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Abstract

Recently, we have developed the optimal local truncation error method (OLTEM) for PDEs with homogeneous materials
on regular and irregular domains and Cartesian meshes as well as OLTEM with simple 9-point stencils for the 2-D scalar
time-dependent wave and heat equations for heterogeneous materials with irregular interfaces. Here, OLTEM is extended to a
much more general case of a system of elastic PDEs for heterogeneous materials with smooth irregular interfaces and unfitted
Cartesian meshes. We also use larger 25-point stencils that are similar to those for quadratic quadrilateral finite elements. The
interface conditions on the interfaces where the jumps in material properties occur are added to the expression for the local
truncation error and do not change the width of the stencils. There are no unknowns on interfaces between different materials;
the structure of the global discrete equations is the same for homogeneous and heterogeneous materials. The calculation of
the unknown stencil coefficients is based on the minimization of the local truncation error of the stencil equations and yields
the optimal 10-th order of accuracy for OLTEM with the 25-point stencils on unfitted Cartesian meshes. This corresponds to
the increase in accuracy by seven orders for OLTEM compared to conventional quadratic finite elements with similar stencils.
A new post-processing procedure for the stress calculations has been developed. Similar to basic computations, it includes
OLTEM with the 25-point compact stencils and provides a very high accuracy of the stresses. Numerical experiments for
elastic heterogeneous materials with circular and elliptical interfaces show that at the same number of degrees of freedom,
OLTEM with unfitted meshes is more accurate than high order (up to the fifth order—the maximum order implemented in
the COMSOL software) finite elements with a much greater stencil width and conformed meshes. Moreover, OLTEM with
the 25-point stencils provides very accurate results for nearly incompressible materials (e.g., with Poisson ratio 0.4995).

Keywords Elasticity equations for heterogeneous materials - Smooth interfaces - Local truncation error - Unfitted Cartesian
meshes - Optimal accuracy - Compressible and nearly incompressible materials

1 Introduction

The finite element method, the finite volume method, the
isogeometric elements, the spectral elements and simi-
lar techniques represent very powerful tools for the solu-
tion of partial differential equations (PDEs) for a complex
geometry. However, the generation of non-uniform meshes
for a complex geometry is not simple and may lead to the

> A. Idesman
alexander.idesman @ttu.edu

Department of Mechanical Engineering, Texas Tech
University, Lubbock, TX 79409-1021, USA

2 Microvast Power Solutions, Inc., Orlando, FL 32826, USA

Published online: 26 June 2022

decrease in accuracy of these techniques if ‘bad’ elements
(e.g., elements with small angles) appear in the mesh. More-
over, the conventional derivation of discrete equations for
these techniques (e.g., based on the Galerkin approaches)
does not lead to the optimal accuracy of discrete equations.
There is a significant number of publications related to the
numerical solution of different PDEs on irregular domains
with uniform embedded meshes. For example, we can men-
tion the following fictitious domain numerical methods that
use uniform embedded meshes: the embedded finite differ-
ence method, the cut finite element method, the finite cell
method, the Cartesian grid method, the immersed inter-
face method, the virtual boundary method, the embedded
boundary method, etc.; e.g., see [1-30] and many others.
The main objective of these techniques is to simplify the
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mesh generation for irregular domains as well as to mitigate
the effect of ‘bad’ elements. For example, the techniques
based on the finite element formulations (such as the cut
finite element method, the finite cell method, the virtual
boundary method and others) yield the p + 1 order of accu-
racy even with small cut cells generated due to complex
irregular boundaries (e.g., see [2-5, 9, 28, 29] and many
others). The main advantage of the embedded boundary
method developed in [10-12, 24, 25] is the use of simple
Cartesian meshes. The boundary conditions or fluxes in this
technique are interpolated using the Cartesian grid points
and this leads to the increase in the stencil width for the
grid points located close to the boundary (the numerical
techniques developed in [10-12, 24, 25] provide just the
second order of accuracy for the global solution). A stable
generalized finite element method for the Poisson equation
was developed in [31] for heterogeneous materials with
curved interfaces and unfitted uniform meshes. The sec-
ond order of accuracy in the energy norm was achieved in
[31] with 2-D quadratic finite elements that form 25-point
stencils. The development of different numerical techniques
(finite difference method, immersed finite element method,
immersed meshfree method) for elasticity interface problems
with unfitted meshes were recently reported in [32-34]. The
development of robust numerical techniques for the solution
of PDEs for heterogeneous materials with complex irregular
interfaces that provide an optimal accuracy on simple unfit-
ted meshes is still a challenging problem.

Recently in our papers [35-41], we have developed
OLTEM for the solution of PDEs with constant coefficients
(homogeneous materials) on regular and irregular domains
with Cartesian meshes. At the same structure of the semi-
discrete or discrete equations, the new technique provides
the optimal order of accuracy that exceeds the order of
accuracy of many known numerical approaches on regu-
lar and irregular domains. For example, in our paper [38],
we showed that OLTEM with nine-point stencils (similar to
those for linear finite elements) provides the second order
of accuracy for the 2-D elasticity on regular domains. The
second order of accuracy is the optimal accuracy for all nine-
point stencils independent of the numerical method used for
their derivations. The paper [38] also shows that OLTEM
with 25-point stencils (similar to those for quadratic finite
elements) provides the 10-th order of accuracy for the 2-D
elasticity on regular domains and conformed meshes. In our
paper [42], we have extended OLTEM with 9-point stencils
(similar to those for linear finite elements) and unfitted Car-
tesian meshes to the 2-D time-dependent scalar heat and
wave equations with discontinuous coefficients and we have
obtained the third order of accuracy of the new approach.
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Here, we consider the development of high-order OLTEM
for a much more general case of a system of the 2-D elas-
ticity equations with discontinuous coefficients and smooth
irregular interfaces that have numerous engineering applica-
tions. The focus of this paper is the development of compact
high-order 25-point stencils (similar to those for quadratic
elements) affected by irregular interfaces between different
elastic materials with simple unfitted Cartesian meshes.

In Sect. 2.2, OLTEM with 25-point compact stencils for
the 2-D elasticity equations is derived for heterogeneous
materials with zero body forces. Its extension to nonzero
body forces is considered in Sect. 2.3. Section 3 presents
the derivation of a new post-processing procedure for stress
calculation. 2-D numerical examples for compressible and
near incompressible heterogeneous materials with circular
and elliptical interfaces as well as the comparison with FEM
are presented in Sect. 4. Concluding remarks are given in
Sect. 5. For the derivation of many analytical expressions
presented below, we use the computational program “Math-
ematica”. We also used the ‘ToMatlab’ package for the con-
version of ‘Mathematica’ expressions to a Matlab code.

2 OLTEM with 25-point stencils for the 2-D
elasticity equations with discontinuous
material properties

In this section, we first introduce the elasticity equations for
heterogeneous materials and the local truncation error. Then,
we derive OLTEM with 25-point stencils for heterogene-
ous elastic materials with irregular interfaces in the case
of zero body forces. Finally, we take into account nonzero
body forces.

2.1 Elasticity equations and the local truncation
error

The 2-D time-independent elasticity equations in a com-
posite domain Q = UQ, (I = 1,2,..., N where N is the total
number of subdomains) can be written down in each subdo-
main Q, as follows:

2 ()zul azvl ;
) v, %y ’ M
V2 + (uy + )| — + +fl=0,
WV v+ (1 ) < o2 | oxdy > f)

where u; = u,(x,y) and v, = v;(x,y) are the x- and y-com-
ponents of the displacement vector, f!=f!(x,y) and
fy’ = fy’ (x, ) are the x- and y-components of the body forces
that can be discontinuous across interfaces, y; and 4, are
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Lame coefficients that can be also expressed in terms of
Young’s modulus E and Poisson’s ratio v as follows:

E, Ev,

SRR (T @

We also assume that the functions u; and f; are sufficiently
smooth in each subdomain ;. At the interface G between
any two subdomains, the following interface conditions (the
continuity of the displacements and the tractive forces across
the interface) are applied:

* sk __ o wk
ug—u; =0, vi—v; =0, 3)
* k% Rk
tx,G - [x,G =0, ty,G ty,G =0, (4)

where the symbols * and = correspond to the quantities on
the opposite sides from the interface for the correspond-
ing subdomains ;. The x- and y-components of the tractive
forces 1, ; and 7, ; can be expressed in terms of the displace-
ments as follows:

teg =nx[(ﬁ+2/4)a—u +2@] +nvy<% + @>,
A ox y )

0 dy Ox
comn s 0] (2 )
»G Ty ﬂ()y ox xH dy ox)’

where n, and n, are the x- and y-components of the normal
vector at the interface. According to Eqgs. (3)—(5), the dis-
placements u and v are continuous across the interfaces but
they can have the discontinuous spatial derivatives across
the interfaces. We should note that the derivation of the new
approach can be easily extended to the case with the dis-
continuous displacements and tractive forces across inter-
faces; i.e., when the right-hand sides in Eqgs. (3) and (4) are
the given functions. However, for simplicity we consider
Egs. (3) and (4) with zero right-hand sides. We should also
mention that despite the assumptions about the smoothness
of the exact solutions solved by OLTEM, the numerical
experiments (e.g., see our paper [36]) show that OLTEM
also yields accurate results for non-smooth solutions.

In this paper, the Dirichlet boundary conditions u = g,
and v = g, are applied along the external boundary I" where
g and g, are the given functions. However, the Neumann
boundary conditions (tractive forces) can be also used with
the proposed approach; e.g., see our papers [40, 43]. Accord-
ing to OLTEM, the discrete system for the elasticity equa-
tions, Eq. (1), after the space discretization with a Carte-
sian rectangular mesh can be represented as a system of
linear algebraic equations. The algebraic equations of this
system for each internal grid point of the domain are called

the stencil equations. For the 2-D elasticity equations, two
stencil equations can be written down for each grid point
as follows:

L L
num 7, num __ 7 :
D™+ Y k=, j=1.2, ()
i=1 i=1
where ¥™™ and v™™ are the numerical solution for the dis-

placemelnts u andl v at the i-th grid point, k;; and l_cj’i are the
unknown stencil coefficients corresponding to the displace-
ments u and v (they should be determined), L is the number
of the grid points included into a stencil, f] are the com-
ponents of the discretized body forces (see the next sec-
tions). Many numerical techniques such as the finite differ-
ence method, the finite element method, the finite volume
method, the isogeometric elements, the spectral elements,
different meshless methods and others can be finally reduced
to Eq. (6) with some specific coefficients k;; and I_cj,l-. To dem-
onstrate a new technique, below we will assume compact
25-point stencils (L = 25) in the 2-D case that correspond
to the width of the stencils for quadratic quadrilateral finite
elements on Cartesian meshes and that require similar
computational costs as those for quadratic finite elements.
However, the stencils with any width can be used with the
suggested approach.

Let us introduce the local truncation error used with
OLTEM. The replacement of the numerical values of the
displacements "™ and v!"™ at the grid points in Eq. (6) by
the exact solution #; and v, to the elasticity equations, Eq. (1),
leads to the residual of these equations called the local trun-
cation error e; of the discrete equations, Eq. (6):
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Calculating the difference between Eqs. (7) and (6) we can
get
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where &; = u; — u]"" and &7 = v; — "™ are the errors in the

displacements u and v at the grid point i. As can be seen
from Eq. (8), the local truncation errors e; (j = 1,2) are a lin-
ear combination of the errors in the displacements u and v at
the grid points which are included into the stencil equations.
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2.2 Zero body forces fi =0and f; =0inEq.(1)
2.2.1 25-point stencils with and without interface

Let us consider a 2-D bounded domain and a Cartesian rec-
tangular mesh with a mesh size 4 where 4 is the size of the
mesh along the x-axis, byh is the size of the mesh along the
y-axis (b, is the aspect ratio of the mesh). To simplify deri-
vations, below we consider rectangular domains with irregu-
lar interfaces between different materials. However, irregular
domains can be also considered with OLTEM; see [35-37].
Here, we will develop 25-point uniform stencils that provide
the tenth order of accuracy. We should mention that we use
the same structure of stencils for homogeneous and hetero-
geneous materials (the difference between homogeneous and
heterogeneous materials is in the values of the stencil coef-
ficients only). The spatial locations of the 24 grid points that
are close to the central grid point with (i, v;3) and contrib-
ute to the 25-point stencil for the central grid point are
shown in Fig. 1. For convenience, the local numeration of
the grid points from 1 to 25 is used in Fig. 1 as well as in the
derivations below. The interface in Fig. 1b divides the

coordinates x; = x5, and y; = yg,- This point can be
selected as the shortest distance from the central grid point
(u;3, vi3) of the 25-point stencil to the interface. Then, we
additionally select n interface points to the left and to the
right from the point with the coordinates x. ; and y, , at the
(g1 = X6 )* + Ogir1 — Y6.)?
(i=1,2,...,2n) from each other; e.g., see Fig. 1b for
25-point stencils. The numerical experiments show that
small distances h = /5 between the selected interface
points yield accurate results. The total number of selected
interface points is N; = 2n + 1 where N = 91is used for the
25-point stencils developed below.

Let us describe the coordinates of the grid points of the
25-point uniform stencil (see Fig. 1) with respect to the cen-
tral grid point (x,3, y,3) as follows:

same distances h=

x,=x3+0—=3)h, y,=y;3+(—3)bh, 9)
for the 25-point stencils where p =5(G —1)+i with
i,j=1,2,3,4,5.

To describe the coordinates of the selected N points on
the interface (see Fig. 1b), we introduce 2(N; — 1) coeffi-

. . o >0 0 cients d, , and d,, (p =2,3,...,Ng) as follows (see also
25-point uniform stencil into two parts with different mate- Fig lb)'? i
rial properties. To impose the interface conditions at the
interface, we select a small number of interface points as
follows. First, we select one point at the interface with the
—h e O O O
U1, V21 Uy3, Va3 Uys, Vag Uz1, V71 U3, V35 U3, V33 U3, vy U35, V35
U22, V22 Uz4, V24| -
wovid i viz v L —
Uqg, V. Uqg, V Uyq, V'
o P o U39, V19 U20, V20
Uq7, V17 U19, V19
ns
U11, V11 g13,1713 Uss, Vs 1 V1y ®
Uq2, V12 14, V1a U3z V12 Uiz, Vi3 WigpVise  [Uis Vis
Ug, Vg Uy, V7| Ug Vgl Uy, ol UL,V -
R et .t et Sl ug', vg U7, vy Uy, Vg Us, Vo M0 Vio
by h
y
by h
O—Q—Q—Q—QJ—X
Uy, V1 Uz, V2 U3, V3 U, Vs U Vs X @
uy, Vi u3, v u3, v3 ui]vz u§| vy
a) b) h
Fig. 1 The spatial locations of the degrees of freedom u, and v, (p = 1,2, ..., 25) that contribute to the 25-point uniform stencil for the internal

degrees of freedom u,; and v, 5 for homogeneous material without interface (a) and for heterogeneous material with interface (b)
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Xgm = Xg +d, ,h,

10
yG,m =yG+dvmb)h ( )

m = 2’3""’NG'

For the proposed approach, some interface points G,,
(m=1,2,...,Ng;) can be located slightly outside the
25-point cell. The derivations presented below are also valid
for these cases.

The stencil equations, Eq. (6), for heterogeneous mate-
rials with the 25-point uniform stencil for the grid point
(%13, y13) (see Fig. 1b) will be assumed in the following form:

25

Zk]p[ *num+(1 —a )u**num] + Zk [Cl v*num

p=1 an
+(1- a[,)v;*’“”m] =]§-,13, j= 1,2,

where f; 13 = 0 in the case of zero body forces f} = f; =

in Eq. (1), the unknown coefficients k;, and k
(p=1,2,...,25) are to be determined from the m1n1m1—
zation of the local truncation error, the coefficients a, = 1
if the grid point u, belongs to material * or a, = 0 if the
grid point u, belongs to another material #x (i.e., only two
variables y*™™, v;’““m or y MM y#Ium are included into
Eq. (11) for each grid point; e.g., see Fig. 1b with a; = 1
(i=1,2,3,4,5,7,8,9,10,12,13,14,15,19,20) and a; =0
(j=6,11,16,17,18,21,22,23,24,25)).

We should note that usually the stencil equations similar
to Eq. (11) include the coefficient h? in the denominator in
order to express the second space derivatives in the elastic-
ity equations, Eq. (1). However, for convenience, the stencil
equations Eq. (11), are multiplied by 4? to write down them
w1th0ut —. Therefore, the expressions for the local truncation
error used in the paper are also multiplied by 4.

2.2.2 The local truncation error for 25-point stencils
with interface

The local truncation error ¢; follows from Eq. (11) by the

replacement of the numerlcal solutlon MM ggtnum v; num
and v[’j* UM by the exact solution up, u™, v and v;*:

p’p
25
ej=2
p=1

+(1-

25
[au +(1—a)u** +Z Colapy

= ” (12)
j=12.

Cl)V “1- f13’

One of the ideas of the new approach is to include the inter-
face conditions for the exact solution at a small number of
the selected interface points into Eq. (12) for the local trun-
cation error as follows:

25
e = Z kj!p[apu; +(1- ap)u;*]
p=1
25
+ D K la,vi+ (1= a,)v]
=1
Ng Ng
+ Z qlqm(u*G,m - “B*m) + Z qlm(v*G,m - vg‘jm)
m=1 m=1
Ng ou* ov*
Gm G,m
+ hgs Ny | (A, +24,) + 4,
Ju’* ov:
G,m G.m
+ — 4
ny'mﬂ*< dy ox )]

ou’; oVt
G.m G.m

aI/t**ﬂ’l avz*lﬂ
1y M o + ax’

Ng ot ou’*
G,m G,m
+ )k oA, +2u) =22+ 4, —=
P Q4,m{ |f%,m l( H ) ()y ox ]

Ju’* ov:
G.m G,m
- —= 4
nx’mﬂ*< dy ox )]

o ou’’
G.m G.m
- A + 21, )—2 4 ), —
|jlly,m l( Hk ”**) ay Kk ax ]
ou’s ovEr
G,m G.m -
+ ) + : —fins j=1,2,
nx,m”**( ay ox >] } fj,lS J

13)

where n,,, and n,, are the x and y-components of the nor-
mal vectors at the selected N interface points (e.g., see
Fig. 1b), the unknown coefficients q; ,» G2 > 93,, and gy,
(m=1,2,...,Ng) will be used for the minimization of the
local truncation error in Eq. (13), the expressions in paren-
thesis after g, ,,,, 5 > 43,, and g, are the interface condi-
tions at the selected N interface points and are equal to
zero (see Egs. (3)—(5)). Therefore, Eqs. (12) and (13) yield
the same local truncation error ¢;. The addition of the inter-
face conditions at N = 9 pomts in Eq. (13) provides addi-
tional 4N = 36 unknown coefficients q, ,, 4, > 43, and
G (m=1,2,. NG) that along with 50 unknown stencil
coefficients kj o Kip (p=1,2,...,25) are used for the mini-
mization of the local truncation error; see below Eq. (27).
This allows us to get the tenth order of accuracy of OLTEM
for general geometry of interfaces; see below.
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Remark 1 In Eq. (13), we consider two local truncation
errors for the first j = 1and second j = 2 stencils. The coef-
ficients qy ,,,» g3, q3,, and gy, (m=1,2,...,Ng) are dif-
ferent for these two stencils. However, in order to simplify
the notations we omit index j for the coefficients g, ,,, g5,

q3,m and q4,m‘

2.2.3 The number of unknown stencil coefficients

Only 50 + 4N — 1out of the 50 + 4N; coefficients kj’p, I_cj,p,
Q1> D> B> Dam (P = 1,2,...,25, m=1,2,...,Ng) in
Eq. (13) can be considered as unknown coefficients. This
can be explained as follows. In the case of zero body forces
]_Cj,IS =0, Eq. (11) can be rescaled by the division of the
left- and right-hand sides of Eq. (11) by any scalar, i.e., one
of the coefficients can be selected as unity and there will
be only 50 + 4N — 1 unknown rescaled coefficients. The
case of nonzero body forces f/ 13 # O can be similarly treated
because the term f; ;5 is a linear function of the stencil coef-
ficients; see below. For convenience, we will scale the stencil
coefficients in such a way that k, |5 is k; ;; = 1. Moreover,

similar to finite element stencils, we select k; ;3 = 0.
2.2.4 Taylor series of the local truncation error

To represent the local truncation error ¢; as a Taylor series,
let us expand the exact solution at the grid points and the
selected N interface points in Eq. (13) into a Taylor series
at small 2 < 1in the vicinity of the central interface point

(xg, yg) as follows:

_aCG-gdxhaCGl3dbh
CP_CG+E[((1_ ) — G)]+E[(( -3)- yG)y]

0%cq [((i = 3) —dxp)h]*  0%cg [((—3) — dyg)byhl?

0x2 2! 0y> 2!
dc, (G = 3) = dx I = 3) — dyg)b ]
2 + e,
0xady 2!
p=5(U-1+i withi,l=1,2,3,4,5
(14)
owg owg
w;=wg + W[dx‘]h] + a_y[dy’ibyh]
Pwg Ldhl’ Pwg [d, b ,hT? (15)
0x? 2! 0y? 2!
262WG [(dx,jh][d)beh] 4o ] _ 1, 2.9,
0x0y 2!
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with dxg = xG;x” and dyg; = yab—%. In Eq. (14) the function

3k * sk

Gy e,
. The exact

¢, isuy, w*, v, vi* in Eq. (15) the function w; is u

PR S N . A
duGJ duG‘]. BuGJ. duGJ " - OVG‘/. dvaj 0‘GJ I)VGJ.
ox > ox’ ay’ ay’ GJ’ Gy’ ox’ ox’ ay’ oy
solution ug,, u’, v, a.nd v to tl}e eIE}stlclty equaFlons,
Eq. (1), at the central interface point with the coordinates

X = xg and y = y; meets the following equations:

o*u* 0*u* o0%v*
G _ | ex G * G *
oz lsl 0y? t5 0xdy 536 |-

o*v* P2v* 2u* (16)
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0x? L 9y? 2 9xay | 36x|
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asz* ~ 1 62VG . aZuG* e
2 | s ) + S4 — Gyl
0x sl ay axay My
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TG _ |0
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2 QEDf: (18)
s i ||
ax(1+l)ay(]+l) axzay/
a(2+i+j)V*G _ la(2+i+j)v>'(<7 . a(2+i+j)u(*j
oxC+igy T | st axigy@+) T 4 gxi+DgyGHD
(i+) (
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Qi) gy @ik e (i)
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QD) (20)
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ox'oyl
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(2+i+j) ; o+
d ug;

4 ox*+DgyG+D

Qitj) Qi) e
0 Ve [ 190 Ve

0x@+) gy =" E 0xigy@H)

s 1 a(iﬁ)fé;
i Oxi0y |7

@n

Hi(sx) w(ex) Hi(in) + )'*(w«)

2/4*(**) + j’>a<(**)

#(kx)
1 - = _ . ., >

2”*(**) + /1*(**)
S*(**) — 1

s*(**) — M*(**) + A*(**)
3 > 94 )
2“*(**) + A*(**)

”*(**)

withi,j=0,1,2,3,4,.... We should mention that Eqgs. (16)
and (17) directly follow from Eq. (1) while Egs. (18)—-(21)
are obtained by the differentiation of Egs. (16) and (17) with
respect to x and y.

2.2.5 The difference in the derivations for the first
and second 25-point stencils

In Egs. (16) and (17), we have expressed the second x deriv-
atives in terms of the second y derivatives and the second
mixed derivatives. However, similarly, we can express the
second y derivatives in terms of the second x derivatives and
the second mixed derivatives. This latter case (with the cor-
responding modifications of Egs. (18)—(21) will be used for
the calculation of the local truncation error and the stencil
coefficients for the second stencil equation with j = 2; see
below.

2.2.6 The final expression for a Taylor series of the local
truncation error

Below, we consider the local truncation error for the first
stencil equation, Eq. (13) with j = 1. The derivations of the
local truncation error for the second stencil equation,
Eq. (13) with j=2, can be done similarly (see also
Sect. 2.2.5). Inserting Eqs. (14) and (15) and Egs. (16)—(21)
with zero body forces fé,x :fg’y = gi’; :fé‘f‘y =0 into
Eq. (13) we will get the following local truncation error in
space e

_ * * sk sk
e; = by ug + bV, + by sug + by v

ou;; ov; ou’; vy’

+ h(bw% + bm% + bma—; + bl,ga—g

+ b1,9% + bl,l()%

+b1,1lag_§ + bl,lza;}_:(:j)

o2,
02\12* 0214’& 02\%

+by 6 xdy +by 47 o2 +b1,18_ay2

aZu** aZV**
+b S 4+b g
1,19 ayz 1,20 ayz >

03\1**

G
+h3<b1q21 _axa B + A +b1’28_6y3
()414* ()4\/**
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+h <b1,29 gy T e
aSu* aSV**
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+ bz biy——=
oxoy* 0y’

a7u* 07‘}**
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+ h7<b1q53_ + A + b1’60_a 7
y

()SM* ()SV**
+h8<bl,61—G+---+b G

0x0y’ 1’686_)18

9 % 9
N b 0 u, b d VZ*
16950 P 1,76 _ayg

+ Rt h145_6+...+b152ﬁ
2 0xay’ P 9yd

10,
ug, 90"y,
teet b1,84m
allu* an**
b __ G + .-+ b _ i
185 310 192753

012 * aGV**

+ 1'% by gy—L + -+ b 1gp—== | + O"

< 1,93 dxay“ 1,100 aylz ( )
(22)
where the coefficients b, , (p = 1,2,...) are expressed in
terms of the coefficients k, ;, ky; and gy ., G2.m> G3m> D4
(i=1,2,...,25,m=1,2,...,Ng) and are given in Appen-
dix 1. Here, we should mention that the expression for
the local truncation error e;, Eq. (22), includes only the
first-order derivatives with respect to x (the higher order
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derivatives with respect to x are excluded with the help of
Egs. (16)-(21)).

2.2.7 Homogeneous materials (no interface)

For homogeneous materials, all a; (j=1,2,...,25) coef-
ficients are a; = 1(see Eq. (11) if we consider material x) as
wellasall g ; =¢,;=¢3;=q,;=0(=1,2,...,9) coef-
ficients are zero. In this case, the derivation of the local trun-
cation error is similar to that in the previous section and is
given in our paper [38] and Appendix 2. The local truncation
error for the first stencil (see our paper [38] for details) is:

B 5(A + u)(548284% 4 102343 Ay + 402024%)
T 9072(1364946 43 + 2319299742 1 + 44409365¢p? + 2123841443)

€

rs iz, o),
y12

(23)
i.e., the order of the local truncation error cannot exceed 12
for any 25-point uniform stencils independent of the method
used for their derivation (the finite element method, the
finite volume method, the finite difference method, or any
other method). The 12-th order of the local truncation error
corresponds to the optimal 10-th order of accuracy for the
global numerical solution (e.g., see our paper [38]). For the
elasticity equations, the accuracy of the new approach with
25-point uniform stencils significantly exceeds the accuracy
of conventional high-order finite elements with much wider
stencils; see the numerical results below.

2.2.8 25-point stencils for heterogeneous materials
with an irregular interface

The formulas presented below can be used for the first j = 1
and second j = 2 stencils (they should be separately consid-
ered for j = 1and j = 2). The analytical (with ‘Mathemat-
ica’) and numerical calculations for straight and curvilinear
interfaces show that the first 84 coefficients b; , in Eq. (22)
up to the 10-th order with respect to & can be zero. However,
some of the coefficients b; , (p = 69,70, ...) starting from
order 9 in Eq. (22) can be linearly dependent. Therefore, in
order to minimize the order of the local truncation error e, in
Eq. (22), we will zero the first 68 coefficients b; , in Eq. (22)
up to the 8-th order with respect to 4; i.e.,

bj’p=0, p=12,...,68. (24)

Then, to have a sufficient number of equations for the
calculation of the 86 stencil coefficients of each stencil
including k;;, k;; (i = 1,2,...,25) and q; ,» G2 :93,m> 9am
(m=1,2,...,9), we use the least square method for the
minimization of coefficients bj’p related to 9-th, 10-th, 11-th
and 12-th orders of the local truncation error with the fol-
lowing residual R;:
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76 84 92 100
_ 2 2 2 2
R; = Z b/,p +h Z bj,p +hy Z bj,p +hy Z bj,p’ (25)
p=69 p=T77 p=85 p=93

where A, h, and h; are the weighting factors to be selected
(e.g., the numerical experiments show that h; = 1/5,
hy = h;/5, hy = h, /5 yield accurate results and provide the
11-th order of the local truncation error). To minimize the
residual R; with the constraints given by Eq. (24), we can
form a new residual R; with the Lagrange multipliers 4;:

68 76 84
D _ 2 2
R = Z A+ Z b, +h 27 b,
100

+h22b +hy )b

p=85 p=93

(26)

The residual Rj is a quadratic function of the sten-
cil coefficients kj’l-, kj,i (i=1,2,...,25) and
Qm> DmD3m> dam (m=12,...,9) and a lin-
ear function of the Lagrange multipliers 4;; i.e.,

R R, i (k; l,k”,qlm,q2m,q3m,q4m,/1) In order to minimize
the res1dua1R Ri(k; s K; 15 G1 > G2.m> D3.m5 Dam> 41)» the fol-
lowing equatlons based on the least square method for the

residual R_/ can be written down:

R, 0 ﬂ _ R, _

ok ’ al}j,i T 0qy,, ’

aiej ()I_?j 0I_€j 0 aRj 0 27
o 93 m 0y Ok
i=1,2,...,25, m=1,2... 9, [=1,2,...,68,

where the equations —- oR, = 0 should be replaced by

0kl 13 akl 13
ki3 =1and k1 13 = 0 for the first stencil with j =1 (the

equations Ry — R _ () should be replaced by k, ; =0
0ky 13 ak2.13 ?

and k2,13 =1 for the second stencil with j=2); see
Sect. 2.2.3. Equation (27) forms a system of 154 linear alge-
braic equations with respect to 154 unknown coefficients k; ;,
ki, i=1,2,...

]l

B 25) and ql,m’ qZ,m’ QS,m’ q4,m (m = 1’ 25 .. 9)
as well as the Lagrange multipliers 4, (I = 1,2, ..., 68). Solv—
ing these linear algebraic equations numerically, we can find
the coefficients k; ;, k;; (i = 1,2, ..., 25) for the 25-point uni-
form stencils as well as q1m Clz,m’ B Qam(m=1,2,..., 5).
As can be seen, the presented procedure provides the 11-th
order of the local truncation error for the 25-point uniform
stencils with the general geometry of the interface. The
25-point uniform stencils of OLTEM for homogeneous
materials (without interface) provide the 12-th order of the
local truncation error for rectangular meshes; see Eq. (23).
This leads to the 10-th order of accuracy of global solutions;
see the numerical examples below.
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To estimate the computational costs for the solution of
154 linear algebraic equations formed by Eq. (27) for the
25-point stencils, we solved 10° such systems with the gen-
eral MATLAB solver ‘pinv’ on a desktop computer (Pro-
cessor: Intel(R) Core(TM) 17-10700 CPU @ 2.90 GHz).
the computation ‘wall’ time was T = 57.55s for 103 systems
or the average time for one system was 0.05755s for the
25-point stencils. Because the coefficients kj’i, I_cj,i are inde-
pendently calculated for different grid points, the computa-
tion time of their calculation for different grid points can be
significantly reduced on modern parallel computers. For 2-D
problems with 1-D interfaces, the number of heterogeneous
stencils (the stencils cut by the interface) is proportional to
% at mesh refinement while the numbers of the internal grid
points and the global degrees of freedom (the displacements
at the internal grid points) for 2-D domains are proportional
to hiz This means that for large global systems of discrete
equations at small 4, the computation time for the calcula-
tion of the coefficients k; ;, I_cj’i is very small compared to that
for the solution of the global system of discrete equations.
We should mention that the coefficients g, ,,, 42 ,,» 43> Gam
calculated from the local system of equations, Eq. (27), are
only used for the calculation of non-zero right-hand side
vector (see Eq. (29) below) and do not introduce additional
unknowns to the global system of discrete equations (see
Eq. (11)) while the Lagrange multipliers 4, in the local sys-
tem of equations, Eq. (27), are not used in the global system
of discrete equations at all.

Remark 2 1t is interesting to mention that the stencil coef-
ficients can be also derived by using the central grid point
with the coordinates x5 and y,; in Eqs. (14)—(22) instead of
the interface point with the coordinates x; and y,.

The global system of discrete equations includes the
25-point stencils for homogeneous materials without inter-
faces and the 25-point stencils for heterogeneous materials
with interfaces between different materials (see Fig. 1) for all
internal grid points located inside the domain. OLTEM does
not use unknowns at the interfaces and the global system
of discrete equations has the same unknowns (the displace-
ments u and v at the internal grid points of Cartesian meshes;
see Eq. (11)) for homogeneous and heterogeneous materials.
OLTEM provides the same structures of the global matrices
for homogeneous and heterogeneous materials, the differ-
ence is only in the values of the stencil coefficients ; ;, l_cjgl- of
the global matrices.

2.3 Non-zero body forces fi # 0and f; # 0in Eq. (1)
The inclusion of non-zero body forces f! # 0 and fy’ # 0in

the partial differential equations, Eq. (1), leads to the non-
Zero terms fj’n in the stencil equations, Eq. (11) (similar

to Eq. (6)). As we mentioned after Eq. (1), the body forces
fxl and f‘l can be discontinuous across the interfaces. The
expressions for the terms fi,lS can be calculated from the pro-
cedure used for the derivation of the local truncation error in
the case of zero body forces as follows (here, we will show
the derivation of the term J?1,13 for the first stencil equation,
Eq. (11), with j = 1). The insertion of Egs. (14) and (15)
and Egs. (16)—(21) with non-zero body forces into Eq. (13)
yields the following local truncation error in space

d =e,— |f s+ 02t
vz st gm0

l:

P+ (g,
(28)
+ G+ (...)féj) +h3 ... ]

where e, is the local truncation error in space given by
Eq. (22) for zero body forces, fg’x, ~(”;‘;, f‘é‘y and f(’;*\ desig-
nate the body forces f:’ f;‘*, f; and fy** calculated at the
central interface point with the coordinates x = x; and
Yy =Yg, the expression for p, is given in Appendix 3. Equat-
ing to zero the expression in the square brackets in the right-
hand side of Eq. (28), we will get the expression for f1,133

- 1
f1,13 =_h2<

20 +21) 2#*)P1f§,x + g,

(29)
+ G+ (...)f;j;) —-h’...,

as well as we will get the same local truncation errors e{ =e,
for zero and non-zero body forces (see the attached file
‘RHS.nb’ for the detailed expression of f1,13)- This means
that the coefficients k; ;, I_cj,i i=1,2,...,25 j=1,2) of the
stencil equations are first calculated for zero body forces
fx* =f;* =fy* ?fy"* = 0 as described in Sect. 2.2. Then, the
nonzero term f 3 given by Eq. (29) is used in the stencil
equation, Eq. (11) for nonzero body forces.

The derivation of the term f, 5 for the second stencil
equation, Eq. (11), with j = 2 can be done similar to that
for f, 3. To preserve symmetry in the derivations for the
first and second stencils with respect to the x and y coordi-
nates, for the second stencil with j =2, Egs. (16) and (17)
(with the corresponding modifications of Eqgs. (18)—(21))
should express the second y derivatives in terms of the sec-
ond x derivatives and the second mixed derivatives (see
Sect. 2.2.5).

3 New post-processing procedure for stress
calculations

Recently, in our paper [44], we have proposed a new post-

processing procedure for the calculation of the spatial deriv-
atives of numerical solutions for the scalar Poisson equation.
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It is based on OLTEM with the compact stencils correspond-
ing to linear finite elements. Here, we will extend it to a
system of the elasticity equations and to more complicated
stencils corresponding to quadratic finite elements. For
stress calculations in the 2-D case, we first determine the

’ T Ty gpgnum avnum G
spatial derivatives P P of the displacements
X )y X

and then calculate the stresses using Hooke s law. Because
num 0 num () num
the calculations of these four derivatives 2— ‘;y , ‘;x ,
v
"™ are similar here we show the procedure for the calcula-

The compact 25-point stencﬂs for the calculation of % a_x
at the central stencil point with the coordinates x5 and y,;
(see Fig. 1) can be selected similar to Eq. (11) as follows:

#,num sk, UM

+(—ap)

h+2k yonum

13
— %3 ox
(30)

+( y*num| +Zk[apv;““"‘+(l—u)v**"“m] _f

p=1

[1

where f = 0 in the case of zero body forces f' = f/ = 0 in
Eq. (1), the unknown coefficients kp and kp (p=12,...,25)
are to be determined from the minimization of the local trun-
cation error, the coefficient a;; = 1if the central stencil point
belongs to material * and a,; = 0 if the central stencil point
belongs to material . It is interesting to note that in con-
trast to known post-processing procedures for the elasticity
equations (e.g., used with finite elements), the calculation
of {;um includes not only the numerical solution for the dis-
placement u but also for the displacement v; see Eq. (30).
The local truncation error e for Eq. (30) can be obtained
by the replacement of the numerical solution ™™, u**'““”‘

v;’““m, yenm in Eq. (30) by the exact solution u u v* v
ou’* ou™s
- 13 13
=- —+ (- —1h
¢ [a13 ox (1=a) ox

+Zk [av +(1—a)v**]—f

Similar to Eq. (13) in Sect. 2, we add the interface conditions
for the exact solution at the same small number N of the
interface points into the expression for the local truncation
error in Eq. (31) as follows:

@ Springer

ou* our:
_ 13 13
=-— — +(1- —1h
¢ [a13 ox ( @13) ox
25
+ Yk laut + (1 —au]
p=1

+ ) kla,vt+ (1= a,)v]
p=1

- ) 32)
+ Z %,M”Z,m - u?;:m) + Z qz’m(vz’m ?}*m)
m=1 m=1
Ng
*
+ Z has (8 Gy — DotGomy)
m=1
G
« sk £
+ Z hdamy Gy = bigamy) — 1
m=1
where
#(%) au*(%*) avz(:;k)
tx,(G,m) =Nym (/1*(**) + 2“*(*’”)) + A*(**) ay
du*G(t:) 0VZ(>::)
Tty M) dy + ox ’
av*(**) au*(**)
(k%) _G,m - Gom
3Gy = Ty | Ry T b)) dy Ao 0x
dug, Vg,
+ Ny M) dy + ox ’
(33)

see the corresponding explanations in Sect. 2.2. Similar to
Sect. 2, using the least square method we can form the local
system of equations for the calculation of the stencil coeffi-
cients kp and I_cp (p =1,2,...,25) that provide the same order
of the local truncation error as that in Sect. 2. The term f is
calculated similar to the term f1 131n Sect. 2 3 with the help
of Eq. (29). Finally, the spatial derivative 2 a_ is calculated
from Eq. (30) for each internal grid point as follows:

bt

+ Z K la,vem + (1= a, =) - 7|,
p=1

au* ,num
*,num sk, nuUm
+(1—-a )u 1

(34)

P

if the central stencil point belongs to material * (a;; = 1) and
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a **Tlllm
*,num + (1 —a )u** num]

| bt

25
+ Z l_cp[apv;’num +1 - ap)v;*’““m]] -7,

p=1

(33)

if the central stencil point belongs to material *x (a;; = 0);
see also the detailed description of the post-processing pro-
cedure for the Poisson equation in our paper [44]. For the

calculatlons of the spatial derivatives — Ju™” 61;‘;"“’ avan;m, the
derivative 2 a_ in the first two terms of Eq (30) should be
um dvnum 0Vnum

6y ’ ox day *

The proposed post-processing procedure provides a very
high order of accuracy for the stresses (see below the numer-
ical results in Sect. 4.2). It is based on OLTEM with the
same 25-point compact stencils as those used in basic com-
putations and it uses the entire system of the elasticity PDEs
for post-processing.

4 Numerical examples

In this section, the computational efficiency of OLTEM
developed for the 2-D time-independent elasticity interface
problems will be demonstrated and compared with conven-
tional linear and high-order (up to the fifth order) finite ele-
ments. The commercial finite element software ‘COMSOL’
is used for the finite element simulations. Similar to FEM
terminology, a grid point of a Cartesian mesh will be called
a node. To compare the accuracy of the numerical results
obtained by OLTEM and by FEM, the relative error e’s at the
Jth node and the maximum relative error e"** for the variable
s are defined as:

A | S;um _ s;:xact | A
€], =, er‘nax = max 61,,
s gexact s i s

max

j=1,2,...,N
(36)

In Eq. (36), the superscripts ‘num’ and ‘exact’ correspond
to the numerical and exact solutions, N is the total number
of nodes used in calculations, sf}’l‘;‘;t is the maximum absolute

value of the exact solution for the variable s over the entire

domain. We also use the relative error e *in the L2 norm for

ﬁmte elements (e.g., see [45]) and the relatlve error e "in the
% norm (e.g., see [46]) for OLTEM:

P ”sexact _ Snum”l2

€ =—, 37

s ”Sexact ||L2

N, N, |
where ”Scxacl _ Snum”l2 = {dxdy Z Z[scxacl(xi’yj) _ Snum(xi’yj)]Z}i. NX and
i=0=0

N, are the numbers of Cartesian grid points along the x- and
y-axes, x; and y; are the coordinates of Cartesian grid points.
The displacements u and v as well as the normal s,, s, and
shear s, stresses are considered as variable s in Egs. (36)
and (37).

4.1 Asquare plate with a circular interface
4.1.1 The problem formulation and the exact solution

Let us consider a square plate ABCD with dimensions 2 X 2;
see Fig. 2. A circular interface with radius r, = z /8 centered
at the origin O(0, 0) divides the domain € into two subdo-
mains: the circular subdomain €} and the remaining subdo-
main €y;. For the circular interface, the components of the
unit normal used in the interface conditions equal n, = =

andn, = ri for any interface point with the coordinate (x, y).
- 0

Using the method of manufactured solutions, the following
exact solution (e.g., see [47]) is selected:

-

Vi)
wny) = SRS
< m
Vr2+Df I
vi(xy) = SR

ug(x,y) = (\/:" (———)<1/r +1> s
A B
o ).

(38)

where « = =7, f = —10 and r = 1/x2 + y2. The body forces
can be calculated by the substitution of the exact solution
into the elasticity equations and are given below:

in Qy
v, y) =

f'(x y) = (VP DP (24 BB +pD)+V P2 D a((14y2 % (< 1+ a) A+ By (1+a)+x% (- 1+2a)))4|)
X\ (14r2)2 4 .
< in Q
e, y) = (VR4 =2+ a)a (A +p)+HV P2+ 1P B2+ (= 1) A+ G2 (14+B)+y% (= 1+200mp) !
yHY (1+r2)2 )y (39)
fH(x y) = VP HDP (24 p)pCy+ )V P2 D (4% (< 1) A+ By (1+a) % (- l+2a))un)
x V7 (14r2)2 )y .
b, in Q
e, y) = _ DO D 2k aU )+ VA D B2+ () i+ G (LAY (1 +2))pay) 1
y WY (A+r2)2 4y
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Fig.2 A square plate ABCD with a circular interface centered at
0(0, 0) with a radius r, = 7 /8 (a). Examples of a square unfitted Car-
tesian mesh for OLTEM (b), of conformed triangular (c) and quadri-

4.1.2 Material parameters

The following elastic Lame’s coefficients A and p are used

for this problem: (1) 4, =10, Ay =5, yy =4, py =2 for

. . 75924000 37962000
compressible materials and (2) A; = A= s

20993

76000 38000 . . :

== = —— for nearly incompressible materials.
M1 = 00030 HIL = 30003 y p

They correspond to the same Poisson’s ratio

Y = v% = % = 0.357 and the following Young’s moduli

E ==, Ey= % with the contrast for Young’s moduli

E. = % =2 for compressible materials as well as to the
i
same Poisson’s ratio v; = v;; = 0.4995 and the following

Young’s moduli E| = r E;= % with the contrast for

Young’s moduli E, = E—I = 2 for nearly incompressible

n
materials. The exact solution given by Eq. (38) with the
selected material properties meets the interface conditions,
Egs. (3) and (4).

4.1.3 Numerical solutions by OLTEM and FEM

The test problem is solved by OLTEM on square (b, = 1)
Cartesian meshes as well as by conventional linear and high-
order (up to the fifth order which is the maximum order
implemented in COMSOL) finite elements; see Fig. 2b for
an example of an unfitted Cartesian mesh used with OLTEM
and see Fig. 2c, d for examples of conformed triangular and
quadrilateral finite element meshes generated by COMSOL.
The Dirichlet boundary conditions are imposed along the
edges of the square plate according to the exact solution
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lateral (d) finite element meshes generated by COMSOL. The distri-
bution of the relative errors e, (e) and e, (f) obtained by OLTEM on a
square Cartesian mesh with size h = 1/6

given by Eq. (38). To get a high accuracy for OLTEM with
the 25 points stencils, the high-order numerical boundary
conditions similar to those developed in [48] are used.

Figure 2e, f shows the distribution of the relative errors
e, (Fig. 2e) and e, (Fig. 2f) obtained by OLTEM for the
compressible materials on a square Cartesian mesh with size
h =1/6. As can be seen from Fig. 2e, f the errors ¢, and e,
are very small for this mesh; i.e., OLTEM yields accurate
results.

Figures 3 and 4 present the numerical study of the dis-
tances i = h/a between the interface points (Fig. 3) as well
as of the weighting coefficients 7, = w, hy, = bW, hy = h,W
(Fig. 4) on the accuracy of numerical results for the maxi-
mum relative errors e, e (a) and the errors el: , elv2 in
the 2 norm (b) for the spherical interfaces with the Carte-
sian mesh of the mesh size 4 = 1/6. Based on the analysis
of these figures, we selected h = h/5 as well as h; = 1/5,
hy = hy /5, hy = h, /5 for all numerical results presented in
the paper.

To study the convergence of the numerical results
obtained by OLTEM for compressible and nearly incom-
pressible materials, Fig. 5 shows the maximum relative
errors eru“a", e‘v“a" (a, b) and the errors ef s elv2 in the 2 norm (c,
d) as a function of the mesh size & in the logarithmic scale.
The slopes of the curves in Fig. 5 correspond the order of
convergence. As can be seen from Fig. 5, the order of con-
vergence of OLTEM is close to 10 for compressible (curve
1) and nearly incompressible (curve 2) materials (the tenth
order of convergence in Fig. 5 is designated by a straight
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0 —1(s=u)
R —2(s=v)
g 2
ED _3 j 1
-4
-5
2 4 6 8 10 12

Fig.3 The maximum relative error% el (curve 1 in a) and e™

(curve 2 in a) as well as the errors e (curve 1 in b) and e (curve 2 in
b) in the 2 norm in the logarithmic scale as a function of the parame-
ter a related to the distances & = h/a between the interface points (see

max
S

Logqg e

os

Fig.4 The maximum relative errors er™ (curve 1 in a) and '™
(curve 2 in a) as well as the errors e (curve 1 in b) and e (curve 2 in
b) in the /% norm in the logarithmic scale as a function of the parame-
ter w related to the weighting coefficients hy = w, hy, = hyw, hy = h,w

line 3). This is in agreement of the theoretical results of
Sect. 2. We can also mention that OLTEM yields more accu-
rate results for compressible materials compared to those
for nearly incompressible materials (see curves 1 and 2) as
well as some variations in the slope of curve 2 for nearly
incompressible materials can be observed at mesh refine-
ment. Nevertheless, OLTEM provides very accurate results
for nearly incompressible materials as well.

To compare the accuracy of the numerical solutions
obtained by OLTEM and by finite elements, Figs. 6 and 7
show the max1mum relative errors e)'**, eI (a, b) and the
errors e e, *in the L2 norm (c,d)asa functlon of the num-
ber N of degrees of freedom for the compressible (Fig. 6)
and nearly incompressible (Fig. 7) materials. As can be
seen from Figs. 6 and 7, at the same N the numerical results
obtained by OLTEM are much more accurate than those
obtained by linear and high-order (up to the 5th order) quad-
rilateral and triangular finite elements; compare curve 11
with curves 1-10. We should mention that high-order (start-
ing from the third order) finite elements have a much greater
width of stencil equations compared to that for OLTEM with

0 1(s=u)
R —2(s=v)
-2 \I 2
g3
-4
-5
2 4 6 8 10 12

o S

the corresponding text). The numerical solutions for the test problem
with the circular interface are obtained by OLTEM on the square Car-
tesian mesh of size 4 = 1/6 for the compressible materials

0 1(s=u)
p —2(s=v)
1°g 2 2
L e e e e s
4
-5

0 0.2 0.4

Ss=o

(see the corresponding text). The numerical solutions for the test
problem with the circular interface are obtained by OLTEM on the
square Cartesian mesh of size & = 1/6 for the compressible materials

the 25-point stencils. This leads to a significant reduction in
computation costs for OLTEM with unfitted meshes com-
pared to finite elements with conformed meshes at the same
accuracy.

4.1.4 The accuracy study of OLTEM at small variations
of the mesh size

To study the convergence and stability of the numeri-
cal results obtained by OLTEM in more detail, curves
1 and 2 in Fig. 8 present the curves 1 in Fig. 5 at small
changes of the mesh size h. For this study, we solve the
test problem on 1000 Cartesian meshes with the mesh
sizes h;=h; —0.0001(G—-1) where h; =0.19 and
i=1,2,...,1000. The grid lines of these meshes along
the sides AB and AD (see Fig. 2a) are fixed; i.e., there is a
gradual change of the position of the circular interface with
respect to Cartesian meshes. As can be seen from Fig. 8, the
numerical results obtained by OLTEM on these Cartesian
meshes converge with the decrease in the grid size 4. Small
oscillations in Fig. 8 can be explained by the fact that at
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the 10th order of convergence
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materials are obtained by OLTEM (curve 11) and by conventional tri-
angular (curves 1-5) and quadrilateral (curves 6-10) finite elements.
Curves (1, 6), (2, 7), (3, 8), (4, 9), (5, 10) correspond to linear, quad-
ratic, cubic, 4-th order and 5-th order finite elements, respectively
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ber N of degrees of freedom in the logarithmic scale. The numerical
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small variations of the mesh size A, there is a discontinuous
change in the location of the grid points with respect to the
interface (e.g., some grid points that belong to one mate-
rial for the previous mesh can belong to another material
for the next mesh); this leads to the discontinuous change
of some stencils equations for the meshes with a small dif-
ference in A. It is important to mention that small oscilla-
tions in numerical convergence curves are typical for many
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to linear, quadratic, cubic, 4-th order and 5-th order finite elements,
respectively
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cal solutions for the plate with the circular interface for compressible
materials are obtained by OLTEM on 1000 square Cartesian meshes

numerical techniques at small variations of 4. For example,
the change in the angles of finite elements at small varia-
tions of the element size 4 also leads to such oscillations in
convergence curves for finite element techniques.
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Fig.9 A square plate ABCD with an elliptical interface centered at
point (0, 0) (a). Examples of an unfitted square Cartesian mesh for
OLTEM (b), of a conformed triangular finite element mesh (c) gen-

4.2 A square plate with an elliptical interface
4.2.1 The problem formulation and the exact solution

Here, we consider a problem similar to that the previ-
ous Sect. 4.1 but with a more complex elliptical interface
given by equation x? + >y* = 0.5% with t = 2.8; see Fig. 9a.
Similar to Sect. 4.1, the exact solution for the problem
is also described by Eq. (38) with a = -7, f = —10 and
r = y/x% + 12y2. The body forces can be calculated by the
substitution of the exact solution into the elasticity equa-
tions. The compressible materials with the elastic Lame’s
coefficients that are the same as in Sect. 4.1 are used for
this problem. The exact solution given by Eq. (38) with
the selected material properties meets the interface condi-
tions, Egs. (3) and (4). We should mention that similar to
FEM, the consideration of composites with one or several
inclusions does not change the complexity of the problem
for OLTEM but increases the programming efforts for the
description of several inclusions. Moreover, a problem with
the exact solution can be constructed for one inclusion. This
significantly simplifies the analysis of accuracy of numerical
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erated by COMSOL. The distribution of the relative errors e, (d)
and e, (e) obtained by OLTEM on a square Cartesian mesh with size
h=1/20

results obtained by new methods. The solution of real-world
problems with complex geometry requires writing a long
code for the geometry description and will be considered
in the future.

The test problem is solved by OLTEM on square (b, = 1)
unfitted Cartesian meshes as well as by conventional con-
formed linear and high-order (up to the fifth order which is
the maximum order implemented in COMSOL) triangular
finite elements; see Fig. 9b for an example of a Cartesian
mesh used with OLTEM and see Fig. 9c for an example
of a triangular finite element mesh generated by COM-
SOL. Because triangular finite elements yield slightly more
accurate results compared to those for quadrilateral finite
elements (see the previous Sect. 4.1), here we consider the
triangular finite elements only. The Dirichlet boundary
conditions are imposed along the edges of the square plate
according to the exact solution given by Eq. (38). To get a
high accuracy for OLTEM with the 25 points stencils, the
high-order numerical boundary conditions similar to those
developed in [48] are used.
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4.2.2 Numerical solutions by OLTEM and FEM

Figure 9d, e shows the distribution of the relative errors
in displacements e, (Fig. 9d) and e, (Fig. 9¢e) obtained by
OLTEM on a square Cartesian mesh with size 2 = 1/20. As
can be seen from Fig. 9d, e the errors e, and e, are very small
for this mesh; i.e., OLTEM yields accurate results.

To study the convergence of the numerical results
obtained by OLTEM, Fig. 10 shows the maximum relative
errors 1n dlsplacements el™, e and the errors in displace-
ments e e in the /2 norm as a function of the mesh size &
in the logarlthmlc scale. The slopes of the curves in Fig. 10
correspond the order of convergence. As can be seen from
Fig. 10, the order of convergence of OLTEM is close to 10
(the tenth order of convergence in Fig. 10 is designated by
a straight line 3). This is in agreement of the theoretical
results of Sect. 2.

Based on the new post-processing procedure (see Sect. 3),
we calculated the normal s, Sy and shear S,y Stresses using
OLTEM with the compact 25-point stencils (similar to those

0 B1(s=u)
O2(s=v)
3(10th order) 9 2

5
15 1.4 13 A2 1.1 -1
Logioh
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Fig. 10 The maximum relative errors in displacement e** (curve 1
in a) and '™ (curve 2 in a) as well as the errors in dlsplacement e

(curve 1 in b) and e (Curve 2 in b) in the /2 norm as a function of the
mesh size 4 in the logarlthmlc scale. The numerical solutions for the

2
-1.5 -1.4 -1.3 -1.2 -1.1 -1
Logioh
a)
Fig.11 The maximum relative errors in stresses el e;“"”‘ em'“‘*

(curves 1, 2, 3 in a) as well as the errors in stresses el ’2, ef in the /2
norm (curves 1, 2, 3 in b) as a function of the mesh 51ze hin the loga-

used in basic computations for the displacements). Figure 11
shows the maximum relative errors in stresses e‘;‘""‘, e;“a",
X y
2
and the errors in stresses el eﬁ , ei,

Xy y Xy

e in the /> norm as a
function of the mesh size & in the logarithmic scale. As can
be seen from Fig. 11, the order of convergence of OLTEM
is, in average, close to 10 (the tenth order of convergence in
Fig. 11 is designated by a straight line 4).

To compare the accuracy of the numerical solutions
obtained by OLTEM and by finite elements, Figs. 12 and 13
show the maximum relative errors in displacements e'®*,
e'v“‘”‘ and in stresses e?jax, e;':a", 6?:?’( as well as the errors in
displacements eﬁz, efz and in stresses efj, efj, efj in the L2
norm as a function of the number N of degrees of freedom.
As can be seen from Figs. 12 and 13, at the same N the dis-
placements and stresses obtained by OLTEM are much more
accurate than those obtained by linear and high-order (up to
the 5th order) triangular finite elements; compare curve 1
with curves 2—-6. We should mention that high-order (start-

ing from the third order) finite elements have a much greater

0 B1(s=u)
©2(s=v)
3(10th order) o) 2

' Logoh

test problem with the elliptical interface are obtained by OLTEM on
unfitted square Cartesian meshes. The reference line 3 designates the
10th order of convergence

. Logioh
b)

rithmic scale. The numerical solutions for the test problem with the
elliptical interface are obtained by OLTEM on unfitted square Carte-
sian meshes. The reference line 4 designates the 10th order of conver-
gence
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Fig. 12 The maximum relative errors in displacement ;™" (a) and
e™ (b) as well as the errors in displacement e (c) and efz (d) in
the L2 norm as a function of the number N of degrees of freedom in
the logarithmic scale. The numerical solutions for the plate with the

width of stencil equations compared to that for OLTEM with
the 25-point stencils. This leads to a significant reduction in
computation costs for OLTEM with unfitted meshes com-
pared to finite elements with conformed meshes at the same
accuracy. It is also interesting to note that due to the new
post-processing procedure for the stress calculations, the dif-
ference in accuracy between OLTEM and FEM is greater for
the stresses (see Fig. 13) compared to that for the displace-
ments (see Fig. 12). This is very important for the problems
where the accurate calculations of stresses are crucial for
accurate predictions (e.g., simulations of crack
propagation).

4.2.3 The accuracy study of OLTEM at small variations
of the mesh size

To study the convergence and stability of the numerical
results with the elliptical interface obtained by OLTEM in
more detail, curves 1 and 2 in Fig. 14 present curves 1 and 2
in Fig. 10 at small changes of the mesh size /. For this study,
we solve the test problem on 1000 Cartesian meshes with
the mesh sizes h; = h; —0.00002(i — 1) where h; = 0.05
andi=1,2,...,1000. The grid lines of these meshes along
the sides AB and AD (see Fig. 9a) are fixed; i.e., there is a
gradual change of the position of the elliptical interface with
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elliptical interface are obtained by OLTEM (curve 1) and by conven-
tional triangular finite elements (curves 2-6). Curves (2, 3, 4, 5, 6)
correspond to linear, quadratic, cubic, 4-th order and 5-th order finite
elements, respectively

respect to Cartesian meshes. As can be seen from Fig. 14,
the numerical results obtained by OLTEM on these Carte-
sian meshes converge with the decrease in the grid size h
(the results are similar to those with the circular interface in
Fig. 8 of the previous Sect. 4.1).

It can be concluded that OLTEM with 25-point compact
stencils and unfitted Cartesian meshes developed for the
2-D time-independent elasticity interface problems provides
the 10th order of accuracy and yields much more accurate
results than high order (up to the fifth order) finite elements
on conformed meshes and with a greater width of the stencil
equations.

5 Concluding remarks

The new numerical approach developed in the paper is the
extension of OLTEM for PDEs with constant coefficients
(see our papers [35—41]) to a much more general case of 2-D
elasticity equations for heterogeneous materials with irregu-
lar interfaces. The main idea that allows this extension is the
addition of the interface conditions at a small number of the
interface points to the expression for the local truncation
error. The unknown stencil coefficients can be numerically
calculated from a small local system of algebraic equations
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ments, respectively
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cal solutions for the plate with the elliptical interface for compressible
materials are obtained by OLTEM on 1000 square Cartesian meshes
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for the general geometry of interfaces. This procedure does
not change the width of the stencil equation; i.e., the loca-
tions of zero and nonzero elements in the global discrete
system of equations are the same for homogeneous and
heterogeneous materials. The calculation of the unknown
stencil coefficients is based on the minimization of the local
truncation error of the stencil equations and yields the opti-
mal order of accuracy of the new technique at a given stencil
width. The increase in the computational costs for the cal-
culation of the unknown stencil coefficients from the local
systems is insignificant compared to the computational costs
for the solution of the global discrete system.

The main advantages of the suggested technique can be
summarized as follows:

e Many difficulties of the existing numerical techniques for
irregular domains (e.g., finite elements, spectral element,
isogeometric elements, the finite volume method, and
many others) are related to complicated mesh genera-
tors and the accuracy of ’bad’ elements (e.g., the ele-
ments with small angles). In contrast to these techniques,
OLTEM is based on simple unfitted Cartesian meshes
with a trivial procedure for the formation of the 25-point
stencils for 2-D domains with complex irregular inter-
faces.

e OLTEM has the same width of the stencil equations and
the same structure of the global discrete equations for
the elasticity equations for homogeneous and heterogene-
ous materials. There are no unknowns on the interfaces
between different materials for the proposed technique;
i.e., complex irregular interfaces do not affect the sparse
structure of the global system of discrete equations (they
affect just the values of the stencils coefficients).

e In contrast to the finite-difference techniques with the
stencil coefficients calculated through the approximation
of the partial derivatives, the system of partial differen-
tial elasticity equations is used for the calculation of the
stencil coefficients in OLTEM. This leads to the optimal
accuracy of the proposed technique. E.g., the 25-point
stencils of OLTEM provide the optimal 10-th order of
accuracy that cannot be improved without changing
the width of stencil equations. This corresponds to the
increase in accuracy by seven orders for OLTEM com-
pared to conventional quadratic finite elements with simi-
lar stencils.

e The numerical results for elastic heterogeneous materials
with irregular interfaces show that at the same number
of degrees of freedom, OLTEM with unfitted meshes is
more accurate than high order (up to the fifth order—the
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maximum order implemented in the COMSOL software)
finite elements with a much greater stencil width and
conformed meshes.

e OLTEM with the 25-point stencils provides very accu-
rate results for nearly incompressible materials (e.g., with
Poisson ratio 0.4995).

* A new post-processing procedure for the stress calcula-
tions has been developed. Similar to basic computations,
it includes OLTEM with the 25-point compact stencils
and provides a very high accuracy of the stresses.

e OLTEM does not require time consuming numerical inte-
gration for finding the coefficients of the stencil equa-
tions; e.g., as for the high-order finite, spectral and isoge-
ometric elements. The stencil coefficients are calculated
analytically or numerically (for the general geometry
of interfaces) by the solution of small local systems of
linear algebraic equations. Numerical experiments show
that the solution of these small local systems of algebraic
equations is fast. Moreover, these local systems are inde-
pendent of each other and can be efficiently solved on a
parallel computer.

In the future, we plan to extend OLTEM to the 3-D elas-
ticity equations for heterogeneous materials with irregular
interfaces. Another direction is the development of OLTEM
with adaptive refinement similar to /- and p-refinement for
finite elements (e.g., in our papers [39, 41] we showed that
OLTEM can easily combine different stencils). We plan to
use quadtrees/octrees meshes that allow a simple refinement
strategy with Cartesian meshes. The extension of OLTEM
to other PDEs for heterogeneous materials as well as to non-
linear PDEs will be also considered in the future.

Appendix 1: The coefficients b, , used
in Eq. (22) for the first stencils with j = 1

The first 10 coefficients pr (p=1,2,...,10) used in
Eq. (22) are presented below in the case of the mesh aspect
ratio b, = 1. All coefficients b, , used in these formulas are
given in the attached file ‘b-coef.nb’. For simplicity of nota-
tions, below we use that

by;=b;(i=12,..,10), k;=k, 121,,. = ]_fi (i=12,...,25),
qi = 491> 9i+9 = 92,i> di+18 = 43> 9i+27 = 494,i (i=12,..,9.
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by =a,k, + ayokyo + ay ki + akyy

+apzkz +aygkyy + askis

+ agkis + aprkyg + agghig + ajokyg

+ arky + aykyy + ay ky

+ Ak + ayskyy + arskoy + ayskys + azky + azky
+ asks + agks + a;k; + agkg + agk,

t4q,t49, 43 +44+4q5+ 96+ q; + g3+ 4

by =ajk; + ayokig + ayikyy + apkyy +apskis + agky
+ayskis + ahig

+aykyg + agghig + ajokyg + ark, + ayky + ayky
+ gk + Ayskoy + arikag + ayskys + azks

+ ask, + asks + agks + ak; + agkg + aqgk,

t 419t o+ a1 T4 T 43t Gyt o5+ G+ 4y

by = —ayk; — ayokyg — ay ky — apkiy — azkys

—aykyy — ajskys — ajgkyg

— apkyy — agkig — ajokyg — aky — asokyy — az ky
— apkyy — ayskyy — aykay — ayskys — azks —ayk,
— asks — agks — azk; — agky — agky

+hy+ kgt ki Fhytkzt+ky

+ kls + k16 + k17 + k18 + k19

+hy + koot ky +hyy +kys oy

+kys + k3 + ky + ks + kg
thkythks+ko—q—qy—q3— gy

—4q5 —96¢ =497 =93 — 499

by =—ajk; — ayokyg — ay kiy — apkiy — agskys

— ayskyy — ayskis — ajgkyg

— ayrkyy = ayskig — aokiy — ayky — arokyg — ayiky
— aykyy = Ayskyy — ar4kay — ayskys

— azky — azky — asks — agks — azk; — agkg

—agky + k) + kg + ki +kip +ki3+ky

+ ks + kg + kg + kg + kg + Ky

+ ko + ko + ko + ko3 + koy + ks + k3
+ky+ ks +kg+ ks

+ks + ko — G0 — 420 — 421 — 9

— 423 — Y924 — Y425 — 426 — 927

bs =

— a,(dxg + 2k; — ayy(dig — 2k — ay; (dxg + 2k,

— ap(dxg + Dkyy — ay3dxgk;

+kig(ay — ay4dxg) — ay5(dxg = 2)ky5 — a6(dxg + 2)kyq
— ay7(dxg + k7 — ajgdxghg

+kyg(arg — a19dxg) — ay(dxg + 1k,

— ay(dxg = 2)kyy — ay (dxg + 2)ky,

— an(dxg + Dy — apdxghys + kyy(ay,

= 4dxg) — aps(dxg — 2)kys

— asdxgky + ky(a, — a,dxg) — as(dxg — 2)ks

— ag(dxg + 2)kg — a;(dxg + Dk, — agdxghs + ko(aqy
—agdxg) +drqy +d 393 + diyqs + d, 5qs + dy 646

+d 797 +digqs +d oGy + 114104, + 20,) + 11,5911 (4,
+2p,) + n3q12(A, + 21,) + 1, 4q15(A,

+2u,) +n,5q14(4,

+2p,) + n6q15(A + 21,) + 1, 5q16(A,

+2p,) +n,8q17(A, +2p,)

+n9q1g(Ay + 20,) + Any 1 g8

+ Ay 2 qog + A1y 3q30 + A0 443,

+ Ay sqz + Ay 6q33

+ Ay 7qss + Ay gq35 + Ay 0436

— apy(dxg + Dkyp — ag3digkys + kyay

— ayydxg) — a;5(dxg — 2)kis — ay6(dxg + 2)ky6

= ay3(dxg + Dky; — ajgdxgkyg

+kyg(ayg = ajodig) — ay(dxg + Dk = azy(dxg — 2)ky
= ayy(dxg + 2)ky; — any(dxg + Dy

— aydxghy; + kyy(an

— ayydxg) — as(dxg — 2kys — azdxghs

+ ky(ay — aydxg) — as(dxg — 2)ks — ag(dxg + 2)kg
— a;(dxg + 1)k, — agdxgkg

+ko(ay — agdxg) +d, G20 + d, 392,

+d 4 +d 5q23 + d 644

+d, 7425 + d grs + dyodny + N Mg

+ oM Gog 3 G30 T 4 MG

+ 5Ky t N cHG33

+ 7M. G3a + Ny g G35 1y oM G36

+ 1y 1 M. G10 Ty MG Ty 311

Ty 4113 Ty sH G4 T Ny UG5 + 1y 7 H.G 16

+ M. g7 Ty oM. G138
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b, =(a; — D(dxg + 2)k; + (a;y — 1)(dxg — 2)kyq
+ (a;; — D(dxg + 2)k;,
+ (a;, — D(dxg + Dk, + (a3 — Ddxgk,3
+ (ayy — D(dxg — Dkyy + (a5 — D(dxg — 2)k;5
+ (a1 — D(dxg + 2k + (a7 — D)(dxg + Dk
+ (a,3 — Ddxgk,g + (a9 — D)(dxg — Dk
+ (a, — D)(dxg + Dk, + (ayy — 1)(dxg — 2)kyg
+ (ay; — D(dxg + 2)ky; + (ay — D(dxg + Dky,
+ (ag3 = Ddxghys + (agy — D(dxg — Dy

+ (ay5 — 1)(dxg — 2)kys5 + (a3 — Ddxgks + (a, — 1)(dxg —
+ (a5 — D)(dxg — 2)ks + (ag — D(dxg + 2)kg

+ (a; — D)(dxg + Dky + (ag — Ddxgkg

+ (ag — D(dxg — Dkg —d, 59, — d, 393

—d 44, —d 595 — d. 646

—d,7q7 — digqs — Ay oG9 — 1y 1G10(Aus + 211,,)

= nyoqyy (A + 20,.) — 1, 3G10 (A + 20,,) — 1y 4q13 (A

+ 2”**) - nx,5ql4(1** + 2”**) -
+ 2”**) - nx,7q16(}'** + 2:“**) - nx,8ql7(j'**
+ 24, — 1y 9q18( A + 21,

nx,6q15(j'**

- A**ny,IQZS - A**ny,2q29 - A**ny,3q30
= Aty 431 — Aty sq3)

- /Lk*ny,Gq}.? - A**ny,7q34 - A**ny,8q35 - A**ny,‘)qiif)

by =(a, — 1)(dxg + 2)k; + (a;0 — 1)(dxg — 2)k;g
+ (ay; — D(dxg + 2k, + (ay, — D(dxg + Dk,
+ (a3 — Ddxgky3 + (ay, — D(dxg — Dkyy
+ (a5 — D(dxg — 2)kys + (a4 — D(dxg + 2)k;6
+ (a7 — D)(dxg + Dky; + (a5 — Ddxgkg
+ (a9 — D(dxg — Dkyg + (@, — D(dxg + Dk,
+ (ayy — 1)(dxg — 2)kyg + (ay; — 1)(dxg + 2)ky,
+ (ayp — D(dxg + Dky,
+ (ay3 — Ddxgkys + (a5, — 1)(dxg — Dkyy
+ (ays — 1)(dxg — 2)kys + (a3 — Ddxgks
+ (a, — D(dxg — Dk, + (a5 — D(dxg — 2)ks
+ (ag — 1)(dxg + 2)kg + (a7 — D(dxg + Dk,

1k,

+ (ag — Ddxgkg + (ag — 1)(dxg — Dkg = d, 2459 — d, 392

—d 492 — d, 5923 — dy 6Gos — Ay 7925 — d, 3G26 — d,
Ny 1 Has o8 — Mo Miad29 — Ny 3 i q30

— Ny 4l 31 — Ny sHad32

Ny 6Musd33 — Ny 7Hanq34 — Ny g M q35 — Ny 9 Mk 936
— Ny 1Heb10 — My o Hasd11 — Ny 3Haaq12 — Ny 4H4 913
Ny sHq14 — Ny eHasqis — Ny 7Hd16

— Ny gHeq17 — Ny oM
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by = —a,(dyg + 2k, — a,o(dyg + Dk,y — a;,dygk;,

— aypdygkyy — ap3dygk s — aydygky

— aysdygks + kiglas — a16dyc)

+ kiz(ayy — ap7dye) + kiglag — aygdyg) + kiolayg
—a9dyg) — ay(dyg + 2)k, + kyy(ay

— aydyg) — ay,(dyg — 2)ky,

—ap(dyg — 2k — ay(dyg — 2)ky;

— ay(dyg — 2kyy

— ay5(dyg — 2)ky5 — asz(dyg + 2)ky — a,(dyg + 2)ky
—as(dyg + 2)ks — ag(dyg + Dkg

—a;(dyg + Dk; — ag(dyg + Dkg

— ag(dyg + Dky + dy,zqz + dy,3q3 + dy,4q4
+d,5qs +d, g6+ dy7q9; +d, 3q5 + d, 999

+ 1, 1 Habog T Mo Haog t T 3,30 t 1 4 MG

t i sH G Ny eHiG3s g3

+ 1, 8. G35 T Ny oHiG36

+ 1y 1M, G10 T Ny o MGy T 3G

+t Ry 41,913 1y 5G4

+tny6H.q15 T 1y 7116 T 1y gH G 7 T Ty 9 MG g

by == a;(dyg + 2)k; — a,o(dyg + Dk — ay dygky

— apdygkyy — aj3dygkyy

— ayydygkyy — a;sdygks + kig(ase

— ay6dyg) + kiz(ay; — ag7dyg)

+kyg(arg — aygdyg) + kyg(age — agedyg)

— ay(dyg + 2k, + kyg(az — azydyg)

— a5y (dyg — 2)ky = axy(dyg — 2)kyy — ar3(dyg — 2)kns
— ay(dyg — 2)kyy — aps(dyg — 2)kys — as(dyg + 2)ks
—a,(dyg + 2k, — as(dyg + 2)ks

—ag(dyg + l)l_c6 —a;(dyg + Dk, — ag(dyg; + l)l_c8
— ag(dyg + Dk + dy >0 + dy 395

+dy 490 +d,5q23 +d, 6qos + dy 7G55

+d, 3926 + dy 9427

+ A1 qi0 + Anody + Ansqn

+ A qqis + A sqiy + A edis + A 46

+ Angdiy + A, odig

+ 1y 1Gos (A + 21,) + 1y 5G09(4, + 21,)

+ 1y 3q30(A, + 24,) + 1y 4G5, (4,

+2u,) + ny5q3(4,

+2u,) + ny6q33 (A, + 24,)

+ 1y 7q34 (A, + 2p,) + 1y 5q35(A,

+2p,) + 1y 9q36(A, +241,)
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Appendix 2: The stencil coefficients
for homogeneous materials

The stencils coefficients can be analytically found (see [38])
and for the first stencil they are (for convenience, the matrix
form is used below for the representation of these coeffi-

ks 6
ky

ky o1 koo Kooz kyoa kaos
ky 16 ko117 ka1s Ka19 ka0
ky1i k1o kais Ky ka s

k1,21 k1,22 k1,23 k1,24 k1,25
kl,16 kl,l7 k1,18 kl,19 kl,20
kl,ll k1,12 k1,13 k1,14 kl,lS ’
k1,6 k1,7 kl,S k1,9 kl,lO
kl,l kl,2 k1,3 k],4 kl,S

ky7 kag koo kaio
kyy kyz kyg kys

(43)
cients for square meshes with by = 1):
_ 5932984°+261846142 u+3545745 447 +14713824° __ 2(995582°+9354314° u+ 165537044 +766547° )
k] o1 kl » kl ”3 k] o4 kl 25 36( 136494643 +23192997 12 u+44409365 A>+212384 1443 ) 9(136494643+23192997 42 y+44409365 142 +212384 14143 )
’ ? - ? 364814143 +129615622 u+14963715 4% +5544394,° __ 28(651784°+4684964° u+748695 44> +321302° )
k116 k117 Ki1s kigo kioo 9(136494643+2319299742 ju+44409365 A2 +212384144% ) 9(136494643 +2319299742 ju+44409365 A2 +212384 1443 )
X k X x k | _553481443+1894112342 4+21099985 44> +75673264> __4(1161664°+2637137 42 u+5190940 4% +2508819s° )
Lit ®riz ®Li3 ®d BLis ) 6(136494643+2319299742 +44409365 142 +21238414143) 409483843 +6957899142 u+133228095 Ap>+6371524243
kg k1o kg kio ki 364814143 +129615622 u+14963715 4> +5544394,° ___ 28(651784° +4684964° u+748695 44 +321302° )
: ; ; : : 9(136494643+2319299742 ju+44409365 A2 +212384 1443 ) 9(136494643+2319299742 ju+44409365 A2 +212384144% )
kiy kiy ks kg ks L 5932983+261846142u+3545745 A +14713824° __ 2(995582°+9354314° u+ 165537044 +766547° )
36(1364946%+23192997 4% u+44409365 442 +212384 14413 ) 9(136494643 +23192997 42 ju+44409365 A2 +212384144% ) ( 40)
o 32651443+21241732 u+3348835 402 +14248264° __ 2(995584°+93543147 u+ 165537044 +76654 7" ) _ 59329813 +2618461 4 j+3545745 14> +14713824
6(136494643 +2319299742 ju+44409365 A2 +212384144% ) 9(136494643+23192997 22 j+44409365 441> +212384144% ) 36( 136494643 +2319299742 j+44409365 A2 +212384 14413 )
522828643+53616524% u—687631044> 63650764 ___ 28(651784°+468496 4% ju+748695 44> +32130241° ) 3648141 3+1296156242+149637154u2 +554439443
4094838 23-+6957899122 yu+ 133228095 44> +637152424% 9(136494643+23192997 22 j+44409365 441> +212384144% ) 9(136494643+23192997 22 j+44409365 441> +212384144%)
1 __A(1161664°+26371374 u+51909404%+2508819:° ) __553481423+1894112322 421099985 44> +75673264°
4094838 43 +6957899 142 ju+ 133228095 A +6371524243 6(136494613+23192997 22 u+44409365 4> +2123841417) |’
52282864 +53616524% u—687631044> —636507644° _ 28(651784° +4684964% p+748695 4> +3213024% ) _ 36481413 +12961562% u+14963715 4> +55443944°
4094838 23-+6957899142 u+ 133228095 4> +637152424% (136494643 +23192997 22 u+44409365 44> +212384144% ) (136494643 +23192997 22 u+44409365 44> +212384144% )
__ 326514434+21241737 u+3348835 447 +14248264° _ 2(9955843+93543142 u+1655370Au> +766547 4% ) _ 59329843 +26184614% u+3545745 4% +147138243
6(136494643+2319299742 ju+44409365 A2 +212384144% ) (136494643 +23192997 22 u+44409365 44> +212384144% ) 36( 136494643 +2319299742 ;+44409365 A2 +212384 1443 )
25(1681823+49421 1% u+46425142 +1382241) 50(531943+140384% u+10980442+2261 4% )
k k k k k 12(136494643+23192997 42 u+44409365Ap2 +2123841443) 409483843 +69578991 42 y1+133228095 A2 +6371524243
121 *122 %123 Ripa Rips 3 2 2 3 3 2 2 3
_oeh e e e 25(2145323+62726 1% u+58815442 +175424°) 50(745384%+2431154% 4u+259491 742 +909144 )
kl,lﬁ k1,17 kl,18 k1,19 k1,20 409483843 +69578991 42 4133228095 A2 +6371524243 409483843 4+69578991 42 y+133228095 A2 +6371524243
k14,11 k1,12 k1,13 k1,14 k1,15 = 0 0
& & k & & 25(2145323+6272612 u+5881544 +175424) 507453843 +2431152% u+259491 242 +90914413 )
1,6 1,7 1,8 1.9 1,10 - —
- - - - - 409483843 +695789912 u+133228095 1u2 +6371524243 40948383 +695789912 u+133228095 442 +6371524243
k1,1 kl,z k1‘3 k1,4 kl,s 25(1681843+49421 2% u-+46425 A> +1382244% ) 50(e+u)(531942+87192u+22614%)
12(136494643+23192997 A +44409365 142 +21238414 413 ) 409483843 +695789912 1u+133228095 412 +637152423 ( 41 )
0 — 50(531943+14038.2 yu+10980A4%+2261 1) _ 25(1681843+494212% u+46425 Ap>+138224% )
409483843 +69578991 42 j+133228095 412 +637152423 12(136494613+23192997 42 u+44409365Ap2+2123841443)
0 — 507453843 +2431152 u+259491 Ap>+9091443 ) _ 25(2145313+62726% u+58815 Au>+175424% )
409483843 +6957899142 u+133228095 442 +637152423 409483843 4+69578991 42 u+133228095 442 +63715242443
0 0 0
0 50(7453843+24311542 4 +259491 Ap>+909144% ) 25(21453 1346272622 u+58815 Au> +175424% )
409483843 +69578991 42 yu+133228095 442 +63715242443 409483843 +69578991 42 y+133228095 442 +6371524243
0 50e+u)(531942+87192u+22614% ) 25(1681823+494211% u+4642514> +13822413)
409483843 +69578991 42 u+133228095 A2 +63715242443 12(136494643+23192997 42 u+44409365 Ap2 +2123841443)

Similarly, we can find 50 coefficients k,; and k,;
(i=1,2,...,25) of the second stencil equation:

k2,21 k2,22 k2,23 k2,24 k2,25

kior ki kios kioa kyos

where the right-hand sides in Eqgs. (42) and (43) are given
by Egs. (40) and (41) for the first stencil.

k2,16 k2,l7 k2,18 k2,19 k2,20
k2,11 k2,12 k2,13 k2,14 k2,15

k2,6 k2,7 k2,8 k2,9 k2,10
k2,1 k2,2 k2,3 k2,4 k2,5

kiie k117 kias Kitg Koo
ki ki kias ki ks |
kig kiz kig kig kiio
kiy kip ki kg ks

(42)
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Appendix 3: The expression for the term p,
in Egs. (28) and (29)

Py =(apkyo(dxg — 2)* + a, (dxg + 2)%k,
+ay Ak, +4ay ky
+4a, dxgk,, + al2dxzck12 +apky + 2a,dxck,
+ al3dx2Gk13 + al4dx2Gk14 + a4k
—2ay,dxgk,y + alde?;kIS
+4a,skys — 4aysdxgk,s
+ alﬁd)chk16 +4a¢k + 4a,gdxgkg
+ al7dngk17 +a;ky;
+2a,,dxzk; + (1181Lbczck18
+ al9dngk19 + ajokig — 2a,9dx5kg
+ a,dxk, + ayk,
+ 2a,dx;k, + azodxzck20 + 4a,kyy — 4ay,dxgky,
+ ay dxlky, + 4ay ky,
+ 4ay dxgky, + azzdxékzz + aynky,
+ 2a,,dxk,, + az3dxék23 + a24dx26k24
+ aykay = 2ap4dxgkyy
+ aysdxlkys + Aay5kys — Aaysdxghys + azdxlks
+ a4dxék4 +azk, — 2a,dxgk, + asdxék5
+4dasks — 4asdxgks

+ agdxy ke + 4agks (44)

+ 4agdxg ke + a7dxzck7 + a;k,

+ 2a,dxk; + agdx kg

+ agdxy kg + agky — 2a,dxgk,
+2dyA,n,,qy, +4d oo p,qn
+2d,54,1,391,

+4d,3n, 3. q10 + 2d, 4 A0, 44,5
+4d n i, gz +2d,sAn, 5414
+4d,snsi. gy +2d, g A0, 64,5
+4d, gn. o5 + 2d 74,1946
+4d, gn. 2 1.q16

+2d, g A 5q17 +4d g0 g1, G
+2d,gA,n 95 +4d gn o1, g5
+ df,z‘]z +2d,,A,n,5G59 + df,ﬂa
+2d,3A,ny3G30 + 2d, 4 2.1, 4G5
+2d, 5A,n,5q3 + 2d, g A1, 6q33
+ 2dxv7A*n),y7q34 + Zd)(‘8 A*nyysq35
+2d, 92,1, 95

+d2,qu+ d2sqs + &2 g

+d2 g + doyqs + A2 o).
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