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Abstract
Recently, we have developed the optimal local truncation error method (OLTEM) for PDEs with homogeneous materials 
on regular and irregular domains and Cartesian meshes as well as OLTEM with simple 9-point stencils for the 2-D scalar 
time-dependent wave and heat equations for heterogeneous materials with irregular interfaces. Here, OLTEM is extended to a 
much more general case of a system of elastic PDEs for heterogeneous materials with smooth irregular interfaces and unfitted 
Cartesian meshes. We also use larger 25-point stencils that are similar to those for quadratic quadrilateral finite elements. The 
interface conditions on the interfaces where the jumps in material properties occur are added to the expression for the local 
truncation error and do not change the width of the stencils. There are no unknowns on interfaces between different materials; 
the structure of the global discrete equations is the same for homogeneous and heterogeneous materials. The calculation of 
the unknown stencil coefficients is based on the minimization of the local truncation error of the stencil equations and yields 
the optimal 10-th order of accuracy for OLTEM with the 25-point stencils on unfitted Cartesian meshes. This corresponds to 
the increase in accuracy by seven orders for OLTEM compared to conventional quadratic finite elements with similar stencils. 
A new post-processing procedure for the stress calculations has been developed. Similar to basic computations, it includes 
OLTEM with the 25-point compact stencils and provides a very high accuracy of the stresses. Numerical experiments for 
elastic heterogeneous materials with circular and elliptical interfaces show that at the same number of degrees of freedom, 
OLTEM with unfitted meshes is more accurate than high order (up to the fifth order—the maximum order implemented in 
the COMSOL software) finite elements with a much greater stencil width and conformed meshes. Moreover, OLTEM with 
the 25-point stencils provides very accurate results for nearly incompressible materials (e.g., with Poisson ratio 0.4995).

Keywords  Elasticity equations for heterogeneous materials · Smooth interfaces · Local truncation error · Unfitted Cartesian 
meshes · Optimal accuracy · Compressible and nearly incompressible materials

1  Introduction

The finite element method, the finite volume method, the 
isogeometric elements, the spectral elements and simi-
lar techniques represent very powerful tools for the solu-
tion of partial differential equations (PDEs) for a complex 
geometry. However, the generation of non-uniform meshes 
for a complex geometry is not simple and may lead to the 

decrease in accuracy of these techniques if ‘bad’ elements 
(e.g., elements with small angles) appear in the mesh. More-
over, the conventional derivation of discrete equations for 
these techniques (e.g., based on the Galerkin approaches) 
does not lead to the optimal accuracy of discrete equations. 
There is a significant number of publications related to the 
numerical solution of different PDEs on irregular domains 
with uniform embedded meshes. For example, we can men-
tion the following fictitious domain numerical methods that 
use uniform embedded meshes: the embedded finite differ-
ence method, the cut finite element method, the finite cell 
method, the Cartesian grid method, the immersed inter-
face method, the virtual boundary method, the embedded 
boundary method, etc.; e.g., see [1–30] and many others. 
The main objective of these techniques is to simplify the 
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mesh generation for irregular domains as well as to mitigate 
the effect of ‘bad’ elements. For example, the techniques 
based on the finite element formulations (such as the cut 
finite element method, the finite cell method, the virtual 
boundary method and others) yield the p + 1 order of accu-
racy even with small cut cells generated due to complex 
irregular boundaries (e.g., see [2–5, 9, 28, 29] and many 
others). The main advantage of the embedded boundary 
method developed in [10–12, 24, 25] is the use of simple 
Cartesian meshes. The boundary conditions or fluxes in this 
technique are interpolated using the Cartesian grid points 
and this leads to the increase in the stencil width for the 
grid points located close to the boundary (the numerical 
techniques developed in [10–12, 24, 25] provide just the 
second order of accuracy for the global solution). A stable 
generalized finite element method for the Poisson equation 
was developed in [31] for heterogeneous materials with 
curved interfaces and unfitted uniform meshes. The sec-
ond order of accuracy in the energy norm was achieved in 
[31] with 2-D quadratic finite elements that form 25-point 
stencils. The development of different numerical techniques 
(finite difference method, immersed finite element method, 
immersed meshfree method) for elasticity interface problems 
with unfitted meshes were recently reported in [32–34]. The 
development of robust numerical techniques for the solution 
of PDEs for heterogeneous materials with complex irregular 
interfaces that provide an optimal accuracy on simple unfit-
ted meshes is still a challenging problem.

Recently in our papers [35–41], we have developed 
OLTEM for the solution of PDEs with constant coefficients 
(homogeneous materials) on regular and irregular domains 
with Cartesian meshes. At the same structure of the semi-
discrete or discrete equations, the new technique provides 
the optimal order of accuracy that exceeds the order of 
accuracy of many known numerical approaches on regu-
lar and irregular domains. For example, in our paper [38], 
we showed that OLTEM with nine-point stencils (similar to 
those for linear finite elements) provides the second order 
of accuracy for the 2-D elasticity on regular domains. The 
second order of accuracy is the optimal accuracy for all nine-
point stencils independent of the numerical method used for 
their derivations. The paper [38] also shows that OLTEM 
with 25-point stencils (similar to those for quadratic finite 
elements) provides the 10-th order of accuracy for the 2-D 
elasticity on regular domains and conformed meshes. In our 
paper [42], we have extended OLTEM with 9-point stencils 
(similar to those for linear finite elements) and unfitted Car-
tesian meshes to the 2-D time-dependent scalar heat and 
wave equations with discontinuous coefficients and we have 
obtained the third order of accuracy of the new approach.

Here, we consider the development of high-order OLTEM 
for a much more general case of a system of the 2-D elas-
ticity equations with discontinuous coefficients and smooth 
irregular interfaces that have numerous engineering applica-
tions. The focus of this paper is the development of compact 
high-order 25-point stencils (similar to those for quadratic 
elements) affected by irregular interfaces between different 
elastic materials with simple unfitted Cartesian meshes.

In Sect. 2.2, OLTEM with 25-point compact stencils for 
the 2-D elasticity equations is derived for heterogeneous 
materials with zero body forces. Its extension to nonzero 
body forces is considered in Sect. 2.3. Section 3 presents 
the derivation of a new post-processing procedure for stress 
calculation. 2-D numerical examples for compressible and 
near incompressible heterogeneous materials with circular 
and elliptical interfaces as well as the comparison with FEM 
are presented in Sect. 4. Concluding remarks are given in 
Sect. 5. For the derivation of many analytical expressions 
presented below, we use the computational program “Math-
ematica”. We also used the ‘ToMatlab’ package for the con-
version of ‘Mathematica’ expressions to a Matlab code.

2 � OLTEM with 25‑point stencils for the 2‑D 
elasticity equations with discontinuous 
material properties

In this section, we first introduce the elasticity equations for 
heterogeneous materials and the local truncation error. Then, 
we derive OLTEM with 25-point stencils for heterogene-
ous elastic materials with irregular interfaces in the case 
of zero body forces. Finally, we take into account nonzero 
body forces.

2.1 � Elasticity equations and the local truncation 
error

The 2-D time-independent elasticity equations in a com-
posite domain Ω = ∪Ωl ( l = 1, 2,… , N̄ where N̄ is the total 
number of subdomains) can be written down in each subdo-
main Ωl as follows:

where ul = ul(x, y) and vl = vl(x, y) are the x- and y-com-
ponents of the displacement vector, f l

x
= f l

x
(x, y) and 

f l
y
= f l

y
(x, y) are the x- and y-components of the body forces 

that can be discontinuous across interfaces, �l and �l are 

(1)
�l∇

2ul + (�l + �l)

(
�2ul

�x2
+

�2vl

�x�y

)
+ f l

x
= 0,

�l∇
2vl + (�l + �l)

(
�2vl

�y2
+

�2ul

�x�y

)
+ f l

y
= 0,
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Lame coefficients that can be also expressed in terms of 
Young’s modulus E and Poisson’s ratio � as follows:

We also assume that the functions ul and fl are sufficiently 
smooth in each subdomain Ωl . At the interface G between 
any two subdomains, the following interface conditions (the 
continuity of the displacements and the tractive forces across 
the interface) are applied:

where the symbols ∗ and ∗∗ correspond to the quantities on 
the opposite sides from the interface for the correspond-
ing subdomains Ωl . The x- and y-components of the tractive 
forces tx,G and ty,G can be expressed in terms of the displace-
ments as follows:

where nx and ny are the x- and y-components of the normal 
vector at the interface. According to Eqs. (3)–(5), the dis-
placements u and v are continuous across the interfaces but 
they can have the discontinuous spatial derivatives across 
the interfaces. We should note that the derivation of the new 
approach can be easily extended to the case with the dis-
continuous displacements and tractive forces across inter-
faces; i.e., when the right-hand sides in Eqs. (3) and (4) are 
the given functions. However, for simplicity we consider 
Eqs. (3) and (4) with zero right-hand sides. We should also 
mention that despite the assumptions about the smoothness 
of the exact solutions solved by OLTEM, the numerical 
experiments (e.g., see our paper [36]) show that OLTEM 
also yields accurate results for non-smooth solutions.

In this paper, the Dirichlet boundary conditions u = g1 
and v = g2 are applied along the external boundary Γ where 
g1 and g2 are the given functions. However, the Neumann 
boundary conditions (tractive forces) can be also used with 
the proposed approach; e.g., see our papers [40, 43]. Accord-
ing to OLTEM, the discrete system for the elasticity equa-
tions, Eq. (1), after the space discretization with a Carte-
sian rectangular mesh can be represented as a system of 
linear algebraic equations. The algebraic equations of this 
system for each internal grid point of the domain are called 

(2)�l =
El

2(1 + �l)
, �l =

El�l

(1 + �l)(1 − 2�l)
.

(3)u∗
G
− u∗∗

G
= 0, v∗

G
− v∗∗

G
= 0,

(4)t∗
x,G

− t∗∗
x,G

= 0, t∗
y,G

− t∗∗
y,G

= 0,

(5)
tx,G = nx

[
(� + 2�)

�u

�x
+ �

�v

�y

]
+ ny�

(
�u

�y
+

�v

�x

)
,

ty,G = ny

[
(� + 2�)

�v

�y
+ �

�u

�x

]
+ nx�

(
�u

�y
+

�v

�x

)
,

the stencil equations. For the 2-D elasticity equations, two 
stencil equations can be written down for each grid point 
as follows:

where unum
i

 and vnum
i

 are the numerical solution for the dis-
placements u and v at the i-th grid point, kj,i and k̄j,i are the 
unknown stencil coefficients corresponding to the displace-
ments u and v (they should be determined), L is the number 
of the grid points included into a stencil, f̄j are the com-
ponents of the discretized body forces (see the next sec-
tions). Many numerical techniques such as the finite differ-
ence method, the finite element method, the finite volume 
method, the isogeometric elements, the spectral elements, 
different meshless methods and others can be finally reduced 
to Eq. (6) with some specific coefficients kj,i and k̄j,i . To dem-
onstrate a new technique, below we will assume compact 
25-point stencils ( L = 25 ) in the 2-D case that correspond 
to the width of the stencils for quadratic quadrilateral finite 
elements on Cartesian meshes and that require similar 
computational costs as those for quadratic finite elements. 
However, the stencils with any width can be used with the 
suggested approach.

Let us introduce the local truncation error used with 
OLTEM. The replacement of the numerical values of the 
displacements unum

i
 and vnum

i
 at the grid points in Eq. (6) by 

the exact solution ui and vi to the elasticity equations, Eq. (1), 
leads to the residual of these equations called the local trun-
cation error ej of the discrete equations, Eq. (6):

Calculating the difference between Eqs. (7) and (6) we can 
get

where ēi = ui − unum
i

 and ē∗
i
= vi − vnum

i
 are the errors in the 

displacements u and v at the grid point i. As can be seen 
from Eq. (8), the local truncation errors ej ( j = 1, 2 ) are a lin-
ear combination of the errors in the displacements u and v at 
the grid points which are included into the stencil equations.

(6)
L∑
i=1

kj,iu
num
i

+

L∑
i=1

k̄j,iv
num
i

= f̄j, j = 1, 2,

(7)ej =

L∑
i=1

kj,iui +

L∑
i=1

k̄j,ivi − f̄j, j = 1, 2.

(8)

ej =

L∑
i=1

{kj,i[ui − unum
i

] + k̄j,i[vi − vnum
i

]}

=

L∑
i=1

(kj,iēi + k̄j,iē
∗
i
), j = 1, 2,
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2.2 � Zero body forces f l

x
= 0 and f l

y
= 0 in Eq. (1)

2.2.1 � 25‑point stencils with and without interface

Let us consider a 2-D bounded domain and a Cartesian rec-
tangular mesh with a mesh size h where h is the size of the 
mesh along the x-axis, byh is the size of the mesh along the 
y-axis ( by is the aspect ratio of the mesh). To simplify deri-
vations, below we consider rectangular domains with irregu-
lar interfaces between different materials. However, irregular 
domains can be also considered with OLTEM; see [35–37]. 
Here, we will develop 25-point uniform stencils that provide 
the tenth order of accuracy. We should mention that we use 
the same structure of stencils for homogeneous and hetero-
geneous materials (the difference between homogeneous and 
heterogeneous materials is in the values of the stencil coef-
ficients only). The spatial locations of the 24 grid points that 
are close to the central grid point with ( u13 , v13 ) and contrib-
ute to the 25-point stencil for the central grid point are 
shown in Fig. 1. For convenience, the local numeration of 
the grid points from 1 to 25 is used in Fig. 1 as well as in the 
derivations below. The interface in Fig.  1b divides the 
25-point uniform stencil into two parts with different mate-
rial properties. To impose the interface conditions at the 
interface, we select a small number of interface points as 
follows. First, we select one point at the interface with the 

coordinates xG = xG,1 and yG = yG,1 . This point can be 
selected as the shortest distance from the central grid point 
( u13 , v13 ) of the 25-point stencil to the interface. Then, we 
additionally select n interface points to the left and to the 
right from the point with the coordinates xG,1 and yG,1 at the 
same distances h̄ =

√
(xG,i+1 − xG,i)

2 + (yG,i+1 − yG,i)
2 

( i = 1, 2,… , 2n ) from each other; e.g., see Fig.  1b for 
25-point stencils. The numerical experiments show that 
small distances h̄ = h∕5 between the selected interface 
points yield accurate results. The total number of selected 
interface points is NG = 2n + 1 where NG = 9 is used for the 
25-point stencils developed below.

Let us describe the coordinates of the grid points of the 
25-point uniform stencil (see Fig. 1) with respect to the cen-
tral grid point (x13, y13) as follows:

for the 25-point stencils where p = 5(j − 1) + i with 
i, j = 1, 2, 3, 4, 5.

To describe the coordinates of the selected NG points on 
the interface (see Fig. 1b), we introduce 2(NG − 1) coeffi-
cients dx,p and dy,p ( p = 2, 3,… ,NG ) as follows (see also 
Fig. 1b):

(9)xp = x13 + (i − 3)h, yp = y13 + (j − 3)byh,

Fig. 1   The spatial locations of the degrees of freedom up and vp ( p = 1, 2,… , 25 ) that contribute to the 25-point uniform stencil for the internal 
degrees of freedom u13 and v13 for homogeneous material without interface (a) and for heterogeneous material with interface (b)
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For the proposed approach, some interface points Gm 
( m = 1, 2,… ,NG ) can be located slightly outside the 
25-point cell. The derivations presented below are also valid 
for these cases.

The stencil equations, Eq. (6), for heterogeneous mate-
rials with the 25-point uniform stencil for the grid point 
(x13, y13) (see Fig. 1b) will be assumed in the following form:

where f̄j,13 = 0 in the case of zero body forces f l
x
= f l

y
= 0 

in Eq.  (1), the unknown coefficients kj,p and k̄j,p 
( p = 1, 2,… , 25 ) are to be determined from the minimi-
zation of the local truncation error, the coefficients ap = 1 
if the grid point up belongs to material ∗ or ap = 0 if the 
grid point up belongs to another material ∗∗ (i.e., only two 
variables u∗,num

p
 , v∗,num

p
 or u∗∗,num

p
 , v∗∗,num

p
 are included into 

Eq. (11) for each grid point; e.g., see Fig. 1b with ai = 1 
( i = 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 19, 20 ) and aj = 0 
( j = 6, 11, 16, 17, 18, 21, 22, 23, 24, 25)).

We should note that usually the stencil equations similar 
to Eq. (11) include the coefficient h2 in the denominator in 
order to express the second space derivatives in the elastic-
ity equations, Eq. (1). However, for convenience, the stencil 
equations, Eq. (11), are multiplied by h2 to write down them 
without 1

h2
 . Therefore, the expressions for the local truncation 

error used in the paper are also multiplied by h2.

2.2.2 � The local truncation error for 25‑point stencils 
with interface

The local truncation error ej follows from Eq. (11) by the 
replacement of the numerical solution u∗,num

p
 , u∗∗,num

p
 , v∗,num

p
 

and v∗∗,num
p

 by the exact solution u∗
p
 , u∗∗

p
 , v∗

p
 and v∗∗

p
:

One of the ideas of the new approach is to include the inter-
face conditions for the exact solution at a small number of 
the selected interface points into Eq. (12) for the local trun-
cation error as follows:

(10)
xG,m = xG + dx,mh,

yG,m = yG + dy,mbyh, m = 2, 3,… ,NG.

(11)

25∑
p=1

kj,p[apu
∗,num
p

+ (1 − ap)u
∗∗,num
p

] +

25∑
p=1

k̄j,p[apv
∗,num
p

+ (1 − ap)v
∗∗,num
p

] = f̄j,13, j = 1, 2,

(12)
ej =

25∑
p=1

kj,p[apu
∗
p
+ (1 − ap)u

∗∗
p
] +

25∑
p=1

k̄j,p[apv
∗
p

+ (1 − ap)v
∗∗
p
] − f̄j,13, j = 1, 2.

where nx,m and ny,m are the x and y-components of the nor-
mal vectors at the selected NG interface points (e.g., see 
Fig. 1b), the unknown coefficients q1,m , q2,m , q3,m and q4,m 
( m = 1, 2,… ,NG ) will be used for the minimization of the 
local truncation error in Eq. (13), the expressions in paren-
thesis after q1,m , q2,m , q3,m and q4,m are the interface condi-
tions at the selected NG interface points and are equal to 
zero (see Eqs. (3)–(5)). Therefore, Eqs. (12) and (13) yield 
the same local truncation error ej . The addition of the inter-
face conditions at NG = 9 points in Eq. (13) provides addi-
tional 4NG = 36 unknown coefficients q1,m , q2,m , q3,m and 
q4,m ( m = 1, 2,… ,NG ) that along with 50 unknown stencil 
coefficients kj,p , k̄j,p ( p = 1, 2,… , 25 ) are used for the mini-
mization of the local truncation error; see below Eq. (27). 
This allows us to get the tenth order of accuracy of OLTEM 
for general geometry of interfaces; see below.

(13)

ej =

25∑
p=1

kj,p[apu
∗
p
+ (1 − ap)u

∗∗
p
]

+

25∑
p=1

k̄j,p[apv
∗
p
+ (1 − ap)v

∗∗
p
]

+

NG∑
m=1

q1,m(u
∗
G,m

− u∗∗
G,m

) +

NG∑
m=1

q2,m(v
∗
G,m

− v∗∗
G,m

)

+

NG∑
m=1

hq3,m

{[
nx,m

[
(𝜆∗ + 2𝜇∗)

𝜕u∗
G,m

𝜕x
+ 𝜆∗

𝜕v∗
G,m

𝜕y

]

+ny,m𝜇∗

(
𝜕u∗

G,m

𝜕y
+

𝜕v∗
G,m

𝜕x

)]

−

[
nx,m

[
(𝜆∗∗ + 2𝜇∗∗)

𝜕u∗∗
G,m

𝜕x
+ 𝜆∗∗

𝜕v∗∗
G,m

𝜕y

]

+ny,m𝜇∗∗

(
𝜕u∗∗

G,m

𝜕y
+

𝜕v∗∗
G,m

𝜕x

)]}

+

NG∑
m=1

hq4,m

{[
ny,m

[
(𝜆∗ + 2𝜇∗)

𝜕v∗
G,m

𝜕y
+ 𝜆∗

𝜕u∗
G,m

𝜕x

]

+nx,m𝜇∗

(
𝜕u∗

G,m

𝜕y
+

𝜕v∗
G,m

𝜕x

)]

−

[
ny,m

[
(𝜆∗∗ + 2𝜇∗∗)

𝜕v∗∗
G,m

𝜕y
+ 𝜆∗∗

𝜕u∗∗
G,m

𝜕x

]

+nx,m𝜇∗∗

(
𝜕u∗∗

G,m

𝜕y
+

𝜕v∗∗
G,m

𝜕x

)]}
− f̄j,13, j = 1, 2,
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Remark 1  In Eq.  (13), we consider two local truncation 
errors for the first j = 1 and second j = 2 stencils. The coef-
ficients q1,m , q2,m , q3,m and q4,m ( m = 1, 2,… ,NG ) are dif-
ferent for these two stencils. However, in order to simplify 
the notations we omit index j for the coefficients q1,m , q2,m , 
q3,m and q4,m.

2.2.3 � The number of unknown stencil coefficients

Only 50 + 4NG − 1 out of the 50 + 4NG coefficients kj,p , k̄j,p , 
q1,m , q2,m , q3,m , q4,m ( p = 1, 2,… , 25 , m = 1, 2,… ,NG ) in 
Eq. (13) can be considered as unknown coefficients. This 
can be explained as follows. In the case of zero body forces 
f̄j,13 = 0 , Eq. (11) can be rescaled by the division of the 
left- and right-hand sides of Eq. (11) by any scalar, i.e., one 
of the coefficients can be selected as unity and there will 
be only 50 + 4NG − 1 unknown rescaled coefficients. The 
case of nonzero body forces f̄j,13 ≠ 0 can be similarly treated 
because the term f̄j,13 is a linear function of the stencil coef-
ficients; see below. For convenience, we will scale the stencil 
coefficients in such a way that k1,13 is k1,13 = 1 . Moreover, 
similar to finite element stencils, we select k̄1,13 = 0.

2.2.4 � Taylor series of the local truncation error

To represent the local truncation error ej as a Taylor series, 
let us expand the exact solution at the grid points and the 
selected NG interface points in Eq. (13) into a Taylor series 
at small h ≪ 1 in the vicinity of the central interface point 
( xG , yG ) as follows:

(14)

cp = cG +
�cG

�x
[((i − 3) − dxG)h] +

�cG

�y
[((l − 3) − dyG)byh]

+
�2cG

�x2

[((i − 3) − dxG)h]
2

2!
+

�2cG

�y2

[((l − 3) − dyG)byh]
2

2!

+ 2
�2cG

�x�y

[((i − 3) − dxG)h][((l − 3) − dyG)byh]

2!
+⋯ ,

p = 5(l − 1) + i with i, l = 1, 2, 3, 4, 5

(15)

wj = wG +
�wG

�x
[dx,jh] +

�wG

�y
[dy,jbyh]

+
�2wG

�x2

[dx,jh]
2

2!
+

�2wG

�y2

[dy,jbyh]
2

2!

+ 2
�2wG

�x�y

[(dx,jh][dy,jbyh]

2!
+⋯ , j = 1, 2,… , 9,

with dxG =
xG−x13

h
 and dyG =

yG−y13

byh
 . In Eq. (14) the function 

cp is u∗
p
 , u∗∗

p
 , v∗

p
 , v∗∗

p
 in Eq. (15) the function wj is u∗

G,j
 , u∗∗

G,j
 , 

�u∗
G,j

�x
 , 
�u∗∗

G,j

�x
 , 
�u∗

G,j

�y
 , 
�u∗∗

G,j

�y
 , v∗

G,j
 , v∗∗

G,j
 , 
�v∗

G,j

�x
 , 
�v∗∗

G,j

�x
 , 
�v∗

G,j

�y
 , 
�v∗∗

G,j

�y
 . The exact 

solution u∗
G

 , u∗∗
G

 , v∗
G

 and v∗∗
G

 to the elasticity equations, 
Eq. (1), at the central interface point with the coordinates 
x = xG and y = yG meets the following equations:

(16)

�2u∗
G

�x2
= −

[
s∗
1

�2u∗
G

�y2
+ s∗

2

�2v∗
G

�x�y
+ s∗

3
f ∗
G,x

]
,

�2v∗
G

�x2
= −

[
1

s∗
1

�2v∗
G

�y2
+ s∗

4

�2u∗
G

�x�y
+

1

�∗

f ∗
G,y

]
,

(17)

�2u∗∗
G

�x2
= −

[
s∗∗
1

�2u∗∗
G

�y2
+ s∗∗

2

�2v∗∗
G

�x�y
+ s∗∗

3
f ∗∗
G,x

]
,

�2v∗∗
G

�x2
= −

[
1

s∗∗
1

�2v∗∗
G

�y2
+ s∗∗

4

�2u∗∗
G

�x�y
+

1

�∗∗

f ∗∗
G,y

]
,

(18)

�(2+i+j)u∗
G

�x(2+i)�yj
= −

[
s∗
1

�(2+i+j)u∗
G

�xi�y(2+j)

+s∗
2

�(2+i+j)v∗
G

�x(i+1)�y(j+1)
+ s∗

3

�(i+j)f ∗
G,x

�xi�yj

]
,

(19)

�(2+i+j)v∗
G

�x(2+i)�yj
= −

[
1

s∗
1

�(2+i+j)v∗
G

�xi�y(2+j)
+ s∗

4

�(2+i+j)u∗
G

�x(i+1)�y(j+1)

+
1

�∗

�(i+j)f ∗
G,y

�xi�yj

]
,

(20)

�(2+i+j)u∗∗
G

�x(2+i)�yj
= −

[
s∗∗
1

�(2+i+j)u∗∗
G

�xi�y(2+j)
+ s∗∗

2

�(2+i+j)v∗∗
G

�x(i+1)�y(j+1)

+s∗∗
3

�(i+j)f ∗∗
G,x

�xi�yj

]
,
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with i, j = 0, 1, 2, 3, 4,… . We should mention that Eqs. (16) 
and (17) directly follow from Eq. (1) while Eqs. (18)–(21) 
are obtained by the differentiation of Eqs. (16) and (17) with 
respect to x and y.

2.2.5 � The difference in the derivations for the first 
and second 25‑point stencils

In Eqs. (16) and (17), we have expressed the second x deriv-
atives in terms of the second y derivatives and the second 
mixed derivatives. However, similarly, we can express the 
second y derivatives in terms of the second x derivatives and 
the second mixed derivatives. This latter case (with the cor-
responding modifications of Eqs. (18)–(21) will be used for 
the calculation of the local truncation error and the stencil 
coefficients for the second stencil equation with j = 2 ; see 
below.

2.2.6 � The final expression for a Taylor series of the local 
truncation error

Below, we consider the local truncation error for the first 
stencil equation, Eq. (13) with j = 1 . The derivations of the 
local truncation error for the second stencil equation, 
Eq.  (13) with j = 2 , can be done similarly (see also 
Sect. 2.2.5). Inserting Eqs. (14) and (15) and Eqs. (16)–(21) 
with zero body forces f ∗

G,x
= f ∗

G,y
= f ∗∗

G,x
= f ∗∗

G,y
= 0 into 

Eq. (13) we will get the following local truncation error in 
space e1:

(21)

�(2+i+j)v∗∗
G

�x(2+i)�yj
= −

[
1

s∗∗
1

�(2+i+j)v∗∗
G

�xi�y(2+j)
+ s∗∗

4

�(2+i+j)u∗∗
G

�x(i+1)�y(j+1)

+
1

�∗∗

�(i+j)f ∗∗
G,y

�xi�yj

]
,

s
∗(∗∗)

1
=

�∗(∗∗)

2�∗(∗∗) + �∗(∗∗)
, s

∗(∗∗)

2
=

�∗(∗∗) + �∗(∗∗)

2�∗(∗∗) + �∗(∗∗)
,

s
∗(∗∗)

3
=

1

2�∗(∗∗) + �∗(∗∗)
, s

∗(∗∗)

4
=

�∗(∗∗) + �∗(∗∗)

�∗(∗∗)

,

where the coefficients b1,p ( p = 1, 2,… ) are expressed in 
terms of the coefficients k1,i , k̄1,i and q1,m , q2,m , q3,m , q4,m 
( i = 1, 2,… , 25 , m = 1, 2,… ,NG ) and are given in Appen-
dix 1. Here, we should mention that the expression for 
the local truncation error e1 , Eq. (22), includes only the 
first-order derivatives with respect to x (the higher order 

(22)

e1 = b1,1u
∗
G
+ b1,2v

∗
G
+ b1,3u

∗∗
G

+ b1,4v
∗∗
G

+ h

(
b1,5

�u∗
G

�x
+ b1,6

�v∗
G

�x
+ b1,7

�u∗∗
G

�x
+ b1,8

�v∗∗
G

�x

+ b1,9

�u∗
G

�y
+ b1,10

�v∗
G

�y

+b1,11
�u∗∗

G

�y
+ b1,12

�v∗∗
G

�y

)

+ h2

(
b1,13

�2u∗
G

�x�y
+ b1,14

�2v∗
G

�x�y
+ b1,15

�2u∗∗
G

�x�y

+ b1,16

�2v∗∗
G

�x�y
+ b1,17

�2u∗
G

�y2
+ b1,18

�2v∗
G

�y2

+b1,19
�2u∗∗

G

�y2
+ b1,20

�2v∗∗
G

�y2

)

+ h3

(
b1,21

�3u∗
G

�x�y2
+⋯ + b1,28

�3v∗∗
G

�y3

)

+ h4

(
b1,29

�4u∗
G

�x�y3
+⋯ + b1,36

�4v∗∗
G

�y4

)

+ h5

(
b1,37

�5u∗
G

�x�y4
+⋯ + b1,44

�5v∗∗
G

�y5

)

+ h6

(
b1,45

�6u∗
G

�x�y5
+⋯ + b1,52

�6v∗∗
G

�y6

)

+ h7

(
b1,53

�7u∗
G

�x�y6
+⋯ + b1,60

�7v∗∗
G

�y7

)

+ h8

(
b1,61

�8u∗
G

�x�y7
+⋯ + b1,68

�8v∗∗
G

�y8

)

+ h9

(
b1,69

�9u∗
G

�x�y8
+⋯ + b1,76

�9v∗∗
G

�y9

)

+ h10

(
b1,77

�10u∗
G

�x�y9
+⋯ + b1,84

�10v∗∗
G

�y10

)

+ h11

(
b1,85

�11u∗
G

�x�y10
+⋯ + b1,92

�Gv∗∗
11

�y11

)

+ h12

(
b1,93

�12u∗
G

�x�y11
+⋯ + b1,100

�Gv∗∗
12

�y12

)
+ O(h13)
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derivatives with respect to x are excluded with the help of 
Eqs. (16)–(21)).

2.2.7 � Homogeneous materials (no interface)

For homogeneous materials, all aj ( j = 1, 2,… , 25 ) coef-
ficients are aj = 1 (see Eq. (11) if we consider material ∗ ) as 
well as all q1,j = q2,j = q3,j = q4,j = 0 ( j = 1, 2,… , 9 ) coef-
ficients are zero. In this case, the derivation of the local trun-
cation error is similar to that in the previous section and is 
given in our paper [38] and Appendix 2. The local truncation 
error for the first stencil (see our paper [38] for details) is:

i.e., the order of the local truncation error cannot exceed 12 
for any 25-point uniform stencils independent of the method 
used for their derivation (the finite element method, the 
finite volume method, the finite difference method, or any 
other method). The 12-th order of the local truncation error 
corresponds to the optimal 10-th order of accuracy for the 
global numerical solution (e.g., see our paper [38]). For the 
elasticity equations, the accuracy of the new approach with 
25-point uniform stencils significantly exceeds the accuracy 
of conventional high-order finite elements with much wider 
stencils; see the numerical results below.

2.2.8 � 25‑point stencils for heterogeneous materials 
with an irregular interface

The formulas presented below can be used for the first j = 1 
and second j = 2 stencils (they should be separately consid-
ered for j = 1 and j = 2 ). The analytical (with ‘Mathemat-
ica’) and numerical calculations for straight and curvilinear 
interfaces show that the first 84 coefficients bj,p in Eq. (22) 
up to the 10-th order with respect to h can be zero. However, 
some of the coefficients bj,p ( p = 69, 70,… ) starting from 
order 9 in Eq. (22) can be linearly dependent. Therefore, in 
order to minimize the order of the local truncation error e1 in 
Eq. (22), we will zero the first 68 coefficients bj,p in Eq. (22) 
up to the 8-th order with respect to h; i.e.,

Then, to have a sufficient number of equations for the 
calculation of the 86 stencil coefficients of each stencil 
including kj,i , k̄j,i ( i = 1, 2,… , 25 ) and q1,m , q2,m,q3,m , q4,m 
( m = 1, 2,… , 9 ), we use the least square method for the 
minimization of coefficients bj,p related to 9-th, 10-th, 11-th 
and 12-th orders of the local truncation error with the fol-
lowing residual Rj:

(23)

e1 =
5(� + �)(54828�2 + 102343�� + 40202�2)

9072(1364946�3 + 23192997�2� + 44409365e�2 + 21238414�3)
�12uA,B
�y12

h12 + O(h13),

(24)bj,p = 0, p = 1, 2,… , 68.

where h1 , h2 and h3 are the weighting factors to be selected 
(e.g., the numerical experiments show that h1 = 1∕5 , 
h2 = h1∕5 , h3 = h2∕5 yield accurate results and provide the 
11-th order of the local truncation error). To minimize the 
residual Rj with the constraints given by Eq. (24), we can 
form a new residual R̄j with the Lagrange multipliers �l:

The residual R̄j is a quadratic function of the sten-
c i l  coe f f i c i en t s  kj,i  ,  k̄j,i  (  i = 1, 2,… , 25 )  and 
q1,m  ,  q2,m ,q3,m  ,  q4,m  (  m = 1, 2,… , 9 )  and a  l in-
ear function of the Lagrange multipliers �l ; i.e., 
R̄j = R̄j(kj,i, k̄j,i, q1,m, q2,m, q3,m, q4,m, 𝜆l) . In order to minimize 
the residual R̄j = R̄j(kj,i, k̄j,i, q1,m, q2,m, q3,m, q4,m, 𝜆l) , the fol-
lowing equations based on the least square method for the 
residual R̄j can be written down:

where the equations 𝜕R̄1

𝜕k1,13
=

𝜕R̄1

𝜕k̄1,13
= 0 should be replaced by 

k1,13 = 1 and k̄1,13 = 0 for the first stencil with j = 1 (the 
equations 𝜕R̄2

𝜕k2,13
=

𝜕R̄2

𝜕k̄2,13
= 0 should be replaced by k2,13 = 0 

and k̄2,13 = 1 for the second stencil with j = 2 ); see 
Sect. 2.2.3. Equation (27) forms a system of 154 linear alge-
braic equations with respect to 154 unknown coefficients kj,i , 
k̄j,i ( i = 1, 2,… , 25 ) and q1,m , q2,m , q3,m , q4,m ( m = 1, 2,… , 9 ) 
as well as the Lagrange multipliers �l ( l = 1, 2,… , 68 ). Solv-
ing these linear algebraic equations numerically, we can find 
the coefficients kj,i , k̄j,i ( i = 1, 2,… , 25 ) for the 25-point uni-
form stencils as well as q1,m , q2,m , q3,m , q4,m ( m = 1, 2,… , 5 ). 
As can be seen, the presented procedure provides the 11-th 
order of the local truncation error for the 25-point uniform 
stencils with the general geometry of the interface. The 
25-point uniform stencils of OLTEM for homogeneous 
materials (without interface) provide the 12-th order of the 
local truncation error for rectangular meshes; see Eq. (23). 
This leads to the 10-th order of accuracy of global solutions; 
see the numerical examples below.

(25)Rj =

76∑
p=69

b2
j,p
+ h1

84∑
p=77

b2
j,p
+ h2

92∑
p=85

b2
j,p
+ h3

100∑
p=93

b2
j,p
,

(26)

R̄j =

68∑
l=1

𝜆lbj,l +

76∑
p=69

b2
j,p
+ h1

84∑
p=77

b2
j,p

+ h2

92∑
p=85

b2
j,p
+ h3

100∑
p=93

b2
j,p
.

(27)

𝜕R̄j

𝜕kj,i
= 0,

𝜕R̄j

𝜕k̄j,i
= 0,

𝜕R̄j

𝜕q1,m
= 0,

𝜕R̄j

𝜕q2,m
= 0,

𝜕R̄j

𝜕q3,m
= 0,

𝜕R̄j

𝜕q4,m
= 0,

𝜕R̄j

𝜕𝜆l
= 0,

i = 1, 2,… , 25, m = 1, 2,… , 9, l = 1, 2,… , 68,
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To estimate the computational costs for the solution of 
154 linear algebraic equations formed by Eq. (27) for the 
25-point stencils, we solved 103 such systems with the gen-
eral MATLAB solver ‘pinv’ on a desktop computer (Pro-
cessor: Intel(R) Core(TM) i7-10700 CPU @ 2.90 GHz). 
the computation ‘wall’ time was T = 57.55s for 103 systems 
or the average time for one system was 0.05755s for the 
25-point stencils. Because the coefficients kj,i , k̄j,i are inde-
pendently calculated for different grid points, the computa-
tion time of their calculation for different grid points can be 
significantly reduced on modern parallel computers. For 2-D 
problems with 1-D interfaces, the number of heterogeneous 
stencils (the stencils cut by the interface) is proportional to 
1

h
 at mesh refinement while the numbers of the internal grid 

points and the global degrees of freedom (the displacements 
at the internal grid points) for 2-D domains are proportional 
to 1

h2
 . This means that for large global systems of discrete 

equations at small h, the computation time for the calcula-
tion of the coefficients kj,i , k̄j,i is very small compared to that 
for the solution of the global system of discrete equations. 
We should mention that the coefficients q1,m , q2,m , q3,m , q4,m 
calculated from the local system of equations, Eq. (27), are 
only used for the calculation of non-zero right-hand side 
vector (see Eq. (29) below) and do not introduce additional 
unknowns to the global system of discrete equations (see 
Eq. (11)) while the Lagrange multipliers �l in the local sys-
tem of equations, Eq. (27), are not used in the global system 
of discrete equations at all.

Remark 2  It is interesting to mention that the stencil coef-
ficients can be also derived by using the central grid point 
with the coordinates x13 and y13 in Eqs. (14)–(22) instead of 
the interface point with the coordinates xG and yG.

The global system of discrete equations includes the 
25-point stencils for homogeneous materials without inter-
faces and the 25-point stencils for heterogeneous materials 
with interfaces between different materials (see Fig. 1) for all 
internal grid points located inside the domain. OLTEM does 
not use unknowns at the interfaces and the global system 
of discrete equations has the same unknowns (the displace-
ments u and v at the internal grid points of Cartesian meshes; 
see Eq. (11)) for homogeneous and heterogeneous materials. 
OLTEM provides the same structures of the global matrices 
for homogeneous and heterogeneous materials, the differ-
ence is only in the values of the stencil coefficients kj,i , k̄j,i of 
the global matrices.

2.3 � Non‑zero body forces f l
x
≠ 0 and f l

y
≠ 0 in Eq. (1)

The inclusion of non-zero body forces f l
x
≠ 0 and f l

y
≠ 0 in 

the partial differential equations, Eq. (1), leads to the non-
zero terms f̄j,13 in the stencil equations, Eq. (11) (similar 

to Eq. (6)). As we mentioned after Eq. (1), the body forces 
f l
x
 and f l

y
 can be discontinuous across the interfaces. The 

expressions for the terms f̄j,13 can be calculated from the pro-
cedure used for the derivation of the local truncation error in 
the case of zero body forces as follows (here, we will show 
the derivation of the term f̄1,13 for the first stencil equation, 
Eq. (11), with j = 1 ). The insertion of Eqs. (14) and (15) 
and Eqs. (16)–(21) with non-zero body forces into Eq. (13) 
yields the following local truncation error in space ef

1
:

where e1 is the local truncation error in space given by 
Eq. (22) for zero body forces, f̃ ∗

G,x
 , f̃ ∗∗

G,x
 , f̃ ∗

G,y
 and f̃ ∗∗

G,y
 desig-

nate the body forces f ∗
x
 , f ∗∗

x
 , f ∗

y
 and f ∗∗

y
 calculated at the 

central interface point with the coordinates x = xG and 
y = yG , the expression for p1 is given in Appendix 3. Equat-
ing to zero the expression in the square brackets in the right-
hand side of Eq. (28), we will get the expression for f̄1,13:

as well as we will get the same local truncation errors ef
1
= e1 

for zero and non-zero body forces (see the attached file 
‘RHS.nb’ for the detailed expression of f̄1,13 ). This means 
that the coefficients kj,i , k̄j,i ( i = 1, 2,… , 25 , j = 1, 2 ) of the 
stencil equations are first calculated for zero body forces 
f ∗
x
= f ∗∗

x
= f ∗

y
= f ∗∗

y
= 0 as described in Sect. 2.2. Then, the 

nonzero term f̄1,13 given by Eq. (29) is used in the stencil 
equation, Eq. (11) for nonzero body forces.

The derivation of the term f̄2,13 for the second stencil 
equation, Eq. (11), with j = 2 can be done similar to that 
for f̄1,13 . To preserve symmetry in the derivations for the 
first and second stencils with respect to the x and y coordi-
nates, for the second stencil with j = 2 , Eqs. (16) and (17) 
(with the corresponding modifications of Eqs. (18)–(21)) 
should express the second y derivatives in terms of the sec-
ond x derivatives and the second mixed derivatives (see 
Sect. 2.2.5).

3 � New post‑processing procedure for stress 
calculations

Recently, in our paper [44], we have proposed a new post-
processing procedure for the calculation of the spatial deriv-
atives of numerical solutions for the scalar Poisson equation. 

(28)
e
f

1
=e1 −

[
f̄1,13 + �

2

(
1

2(𝜆∗ + 2𝜇∗)
p1f

∗
G,x

+ (…)f ∗
G,y

+ (…)f ∗∗
G,x

+ (…)f ∗∗
G,y

)
+ �

3 …

]
,

(29)
f̄1,13 = − �

2

(
1

2(𝜆∗ + 2𝜇∗)
p1f

∗
G,x

+ (…)f ∗
G,y

+ (…)f ∗∗
G,x

+ (…)f ∗∗
G,y

)
− �

3 … ,
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It is based on OLTEM with the compact stencils correspond-
ing to linear finite elements. Here, we will extend it to a 
system of the elasticity equations and to more complicated 
stencils corresponding to quadratic finite elements. For 
stress calculations in the 2-D case, we first determine the 
spatial derivatives �u

num

�x
 , �u

num

�y
 , �v

num

�x
 , �v

num

�y
 of the displacements 

and then calculate the stresses using Hooke’s law. Because 
the calculations of these four derivatives �u

num

�x
 , �u

num

�y
 , �v

num

�x
 , 

�vnum

�y
 are similar here we show the procedure for the calcula-

tion of the spatial derivative �u
num

�x
.

The compact 25-point stencils for the calculation of �u
num

�x
 

at the central stencil point with the coordinates x13 and y13 
(see Fig. 1) can be selected similar to Eq. (11) as follows:

where f̄ = 0 in the case of zero body forces f l
x
= f l

y
= 0 in 

Eq. (1), the unknown coefficients kp and k̄p ( p = 1, 2,… , 25 ) 
are to be determined from the minimization of the local trun-
cation error, the coefficient a13 = 1 if the central stencil point 
belongs to material ∗ and a13 = 0 if the central stencil point 
belongs to material ∗∗ . It is interesting to note that in con-
trast to known post-processing procedures for the elasticity 
equations (e.g., used with finite elements), the calculation 
of �u

num

�x
 includes not only the numerical solution for the dis-

placement u but also for the displacement v; see Eq. (30).
The local truncation error ē for Eq. (30) can be obtained 

by the replacement of the numerical solution u∗,num
p

 , u∗∗,num
p

 , 
v∗,num
p

 , v∗∗,num
p

 in Eq. (30) by the exact solution u∗
p
 , u∗∗

p
 , v∗

p
 , v∗∗

p
:

Similar to Eq. (13) in Sect. 2, we add the interface conditions 
for the exact solution at the same small number NG of the 
interface points into the expression for the local truncation 
error in Eq. (31) as follows:

(30)
−

[
a13

𝜕u
∗,num

13

𝜕x
+ (1 − a13)

𝜕u
∗∗,num

13

𝜕x

]
h +

25∑
p=1

kp[apu
∗,num
p

+ (1 − ap)u
∗∗,num
p

] +

25∑
p=1

k̄p[apv
∗,num
p

+ (1 − ap)v
∗∗,num
p

] = f̄ ,

(31)

ē = −

[
a13

𝜕u∗
13

𝜕x
+ (1 − a13)

𝜕u∗∗
13

𝜕x

]
h

+

25∑
p=1

kp[apu
∗
p
+ (1 − ap)u

∗∗
p
]

+

25∑
p=1

k̄p[apv
∗
p
+ (1 − ap)v

∗∗
p
] − f̄ .

where

see the corresponding explanations in Sect. 2.2. Similar to 
Sect. 2, using the least square method we can form the local 
system of equations for the calculation of the stencil coeffi-
cients kp and k̄p ( p = 1, 2,… , 25 ) that provide the same order 
of the local truncation error as that in Sect. 2. The term f̄  is 
calculated similar to the term f̄1,13 in Sect. 2.3 with the help 
of Eq. (29). Finally, the spatial derivative �u

num

�x
 is calculated 

from Eq. (30) for each internal grid point as follows:

if the central stencil point belongs to material ∗ ( a13 = 1 ) and

(32)

ē = −

[
a13

𝜕u∗
13

𝜕x
+ (1 − a13)

𝜕u∗∗
13

𝜕x

]
h

+

25∑
p=1

kp[apu
∗
p
+ (1 − ap)u

∗∗
p
]

+

25∑
p=1

k̄p[apv
∗
p
+ (1 − ap)v

∗∗
p
]

+

NG∑
m=1

q1,m(u
∗
G,m

− u∗∗
G,m

) +

NG∑
m=1

q2,m(v
∗
G,m

− v∗∗
G,m

)

+

NG∑
m=1

hq3,m(t
∗
x,(G,m)

− t∗∗
x,(G,m)

)

+

NG∑
m=1

hq4,m(t
∗
y,(G,m)

− t∗∗
y,(G,m)

) − f̄ ,

(33)

t
∗(∗∗)

x,(G,m)
= nx,m

[
(�∗(∗∗) + 2�∗(∗∗))

�u
∗(∗∗)

G,m

�x
+ �∗(∗∗)

�v
∗(∗∗)

G,m

�y

]

+ ny,m�∗(∗∗)

(
�u

∗(∗∗)

G,m

�y
+

�v
∗(∗∗)

G,m

�x

)
,

t
∗(∗∗)

y,(G,m)
= ny,m

[
(�∗(∗∗) + 2�∗(∗∗))

�v
∗(∗∗)

G,m

�y
+ �∗(∗∗)

�u
∗(∗∗)

G,m

�x

]

+ nx,m�∗(∗∗)

(
�u

∗(∗∗)

G,m

�y
+

�v
∗(∗∗)

G,m

�x

)
,

(34)

𝜕u
∗,num

13

𝜕x
=

1

h

[
25∑
p=1

kp[apu
∗,num
p

+ (1 − ap)u
∗∗,num
p

]

+

25∑
p=1

k̄p[apv
∗,num
p

+ (1 − ap)v
∗∗,num
p

]] − f̄

]
,
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if the central stencil point belongs to material ∗∗ ( a13 = 0 ); 
see also the detailed description of the post-processing pro-
cedure for the Poisson equation in our paper [44]. For the 
calculations of the spatial derivatives �u

num

�y
 , �v

num

�x
 , �v

num

�y
 , the 

derivative �u
num

�x
 in the first two terms of Eq. (30) should be 

replaced by the corresponding derivative �u
num

�y
 , �v

num

�x
 or �v

num

�y
 . 

The proposed post-processing procedure provides a very 
high order of accuracy for the stresses (see below the numer-
ical results in Sect. 4.2). It is based on OLTEM with the 
same 25-point compact stencils as those used in basic com-
putations and it uses the entire system of the elasticity PDEs 
for post-processing.

4 � Numerical examples

In this section, the computational efficiency of OLTEM 
developed for the 2-D time-independent elasticity interface 
problems will be demonstrated and compared with conven-
tional linear and high-order (up to the fifth order) finite ele-
ments. The commercial finite element software ‘COMSOL’ 
is used for the finite element simulations. Similar to FEM 
terminology, a grid point of a Cartesian mesh will be called 
a node. To compare the accuracy of the numerical results 
obtained by OLTEM and by FEM, the relative error ejs at the 
jth node and the maximum relative error emax

s
 for the variable 

s are defined as:

In Eq. (36), the superscripts ‘num’ and ‘exact’ correspond 
to the numerical and exact solutions, N is the total number 
of nodes used in calculations, sexact

max
 is the maximum absolute 

(35)

𝜕u
∗∗,num

13

𝜕x
=

1

h

[
25∑
p=1

kp[apu
∗,num
p

+ (1 − ap)u
∗∗,num
p

]

+

25∑
p=1

k̄p[apv
∗,num
p

+ (1 − ap)v
∗∗,num
p

]] − f̄

]
,

(36)

ej
s
=

∣ snum
j

− sexact
j

∣

sexact
max

, emax
s

= max
j

ej
s
, j = 1, 2,… ,N.

value of the exact solution for the variable s over the entire 
domain. We also use the relative error eL2

s
 in the L2 norm for 

finite elements (e.g., see [45]) and the relative error el2
s
 in the 

l2 norm (e.g., see [46]) for OLTEM:

where ‖sexact − snum‖l2 = {dx dy
Nx∑
i=0

Ny∑
j=0

[sexact (xi, yj) − snum(xi, yj)]
2}

1

2
 . Nx and 

Ny are the numbers of Cartesian grid points along the x- and 
y-axes, xi and yj are the coordinates of Cartesian grid points. 
The displacements u and v as well as the normal sx , sy and 
shear sxy stresses are considered as variable s in Eqs. (36) 
and (37).

4.1 � A square plate with a circular interface

4.1.1 � The problem formulation and the exact solution

Let us consider a square plate ABCD with dimensions 2 × 2 ; 
see Fig. 2. A circular interface with radius r0 = �∕8 centered 
at the origin O(0, 0) divides the domain Ω into two subdo-
mains: the circular subdomain ΩI and the remaining subdo-
main ΩII . For the circular interface, the components of the 
unit normal used in the interface conditions equal nx =

x

r0
 

and ny =
y

r0
 for any interface point with the coordinate (x, y). 

Using the method of manufactured solutions, the following 
exact solution (e.g., see [47]) is selected:

where � = −7 , � = −10 and r =
√
x2 + y2 . The body forces 

can be calculated by the substitution of the exact solution 
into the elasticity equations and are given below:

(37)el
2

s
=

‖sexact − snum‖l2
‖sexact‖L2 ,

(38)

⎧⎪⎨⎪⎩

uI(x, y) =
(
√
r2+1)�

�I
,

vI(x, y) =
(
√
r2+1)�

�I
,

in ΩI

⎧⎪⎪⎨⎪⎪⎩

uII(x, y) =
(
√
r2+1)�

�II
+ (

1

�I
−

1

�II
)

��
r2
0
+ 1

��

,

vII(x, y) =
(
√
r2+1)�

�II
+ (

1

�I
−

1

�II
)

��
r2
0
+ 1

��

,

in ΩII

(39)

⎧

⎪

⎨

⎪

⎩

f Ix (x, y) = − xy(
√

r2+1)� (−2+�)�(�I+�I)+(
√

r2+1)��((1+y2+x2(−1+�))�I+(3+y2(1+�)+x2(−1+2�))�I)
(1+r2)2�I

,

f Iy (x, y) = − xy(
√

r2+1)� (−2+�)�(�I+�I)+(
√

r2+1)� �((1+x2+y2(−1+�))�I+(3+x2(1+�)+y2(−1+2�))�I)
(1+r2)2�I

,
in ΩI

⎧

⎪

⎨

⎪

⎩

f IIx (x, y) = − xy(
√

r2+1)� (−2+�)�(�II+�II)+(
√

r2+1)��((1+y2+x2(−1+�))�II+(3+y2(1+�)+x2(−1+2�))�II)
(1+r2)2�I

,

f IIy (x, y) = − xy(
√

r2+1)� (−2+�)�(�II+�II)+(
√

r2+1)� �((1+x2+y2(−1+�))�II+(3+x2(1+�)+y2(−1+2�))�II)
(1+r2)2�I

.
in ΩII
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4.1.2 � Material parameters

The following elastic Lame’s coefficients � and � are used 
for this problem: (1) �I = 10 , �II = 5 , �I = 4 , �II = 2 for 
compressible materials and (2) �I =

75924000

20993
 , �II =

37962000

20993
 , 

�I =
76000

20993
 , �II =

38000

20993
 for nearly incompressible materials. 

They cor respond to the same Poisson’s ratio 
�I = �II =

5

14
= 0.357 and the following Young’s moduli 

EI =
76

7
 , EII =

38

7
 with the contrast for Young’s moduli 

Ec =
EI

EII

= 2 for compressible materials as well as to the 
same Poisson’s ratio �I = �II = 0.4995 and the following 
Young’s moduli EI =

76

7
 , EII =

38

7
 with the contrast for 

Young’s moduli Ec =
EI

EII

= 2 for nearly incompressible 
materials. The exact solution given by Eq. (38) with the 
selected material properties meets the interface conditions, 
Eqs. (3) and (4).

4.1.3 � Numerical solutions by OLTEM and FEM

The test problem is solved by OLTEM on square ( by = 1 ) 
Cartesian meshes as well as by conventional linear and high-
order (up to the fifth order which is the maximum order 
implemented in COMSOL) finite elements; see Fig. 2b for 
an example of an unfitted Cartesian mesh used with OLTEM 
and see Fig. 2c, d for examples of conformed triangular and 
quadrilateral finite element meshes generated by COMSOL. 
The Dirichlet boundary conditions are imposed along the 
edges of the square plate according to the exact solution 

given by Eq. (38). To get a high accuracy for OLTEM with 
the 25 points stencils, the high-order numerical boundary 
conditions similar to those developed in [48] are used.

Figure 2e, f shows the distribution of the relative errors 
eu (Fig. 2e) and ev (Fig. 2f) obtained by OLTEM for the 
compressible materials on a square Cartesian mesh with size 
h = 1∕6 . As can be seen from Fig. 2e, f the errors eu and ev 
are very small for this mesh; i.e., OLTEM yields accurate 
results.

Figures 3 and 4 present the numerical study of the dis-
tances h̄ = h∕ā between the interface points (Fig. 3) as well 
as of the weighting coefficients h1 = w̄ , h2 = h1w̄ , h3 = h2w̄ 
(Fig. 4) on the accuracy of numerical results for the maxi-
mum relative errors emax

u
 , emax

v
 (a) and the errors el2

u
 , el2

v
 in 

the l2 norm (b) for the spherical interfaces with the Carte-
sian mesh of the mesh size h = 1∕6 . Based on the analysis 
of these figures, we selected h̄ = h∕5 as well as h1 = 1∕5 , 
h2 = h1∕5 , h3 = h2∕5 for all numerical results presented in 
the paper.

To study the convergence of the numerical results 
obtained by OLTEM for compressible and nearly incom-
pressible materials, Fig. 5 shows the maximum relative 
errors emax

u
 , emax

v
 (a, b) and the errors el2

u
 , el2

v
 in the l2 norm (c, 

d) as a function of the mesh size h in the logarithmic scale. 
The slopes of the curves in Fig. 5 correspond the order of 
convergence. As can be seen from Fig. 5, the order of con-
vergence of OLTEM is close to 10 for compressible (curve 
1) and nearly incompressible (curve 2) materials (the tenth 
order of convergence in Fig. 5 is designated by a straight 

Fig. 2   A square plate ABCD with a circular interface centered at 
O(0, 0) with a radius r0 = �∕8 (a). Examples of a square unfitted Car-
tesian mesh for OLTEM (b), of conformed triangular (c) and quadri-

lateral (d) finite element meshes generated by COMSOL. The distri-
bution of the relative errors eu (e) and ev (f) obtained by OLTEM on a 
square Cartesian mesh with size h = 1∕6
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line 3). This is in agreement of the theoretical results of 
Sect. 2. We can also mention that OLTEM yields more accu-
rate results for compressible materials compared to those 
for nearly incompressible materials (see curves 1 and 2) as 
well as some variations in the slope of curve 2 for nearly 
incompressible materials can be observed at mesh refine-
ment. Nevertheless, OLTEM provides very accurate results 
for nearly incompressible materials as well.

To compare the accuracy of the numerical solutions 
obtained by OLTEM and by finite elements, Figs. 6 and 7 
show the maximum relative errors emax

u
 , emax

v
 (a, b) and the 

errors eL2
u

 , eL2
v

 in the L2 norm (c, d) as a function of the num-
ber N of degrees of freedom for the compressible (Fig. 6) 
and nearly incompressible (Fig. 7) materials. As can be 
seen from Figs. 6 and 7, at the same N the numerical results 
obtained by OLTEM are much more accurate than those 
obtained by linear and high-order (up to the 5th order) quad-
rilateral and triangular finite elements; compare curve 11 
with curves 1–10. We should mention that high-order (start-
ing from the third order) finite elements have a much greater 
width of stencil equations compared to that for OLTEM with 

the 25-point stencils. This leads to a significant reduction in 
computation costs for OLTEM with unfitted meshes com-
pared to finite elements with conformed meshes at the same 
accuracy.

4.1.4 � The accuracy study of OLTEM at small variations 
of the mesh size

To study the convergence and stability of the numeri-
cal results obtained by OLTEM in more detail, curves 
1 and 2 in Fig. 8 present the curves 1 in Fig. 5 at small 
changes of the mesh size h. For this study, we solve the 
test problem on 1000 Cartesian meshes with the mesh 
s izes  hi = h1 − 0.0001(i − 1) where  h1 = 0.19 and 
i = 1, 2,… , 1000 . The grid lines of these meshes along 
the sides AB and AD (see Fig. 2a) are fixed; i.e., there is a 
gradual change of the position of the circular interface with 
respect to Cartesian meshes. As can be seen from Fig. 8, the 
numerical results obtained by OLTEM on these Cartesian 
meshes converge with the decrease in the grid size h. Small 
oscillations in Fig. 8 can be explained by the fact that at 

Fig. 3   The maximum relative errors emax
u

 (curve 1 in a) and emax
v

 
(curve 2 in a) as well as the errors el2

u
 (curve 1 in b) and el2

v
 (curve 2 in 

b) in the l2 norm in the logarithmic scale as a function of the parame-
ter ā related to the distances h̄ = h∕ā between the interface points (see 

the corresponding text). The numerical solutions for the test problem 
with the circular interface are obtained by OLTEM on the square Car-
tesian mesh of size h = 1∕6 for the compressible materials

Fig. 4   The maximum relative errors emax
u

 (curve 1 in a) and emax
v

 
(curve 2 in a) as well as the errors el2

u
 (curve 1 in b) and el2

v
 (curve 2 in 

b) in the l2 norm in the logarithmic scale as a function of the parame-
ter w̄ related to the weighting coefficients h1 = w̄ , h2 = h1w̄ , h3 = h2w̄ 

(see the corresponding text). The numerical solutions for the test 
problem with the circular interface are obtained by OLTEM on the 
square Cartesian mesh of size h = 1∕6 for the compressible materials
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Fig. 5   The maximum relative errors emax
u

 (a) and emax
v

 (b) as well as 
the errors el2

u
 (c) and el2

v
 (d) in the l2 norm as a function of the mesh 

size h in the logarithmic scale. The numerical solutions for the test 
problem with the circular interface are obtained by OLTEM on 

square Cartesian meshes for compressible (curves 1) and nearly 
incompressible (curves 2) materials. The reference line 3 designates 
the 10th order of convergence

Fig. 6   The maximum relative errors emax
u

 (a) and emax
v

 (b) as well as 
the errors eL2

u
 (c) and eL2

v
 (d) in the L2 norm as a function of the num-

ber N of degrees of freedom in the logarithmic scale. The numeri-
cal solutions for the plate with the circular interface and compressible 

materials are obtained by OLTEM (curve 11) and by conventional tri-
angular (curves 1–5) and quadrilateral (curves 6–10) finite elements. 
Curves (1, 6), (2, 7), (3, 8), (4, 9), (5, 10) correspond to linear, quad-
ratic, cubic, 4-th order and 5-th order finite elements, respectively
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small variations of the mesh size h, there is a discontinuous 
change in the location of the grid points with respect to the 
interface (e.g., some grid points that belong to one mate-
rial for the previous mesh can belong to another material 
for the next mesh); this leads to the discontinuous change 
of some stencils equations for the meshes with a small dif-
ference in h. It is important to mention that small oscilla-
tions in numerical convergence curves are typical for many 

numerical techniques at small variations of h. For example, 
the change in the angles of finite elements at small varia-
tions of the element size h also leads to such oscillations in 
convergence curves for finite element techniques.

Fig. 7   The maximum relative errors emax
u

 (a) and emax
v

 (b) as well as 
the errors eL2

u
 (c) and eL2

v
 (d) in the L2 norm as a function of the num-

ber N of degrees of freedom in the logarithmic scale. The numerical 
solutions for the plate with the circular interface and nearly incom-
pressible materials are obtained by OLTEM (curve 11) and by con-

ventional triangular (curves 1–5) and quadrilateral (curves 6–10) 
finite elements. Curves (1, 6), (2, 7), (3, 8), (4, 9), (5, 10) correspond 
to linear, quadratic, cubic, 4-th order and 5-th order finite elements, 
respectively

Fig. 8   The maximum relative errors emax
u

 (curve 1 in a), emax
v

 (curve 2 
in a) and the errors el2

u
 (curve 1 in b), el2

v
 (curve 2 in b) in the l2 norm 

as a function of the mesh size h in the logarithmic scale. The numeri-

cal solutions for the plate with the circular interface for compressible 
materials are obtained by OLTEM on 1000 square Cartesian meshes
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4.2 � A square plate with an elliptical interface

4.2.1 � The problem formulation and the exact solution

Here, we consider a problem similar to that the previ-
ous Sect. 4.1 but with a more complex elliptical interface 
given by equation x2 + t2y2 = 0.52 with t = 2.8 ; see Fig. 9a. 
Similar to Sect. 4.1, the exact solution for the problem 
is also described by Eq. (38) with � = −7 , � = −10 and 
r =

√
x2 + t2y2 . The body forces can be calculated by the 

substitution of the exact solution into the elasticity equa-
tions. The compressible materials with the elastic Lame’s 
coefficients that are the same as in Sect. 4.1 are used for 
this problem. The exact solution given by Eq. (38) with 
the selected material properties meets the interface condi-
tions, Eqs. (3) and (4). We should mention that similar to 
FEM, the consideration of composites with one or several 
inclusions does not change the complexity of the problem 
for OLTEM but increases the programming efforts for the 
description of several inclusions. Moreover, a problem with 
the exact solution can be constructed for one inclusion. This 
significantly simplifies the analysis of accuracy of numerical 

results obtained by new methods. The solution of real-world 
problems with complex geometry requires writing a long 
code for the geometry description and will be considered 
in the future.

The test problem is solved by OLTEM on square ( by = 1 ) 
unfitted Cartesian meshes as well as by conventional con-
formed linear and high-order (up to the fifth order which is 
the maximum order implemented in COMSOL) triangular 
finite elements; see Fig. 9b for an example of a Cartesian 
mesh used with OLTEM and see Fig. 9c for an example 
of a triangular finite element mesh generated by COM-
SOL. Because triangular finite elements yield slightly more 
accurate results compared to those for quadrilateral finite 
elements (see the previous Sect. 4.1), here we consider the 
triangular finite elements only. The Dirichlet boundary 
conditions are imposed along the edges of the square plate 
according to the exact solution given by Eq. (38). To get a 
high accuracy for OLTEM with the 25 points stencils, the 
high-order numerical boundary conditions similar to those 
developed in [48] are used.

Fig. 9   A square plate ABCD with an elliptical interface centered at 
point (0,  0) (a). Examples of an unfitted square Cartesian mesh for 
OLTEM (b), of a conformed triangular finite element mesh (c) gen-

erated by COMSOL. The distribution of the relative errors eu (d) 
and ev (e) obtained by OLTEM on a square Cartesian mesh with size 
h = 1∕20
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4.2.2 � Numerical solutions by OLTEM and FEM

Figure 9d, e shows the distribution of the relative errors 
in displacements eu (Fig. 9d) and ev (Fig. 9e) obtained by 
OLTEM on a square Cartesian mesh with size h = 1∕20 . As 
can be seen from Fig. 9d, e the errors eu and ev are very small 
for this mesh; i.e., OLTEM yields accurate results.

To study the convergence of the numerical results 
obtained by OLTEM, Fig. 10 shows the maximum relative 
errors in displacements emax

u
 , emax

v
 and the errors in displace-

ments el2
u
 , el2

v
 in the l2 norm as a function of the mesh size h 

in the logarithmic scale. The slopes of the curves in Fig. 10 
correspond the order of convergence. As can be seen from 
Fig. 10, the order of convergence of OLTEM is close to 10 
(the tenth order of convergence in Fig. 10 is designated by 
a straight line 3). This is in agreement of the theoretical 
results of Sect. 2.

Based on the new post-processing procedure (see Sect. 3), 
we calculated the normal sx , sy and shear sxy stresses using 
OLTEM with the compact 25-point stencils (similar to those 

used in basic computations for the displacements). Figure 11 
shows the maximum relative errors in stresses emax

sx
 , emax

sy
 , 

emax
sxy

 and the errors in stresses el2
sx

 , el2
sy
 , el2

sxy
 in the l2 norm as a 

function of the mesh size h in the logarithmic scale. As can 
be seen from Fig. 11, the order of convergence of OLTEM 
is, in average, close to 10 (the tenth order of convergence in 
Fig. 11 is designated by a straight line 4).

To compare the accuracy of the numerical solutions 
obtained by OLTEM and by finite elements, Figs. 12 and 13 
show the maximum relative errors in displacements emax

u
 , 

emax
v

 and in stresses emax
sx

 , emax
sy

 , emax
sxy

 as well as the errors in 
displacements eL2

u
 , eL2

v
 and in stresses eL2

sx
 , eL2

sy
 , eL2

sxy
 in the L2 

norm as a function of the number N of degrees of freedom. 
As can be seen from Figs. 12 and 13, at the same N the dis-
placements and stresses obtained by OLTEM are much more 
accurate than those obtained by linear and high-order (up to 
the 5th order) triangular finite elements; compare curve 1 
with curves 2–6. We should mention that high-order (start-
ing from the third order) finite elements have a much greater 

Fig. 10   The maximum relative errors in displacement emax
u

 (curve 1 
in a) and emax

v
 (curve 2 in a) as well as the errors in displacement el2

u
 

(curve 1 in b) and el2
v
 (curve 2 in b) in the l2 norm as a function of the 

mesh size h in the logarithmic scale. The numerical solutions for the 

test problem with the elliptical interface are obtained by OLTEM on 
unfitted square Cartesian meshes. The reference line 3 designates the 
10th order of convergence

Fig. 11   The maximum relative errors in stresses emax
sx

 , emax
sy

 , emax
sxy

 
(curves 1, 2, 3 in a) as well as the errors in stresses el2

sx
 , el2

sy
 , el2

sxy
 in the l2 

norm (curves 1, 2, 3 in b) as a function of the mesh size h in the loga-

rithmic scale. The numerical solutions for the test problem with the 
elliptical interface are obtained by OLTEM on unfitted square Carte-
sian meshes. The reference line 4 designates the 10th order of conver-
gence
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width of stencil equations compared to that for OLTEM with 
the 25-point stencils. This leads to a significant reduction in 
computation costs for OLTEM with unfitted meshes com-
pared to finite elements with conformed meshes at the same 
accuracy. It is also interesting to note that due to the new 
post-processing procedure for the stress calculations, the dif-
ference in accuracy between OLTEM and FEM is greater for 
the stresses (see Fig. 13) compared to that for the displace-
ments (see Fig. 12). This is very important for the problems 
where the accurate calculations of stresses are crucial for 
accurate predictions (e.g., simulations of crack 
propagation).

4.2.3 � The accuracy study of OLTEM at small variations 
of the mesh size

To study the convergence and stability of the numerical 
results with the elliptical interface obtained by OLTEM in 
more detail, curves 1 and 2 in Fig. 14 present curves 1 and 2 
in Fig. 10 at small changes of the mesh size h. For this study, 
we solve the test problem on 1000 Cartesian meshes with 
the mesh sizes hi = h1 − 0.00002(i − 1) where h1 = 0.05 
and i = 1, 2,… , 1000 . The grid lines of these meshes along 
the sides AB and AD (see Fig. 9a) are fixed; i.e., there is a 
gradual change of the position of the elliptical interface with 

respect to Cartesian meshes. As can be seen from Fig. 14, 
the numerical results obtained by OLTEM on these Carte-
sian meshes converge with the decrease in the grid size h 
(the results are similar to those with the circular interface in 
Fig. 8 of the previous Sect. 4.1).

It can be concluded that OLTEM with 25-point compact 
stencils and unfitted Cartesian meshes developed for the 
2-D time-independent elasticity interface problems provides 
the 10th order of accuracy and yields much more accurate 
results than high order (up to the fifth order) finite elements 
on conformed meshes and with a greater width of the stencil 
equations.

5 � Concluding remarks

The new numerical approach developed in the paper is the 
extension of OLTEM for PDEs with constant coefficients 
(see our papers [35–41]) to a much more general case of 2-D 
elasticity equations for heterogeneous materials with irregu-
lar interfaces. The main idea that allows this extension is the 
addition of the interface conditions at a small number of the 
interface points to the expression for the local truncation 
error. The unknown stencil coefficients can be numerically 
calculated from a small local system of algebraic equations 

Fig. 12   The maximum relative errors in displacement emax
u

 (a) and 
emax
v

 (b) as well as the errors in displacement eL2
u

 (c) and eL2
v

 (d) in 
the L2 norm as a function of the number N of degrees of freedom in 
the logarithmic scale. The numerical solutions for the plate with the 

elliptical interface are obtained by OLTEM (curve 1) and by conven-
tional triangular finite elements (curves 2–6). Curves (2, 3, 4, 5, 6) 
correspond to linear, quadratic, cubic, 4-th order and 5-th order finite 
elements, respectively
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Fig. 13   The maximum relative errors in stresses emax
sx

 (a), emax
sy

 (c), 
emax
sxy

 (e) as well as the errors in stresses eL2
sx

 (b), eL2
sy

 (d), eL2
sxy

 (f) in the L2 
norm as a function of the number N of degrees of freedom in the log-
arithmic scale. The numerical solutions for the plate with the ellipti-

cal interface are obtained by OLTEM (curve 1) and by conventional 
triangular finite elements (curves 2–6). Curves (2, 3, 4, 5, 6) corre-
spond to linear, quadratic, cubic, 4-th order and 5-th order finite ele-
ments, respectively

Fig. 14   The maximum relative errors emax
u

 (curve 1 in a), emax
v

 (curve 
2 in a) and the errors el2

u
 (curve 1 in b), el2

v
 (curve 2 in b) in the l2 norm 

as a function of the mesh size h in the logarithmic scale. The numeri-

cal solutions for the plate with the elliptical interface for compressible 
materials are obtained by OLTEM on 1000 square Cartesian meshes
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for the general geometry of interfaces. This procedure does 
not change the width of the stencil equation; i.e., the loca-
tions of zero and nonzero elements in the global discrete 
system of equations are the same for homogeneous and 
heterogeneous materials. The calculation of the unknown 
stencil coefficients is based on the minimization of the local 
truncation error of the stencil equations and yields the opti-
mal order of accuracy of the new technique at a given stencil 
width. The increase in the computational costs for the cal-
culation of the unknown stencil coefficients from the local 
systems is insignificant compared to the computational costs 
for the solution of the global discrete system.

The main advantages of the suggested technique can be 
summarized as follows:

•	 Many difficulties of the existing numerical techniques for 
irregular domains (e.g., finite elements, spectral element, 
isogeometric elements, the finite volume method, and 
many others) are related to complicated mesh genera-
tors and the accuracy of ’bad’ elements (e.g., the ele-
ments with small angles). In contrast to these techniques, 
OLTEM is based on simple unfitted Cartesian meshes 
with a trivial procedure for the formation of the 25-point 
stencils for 2-D domains with complex irregular inter-
faces.

•	 OLTEM has the same width of the stencil equations and 
the same structure of the global discrete equations for 
the elasticity equations for homogeneous and heterogene-
ous materials. There are no unknowns on the interfaces 
between different materials for the proposed technique; 
i.e., complex irregular interfaces do not affect the sparse 
structure of the global system of discrete equations (they 
affect just the values of the stencils coefficients).

•	 In contrast to the finite-difference techniques with the 
stencil coefficients calculated through the approximation 
of the partial derivatives, the system of partial differen-
tial elasticity equations is used for the calculation of the 
stencil coefficients in OLTEM. This leads to the optimal 
accuracy of the proposed technique. E.g., the 25-point 
stencils of OLTEM provide the optimal 10-th order of 
accuracy that cannot be improved without changing 
the width of stencil equations. This corresponds to the 
increase in accuracy by seven orders for OLTEM com-
pared to conventional quadratic finite elements with simi-
lar stencils.

•	 The numerical results for elastic heterogeneous materials 
with irregular interfaces show that at the same number 
of degrees of freedom, OLTEM with unfitted meshes is 
more accurate than high order (up to the fifth order—the 

maximum order implemented in the COMSOL software) 
finite elements with a much greater stencil width and 
conformed meshes.

•	 OLTEM with the 25-point stencils provides very accu-
rate results for nearly incompressible materials (e.g., with 
Poisson ratio 0.4995).

•	 A new post-processing procedure for the stress calcula-
tions has been developed. Similar to basic computations, 
it includes OLTEM with the 25-point compact stencils 
and provides a very high accuracy of the stresses.

•	 OLTEM does not require time consuming numerical inte-
gration for finding the coefficients of the stencil equa-
tions; e.g., as for the high-order finite, spectral and isoge-
ometric elements. The stencil coefficients are calculated 
analytically or numerically (for the general geometry 
of interfaces) by the solution of small local systems of 
linear algebraic equations. Numerical experiments show 
that the solution of these small local systems of algebraic 
equations is fast. Moreover, these local systems are inde-
pendent of each other and can be efficiently solved on a 
parallel computer.

In the future, we plan to extend OLTEM to the 3-D elas-
ticity equations for heterogeneous materials with irregular 
interfaces. Another direction is the development of OLTEM 
with adaptive refinement similar to h- and p-refinement for 
finite elements (e.g., in our papers [39, 41] we showed that 
OLTEM can easily combine different stencils). We plan to 
use quadtrees/octrees meshes that allow a simple refinement 
strategy with Cartesian meshes. The extension of OLTEM 
to other PDEs for heterogeneous materials as well as to non-
linear PDEs will be also considered in the future.

Appendix 1: The coefficients b1,p used 
in Eq. (22) for the first stencils with  j = 1

The first 10 coefficients b1,p ( p = 1, 2,… , 10 ) used in 
Eq. (22) are presented below in the case of the mesh aspect 
ratio by = 1 . All coefficients b1,p used in these formulas are 
given in the attached file ‘b-coef.nb’. For simplicity of nota-
tions, below we use that

b1,i = bi (i = 1, 2,… , 10), k1,i = ki, k̄1,i = k̄i (i = 1, 2,… , 25),

qi = q1,i, qi+9 = q2,i, qi+18 = q3,i, qi+27 = q4,i (i = 1, 2,… , 9).
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b1 =a1k1 + a10k10 + a11k11 + a12k12

+ a13k13 + a14k14 + a15k15

+ a16k16 + a17k17 + a18k18 + a19k19

+ a2k2 + a20k20 + a21k21

+ a22k22 + a23k23 + a24k24 + a25k25 + a3k3 + a4k4

+ a5k5 + a6k6 + a7k7 + a8k8 + a9k9

+ q1 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9

b2 =a1k̄1 + a10k̄10 + a11k̄11 + a12k̄12 + a13k̄13 + a14k̄14

+ a15k̄15 + a16k̄16

+ a17k̄17 + a18k̄18 + a19k̄19 + a2k̄2 + a20k̄20 + a21k̄21

+ a22k̄22 + a23k̄23 + a24k̄24 + a25k̄25 + a3k̄3

+ a4k̄4 + a5k̄5 + a6k̄6 + a7k̄7 + a8k̄8 + a9k̄9

+ q19 + q20 + q21 + q22 + q23 + q24 + q25 + q26 + q27

b3 = −a1k1 − a10k10 − a11k11 − a12k12 − a13k13

− a14k14 − a15k15 − a16k16

− a17k17 − a18k18 − a19k19 − a2k2 − a20k20 − a21k21

− a22k22 − a23k23 − a24k24 − a25k25 − a3k3 − a4k4

− a5k5 − a6k6 − a7k7 − a8k8 − a9k9

+ k1 + k10 + k11 + k12 + k13 + k14

+ k15 + k16 + k17 + k18 + k19

+ k2 + k20 + k21 + k22 + k23 + k24

+ k25 + k3 + k4 + k5 + k6

+ k7 + k8 + k9 − q1 − q2 − q3 − q4

− q5 − q6 − q7 − q8 − q9

b4 = − a1k̄1 − a10k̄10 − a11k̄11 − a12k̄12 − a13k̄13

− a14k̄14 − a15k̄15 − a16k̄16

− a17k̄17 − a18k̄18 − a19k̄19 − a2k̄2 − a20k̄20 − a21k̄21

− a22k̄22 − a23k̄23 − a24k̄24 − a25k̄25

− a3k̄3 − a4k̄4 − a5k̄5 − a6k̄6 − a7k̄7 − a8k̄8

− a9k̄9 + k̄1 + k̄10 + k̄11 + k̄12 + k̄13 + k̄14

+ k̄15 + k̄16 + k̄17 + k̄18 + k̄19 + k̄2

+ k̄20 + k̄21 + k̄22 + k̄23 + k̄24 + k̄25 + k̄3

+ k̄4 + k̄5 + k̄6 + k̄7

+ k̄8 + k̄9 − q19 − q20 − q21 − q22

− q23 − q24 − q25 − q26 − q27

b5 = − a1(dxG + 2)k1 − a10(dxG − 2)k10 − a11(dxG + 2)k11

− a12(dxG + 1)k12 − a13dxGk13

+ k14(a14 − a14dxG) − a15(dxG − 2)k15 − a16(dxG + 2)k16

− a17(dxG + 1)k17 − a18dxGk18

+ k19(a19 − a19dxG) − a2(dxG + 1)k2

− a20(dxG − 2)k20 − a21(dxG + 2)k21

− a22(dxG + 1)k22 − a23dxGk23 + k24(a24

− a24dxG) − a25(dxG − 2)k25

− a3dxGk3 + k4(a4 − a4dxG) − a5(dxG − 2)k5

− a6(dxG + 2)k6 − a7(dxG + 1)k7 − a8dxGk8 + k9(a9

− a9dxG) + dx,2q2 + dx,3q3 + dx,4q4 + dx,5q5 + dx,6q6

+ dx,7q7 + dx,8q8 + dx,9q9 + nx,1q10(�∗ + 2�∗) + nx,2q11(�∗

+ 2�∗) + nx,3q12(�∗ + 2�∗) + nx,4q13(�∗

+ 2�∗) + nx,5q14(�∗

+ 2�∗) + nx,6q15(�∗ + 2�∗) + nx,7q16(�∗

+ 2�∗) + nx,8q17(�∗ + 2�∗)

+ nx,9q18(�∗ + 2�∗) + �∗ny,1q28

+ �∗ny,2q29 + �∗ny,3q30 + �∗ny,4q31

+ �∗ny,5q32 + �∗ny,6q33

+ �∗ny,7q34 + �∗ny,8q35 + �∗ny,9q36

b6 = − a1(dxG + 2)k̄1 − a10(dxG − 2)k̄10 − a11(dxG + 2)k̄11

− a12(dxG + 1)k̄12 − a13dxGk̄13 + k̄14(a14

− a14dxG) − a15(dxG − 2)k̄15 − a16(dxG + 2)k̄16

− a17(dxG + 1)k̄17 − a18dxGk̄18

+ k̄19(a19 − a19dxG) − a2(dxG + 1)k̄2 − a20(dxG − 2)k̄20

− a21(dxG + 2)k̄21 − a22(dxG + 1)k̄22

− a23dxGk̄23 + k̄24(a24

− a24dxG) − a25(dxG − 2)k̄25 − a3dxGk̄3

+ k̄4(a4 − a4dxG) − a5(dxG − 2)k̄5 − a6(dxG + 2)k̄6

− a7(dxG + 1)k̄7 − a8dxGk̄8

+ k̄9(a9 − a9dxG) + dx,2q20 + dx,3q21

+ dx,4q22 + dx,5q23 + dx,6q24

+ dx,7q25 + dx,8q26 + dx,9q27 + nx,1𝜇∗q28

+ nx,2𝜇∗q29 + nx,3𝜇∗q30 + nx,4𝜇∗q31

+ nx,5𝜇∗q32 + nx,6𝜇∗q33

+ nx,7𝜇∗q34 + nx,8𝜇∗q35 + nx,9𝜇∗q36

+ ny,1𝜇∗q10 + ny,2𝜇∗q11 + ny,3𝜇∗q12

+ ny,4𝜇∗q13 + ny,5𝜇∗q14 + ny,6𝜇∗q15 + ny,7𝜇∗q16

+ ny,8𝜇∗q17 + ny,9𝜇∗q18
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b7 =(a1 − 1)(dxG + 2)k1 + (a10 − 1)(dxG − 2)k10

+ (a11 − 1)(dxG + 2)k11

+ (a12 − 1)(dxG + 1)k12 + (a13 − 1)dxGk13

+ (a14 − 1)(dxG − 1)k14 + (a15 − 1)(dxG − 2)k15

+ (a16 − 1)(dxG + 2)k16 + (a17 − 1)(dxG + 1)k17

+ (a18 − 1)dxGk18 + (a19 − 1)(dxG − 1)k19

+ (a2 − 1)(dxG + 1)k2 + (a20 − 1)(dxG − 2)k20

+ (a21 − 1)(dxG + 2)k21 + (a22 − 1)(dxG + 1)k22

+ (a23 − 1)dxGk23 + (a24 − 1)(dxG − 1)k24

+ (a25 − 1)(dxG − 2)k25 + (a3 − 1)dxGk3 + (a4 − 1)(dxG − 1)k4

+ (a5 − 1)(dxG − 2)k5 + (a6 − 1)(dxG + 2)k6

+ (a7 − 1)(dxG + 1)k7 + (a8 − 1)dxGk8

+ (a9 − 1)(dxG − 1)k9 − dx,2q2 − dx,3q3

− dx,4q4 − dx,5q5 − dx,6q6

− dx,7q7 − dx,8q8 − dx,9q9 − nx,1q10(�∗∗ + 2�∗∗)

− nx,2q11(�∗∗ + 2�∗∗) − nx,3q12(�∗∗ + 2�∗∗) − nx,4q13(�∗∗

+ 2�∗∗) − nx,5q14(�∗∗ + 2�∗∗) − nx,6q15(�∗∗

+ 2�∗∗) − nx,7q16(�∗∗ + 2�∗∗) − nx,8q17(�∗∗

+ 2�∗∗) − nx,9q18(�∗∗ + 2�∗∗)

− �∗∗ny,1q28 − �∗∗ny,2q29 − �∗∗ny,3q30

− �∗∗ny,4q31 − �∗∗ny,5q32

− �∗∗ny,6q33 − �∗∗ny,7q34 − �∗∗ny,8q35 − �∗∗ny,9q36

b8 =(a1 − 1)(dxG + 2)k̄1 + (a10 − 1)(dxG − 2)k̄10

+ (a11 − 1)(dxG + 2)k̄11 + (a12 − 1)(dxG + 1)k̄12

+ (a13 − 1)dxGk̄13 + (a14 − 1)(dxG − 1)k̄14

+ (a15 − 1)(dxG − 2)k̄15 + (a16 − 1)(dxG + 2)k̄16

+ (a17 − 1)(dxG + 1)k̄17 + (a18 − 1)dxGk̄18

+ (a19 − 1)(dxG − 1)k̄19 + (a2 − 1)(dxG + 1)k̄2

+ (a20 − 1)(dxG − 2)k̄20 + (a21 − 1)(dxG + 2)k̄21

+ (a22 − 1)(dxG + 1)k̄22

+ (a23 − 1)dxGk̄23 + (a24 − 1)(dxG − 1)k̄24

+ (a25 − 1)(dxG − 2)k̄25 + (a3 − 1)dxGk̄3

+ (a4 − 1)(dxG − 1)k̄4 + (a5 − 1)(dxG − 2)k̄5

+ (a6 − 1)(dxG + 2)k̄6 + (a7 − 1)(dxG + 1)k̄7

+ (a8 − 1)dxGk̄8 + (a9 − 1)(dxG − 1)k̄9 − dx,2q20 − dx,3q21

− dx,4q22 − dx,5q23 − dx,6q24 − dx,7q25 − dx,8q26 − dx,9q27

− nx,1𝜇∗∗q28 − nx,2𝜇∗∗q29 − nx,3𝜇∗∗q30

− nx,4𝜇∗∗q31 − nx,5𝜇∗∗q32

− nx,6𝜇∗∗q33 − nx,7𝜇∗∗q34 − nx,8𝜇∗∗q35 − nx,9𝜇∗∗q36

− ny,1𝜇∗∗q10 − ny,2𝜇∗∗q11 − ny,3𝜇∗∗q12 − ny,4𝜇∗∗q13

− ny,5𝜇∗∗q14 − ny,6𝜇∗∗q15 − ny,7𝜇∗∗q16

− ny,8𝜇∗∗q17 − ny,9𝜇∗∗q18

b9 = − a1(dyG + 2)k1 − a10(dyG + 1)k10 − a11dyGk11

− a12dyGk12 − a13dyGk13 − a14dyGk14

− a15dyGk15 + k16(a16 − a16dyG)

+ k17(a17 − a17dyG) + k18(a18 − a18dyG) + k19(a19

− a19dyG) − a2(dyG + 2)k2 + k20(a20

− a20dyG) − a21(dyG − 2)k21

− a22(dyG − 2)k22 − a23(dyG − 2)k23

− a24(dyG − 2)k24

− a25(dyG − 2)k25 − a3(dyG + 2)k3 − a4(dyG + 2)k4

− a5(dyG + 2)k5 − a6(dyG + 1)k6

− a7(dyG + 1)k7 − a8(dyG + 1)k8

− a9(dyG + 1)k9 + dy,2q2 + dy,3q3 + dy,4q4

+ dy,5q5 + dy,6q6 + dy,7q7 + dy,8q8 + dy,9q9

+ nx,1�∗q28 + nx,2�∗q29 + nx,3�∗q30 + nx,4�∗q31

+ nx,5�∗q32 + nx,6�∗q33 + nx,7�∗q34

+ nx,8�∗q35 + nx,9�∗q36

+ ny,1�∗q10 + ny,2�∗q11 + ny,3�∗q12

+ ny,4�∗q13 + ny,5�∗q14

+ ny,6�∗q15 + ny,7�∗q16 + ny,8�∗q17 + ny,9�∗q18

b10 = − a1(dyG + 2)k̄1 − a10(dyG + 1)k̄10 − a11dyGk̄11

− a12dyGk̄12 − a13dyGk̄13

− a14dyGk̄14 − a15dyGk̄15 + k̄16(a16

− a16dyG) + k̄17(a17 − a17dyG)

+ k̄18(a18 − a18dyG) + k̄19(a19 − a19dyG)

− a2(dyG + 2)k̄2 + k̄20(a20 − a20dyG)

− a21(dyG − 2)k̄21 − a22(dyG − 2)k̄22 − a23(dyG − 2)k̄23

− a24(dyG − 2)k̄24 − a25(dyG − 2)k̄25 − a3(dyG + 2)k̄3

− a4(dyG + 2)k̄4 − a5(dyG + 2)k̄5

− a6(dyG + 1)k̄6 − a7(dyG + 1)k̄7 − a8(dyG + 1)k̄8

− a9(dyG + 1)k̄9 + dy,2q20 + dy,3q21

+ dy,4q22 + dy,5q23 + dy,6q24 + dy,7q25

+ dy,8q26 + dy,9q27

+ 𝜆∗nx,1q10 + 𝜆∗nx,2q11 + 𝜆∗nx,3q12

+ 𝜆∗nx,4q13 + 𝜆∗nx,5q14 + 𝜆∗nx,6q15 + 𝜆∗nx,7q16

+ 𝜆∗nx,8q17 + 𝜆∗nx,9q18

+ ny,1q28(𝜆∗ + 2𝜇∗) + ny,2q29(𝜆∗ + 2𝜇∗)

+ ny,3q30(𝜆∗ + 2𝜇∗) + ny,4q31(𝜆∗

+ 2𝜇∗) + ny,5q32(𝜆∗

+ 2𝜇∗) + ny,6q33(𝜆∗ + 2𝜇∗)

+ ny,7q34(𝜆∗ + 2𝜇∗) + ny,8q35(𝜆∗

+ 2𝜇∗) + ny,9q36(𝜆∗ + 2𝜇∗)
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Appendix 2: The stencil coefficients 
for homogeneous materials

The stencils coefficients can be analytically found (see [38]) 
and for the first stencil they are (for convenience, the matrix 
form is used below for the representation of these coeffi-
cients for square meshes with by = 1):

Similarly, we can find 50 coefficients k2,i and k̄2,i 
( i = 1, 2,… , 25 ) of the second stencil equation:

(40)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

k1,21 k1,22 k1,23 k1,24 k1,25

k1,16 k1,17 k1,18 k1,19 k1,20

k1,11 k1,12 k1,13 k1,14 k1,15

k1,6 k1,7 k1,8 k1,9 k1,10

k1,1 k1,2 k1,3 k1,4 k1,5

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

�����������������

−
593298�3+2618461�2�+3545745��2+1471382�3

36(1364946�3+23192997�2�+44409365��2+21238414�3)
−

2(99558�3+935431�2�+1655370��2+766547�3)
9(1364946�3+23192997�2�+44409365��2+21238414�3)

−
3648141�3+12961562�2�+14963715��2+5544394�3

9(1364946�3+23192997�2�+44409365��2+21238414�3)
−

28(65178�3+468496�2�+748695��2+321302�3)
9(1364946�3+23192997�2�+44409365��2+21238414�3)

−
5534814�3+18941123�2�+21099985��2+7567326�3

6(1364946�3+23192997�2�+44409365��2+21238414�3)
−

4(116166�3+2637137�2�+5190940��2+2508819�3)
4094838�3+69578991�2�+133228095��2+63715242�3

−
3648141�3+12961562�2�+14963715��2+5544394�3

9(1364946�3+23192997�2�+44409365��2+21238414�3)
−

28(65178�3+468496�2�+748695��2+321302�3)
9(1364946�3+23192997�2�+44409365��2+21238414�3)

−
593298�3+2618461�2�+3545745��2+1471382�3

36(1364946�3+23192997�2�+44409365��2+21238414�3)
−

2(99558�3+935431�2�+1655370��2+766547�3)
9(1364946�3+23192997�2�+44409365��2+21238414�3)

−
326514�3+2124173�2�+3348835��2+1424826�3

6(1364946�3+23192997�2�+44409365��2+21238414�3)
−

2(99558�3+935431�2�+1655370��2+766547�3)
9(1364946�3+23192997�2�+44409365��2+21238414�3)

−
593298�3+2618461�2�+3545745��2+1471382�3

36(1364946�3+23192997�2�+44409365��2+21238414�3)
5228286�3+5361652�2�−6876310��2−6365076�3

4094838�3+69578991�2�+133228095��2+63715242�3
−

28(65178�3+468496�2�+748695��2+321302�3)
9(1364946�3+23192997�2�+44409365��2+21238414�3)

−
3648141�3+12961562�2�+14963715��2+5544394�3

9(1364946�3+23192997�2�+44409365��2+21238414�3)

1 −
4(116166�3+2637137�2�+5190940��2+2508819�3)

4094838�3+69578991�2�+133228095��2+63715242�3
−

5534814�3+18941123�2�+21099985��2+7567326�3

6(1364946�3+23192997�2�+44409365��2+21238414�3)
5228286�3+5361652�2�−6876310��2−6365076�3

4094838�3+69578991�2�+133228095��2+63715242�3
−

28(65178�3+468496�2�+748695��2+321302�3)
9(1364946�3+23192997�2�+44409365��2+21238414�3)

−
3648141�3+12961562�2�+14963715��2+5544394�3

9(1364946�3+23192997�2�+44409365��2+21238414�3)

−
326514�3+2124173�2�+3348835��2+1424826�3

6(1364946�3+23192997�2�+44409365��2+21238414�3)
−

2(99558�3+935431�2�+1655370��2+766547�3)
9(1364946�3+23192997�2�+44409365��2+21238414�3)

−
593298�3+2618461�2�+3545745��2+1471382�3

36(1364946�3+23192997�2�+44409365��2+21238414�3)

�����������������

,

(41)

⎛
⎜⎜⎜⎜⎜⎝

k̄1,21 k̄1,22 k̄1,23 k̄1,24 k̄1,25

k̄1,16 k̄1,17 k̄1,18 k̄1,19 k̄1,20

k̄1,11 k̄1,12 k̄1,13 k̄1,14 k̄1,15

k̄1,6 k̄1,7 k̄1,8 k̄1,9 k̄1,10

k̄1,1 k̄1,2 k̄1,3 k̄1,4 k̄1,5

⎞
⎟⎟⎟⎟⎟⎠

=

����������������

25(16818𝜆3+49421𝜆2𝜇+46425𝜆𝜇2+13822𝜇3)
12(1364946𝜆3+23192997𝜆2𝜇+44409365𝜆𝜇2+21238414𝜇3)

50(5319𝜆3+14038𝜆2𝜇+10980𝜆𝜇2+2261𝜇3)
4094838𝜆3+69578991𝜆2𝜇+133228095𝜆𝜇2+63715242𝜇3

25(21453𝜆3+62726𝜆2𝜇+58815𝜆𝜇2+17542𝜇3)
4094838𝜆3+69578991𝜆2𝜇+133228095𝜆𝜇2+63715242𝜇3

50(74538𝜆3+243115𝜆2𝜇+259491𝜆𝜇2+90914𝜇3)
4094838𝜆3+69578991𝜆2𝜇+133228095𝜆𝜇2+63715242𝜇3

0 0

−
25(21453𝜆3+62726𝜆2𝜇+58815𝜆𝜇2+17542𝜇3)

4094838𝜆3+69578991𝜆2𝜇+133228095𝜆𝜇2+63715242𝜇3
−

50(74538𝜆3+243115𝜆2𝜇+259491𝜆𝜇2+90914𝜇3)
4094838𝜆3+69578991𝜆2𝜇+133228095𝜆𝜇2+63715242𝜇3

−
25(16818𝜆3+49421𝜆2𝜇+46425𝜆𝜇2+13822𝜇3)

12(1364946𝜆3+23192997𝜆2𝜇+44409365𝜆𝜇2+21238414𝜇3)
−

50(e+𝜇)(5319𝜆2+8719𝜆𝜇+2261𝜇2)
4094838𝜆3+69578991𝜆2𝜇+133228095𝜆𝜇2+63715242𝜇3

0 −
50(5319𝜆3+14038𝜆2𝜇+10980𝜆𝜇2+2261𝜇3)

4094838𝜆3+69578991𝜆2𝜇+133228095𝜆𝜇2+63715242𝜇3
−

25(16818𝜆3+49421𝜆2𝜇+46425𝜆𝜇2+13822𝜇3)
12(1364946𝜆3+23192997𝜆2𝜇+44409365𝜆𝜇2+21238414𝜇3)

0 −
50(74538𝜆3+243115𝜆2𝜇+259491𝜆𝜇2+90914𝜇3)

4094838𝜆3+69578991𝜆2𝜇+133228095𝜆𝜇2+63715242𝜇3
−

25(21453𝜆3+62726𝜆2𝜇+58815𝜆𝜇2+17542𝜇3)
4094838𝜆3+69578991𝜆2𝜇+133228095𝜆𝜇2+63715242𝜇3

0 0 0

0
50(74538𝜆3+243115𝜆2𝜇+259491𝜆𝜇2+90914𝜇3)

4094838𝜆3+69578991𝜆2𝜇+133228095𝜆𝜇2+63715242𝜇3

25(21453𝜆3+62726𝜆2𝜇+58815𝜆𝜇2+17542𝜇3)
4094838𝜆3+69578991𝜆2𝜇+133228095𝜆𝜇2+63715242𝜇3

0
50(e+𝜇)(5319𝜆2+8719𝜆𝜇+2261𝜇2)

4094838𝜆3+69578991𝜆2𝜇+133228095𝜆𝜇2+63715242𝜇3

25(16818𝜆3+49421𝜆2𝜇+46425𝜆𝜇2+13822𝜇3)
12(1364946𝜆3+23192997𝜆2𝜇+44409365𝜆𝜇2+21238414𝜇3)

����������������

.

(42)

⎛⎜⎜⎜⎜⎜⎝

k2,21 k2,22 k2,23 k2,24 k2,25
k2,16 k2,17 k2,18 k2,19 k2,20
k2,11 k2,12 k2,13 k2,14 k2,15
k2,6 k2,7 k2,8 k2,9 k2,10
k2,1 k2,2 k2,3 k2,4 k2,5

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝

k̄1,21 k̄1,22 k̄1,23 k̄1,24 k̄1,25
k̄1,16 k̄1,17 k̄1,18 k̄1,19 k̄1,20
k̄1,11 k̄1,12 k̄1,13 k̄1,14 k̄1,15
k̄1,6 k̄1,7 k̄1,8 k̄1,9 k̄1,10
k̄1,1 k̄1,2 k̄1,3 k̄1,4 k̄1,5

⎞
⎟⎟⎟⎟⎟⎠

T

,

(43)

⎛⎜⎜⎜⎜⎜⎝

k̄2,21 k̄2,22 k̄2,23 k̄2,24 k̄2,25
k̄2,16 k̄2,17 k̄2,18 k̄2,19 k̄2,20
k̄2,11 k̄2,12 k̄2,13 k̄2,14 k̄2,15
k̄2,6 k̄2,7 k̄2,8 k̄2,9 k̄2,10
k̄2,1 k̄2,2 k̄2,3 k̄2,4 k̄2,5

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝

k1,21 k1,22 k1,23 k1,24 k1,25
k1,16 k1,17 k1,18 k1,19 k1,20
k1,11 k1,12 k1,13 k1,14 k1,15
k1,6 k1,7 k1,8 k1,9 k1,10
k1,1 k1,2 k1,3 k1,4 k1,5

⎞⎟⎟⎟⎟⎟⎠

T

,

where the right-hand sides in Eqs. (42) and (43) are given 
by Eqs. (40) and (41) for the first stencil.
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Appendix 3: The expression for the term p1 
in Eqs. (28) and (29)

(44)

p1 =(a10k10(dxG − 2)2 + a1(dxG + 2)2k1
+ a11dx2Gk11 + 4a11k11
+ 4a11dxGk11 + a12dx2Gk12 + a12k12 + 2a12dxGk12
+ a13dx2Gk13 + a14dx2Gk14 + a14k14
− 2a14dxGk14 + a15dx2Gk15
+ 4a15k15 − 4a15dxGk15
+ a16dx2Gk16 + 4a16k16 + 4a16dxGk16
+ a17dx2Gk17 + a17k17
+ 2a17dxGk17 + a18dx2Gk18
+ a19dx2Gk19 + a19k19 − 2a19dxGk19
+ a2dx2Gk2 + a2k2
+ 2a2dxGk2 + a20dx2Gk20 + 4a20k20 − 4a20dxGk20
+ a21dx2Gk21 + 4a21k21
+ 4a21dxGk21 + a22dx2Gk22 + a22k22
+ 2a22dxGk22 + a23dx2Gk23 + a24dx2Gk24
+ a24k24 − 2a24dxGk24
+ a25dx2Gk25 + 4a25k25 − 4a25dxGk25 + a3dx2Gk3
+ a4dx2Gk4 + a4k4 − 2a4dxGk4 + a5dx2Gk5
+ 4a5k5 − 4a5dxGk5
+ a6dx2Gk6 + 4a6k6
+ 4a6dxGk6 + a7dx2Gk7 + a7k7
+ 2a7dxGk7 + a8dx2Gk8
+ a9dx2Gk9 + a9k9 − 2a9dxGk9
+ 2dx,2�∗nx,2q11 + 4dx,2nx,2�∗q11
+ 2dx,3�∗nx,3q12
+ 4dx,3nx,3�∗q12 + 2dx,4�∗nx,4q13
+ 4dx,4nx,4�∗q13 + 2dx,5�∗nx,5q14
+ 4dx,5nx,5�∗q14 + 2dx,6�∗nx,6q15
+ 4dx,6nx,6�∗q15 + 2dx,7�∗nx,7q16
+ 4dx,7nx,7�∗q16
+ 2dx,8�∗nx,8q17 + 4dx,8nx,8�∗q17
+ 2dx,9�∗nx,9q18 + 4dx,9nx,9�∗q18
+ d2x,2q2 + 2dx,2�∗ny,2q29 + d2x,3q3
+ 2dx,3�∗ny,3q30 + 2dx,4�∗ny,4q31
+ 2dx,5�∗ny,5q32 + 2dx,6�∗ny,6q33
+ 2dx,7�∗ny,7q34 + 2dx,8�∗ny,8q35
+ 2dx,9�∗ny,9q36
+ d2x,4q4 + d2x,5q5 + d2x,6q6
+ d2x,7q7 + d2x,8q8 + d2x,9q9).

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00366-​022-​01688-5.
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