dx,jnx,j

(
e∗ f̃

∗

G − e∗∗ f̃
∗∗

G

)
+ h3… ,

(27)  

see the attached file ’RHS.nb’ for the detailed expressions of f̂
1
j , f̂

2
j and 

f̂
3
j . This means that the coefficients ki (i = 1, 2, …, 27) of the stencil 

equations are first calculated for zero source term fl = 0 as described in 
Section 2.1. Then, the nonzero source term f given by Eq. (26) is used in 
the stencil equation, Eq. (9). 

3. OLTEM for post-processing of numerical results - calculations 
of spatial derivatives 

For the analysis of engineering problems the calculations of the 
spatial derivatives of primary functions are necessary in many cases; e. 
g., the spatial derivatives of function ul in Eq. (1). Therefore, after the 
calculation of the numerical solution for the primary functions, many 
computer codes include special post-processing procedures for the 

f =
∑27

j=1
f̂

1
j kj +

∑25

j=1

(
f̂

2
j q1,j + f̂

3
j q2,j

)

= h2

{
∑27

j=1

1
2

(
rx,j − dxG

)(
ajf̃

∗

G +
(
1 − aj

)
f̃

∗∗

G

)
kj +

∑25

j=1

[
1
2
d2

x,j

(
f̃

∗

G − f̃
∗∗

G

)
q1,j + dx,jnx,j

(
e∗ f̃

∗

G − e∗∗ f̃
∗∗

G

)
q2,j

)]

}+h3… ,

(26)   
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calculation of the spatial derivatives of the numerical solution for the 
primary functions. Here we show the application of OLTEM with the 
compact 27-point stencils (the same as we used in the previous section; 
see also Fig. 1) for the calculation of ∂unum

∂x , ∂unum

∂y and ∂unum

∂z . Because the 
calculations of these three derivatives are similar then we show the 
procedure in detail for ∂unum

∂x . 
The compact 27-point stencils for the calculation of ∂unum

∂x at the cen
tral stencil point with the coordinates x14, y14 and z14 (see Fig. 1) can be 
selected similar to Eq. (9) as follows: 

−

[

a14
∂u∗,num

14

∂x
+(1−a14)

∂u∗∗,num
14

∂x

]

h +
∑27

p=1
kp

[
apu∗,num

p +
(
1−ap

)
u∗∗,num

p

]
= f ,

(28)  

where a14 = 1 if the central stencil point belongs to material ∗ and a14 =

0 if the central stencil point belongs to material ∗∗. The local truncation 
error ep for Eq. (28) can be obtained by the replacement of the numerical 
solution u∗,num

p and u∗∗,num
p in Eq. (28)by the exact solution u∗

p and u∗∗
p : 

ep = −

[

a14
∂u∗

14

∂x
+ (1 − a14)

∂u∗∗
14

∂x

]

h +
∑27

p=1
kp

[
apu∗

p +
(
1 − ap

)
u∗∗

p

]
− f .

(29)  

Similar to Eq. (11) in Section 2, we include the interface conditions for 
the exact solution at the same small number NG of the interface points in 
the expression for the local truncation error in Eq. (29) as follows: 

ep = −

[

a14
∂u∗

14

∂x
+ (1 − a14)

∂u∗∗
14

∂x

]

h +
∑27

p=1
kp

[
apu∗

p +
(
1 − ap

)
u∗∗

p

]

+{
∑NG

j=1
q1,j

(
u∗

G,j − u∗∗
G,j

)
+

∑NG

j=1
hq2,j

[

e∗

(

nx,j
∂u∗

G,j

∂x
+ ny,j

∂u∗
G,j

∂y
+ nz,j

∂u∗
G,j

∂z

)

− e∗∗

(

nx,j
∂u∗∗

G,j

∂x
+ ny,j

∂u∗∗
G,j

∂y
+ nz,j

∂u∗∗
G,j

∂z

)]

}−f ,

(30)  

see the corresponding explanations in Section 2.1. Similar to Section 2, 
first we consider the case of zero source term fl = f = 0. For the accurate 
calculation of the derivative ∂unum

∂x , we should minimize the local trun
cation error ep in Eq. (30). Repeating the procedure described in Section 
2.1 and using Eqs. (12) - (15) with zero source term f∗ = f∗∗ = 0 we will 
get the following local truncation error in space ep: 

ep = b1u∗
G + b2u∗∗

G 

+h
(

b3
∂u∗

G

∂z
+ b4

∂u∗∗
G

∂z
+ b5

∂u∗
G

∂y
+ b6

∂u∗∗
G

∂y
+ b7

∂u∗
G

∂x
+ b8

∂u∗∗
G

∂x

)

+ h2
(

b9
∂2u∗

G

∂z2

+ b10
∂2u∗∗

G

∂z2 + b11
∂3u∗

G

∂z∂y2 + b12
∂3u∗∗

G

∂z∂y2 + b13
∂2u∗

G

∂y2 + b14
∂2u∗∗

G

∂y2 + b15
∂3u∗

G

∂z∂x2

+ b16
∂3u∗∗

G

∂z∂x2 + b17
∂2u∗

G

∂x∂y
+ b18

∂2u∗∗
G

∂x∂y

)

+ …

(31)  

where similar to Eq. (16) the coefficients bp (p = 1,2,…) are expressed in 
terms of the coefficients ki and q1,j, q2,j (i = 1,2, …,27, j = 1,2, …,NG) 
and are given in the file ’b-coef-post.nb’. 

For homogeneous materials (without interfaces), the coefficients q1,j 

= 0 q2,j = 0 (j = 1,2,…,NG) are zero and the stencils coefficients ki (i =

1,2,…,27) can be analytically found similar to those in Section 2.1.1. In 
this case we use the following system of 27 algebraic equations: 

bp = 0 , p = 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 41,

45, 47, 53, 55, 67, 73, 77 (32)  

where in contrast to Eqs. (17) and (18) from Section 2.1.1, here we 
replace Eq. (18) by equation b73 = 0. The solution of Eq. (32) yields the 

stencil coefficients given in Appendix D. These coefficients yields the 
following local truncation error ep: 

ep =
h5

360

[
(
7 − 5b2

z

) ∂5u14

∂x∂z4 +
(

7 − 5b2
y

) ∂5u14

∂x∂y4

]

+ O
(
h10)

. (33) 

For heterogeneous materials with interfaces, the stencil coefficients 
ki and q1,j, q2,j (i = 1, 2, …, 27, j = 1, 2, …, NG) are calculated similar to 
those in Section 2.1.2 from 109 linear algebraic equations formed by Eq. 
(24). In contrast to Section 2.1.2, in Eq. (24) we do not replace equation 
∂R

∂k14
= 0 by k14 = 1. Due to Eq. (21), the stencil coefficients for hetero

geneous materials provide the 4th order of accuracy for the local trun
cation error ep. 

The case of zero source term fl ∕= 0 is treated similar to that in Sec
tion 2.2. The final expression for the term f in Eq. (28) is also described 
by Eq. (26); see the attached file ’RHS-post.nb’ for the detailed expres

sions of f̂
1
j , f̂

2
j and f̂

3
j . 

To summarize, for the calculation of the derivative ∂unum

∂x using OLTEM 
with the 27-point stencils, we should follow the following procedure:  

• Calculate the stencil coefficients ki and q1,j, q2,j (i = 1,2,…,27, j = 1,

2,…,NG) for each internal grid point as described above in Section 3 
for homogeneous (without interfaces) and heterogeneous (with in
terfaces) materials.  

• Using these stencil coefficients, calculate the right-hand side f in Eq. 
(28) for each internal grid point using Eq. (26).  

• Calculate the derivative ∂unum

∂x from Eq. (28) for each internal grid 
point as follow: 

∂u∗,num
14

∂x
=

1
h

[
∑27

p=1
kp

[
apu∗,num

p +
(
1 − ap

)
u∗∗,num

p

]
− f

]

, (34)  

if the central stencil point belongs to material ∗ (a14 = 1) and 

∂u∗∗,num
14

∂x
=

1
h

[
∑27

p=1
kp

[
apu∗,num

p +
(
1 − ap

)
u∗∗,num

p

]
− f

]

, (35)  

if the central stencil point belongs to material ∗∗ (a14 = 0). 

The calculation of the derivatives ∂unum

∂y and ∂unum

∂z can be done similar 

to the calculation of the derivative ∂unum

∂x as described above. 

Remark 7. If any of the grid points included into the stencil is located 
on the boundary with the Dirichlet boundary conditions then for this 
point p in Eqs. (34) and (35) we use the exact value of u∗,num

p or u∗∗,num
p 

defined by the boundary conditions. In the case of the Neumann 
boundary conditions, the procedure can be modified similar to that in 
our paper [39] for OLTEM with irregular boundaries and the Neumann 
boundary conditions. 

It is interesting to note that for homogeneous materials the post- 
processing procedure described above can be also used for the calcula
tion of the spatial derivatives without the application of the partial 
differential equation as in other post-processing techniques (e.g., see 
[36–38] for finite and isogeometric elements). Let us assume that we can 
calculate the derivative ∂unum

∂x at the internal grid point in terms of the 
values of the function unum at the neighboring grid points. For simplicity, 
we will use a uniform Cartesian mesh and 27 grid points for the calcu
lation of the derivative ∂unum

14
∂x at the central grid point (see Fig. 1a) as 

follows: 

−h
∂unum

14

∂x
+

∑27

p=1
kpunum

p = 0 (36)  

with the following local truncation error: 
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ep = −h
∂u14

∂x
−

∑27

p=1
kpup . (37)  

Repeating the procedure described in Section 2.1 without the use of Eqs. 
(14) and (15) and zeroing the corresponding coefficients bp in the Taylor 
expansion of the local truncation error ep, we can show that k15 = 1 /2 
and k13 = −1/2 (all other ki = 0, i = ,1,2,…,12,14,16,17,…,27) in Eq. 
(36) yield the optimal order of ep in Eq. (37): 

ep = −
h3

6
∂3u14

∂x3 + O
(
h4)

. (38)  

In this case we have the well-known finite-difference approximation of 
the derivative. Comparing Eqs. (38) and (33) we can see that the use of 
PDE for post-processing improves the accuracy of the spatial derivative 
by two orders for the same 27-point compact stencils. We should also 
mention that the approximation given by Eq. (36) cannot be used for the 
stencils with interfaces (as those in Fig. 1b). 

To summarize, the proposed post-processing procedure provides the 
optimal accuracy of the spatial derivatives of primary functions calcu
lated with the help of compact stencils. It can be developed with or 
without the use of PDEs. However, the use of PDEs significantly im
proves the accuracy of the spatial derivatives for the given stencils. 

Despite the fact that we have applied the proposed post-processing 
technique to the stencils defined on Cartesian meshes, it can be also 
used for non-uniform meshes with the corresponding coefficients rx,p, 
ry,p, rz,p in Eq. (6) (similar to OLTEM developed in our papers [27,29,39] 
for irregular boundaries). Finally, the post-processing procedure devel
oped can be independently used with any known numerical technique 
(e.g., with finite elements). 

4. Numerical examples 

In this section the computational efficiency of OLTEM with the 27- 
point stencils developed for the solution of the 3-D Poisson equation 
with discontinuous coefficients will be demonstrated and compared 
with conventional linear and high order (up to 7th order, the highest 
order in ’COMSOL’) tetrahedral finite elements. For finite element cal
culations, the commercial finite element software ‘COMSOL’ with iso
parametric finite elements is used. In order to compare the accuracy of 
OLTEM with FEM, the following errors are considered below. The 
relative error ej

w for the function w at the jth grid point is defined as: 

ej
w =

⃒
⃒
⃒wnum

j − wexact
j

⃒
⃒
⃒

wexact
max

, j = 1, 2, …, N. (39) 

Fig. 2. A 3-D cube with a spherical inclusion (a), the examples of an unfitted Cartesian mesh for OLTEM (b) and a conformed tetrahedral finite element mesh 
generated by the commercial software COMSOL (c). 
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The maximum relative error emax
w for the function w is defined as: 

emax
w = max

j
ej

w , j = 1, 2, …, N. (40)  

In Eqs. (39)-(40) the superscripts ‘num’ and ‘exact’ correspond to the 
numerical and exact solutions, N is the total number of the grid points 
used in calculations, wexact

max is the maximum absolute value of the exact 
solution over the entire domain for the function w. We also use the L2 

error norm for finite elements (e.g., see [40]) and the l2 error norm (e.g., 
see [41]) for OLTEM: 

el2
w =

{

dxdydz
∑Nx

i=0

∑Ny

j=0

∑Nk

k=0

[
wnum(

xi,yj,zk
)

− wexact(xi,yj,zk
)]2

}1
2
/

|wexact|L2 ,

(41)  

where Nx, Ny and Nk are the numbers of Cartesian grid points along x, y 
and z-axes, xi, yj and zk are the coordinates of Cartesian grid points, 
respectively. As function w in Eqs. (39)–(41) we consider u, ∂u

∂x , ∂u
∂y and ∂u

∂z. 

4.1. 3-D Bi-material cube with a spherical inclusion 

Let us consider the 3-D Poisson equation with discontinuous co
efficients for the bi-material cube with dimensions 2 ×2 ×2 as shown in 
Fig. 2a. The cube consists of a spherical inclusion (subdomain ΩI) at the 
center of the cube and the matrix (subdomain ΩII) with the circular 
interface described by the following equation: 

x2 + y2 + z2 = r2 , (42)  

where r = 0.4 is the radius of the circular interface. The following ma
terial properties are assumed: eI = 1

50; 1
100; 1

200; 50; 100; 200 in ΩI and eII 

= 1 in ΩII with the material contrasts eI
eII

= 1
50; 1

100; 1
200; 50; 100; 200. 

Using the method of manufactured solution, the following exact solution 
to the Poisson equation is selected: 

u(x, y, z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cos
(

x2

r2 +
y2

r2 +
z2

r2

)

in ΩI

eI

eII
cos

(
x2

r2 +
y2

r2 +
z2

r2

)

−

(
eI

eII
− 1

)

cos(1) in ΩII

(43)  

This solution meets the interface conditions, Eq. (2). The source terms 
can be calculated by the substitution of the exact solution into the 
Poisson equation, Eq. (1), and are given below: 

fI(x,y,z) = −2eI

[
2
r2

(
x2

r2 +
y2

r2 +z2

r2

)

cos
(

x2

r2 +
y2

r2 +z2

r2

)

+

(
3
r2

)

sin
(

x2

r2 +
y2

r2 +z2

r2

)]

in   ΩI 

fII(x,y,z) = −2eI

[
2
r2

(
x2

r2 +
y2

r2 +z2

r2

)

cos
(

x2

r2 +
y2

r2 +z2

r2

)

+

(
3
r2

)

sin
(

x2

r2 +
y2

r2 +z2

r2

)]

in   ΩII 
The Dirichlet boundary conditions along all faces of the cube are 

imposed according to the exact solution, Eq. (43). The problem is solved 
by OLTEM with the 27-point stencils as well as by linear and high order 
(up to the 7th order) finite elements for different material contrasts eI

eII
. 

Figure 2b,c shows a typical unfitted Cartesian mesh with aspects ratios 
by = bz = 1 used for OLTEM as well as a typical conformed tetrahedral 
finite element mesh. 

First, we present the application of OLTEM to the solution of the 
Poisson equation for heterogeneous materials with different material 
contrasts eI

eII
. Figure 3 shows the maximum error emax

u and the l2 error 

norm el2
u as a function of the mesh size h in the logarithmic scale for 

OLTEM with the 27-point stencils and the material contrasts eI
eII

=

Fig. 3. The maximum relative error emax
u (a) and the l2 error norm el2

u (b) as a function of the mesh size h at mesh refinement in the logarithmic scale. The numerical 
solutions of the 3-D Poisson equation for the cube with the spherical inclusion (see Fig. 2a) are obtained by OLTEM on square (by = 1 and bz = 1) Cartesian meshes 
with the following material contrasts: eI

eII
= 1

50 (curve 1), eI
eII

= 1
100 (curve 2), eI

eII
= 1

200 (curve 3), eI
eII

= 50 (curve 4), eI
eII

= 100 (curve 5) and eI
eII

= 200 (curve 6). 

Fig. 4. The maximum relative error emax
u (a) and the L2 error norm eL2

u (b) as a function of 
̅̅̅̅
N3

√
at mesh refinement in the logarithmic scale (N is the number of degrees 

of freedom). The numerical solutions of the 3-D Poisson equation for the cube with the spherical inclusion and the material contrast eI
eII

= 1
50 (see Fig. 2a) are obtained 

by OLTEM on square (by = 1 and bz = 1) Cartesian meshes (curve 1) as well as by linear and high-order tetrahedral finite elements (curves 2 - 8). Curves 2, 3, ...,8 
correspond to linear, quadratic,..., and the 7th order elements. 
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1
50; 1

100; 1
200; 50; 100; 200. As can be seen from Fig. 3, OLTEM yields 

convergent results with the order of convergence close or greater than 
three for all material contrasts. These observations are in agreement 

with the theoretical results in the previous Section 2. 
Next, we present the accuracy comparison of OLTEM with linear and 

high order (up to the 7th order - the highest order in COMSOL) finite 

Fig. 5. The logarithm of the maximum relative errors emax
u (a) and the l2 error norm el2

u (b) as a function of the mesh size h. The numerical solutions of the 3-D Poisson 
equation for the cube with the spherical inclusion (see Fig. 2a) are obtained by OLTEM on square (by = 1 and bz = 1) Cartesian meshes with the material contrast eI

eII 
=

1
50. Each curve is calculated on 1001 meshes; see the text. 

Fig. 6. The maximum relative errors emax
∂u
∂x 

of the x-derivative of the function u (a), emax
∂u
∂y 

of the y-derivative of the function u (c) and emax
∂u
∂z 

of the z-derivative of the 

function u (e) as well as the L2 error norm eL2
∂u
∂x 

of the x-derivative of the function u (b), eL2
∂u
∂y 

of the y-derivative of the function u (d), and eL2
∂u
∂z 

of the z-derivative of the 

function u (f) as a function of 
̅̅̅̅
N3

√
at mesh refinement in the logarithmic scale (N is the number of degrees of freedom). The numerical solutions of the 3-D Poisson 

equation for the cube with the spherical inclusion and the material contrast eI
eII

= 1
50 (see Fig. 2a) are obtained by OLTEM on square (by = 1 and bz = 1) Cartesian 

meshes (curve 1) as well as by linear and high-order tetrahedral finite elements (curves 2–8). Curves 2, 3, ...,8 correspond to linear, quadratic,..., and the 7th 
order elements. 

A. Idesman and M. Mobin                                                                                                                                                                                                                    



Advances in Engineering Software 167 (2022) 103103

11

elements for the material contrast eI
eII

= 1
50 (similar results can be also 

obtained for other material contrasts). Figure 4 shows the maximum 
relative errors emax

u and the errors eL2

u in the L2 norm as a function of the 
number N of degrees of freedom in the logarithmic scale for the nu
merical results obtained by OLTEM and by finite elements. As can be 
seen from Fig. 4, at the same N the numerical results obtained by OLTEM 
are much more accurate than those obtained by linear and higher order 
finite elements (up to the 7th order elements for the maximum relative 
errors emax

u and up to the 6th order elements for the L2 error norm eL2

u ; see 
Fig. 4a,b). In addition to that, up to the accuracy of 0.0001% (−6 in the 
logarithmic scale along the y-axis in Fig. 4b) OLTEM yields more accu
rate results than those obtained by finite elements up to the 7th order. 
This increase in accuracy by OLTEM is impressive considering the fact 
that higher order finite elements have much wider stencils compared to 
those for OLTEM (the width of the stencils for OLTEM corresponds to 
that for linear finite elements) and require a much greater computation 
time. We should also mention that at the computational costs of linear 
finite elements, at the engineering accuracy of 0.1%, OLTEM reduces the 
number N of degrees of freedom by a factor of greater than 3500 for the 
maximum relative error emax

u and greater than 250 for the L2 error norm 
eL2

u compared to that for linear finite elements; see Fig. 4a,b. This will 
lead to a huge reduction in the computation time for OLTEM compared 
to linear finite elements at a given accuracy. 

The detailed study of the convergence and stability of the numerical 
results obtained by OLTEM is shown in Fig. 5. For this study, we solve 
the test problem with the material contrast eI

eII
= 1

50 on 1001 Cartesian 

meshes with the mesh sizes hi = h1 +
(h2−h1)(i−1)

1000 and a very small varia
tion of the mesh size h where h1 = 1/5 = 0.2, h2 = 1/10 = 0.1 and i = 1,

2,…,1001. For these meshes, three grid planes always coincide with the 
left, bottom and rear faces of the cubical domain and at the small vari
ation of the mesh size h we have very different locations of the circular 
interface with respect to the grid points. The curves in Fig. 5 correspond 
to curves 1 in Fig. 3. As can be seen from Fig. 5, the numerical results 
obtained by OLTEM on these meshes converge with the decrease in the 
grid size h. Small oscillations in Fig. 5 decrease with the decrease in the 
mesh size. This oscillatory behavior can be explained by the fact that at 
small variations of the mesh size h, there is a discontinuous change in the 
location of the grid points with respect to the interface (e.g., some grid 
points that belong to one material for the previous mesh can belong to 
another material for the next mesh; this leads to the discontinuous 
change of some stencils equations for the meshes with a small difference 
in h). It is important to mention that small oscillations in numerical 
convergence curves are typical for many numerical techniques at small 
variations of h. For example, the change in the angles of finite elements 
at small variations of the element size h also leads to such oscillations in 
convergence curves for finite element techniques. 

The application of the new post-processing procedure for the calcu
lation of the spatial derivatives of numerical solutions is presented in 
Fig. 6. Here, we solve the test problem with the material contrast eI

eII 
= 1

50 
by OLTEM as well as by linear and high order finite elements and 
compare the accuracy of the spatial derivatives ∂unum

∂x , ∂unum

∂y and ∂unum

∂z of the 
numerical solutions unum. Figure 6 shows the maximum relative errors 
emax

∂u
∂x

, emax
∂u
∂y

, emax
∂u
∂z 

and the errors eL2
∂u
∂x

, eL2
∂u
∂y

, eL2
∂u
∂z 

in the L2 norm as a function of 

the number N of degrees of freedom for different techniques. As can be 
seen from Fig. 6, at the same N the spatial derivatives ∂unum

∂x , ∂unum

∂y and ∂unum

∂z 

obtained by OLTEM are much more accurate than those obtained by 
linear and high-order (up to the 7th order) finite elements for the both 
selected error norms. The numerical results also show that the order of 
convergence of the spatial derivatives ∂unum

∂x , ∂unum

∂y and ∂unum

∂z for the L2 error 
norm is higher than that for the maximum relative error; compare the 
slopes of the curves in Fig. 6a,c,e with those in Fig. 6b,d,f. We should 
also mention that at the engineering accuracy of 0.1% for the spatial 

derivatives, OLTEM reduces the number N of degrees of freedom by a 
factor of greater than 2.9 × 109 for the maximum relative error and 
greater than 1.15 × 106 for the L2 error norm compared to that for linear 
finite elements; see Fig. 6). In order to find the intersection of curves 2 in 
Fig. 6 with the horizontal lines -3 along the vertical axis (for the accu
racy of 0.1%) and to estimate this reduction in N, we extrapolated the 
curves 2 using the constant slope. Due to the new post-processing pro
cedure, OLTEM is even more efficient for the calculation of the spatial 
derivatives ∂unum

∂x , ∂unum

∂y and ∂unum

∂z compared to linear and high order finite 
elements. This will lead to a huge reduction in the computation time for 
the calculation of the spatial derivatives by OLTEM compared to those 
obtained by finite elements at a given accuracy. 

5. Concluding remarks 

OLTEM developed in our paper [35] for the 2-D Poisson equation with 
heterogeneous materials is here extended to the general 3-D case. 27-point 
stencils (similar to those for linear finite elements) and unfitted Cartesian 
meshes for irregular geometry are used. One of the main ideas of the 
proposed approach for heterogeneous materials with interfaces is the 
addition of the interface conditions at a small number of interface points to 
the expression for the local truncation error. The unknown stencil co
efficients are numerically calculated from a small local system of algebraic 
equations for the general geometry of interfaces. OLTEM does not change 
the width of the stencil equations; i.e., the size of the global discrete system 
of equations is the same for the Poisson equation with constant or 
discontinuous coefficients. The calculation of the unknown stencil co
efficients is based on the minimization of the local truncation error of the 
stencil equations and yields the optimal order of accuracy of the new 
technique at a given stencil width. The increase in the computational costs 
for the calculation of the unknown stencil coefficients from the local 
system is insignificant compared to the computational costs for the solu
tion of the global discrete system. Another novelty of the paper is the 
development of a new post-processing procedure for the accurate calcu
lations of the spatial derivatives of numerical solutions. We show that 
OLTEM with compact stencils can significantly improve the accuracy of 
the spatial derivatives of numerical solutions as well. The proposed 
post-processing includes the use of the partial differential equations and 
the solution of the local systems of algebraic equations similar to those 
used for the calculations of the stencils coefficients in the basic approach. 

The main advantages of the suggested technique can be summarized 
as follows:  

• Many difficulties of the existing numerical techniques for irregular 
domains (e.g., finite elements, spectral element, isogeometric ele
ments, the finite volume method, and many other) are related to 
complicated mesh generators for conformed meshes and the accu
racy of ’bad’ elements (e.g., the elements with small angles). In 
contrast to these techniques, OLTEM is based on trivial unfitted 
Cartesian meshes with a trivial procedure for the formation of the 27- 
point stencils for 3-D domains with complex irregular interfaces.  

• The new approach has the same width of the stencil equations and 
the same structure of the sparse global discrete equations for the 
Poisson equation with constant and discontinuous coefficients. There 
are no unknowns on the interfaces between different materials for 
the proposed technique; i.e., complex irregular interfaces do not 
affect the structure of the global system of equations (they affect just 
the values of the stencils coefficients). 

• In contrast to the finite-difference techniques with the stencil co
efficients calculated through the approximation of separate partial 
derivatives, the entire partial differential equation is used for the 
calculation of the stencil coefficients in OLTEM. This leads to the 
optimal accuracy of the proposed technique. E.g., the 27-point stencils 
of the new 3-D approach provide the optimal accuracy that cannot be 
improved without changing the width of stencil equations. In contrast 
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to the 27-point stencils of linear quadrilateral finite elements, OLTEM 
yields a higher order of accuracy (by one order) compared to that for 
linear finite elements for the general geometry of interfaces.  

• The numerical results for irregular interfaces also show that at the same 
number of degrees of freedom, OLTEM is even much more accurate than 
high-order (up to the sixth order) finite elements with much wider 
stencils. This also means that at a given accuracy, OLTEM significantly 
reduces the computation time compared to that for linear and high-order 
finite elements. For example, at accuracy of 0.1% OLTEM decreases the 
number of degrees of freedom by a factor of greater than 3500 compared 
to linear finite elements with similar stencils and conformed meshes.  

• OLTEM does not require time consuming numerical integration for 
finding the coefficients of the stencil equations; e.g., as for high-order 
finite, spectral and isogeometric elements. The stencil coefficients are 
calculated analytically or numerically (for the general geometry of in
terfaces) by the solution of small local systems of linear algebraic equa
tions. Numerical experiments show that the solution of these small local 
systems of algebraic equations is fast. Moreover, these local systems are 
independent of each other and can be efficiently solved on a parallel 
computer.  

• It was shown that OLTEM with the 27-point compact stencils used for 
the basic computations can be also applied (with small modifica
tions) to the calculation of the spatial derivatives of numerical so
lutions at post-processing. The proposed post-processing procedure 
includes the use of the partial differential equation and the solutions 
of the small local systems of equations. Numerical experiments show 
that OLTEM with 27-point stencils used for basic computations and 
post-processing yields much more accurate results for the spatial 
derivatives of the numerical solution than those obtained by linear 
and high-order (up to the 7th order) finite elements with much wider 
stencils. At the engineering accuracy of 0.1% for the spatial de
rivatives, OLTEM decreases the number of degrees of freedom by a 
factor of greater than 106 compared to linear finite elements. 

• The proposed post-processing procedure provides the optimal accu
racy of the spatial derivatives of the numerical solution for the 
selected compact stencils. It can be developed with or without the 
use of PDEs. However, the use of PDEs significantly improves the 
accuracy of the spatial derivatives for the given stencils (e.g., by two 

orders for the same 27-point stencils). Despite the fact that we have 
applied OLTEM to the stencils defined on Cartesian meshes, the 
proposed post-processing technique can be equally used for non- 
uniform meshes (similar to OLTEM developed in our papers [27, 
29,39] for irregular boundaries). Finally, the post-processing pro
cedure developed can be independently used with any known nu
merical technique (e.g., with finite elements).  

• Due to the huge reduction in the computation time compared to 
existing methods and the use of trivial unfitted Cartesian meshes that 
are independent of irregular geometry, the proposed technique does 
not require remeshing for the shape change of irregular geometry 
and it will be effective for many design and optimization problems as 
well as for multiscale problems without the scale separation. 

In the future we plan to develop OLTEM with adaptive mesh 
refinement similar to h− and p− mesh refinements for finite elements (e. 
g., it was shown in papers [31,33] that OLTEM can easily combine 
different stencils). We plan to use quadtrees/octrees meshes that allow a 
simple refinement strategy with Cartesian meshes. The extension of 
OLTEM to other PDEs with discontinuous coefficients as well as to 
non-linear PDEs will be also considered in the future. We plan to extend 
the new post-processing procedure with OLTEM to other PDEs including 
accurate stress calculations for elasticity equations. 
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Appendix A. The coefficients bp used in Eq. (16) for the 27-point stencils. 

The first 10 coefficients bp (p = 1,2, …, 10) are presented below. Please see also Appendix B and the attached file ’b-coef.nb’. 
b1 =

∑27
j=1ajkj +

∑25
j=1q1,j 

b2 =
∑27

j=1(1 − aj)kj −
∑25

j=1q1,j 

b3 =
∑27

j=1bzaj(rz,j − dzG)kj +
∑25

j=1(dz,jq1,j + e∗nz,jq2,j)

b4 =
∑27

j=1bz(1 − aj)(rz,j − dzG)kj −
∑25

j=1(dz,jq1,j + e∗∗nz,jq2,j)

b5 =
∑27

j=1byaj(ry,j − dyG)kj +
∑25

j=1(dy,jq1,j + e∗ny,jq2,j)

b6 =
∑27

j=1by(1 − aj)(ry,j − dyG)kj −
∑25

j=1(dy,jq1,j + e∗∗ny,jq2,j)

b7 =
∑27

j=1bxaj(rx,j − dxG)kj +
∑25

j=1(dx,jq1,j + e∗nx,jq2,j)

b8 =
∑27

j=1bx(1 − aj)(rx,j − dxG)kj −
∑25

j=1(dx,jq1,j + e∗∗nx,jq2,j)

b9 =
∑27

j=1
1
2aj[b2

z (rz,j − dzG)
2

− (rx,j − dyG)
2
]kj +

∑25
j=1

[
1
2 (d2

z,j − d2
x,j)q1,j + e∗(dz,jnx,j − dz,jnx,j)q2,j

]

b10 =
∑27

j=1
1
2 (1 − aj)[b2

z (rz,j − dzG)
2

− (rx,j − dyG)
2
]kj −

∑25
j=1

[
1
2 (d2

z,j − d2
x,j)q1,j + e∗∗(dz,jnx,j − dz,jnx,j)q2,j

]

Appendix B. The explicit form of Eqs. (24) for the determination of the stencil coefficients. 

The coefficients bi in Eq. (16) can be represented as a linear function of the stencil coefficients kj, q1,j and q1,j as follows: 

bi =
∑27

j=1
sijkj +

∑25

j=1

(
c1

ijq1,j + c2
ijq2,j

)
, i = 1, 2, …, 98 , (B.1) 
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where the coefficients sij, c1
ij and c2

ij can be found from the expressions for the coefficients bi; see Appendix A and the attached file ’b-coef.nb’. 
Then using Eq. (B.1), the local system of linear algebraic equations for finding the stencil coefficients, Eq. (24), can be rewritten as follows: 

∂R
∂km

=
∑32

l=1
λl

∂bl

∂km
+ 2

[
∑50

p=33
bp

∂bp

∂km
+ h1

∑72

p=51
bp

∂bp

∂km
+ h2

∑98

p=73
bp

∂bp

∂km

]

=
∑32

l=1
λlslm+2[

∑27

j=1

(
∑50

p=33
spjspm + h1

∑72

p=51
spjspm + h2

∑98

p=73
spjspm

)

kj

+
∑25

j=1

(
∑50

p=33
c1

pjspm + h1

∑72

p=51
c1

pjspm + h2

∑98

p=73
c1

pjspm

)

q1,j +
∑25

j=1

(
∑50

p=33
c2

pjspm + h1

∑72

p=51
c2

pjspm + h2

∑98

p=73
c2

pjspm

)

q2,j] = 0 ,

m = 1, 2, …, 27 ,

(B.2)  

∂R
∂q1,m

=
∑32

l=1
λl

∂bl

∂q1,m
+ 2

[
∑50

p=33
bp

∂bp

∂q1,m
+ h1

∑72

p=51
bp

∂bp

∂q1,m
+ h2

∑98

p=73
bp

∂bp

∂q1,m

]

=
∑32

l=1
λlc1

lm+2[
∑27

j=1

(
∑50

p=33
spjc1

pm + h1

∑72

p=51
spjc1

pm + h2

∑98

p=73
spjc1

pm

)

kj

+
∑25

j=1

(
∑50

p=33
c1

pjc
1
pm + h1

∑72

p=51
c1

pjc
1
pm + h2

∑98

p=73
c1

pjc
1
pm

)

q1,j +
∑25

j=1

(
∑50

p=33
c2

pjc
1
pm + h1

∑72

p=51
c2

pjc
1
pm + h2

∑98

p=73
c2

pjc
1
pm

)

q2,j] = 0 ,

m = 1, 2, …, 25 ,

(B.3)  

∂R
∂q2,m

=
∑32

l=1
λl

∂bl

∂q2,m
+ 2

[
∑50

p=33
bp

∂bp

∂q2,m
+ h1

∑72

p=51
bp

∂bp

∂q2,m
+ h2

∑98

p=73
bp

∂bp

∂q2,m

]

=
∑32

l=1
λlc2

lm+2[
∑27

j=1

(
∑50

p=33
spjc2

pm + h1

∑72

p=51
spjc2

pm + h2

∑98

p=73
spjc2

pm

)

kj

+
∑25

j=1

(
∑50

p=33
c1

pjc
2
pm + h1

∑72

p=51
c1

pjc
2
pm + h2

∑98

p=73
c1

pjc
2
pm

)

q1,j +
∑25

j=1

(
∑50

p=33
c2

pjc
2
pm + h1

∑72

p=51
c2

pjc
2
pm + h2

∑98

p=73
c2

pjc
2
pm

)

q2,j] = 0 ,

m = 1, 2, …, 25 ,

(B.4)  

∂R
∂λm

= bm =
∑27

j=1
smjkj +

∑25

j=1

(
c1

mjq1,j + c2
mjq2,j

)
= 0 , m = 1, 2, …, 32 , (B.5)  

where Eqs. (B.2)–(B.5) form a system of 109 linear algebraic equations for the determination of the stencil coefficients kj (j = 1,2,…,27), q1,j and q2,j (j 
= 1,2, …,25) as well as 32 Lagrange multiplier λl (l = 1,2, …,32). 
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Appendix C. The coefficients kj (j = 1, 2, …, 27) of the 27-point uniform stencils for homogeneous materials 

k1 = −

(
5
(
bz

2 + 1
)
by

2 + 5bz
2 + 9

)

8
(
125

(
bz

2 + 1
)
by

2 + 125bz
2 + 9

) , k2 =

(
5

(
bz

2 − 5
)
by

2 − 25bz
2 + 9

)

500
(
bz

2 + 1
)
by

2 + 500bz
2 + 36

,

k3 = −

(
5

(
bz

2 + 1
)
by

2 + 5bz
2 + 9

)

8
(
125

(
bz

2 + 1
)
by

2 + 125bz
2 + 9

) , k4 =

(
− 25

(
bz

2 + 1
)
by

2 + 5bz
2 + 9

)

500
(
bz

2 + 1
)
by

2 + 500bz
2 + 36

,

k5 =

(
25

(
bz

2 − 5
)
by

2 + 25bz
2 − 9

)

250
(
bz

2 + 1
)
by

2 + 250bz
2 + 18

, k6 =

(
− 25

(
bz

2 + 1
)
by

2 + 5bz
2 + 9

)

500
(
bz

2 + 1
)
by

2 + 500bz
2 + 36

,

k7 = −

(
5
(
bz

2 + 1
)
by

2 + 5bz
2 + 9

)

8
(
125

(
bz

2 + 1
)
by

2 + 125bz
2 + 9

) , k8 =

(
5

(
bz

2 − 5
)
by

2 − 25bz
2 + 9

)

500
(
bz

2 + 1
)
by

2 + 500bz
2 + 36

,

k9 = −

(
5
(
bz

2 + 1
)
by

2 + 5bz
2 + 9

)

8
(
125

(
bz

2 + 1
)
by

2 + 125bz
2 + 9

) , k10 = −

(
5
(
5bz

2 − 1
)
by

2 + 25bz
2 − 9

)

500
(
bz

2 + 1
)
by

2 + 500bz
2 + 36

,

k11 =

(
25

(
bz

2 + 1
)
by

2 − 125bz
2 − 9

)

250
(
bz

2 + 1
)
by

2 + 250bz
2 + 18

, k12 = −

(
5
(
5bz

2 − 1
)
by

2 + 25bz
2 − 9

)

500
(
bz

2 + 1
)
by

2 + 500bz
2 + 36

,

k13 =

(
− 25

(
5bz

2 − 1
)
by

2 + 25bz
2 − 9

)

250
(
bz

2 + 1
)
by

2 + 250bz
2 + 18

, k14 = 1 , k15 =

(
− 25

(
5bz

2 − 1
)
by

2 + 25bz
2 − 9

)

250
(
bz

2 + 1
)
by

2 + 250bz
2 + 18

,

k16 = −

(
5

(
5bz

2 − 1
)
by

2 + 25bz
2 − 9

)

500
(
bz

2 + 1
)
by

2 + 500bz
2 + 36

, k17 =

(
25

(
bz

2 + 1
)
by

2 − 125bz
2 − 9

)

250
(
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2 + 1
)
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2 + 250bz
2 + 18

,

k18 = −

(
5

(
5bz

2 − 1
)
by

2 + 25bz
2 − 9

)

500
(
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2 + 1
)
by

2 + 500bz
2 + 36

, k19 = −

(
5
(
bz

2 + 1
)
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2 + 5bz
2 + 9

)

8
(
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(
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2 + 1
)
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2 + 125bz
2 + 9
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k20 =

(
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, k21 = −
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)

8
(
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k22 =

(
− 25

(
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2 + 36
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(
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(
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,

k24 =

(
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, k25 = −

(
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(
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) ,

k26 =

(
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(
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500
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2 + 36

, k27 = −

(
5

(
bz
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)
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)

8
(
125

(
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)
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) .

Appendix D. The coefficients kj (j = 1,2,…,27) of the 27-point uniform stencils for homogeneous materials used for the calculation of the 
derivatives ∂unum

∂x , ∂unum

∂y and ∂unum

∂z 

kj (j = 1,2, …, 27) for the calculation of ∂unum

∂x : 

k1 =
7

360by
2bz

2 , k2 = 0 , k3 = −
7

360by
2bz

2 , k4 =
15by

2 − 7
180by

2bz
2 , k5 = 0 , k6 =

7 − 15by
2

180by
2bz

2 ,

k7 =
7

360by
2bz

2 , k8 = 0 , k9 = −
7

360by
2bz

2 , k10 =
15bz

2 − 7
180by

2bz
2 , k11 = 0 , k12 =

7 − 15bz
2

180by
2bz

2 ,

k13 =
1
90

⎛

⎜
⎜
⎝

7
bz

2 − 15

by
2 −

15
bz

2 + 45

⎞

⎟
⎟
⎠ , k14 = 0 , k15 =

1
90

⎛

⎜
⎜
⎝

15 −
7

bz
2

by
2 + 15

(
1

bz
2 − 3

)

⎞

⎟
⎟
⎠ ,

k16 =
15bz

2 − 7
180by

2bz
2 , k17 = 0 , k18 =

7 − 15bz
2

180by
2bz

2 , k19 =
7

360by
2bz

2 , k20 = 0 , k21 = −
7

360by
2bz

2 ,

k22 =
15by

2 − 7
180by

2bz
2 , k23 = 0 , k24 =

7 − 15by
2

180by
2bz

2 , k25 =
7

360by
2bz

2 , k26 = 0 , k27 = −
7

360by
2bz

2 .

kj (j = 1,2, …, 27) for the calculation of ∂unum

∂y : 
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k1 =
by

72bz
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by
(
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)

36bz
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1
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)

+
1
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)
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2 ,
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2
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(
1
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1
6

)

−
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2
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2 ,
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72bz
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by
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2 , k27 = −

by

72bz
2 .

kj (j = 1,2, …, 27) for the calculation of ∂unum

∂z : 
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(
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(
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18by
2 ,
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72by
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36by
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(
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1
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)
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Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.advengsoft.2022.103103. 
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