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There is a growing consensus that solutions to complex science and engineering problems require novel methodologies that
are able to integrate traditional physics-based modeling approaches with state-of-the-art machine learning (ML) techniques.
This paper provides a structured overview of such techniques. Application-centric objective areas for which these approaches
have been applied are summarized, and then classes of methodologies used to construct physics-guided ML models and hybrid
physics-ML frameworks are described. We then provide a taxonomy of these existing techniques, which uncovers knowledge
gaps and potential crossovers of methods between disciplines that can serve as ideas for future research.
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1 INTRODUCTION

Machine learning (ML) models, which have already found tremendous success in commercial applications, are
beginning to play an important role in advancing scientific discovery in environmental and engineering domains
traditionally dominated by mechanistic (e.g. first principle) models [30, 124, 128, 141, 142, 157, 232, 283]. The
use of ML models is particularly promising in scientific problems involving processes that are not completely
understood, or where it is computationally infeasible to run mechanistic models at desired resolutions in space
and time. However, the application of even the state-of-the-art black box ML models has often met with limited
success in scientific domains due to their large data requirements, inability to produce physically consistent results,
and their lack of generalizability to out-of-sample scenarios [47, 166, 190]. Given that neither an ML-only nor a
scientific knowledge-only approach can be considered sufficient for complex scientific and engineering applications,
the research community is beginning to explore the continuum between mechanistic and ML models, where both
scientific knowledge and ML are integrated in a synergistic manner [139, 141, 143]. This paradigm is fundamentally
different from mainstream practices in the ML community for making use of domain-specific knowledge in feature
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engineering or post-processing, as it is focused on approaches that integrate scientific knowledge directly into the
ML framework.

Even though the idea of integrating scientific principles and ML models has picked up momentum just in the
last few years, there is already a vast amount of work on this topic. For instance, in all Web of Science databases
(www.webofknowledge.com) a search for "physics-informed ML" alone shows the growth of publications from 2
in 2017, 8 in 2018, 27 in 2019, to 63 in 2020. Also, many workshops and symposiums have formed to focus on this
field (e.g. [1-6, 21]). This work is being pursued in diverse disciplines (e.g., earth systems [232], climate science
[87, 153, 207], turbulence modeling [37, 199, 295], computational physics [261], cyberphysical systems [223],
material discovery [49, 222, 243], quantum chemistry [240, 245], biological sciences [8, 215, 306], and hydrology
[275, 297]), and it is being performed in the context of diverse objectives specific to these applications. Early
results in isolated and relatively simple scenarios are promising, and the expectations are rising for this paradigm to
accelerate scientific discovery and help address some of the biggest challenges that are facing humanity in terms of
climate [87], health [280], and food security [129].

The goal of this survey is to bring these exciting developments to the ML community, to make them aware of the
progress that has been made, and the gaps and opportunities that exist for advancing research in this promising
direction. We hope that this survey will also be valuable for scientists who are interested in exploring the use of ML
to enhance modeling in their respective disciplines. Please note that work on this topic has been referred to by other
names, such as "physics-guided ML," "physics-informed ML," or "physics-aware AI" although it covers many
scientific disciplines. In this survey, we also use the terms "physics-guided" or "physics," which should be more
generally interpreted as "scientific knowledge-guided" or "scientific knowledge".

The focus of this survey is on approaches that integrate scientific knowledge with ML for environmental
and engineering systems where scientific knowledge is available as mechanistic models, theories, and laws (e.g.
conservation of mass). This distinguishes our survey from other works that focus on more general knowledge
integration into machine learning [7, 277] and works covering physics integration into ML in specific domains
(e.g., cyber-physical systems [223], chemistry [205], medical imaging [175], fluid mechanics [46], climate and
weather[146]). This survey creates a novel taxonomy that covers a wide array of physics-ML methodologies,
application-centric objectives, and general computational objectives.

We organize the paper as follows. Section 2 describes different application-centric objectives that are being
pursued through combinations of scientific knowledge and ML. Section 3 discusses novel ML loss functions,
model initializations, architectures, and hybrid models that researchers are developing to achieve these objectives,
as well as comparisons between them. Section 4 discusses the areas of current work as well as the possibilities
for cross-fertilization between methods and application-centric objectives. Then, Section 5 contains concluding
remarks. Table 3 categorizes the work surveyed in this paper by application-centric objective and methods for
integrating scientific knowledge in ML according to the proposed taxonomy.

2 APPLICATION-CENTRIC OBJECTIVES OF PHYSICS-ML INTEGRATION

This section provides a brief overview of a set of application-centric objectives where couplings of ML and scientific
modeling paradigms are being pursued for applications in environmental and engineering systems. In many of
these applications, scientific knowledge is represented using a mechanistic model (also referred to as physical,
process-based, or first principles models). This is shown in Figure 1 as part of an abstract representation of a
generic scientific problem. For example, a model for lake temperature would have drivers ¥;, such as amount of
sunlight, air temperature, and wind speed, with static parameters s, such as lake depth and water clarity, which the
model F(¥%;,5) would use to predict the water temperature i, at various depths in the lake. Such physical models
typically have a notion of state (which is not depicted in Figure 1 for simplicity), and complex physical models can
have multiple components that model various aspects of the system, e.g., components to model clouds or ocean
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Fig. 1. A generic scientific problem in engineering, where %; are the dynamic inputs in time, s is the set of static
characteristics or parameters of the system, and F() is the model producing target variable ;. ¥; and y; can also
have spatial dimensions.

in a global climate model. The application-centric objectives described in this section describe different ways in
which physics-ML integration can be used to address the imperfections of the mechanistic model F(), build a more
resource efficient F(), or discover new knowledge such as F(). Below we describe how different application-centric
objectives fit into each of these scenarios.

First, situations can arise in which a mechanistic model is inadequate to model a poorly understood process and a
data-driven model could be leveraged to make better use of observations and possibly also process-based knowledge.
Section 2.1 covers approaches like this, where physics-ML is being pursued to improve the effectiveness and
predictive accuracy of F(¥;,5) with observations and scientific knowledge.

Often it is also desirable to improve the resource efficiency where physical models are too slow or at too coarse of
a resolution. Section 2.2 on downscaling considers how physics-ML can produce high-resolution output variables
faster than a physical model in situations spanning meteorology, climatology, and others. Similarly, if subprocesses
of a larger mechanistic model are computationally intractable or inaccurate, an ML model can be used for faster or
more accurate subprocess representation, as is covered in Section 2.3 on parameterization. More generally, the
concept of reducing computational complexity of complex mechanistic or numerical models in the form of an
ML-based or ML-assisted reduced order model is described in Section 2.4. Another objective seeking to improve
resource efficiency with physics-ML is the solving of partial differential equations (PDEs) where the solution is
represented with a data-driven model. This allows dynamical systems applications to bypass the often extreme
computational complexity of using finite elements methods to solve complex systems of PDEs. As we can see,
in many of these cases ML can be used as a more efficient surrogate model (also referred to as emulators) for an
existing mechanistic or numerical approach.

Other objectives seek to discover new knowledge in the form of unobserved causal quantities or the symbolic
representation of a process given only data. Compared to previous objectives where the goal is to produce accurate
or efficient output variables, inverse modeling described in Section 2.6 flips the path shown in Figure 1 and instead
seeks to find some causal static physical parameters within § given sufficient outputs. Also, Section 2.7 covers the
discovering of governing equations from data, where ML has been used to go beyond traditional approaches and
discover new-explicit symbolic representations of phenomena.

Data generation objectives (Section 2.8) try to realistically reproduce the distribution of %;, ij;, or (X, 3;).
Such synthetically generated data can be useful in the often data-limited situations present in engineering and
environmental systems. UQ (Section 2.9) tries to learn the distribution of ij; in terms of the uncertainty of the
other components of the model like the inputs, static parameters, and model state. UQ is necessary for accurate
forecasting, which can also affect many of the other objectives.

Table 1 summarizes these objectives and their needs in terms of real world observations, synthetic samples (e.g.
output from a mechanistic model), or knowledge of the governing equations of the system.
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Objective Name Objective Description Needs
2.1 Improving Over Improved version of F that better Observations (synthetic samples
Physical Model matches observations can be used but not required)
2.2 Downscaling An approximate version of F Synthetic samples at high resolution
that provides high resolution output Y; (can also make use of observations at high
given coarse resolution input X, resolutions but this can be hard to obtain)
2.3 Parameterization | Replace a component of F when F consists Synthetic samples (e.g. subprocess)

of interconnected component models

2.4 Reduced- Simpler version of F that is Governing equations (e.g. high-fidelity,
Order Models more computationally efficient complex models)
and possibly less accurate

2.5 Forward Solving Computationally efficient single Governing equations (e.g. high-fidelity,
PDEs pass solution of PDE complex models)
2.6 Inverse Modeling Discover static characteristics S given Observations (synthetic samples
¥ and g, can be used but not required)
2.7 Discovering Find governing equations that underlie F Observations

Governing Equations

2.8 Data Generation Generate realistic synthetic samples Synthetic data (or observations)
without using F

2.9 Uncertainty Estimate uncertainty on g, given input ¥, Observations or synthetic samples
Quantification

Table 1. Application-centric objectives of using Physics-ML methods in terms of the generic scientific problem shown
in Figure 1 and the needs to pursue each objective

2.1 Improving over state-of-the-art physical models

First-principle models are used extensively in a wide range of engineering and environmental applications. Even
though these models are based on known physical laws, in most cases, they are necessarily approximations of
reality due to incomplete knowledge of certain processes, which introduces bias. In addition, they often contain
a large number of parameters whose values must be estimated with the help of limited observed data, degrading
their performance further, especially due to heterogeneity in the underlying processes in both space and time.
The limitations of physics-based models cut across discipline boundaries and are well known in the scientific
community (e.g., see Gupta et al. [116] in the context of hydrology).

ML models have been shown to outperform physics-based models in many disciplines (e.g., materials science
[148, 238, 285], applied physics [22, 127], aquatic sciences [132, 286], atmospheric science [206], biomedical
science [264], computational biology [9]). A major reason for this success is that ML models (e.g., neural networks),
given enough data, can find structure and patterns in problems where complexity prohibits the explicit programming
of a system’s exact physical nature. Given this ability to automatically extract complex relationships from data, ML
models appear promising for scientific problems with physical processes that are not fully understood but have
data of adequate quality and quantity is available. However, the black-box application of ML has met with limited
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success in scientific domains due to a number of reasons [141]: (i) while state-of-the-art ML models are capable of
capturing complex spatiotemporal relationships, they require far too much labeled data for training, which is rarely
available in real application settings, (ii) ML models often produce scientifically inconsistent results; and (iii) ML
models can only capture relationships in the available training data, and thus cannot generalize to out-of-sample
scenarios (i.e., those not represented in the training data).

The key objective here is to combine elements of physics-based modeling with state-of-the-art ML models to
leverage their complementary strengths. Such integrated physics-ML models are expected to better capture the
dynamics of scientific systems and advance the understanding of underlying physical processes. An early attempt
for combining ML with physics-based modeling in lake temperature dynamics [231]) has already demonstrated its
potential for providing better prediction accuracy with a much smaller number of samples as well as generalizability
in out-of-sample scenarios.

2.2 Downscaling

Complex mechanistic models are capable of capturing physical reality more precisely than simpler models, as they
often involve more diverse components that account for a greater number of processes at finer spatial or temporal
resolution. However, given the computation cost and modeling complexity, many models are run at a resolution that
is coarser than what is required to precisely capture underlying physical processes. For example, cloud-resolving
models (CRM) need to run at sub-kilometer horizontal resolution to be able to effectively represent boundary-layer
eddies and low clouds, which are crucial for the modeling of Earth’s energy balance and the cloud—radiation
feedback [230]. However, it is not feasible to run global climate models at such fine resolutions even with the most
powerful computers expected to be available in the near future.

Downscaling techniques have been widely used as a solution to capture physical variables that need to be
modeled at a finer resolution. In general, the downscaling techniques can be divided into two categories: statistical
downscaling and dynamical downscaling. Statistical downscaling refers to the use of empirical models to predict
finer-resolution variables from coarser-resolution variables. Such a mapping across different resolutions can involve
complex non-linear relationships that cannot be precisely modeled by traditional empirical models. Recently,
artificial neural networks have shown a lot of promise for this problem, given their ability to model non-linear
relationships [249, 273]. In contrast, dynamical downscaling makes use of high-resolution regional simulations
to dynamically simulate relevant physical processes at regional or local scales of interest. Due to the substantial
time cost of running such complex models, there is an increasing interest in using ML models as surrogate
models (a model approximating simulation-driven input—output data) to predict target variables at a higher
resolution [103, 254].

Although the state-of-the-art ML methods can be used in both statistical and dynamical downscaling, it remains
a challenge to ensure that the learned ML component is consistent with established physical laws and can improve
the overall simulation performance.

2.3 Parameterization

Complex physics-based models (e.g., for simulating phenomena in climate, weather, turbulence modeling, hy-
drology) often use an approach known as parameterization to account for missing physics. In parameterization
(note that this term has a different meaning when used in mathematics and geometry), specific complex dynamical
processes are replaced by simplified physical approximations that are represented as static parameters. A common
way to estimate the value of these parameters is to use grid search over the space of combinations of parameter
values that lead to the best match with observations. This procedure is referred to as parameter calibration. The
failure to correctly parameterize can make the model less robust, and errors that result from imperfect paramet-
erization can also feed into other components of the entire physics-based model and deteriorate the modeling
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of important physical processes. Another way, that is being considered increasingly, is to replace processes that
are too complex to be physically represented in the model by a simplified dynamic or statistical/ML process.
This makes it possible to learn new parameterizations directly from observations and/or high-resolution model
simulation using ML methods. Already, ML-based parameterizations have shown success in geology [52, 109],
atmospheric science [40, 103], and hydrology [29]. A major benefit of ML-based parameterizations is the reduction
of computation time compared to traditional physics-based simulations. In chemistry, Hansen et al. [120] find
that parameterizations of atomic energy using ML take seconds compared to multiple days for more standard
quantum-calculation calculations, and Behler et al. [27] find that neural networks can vastly improve the efficiency
of finding potential energy surfaces of molecules.

Most of the existing work uses standard black box ML models for parameterization, but there is an increasing
interest in integrating physics in the ML models [32], as it has the potential to make them more robust and
generalizable to unseen scenarios as well as reduce the number of training samples needed for training.

2.4 Reduced-Order Models

Reduced-Order Models (ROMs) are computationally inexpensive representations of more complex models. Usually,
constructing ROMs involves dimensionality reduction that attempts to capture the most important dynamical
characteristics of often large, high-fidelity simulations and models of physical systems (e.g., in fluid dynamics
[164]). This can also be viewed as a controlled loss of accuracy. A common way to do this is to project the governing
equations of a system onto a linear subspace of the original state space using a method such as principal components
analysis or dynamic mode decomposition [221]. However, limiting the dynamics to a lower-dimensional subspace
inherently limits the accuracy of any ROM.

ML is beginning to assist in constructing ROMs for increased accuracy and reduced computational cost in several
ways. One approach is to build an ML-based surrogate model for full-order models [56, 147], where the ML model
can be considered a ROM. Other ways include building an ML-based surrogate model of an already built ROM by
another dimensionality reduction method [295] or building an ML model to mimic the dimensionality reduction
mapping from a full-order model to a reduced-order model [199]. ML and ROMs can also be combined by using
the ML model to learn the residual between a ROM and observational data [278]. ML models have the potential to
greatly augment the capabilities of ROMs because of their typically quick forward execution speed and ability to
leverage data to model high dimensional phenomena.

One area of recent focus of ML-based ROMs is in approximating the dominant modes of the Koopman (or
composition) operator, as-a method of dimensionality reduction. The Koopman operator is an infinite-dimension
linear operator that encodes the temporal evolution of the system state through nonlinear dynamics [42]. This allows
linear analysis methods to be applied to nonlinear systems and enables the inference of properties of dynamical
systems that are too complex to express using traditional analysis techniques. Applications span many disciplines,
including fluid dynamics [250], oceanography [107], molecular dynamics [289], and many others. Though dynamic
mode decomposition [197] is the most common technique for approximating the Koopman operator, many recent
approaches have been made to approximate Koopman operator embeddings with deep learning models that
outperform existing methods [170, 185, 191, 200, 209, 210, 260, 284, 307]. Adding physics-based knowledge to
the learning of the Koopman operator has the potential to augment generalizability and interpretability, which
current ML methods in this area tend to lack [210].

Traditional methods for ROMs often lack robustness with respect to parameter changes within the systems they
are representing [11], or are not cost-effective enough when trying to predict complex dynamical systems (e.g.,
multiscale in space and time). Thus, incorporating principles from physics-based models could potentially reduce
the search space to enable more robust training of ROMs, and also allow the model to be trained with less data in
many scenarios.
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2.5 Forward Solving Partial Differential Equations

In many physical systems, governing equations are known, but direct numerical solutions of partial differential
equations (PDEs) using common methods, such as the Finite Elements Method or the Finite Difference Method [93],
are prohibitively expensive. In such cases, traditional methods are not ideal or sometimes even possible. A common
technique is to use an ML model as a surrogate for the solution to reduce computation time [75, 159]. In particular,
NN solvers can reduce the high computational demands of traditional numerical methods into a single forward-pass
of a NN. Notably, solutions obtained via NNs are also naturally differentiable and have a closed analytic form
that can be transferred to any subsequent calculations, a feature not found in more traditional solving methods
[159]. Especially with the recent advancement of computational power, neural network models have shown success
in approximating solutions across different kinds of physics-based PDEs [15, 149, 233], including the difficult
quantum many-body problem [51] and many-electron Schrodinger equation [119]. As a step further, deep neural
networks models have shown success in approximating solutions across high dimensional physics-based PDEs
previously considered unsuitable for approximation by ML [118, 252]. However, slow convergence in training,
limited applicability to many complex systems, and reduced accuracy due to unawareness of physical laws can
prove problematic. More recently, Li et al. [171] have defined a neural Fourier operator which allows a neural
network to learn and solve an entire family of PDEs by learning the mapping from any functional parametric
dependence to the solution in Fourier space.

2.6 Inverse Modeling

The forward modeling of a physical system uses the physical parameters of the system (e.g., mass, temperature,
charge, physical dimensions or structure) to predict the next state of the system or its effects (outputs). In contrast,
inverse modeling uses the (possibly noisy) output of a system to infer the intrinsic physical parameters or inputs.
Inverse problems often stand out as important in physics-based modeling communities because they can potentially
shed light on valuable information that cannot be observed directly. One example is the use of x-ray images from
a CT scan to create a 3D image reflecting the structure of part of a person’s body [183]. This can be viewed as
a computer vision problem, where, given many training datasets of x-ray scans of the body at different capture
angles, a model can be trained to inversely reconstruct textures and 3D shapes of different organs or other areas of
interest. Allowing for better reconstruction while reducing scan time could potentially increase patient satisfaction
and reduce overall medical costs. Though there are many inverse modeling scenarios, in this work we focus on
intrinsic physical parameters found in a mechanistic modeling scenario for engineering and environmental systems.

Often, the solution of an inverse problem can be computationally expensive due to the potentially millions of
forward model evaluations needed for estimator evaluation or characterization of posterior distributions of physical
parameters [96]. ML-based surrogate models (in addition to other methods such as reduced-order models) are
becoming a realistic choice since they can model high-dimensional phenomena with lots of data and execute much
faster than most physical simulations.

Inverse problems are traditionally solved using regularized regression techniques. Data-driven methods have seen
success in inverse problems in remote sensing of surface properties [69], hydrology [106], photonics [218], and
medical imaging [183], among many others. Recently, novel algorithms using deep learning and neural networks
have been applied to inverse problems. While still in their infancy, these techniques exhibit strong performance for
applications such as computerized tomography [57, 193, 263], seismic processing [272], or various sparse data
problems.

There is also increasing interest in the inverse design of materials using ML, where desired target properties of
materials are used as input to the model to identify atomic or microscale structures that exhibit such properties
[156, 172,222, 243]. Physics-based constraints and stopping conditions based on material properties can be used
to guide the optimization process [172, 262]. These constraints and similar physics-guided techniques have the
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potential to alleviate noted challenges in inverse modeling, particularly in scenarios with a small sample size and a
paucity of ground-truth labels [142]. The integration of prior physical knowledge is common in current approaches
to the inverse problem, and its integration into ML-based inverse models has the potential to improve data efficiency
and increase its ability to solve ill-posed inverse problems.

2.7 Discovering Governing Equations

When the governing equations of a dynamical system are known explicitly, they allow for more robust forecasting,
control, and the opportunity for analysis of system stability and bifurcations through increased interpretability
[235]. Furthermore, if a mathematical model accurately describes the processes governing the observed data, it
therefore can generalize to data outside of the training domain. However, in many disciplines (e.g., neuroscience,
cell biology, ecology, epidemiology) dynamical systems have no formal analytic descriptions. Often in these cases,
data is abundant, but the underlying governing equations remain elusive. In this section, we discuss equation
discovery systems that do not assume the structure of the desired equation (as in Section 2.5), but rather explore a
large space of possibly nonlinear mathematical terms.

Advances in ML for the discovery of these governing equations has become an active research area with rich
potential to integrate principles from applied mathematics and physics with modern ML methods. Early works on the
data-driven discovery of physical laws relied on heuristics and expert guidance and were focused on rediscovering
known, non-differential, laws in different scientific disciplines from artificial data [105, 162, 163, 168]. This was
later expanded to include real-world data and differential equations in ecological applications [83]. Recently, general
and robust data-driven discovery of potentially unknown governing equations has been pioneered by [38, 244],
where they apply symbolic regression to differences between computed derivatives and analytic derivatives to
determine underlying dynamical systems. More recently, works have used sparse regression built on a dictionary of
functions and partial derivatives to construct governing equations [43, 220, 234]. Lagergren et al. [160] expand on
this by using ANNS to construct the dictionary of functions. These sparse identification techniques are based on
the principle of Occam’s Razor, where the goal is that only a few equation terms be used to describe any given
nonlinear system.

2.8 Data Generation

Data generation approaches are useful for creating virtual simulations of scientific data under specific conditions.
For example, these techniques can be used to generate potential chemical compounds with desired characteristics
(e.g., serving as catalysts or having a specific crystal structure). Traditional physics-based approaches for generating
data often rely on running physical simulations or conducting physical experiments, which tend to be very time
consuming. Also, these approaches are restricted by what can be produced by physics-based models. Hence, there
is an increasing interest in generative ML approaches that learn data distributions in unsupervised settings and thus
have the potential to generate novel data beyond what could be produced by traditional approaches. Generative
ML models have found tremendous success in areas such as speech recognition and generation [208], image
generation [73], and natural language processing [114]. These models have been at the forefront of unsupervised
learning in recent years, mostly due to their efficiency in understanding unlabeled data. The idea behind generative
models is to capture the inner probabilistic distribution in order to generate similar data. With the recent advances
in deep learning, new generative models, such as the generative adversarial network (GAN) and variational
autoencoder (VAE), have been developed. These models have shown much better performance in learning non-
linear relationships to extract representative latent embeddings from observation data. Hence the data generated
from the latent embeddings are more similar to true data distribution. In particular, the adversarial component of
GAN consists of a two-part framework with a generative network and discriminative network, where the generative
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network’s objective is to generate fake data to fool the discriminative network, while the discriminative network
attempts to determine true data from fake data.

In the scientific domain, GANs can generate data like the data generated by the physics-based models. Using
GANSs often incurs certain benefits, including reduced computation time and a better reproduction of complex
phenomenon, given the ability of GANSs to represent nonlinear relationships. For example, Farimani et al. [91]
have shown that Conditional Generative Adversarial Networks (cGAN) can be trained to simulate heat conduction
and fluid flow purely based on observations without using knowledge of the underlying governing equations. Such
approaches that use generative models have been shown to significantly accelerate the process of generating new
data samples.

However, a well-known issue of GANS is that they incur dramatically high sample complexity. Therefore, a
growing area of research is to engineer GANs that can leverage prior knowledge of physics in terms of physical
laws and invariance properties. For example, GAN-based models for simulating turbulent flows can be further
improved by incorporating physical constraints, e.g., conservation laws [308] and energy spectrum [291], in the
loss function. Cang et al. [49] also imposed a physics-based morphology constraint on a VAE-based generative
model used for simulating artificial material samples. The physics-based constraint forces the generated artificial
samples to have the same morphology distribution as the authentic ones and thus greatly reduces the large material
design space.

2.9 Uncertainty Quantification

Uncertainty quantification (UQ) is of great importance in many areas of computational science (e.g., climate
modeling [74], fluid flow [65], systems engineering [217], among many others). At its core, UQ requires an
accurate characterization of the entire distribution p(y|x), where y is the response and x is the covariate of interest,
rather than just making a point prediction y = f(x). This makes it possible to characterize all quantiles and skews
in the distribution, which allows for analysis such as examining how close predictions are to being unacceptable, or
sensitivity analysis of input features.

Applying UQ tasks to physics-based models using traditional methods such as Monte Carlo (MC) is usually
infeasible due to the very large number of forward model evaluations needed to obtain convergent statistics. In the
physics-based modeling community, a common technique is to perform model reduction (described in Section 2.4)
or create an ML surrogate model, in order to increase model evaluation speed since ML models often execute much
faster [99, 189, 269]. With a similar goal, the ML community has often employed Gaussian Processes as the main
technique for quantifying uncertainty in simulating physical processes [34, 229], but neither Gaussian Processes
nor reduced models scale well to higher dimensions or larger datasets (Gaussian Processes scale as O(N?) with N
data points).

Consequently, there is an effort to fit deep learning models, which have exhibited countless successes across
disciplines, as a surrogate for numerical simulations in order to achieve faster model evaluations for UQ that
have greater scalability than Gaussian Processes [269]. However, since artificial neural networks do not have UQ
naturally built into them, variations have been developed. One such modification uses a probabilistic drop-out
strategy in which neurons are periodically "turned off" as a type of Bayesian approximation to estimate uncertainty
[98]. There are also Bayesian variants of neural networks that consist of distributions of weights and biases
[186, 314, 319], but these suffer from high computation times and high dependence on reliable priors. Another
method uses an ensemble of neural networks to create a distribution from which uncertainty is quantified [161].

The integration of physics knowledge into ML for UQ has the potential to allow for a better characterization of
uncertainty. For example, ML surrogate models run the risk of producing physically inconsistent predictions, and
incorporating elements of physics could help with this issue. Also, note that the reduced data needs of ML due to
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constraints for adherence to known physical laws could alleviate some of the high computational cost of Bayesian
neural networks for UQ.

3 PHYSICS-ML METHODS

Given the diversity of forms in which scientific knowledge is represented in different disciplines and applications,
researchers have developed a large variety of methods for integrating physical principles into ML models. This
section categorizes them into the following four classes; (i) physics-guided loss function, (ii) physics-guided
initialization, (iii) physics-guided design of architecture, and (iv) hybrid modeling.

Choosing between different classes of methods for a given problem can depend on many factors including the
availability and performance of existing mechanistic models, and also the general computational objectives that need
to be addressed. The general computational objectives of physics-ML methods described throughout this section,
as opposed to traditional ML methods, can be placed into three categories. First, prediction performance defined as
better matching between predicted and observed values can be improved in a variety of ways including improved
generalizability to out-of-sample scenarios, improved general accuracy, or forcing solutions to be physically
consistent (e.g. obeying known physics-based governing equations). Second, sample efficiency can be improved by
reducing the number of observations required for adequate performance or reducing the overall search space. The
third general computational objective is interpretability, where often traditional ML models are a "black box" and
the incorporation of scientific knowledge can shine light on physical meanings, interpretations, and processes within
the ML framework. Even though computational objectives can be categorized within these categories, there is also
overlap between them. For example, forcing models to be physically consistent can effectively reduce the solution
search space. Improved sample efficiency can also lead to improved prediction performance by getting more value
out of each observation. We end this section with a summary and detailed discussion comparing different kinds of
methods, their requirements, and the general computational objectives achieved.

3.1 Physics-Guided Loss Function

Scientific problems often exhibit a high degree of complexity due to relationships between many physical variables
varying across space and time at different scales. Standard ML models can fail to capture such relationships directly
from data, especially when provided with limited observation data. This is one reason for their failure to generalize
to scenarios not encountered in training data. Researchers are beginning to incorporate physical knowledge into
loss functions to help ML models capture generalizable dynamic patterns consistent with established physical laws.

One of the most common techniques to make ML models consistent with physical laws is to incorporate physical
constraints into the loss function of ML models as follows [141],

Loss = LosSTrN (Yirues Ypred) + AR(W) + yLosspuy (Ypred) (1)

where the training loss Losstry measures a supervised error (e.g., RMSE or cross-entropy) between true labels
Yirue and predicted labels Ypreq, and A is a hyper-parameter to control the weight of model complexity loss R(W).
The first two terms are the standard loss of ML models. The addition of physics-based loss Losspyy aims to
ensure consistency with physical laws and it is weighted by a hyper-parameter y, where y is determined alongside
other ML hyperparameters using validation data or a nested cross validation setup. A comprehensive guide to
implementing physics-based loss functions can be found in Ebert-Uphoff et al. [84].

Steering ML predictions towards physically consistent outputs has numerous benefits. First, this provides the
possibility to ensure the consistency with physical laws and therefore reduce the solution search space of ML
models. Second, the regularization by physical constraints allows the model to learn even with unlabeled data, as
the computation of physics-based loss Losspyy does not require observation data. Third, ML models which follow
desired physical properties are more likely to be generalizable to out-of-sample scenarios relative to basic ML
models[133, 231]. It is important to note, however, that the physics-guided loss function does not "guarantee" either
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Fig. 2. The Physics-Guided Recurrent Neural Network (PGRNN) model demonstrated in Jia et al. [132] is an
example of a physics-guided loss function allowing physical knowledge to be incorporated into the ML model. They
include the standard RNN flow (black arrows) and the energy flow (blue arrows) in the recurrent process. Here Uy
represents the thermal energy of the lake at time T, and both the energy output and temperature output y are used
in calculating the loss function value. This enables the PGRNN to predict lake temperature without violating energy
constraints. A detailed description of the loss function equation (Equation 1) can be found in Section 3.1.

physical consistency or generalizability as it is fundamentally a weak constraint. Loss function terms corresponding
to physical constraints are applicable across many different types of ML frameworks. In addition, this method
is extensively used across all application-centric objectives listed in Section 2. In the following paragraphs, we
demonstrate the use of physics-based loss functions for different objectives described in Section 2.

Replacing or improving over physical models. Incorporation of physics-based loss has shown great success in
improving prediction ability of ML models. In the context of lake temperature modeling, Karpatne et al. [140]
includes a physics-based penalty that ensures that predictions of denser water are at lower depths than predictions
of less dense water, a known monotonic relationship.

Jia et al. [130] and Read et al. [231] further extended this work to capture even more complex and general
physical relationships that happen on a temporal scale. Specifically, they use a physics-based penalty for energy
conservation in the loss function to ensure the lake thermal energy gain across time is consistent with the net
thermodynamic fluxes in and out of the lake. A diagram of this model is shown in Figure 2. Note that the recurrent
structure contains additional nodes (shown in blue) to represent physical variables (lake energy, etc) that are
computed using purely physics-based equations. These are needed to incorporate energy conservation in the loss
function. Similar structure can be used to model other physical laws such as mass conservation, etc. Qualitative
mathematical properties of dynamical systems modeling have also shown promise in informing loss functions
to improve prediction beyond that of the physics model. Erichson et al. [86] penalize autoencoders based on
physically meaningful stability measures in dynamical systems to improve prediction of fluid flow and sea surface
temperature. They showed an improved mapping of past states to future states for both modeling scenarios in
addition to improving generalizability to new data.
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Solving PDEs. Another strand of work that involves loss function alterations is solving PDEs for dynamical
systems modeling, in which adherence to the governing equations is enforced in the loss function. In Raissi et
al. [228], this concept is developed and shown to create data-efficient spatiotemporal function approximators to
both solve and find parameters of basic PDEs like Burgers Equation or Schrodinger Equation. Going beyond
a simple feed-forward network, Zhu et al. [318] propose an encoder-decoder model for predicting transient
PDEs with governing PDE constraints. Geneva et al. [102] extended this approach to deep auto-regressive dense
encoder-decoders with a Bayesian framework using stochastic weight averaging to quantify uncertainty.

Discovering Governing Equations. Physics-based loss function terms have also been used in the discovery of
governing equations. Loiseau et al. [178] used constrained least squares [110] to incorporate energy-preserving
nonlinearities or to enforce symmetries in the identified equations for the equation learning process described in
Section 2.7. Though these loss functions are mostly seen in common variants of NNs, they are also be seen in
architectures such as echo state networks. Doan et al. [76] found that integrating the physics-based loss from the
governing equations in a Lorenz system, a commonly studied system in dynamical systems, strongly improves the
echo state network’s time-accurate prediction of the system and also reduces convergence time.

Inverse modeling. For applications in vortex induced vibrations, Raissi et al. [224] pose the inverse modeling
problem of predicting the lift and drag forces of a system given sparse data about its velocity field. Kahana et
al. [136] uses a loss function term pertaining to the physical consistency of the time evolution of waves for the
inverse problem of identifying the location of an underwater obstacle from acoustic measurements. In both cases,
the addition of physics-based loss terms made results more accurate and more robust to out-of-sample scenarios.

Parameterization. While ML has been used for parameterization, adding physics-based loss terms can further
benefit this process by ensuring physically consistent outputs. Zhang et al. [310] parameterize atomic energy for
molecular dynamics using a NN with a loss function that takes into account atomic force, atomic energy, and terms
relating kinetic and potential energy. Furthermore, in climate modeling, Beucler et al. show that enforcing energy
conservation laws improves prediction when emulating cloud processes [31, 32].

Downscaling. Super resolution and downscaling frameworks have also begun to incorporate physics-based
constraints. Jiang et al. [134] use PDE-based constraints for super resolution problems in computational fluid
dynamics where they are able to more efficiently recover physical quantities of interest. Bode et al. [37] use
similar constraint ideas in building generative adversarial networks for super resolution in turbulence modeling in
combustion scenarios, where they find improved generalization capability and extrapolation due to the constraints.

Uncertainty quantification. In Yang et al. [303] and Yang et al. [304], physics-based loss is implemented in a
deep probabilistic generative model for uncertainty quantification based on adherence to the structure imposed by
PDEs. To accomplish this, they construct probabilistic representations of the system states, and use an adversarial
inference procedure to train using a physics-based loss function that enforces adherence to the governing laws. This
is expanded in Zhu et al. [318], where a physics-informed encoder-decoder network is defined in conjunction with
a conditional flow-based generative model for similar purposes. A similar loss function modification is performed
in other works [102, 144, 299], but for the purpose of solving high dimensional stochastic PDEs with uncertainty
propagation. In these cases, physics-guided constraints provide effective regularization for training deep generative
models to serve as surrogates of physical systems where the cost of acquiring data is high and the data sets are
small [304].

Another direction for encoding physics knowledge into ML UQ applications is to create a physics-guided
Bayesian NN. This is explored in Yang et al. [300], where they use a Bayesian NN, which naturally encodes
uncertainty, as a surrogate for a PDE solution. Additionally, they add a PDE constraint for the governing laws of the

ACM Comput. Surv.



Physics-Guided Machine Learning Survey ¢ 13

system to serve as a prior for the Bayesian net, allowing for more accurate predictions in situations with significant
noise due to the physics-based regularization.

Generative models. In recent years, GANs have been used to efficiently generate solutions to PDEs and there is
interest in using physics knowledge to improve them. Yang et al. [301] showed GANs with loss functions based on
PDEs can be used to solve stochastic elliptic PDEs in up to 30 dimensions. In a similar vein, Wu et al. [292] showed
that physics-based loss functions in GANs can lower the amount of data and training time needed to converge
on solutions of turbulence PDEs, while Shah et al. [248] saw similar results in the generation of microstructures
satisfying certain physical properties in computational materials science.

3.2 Physics-Guided Initialization

Since many ML models require an initial choice of model parameters before training, researchers have explored
different ways to physically inform a model starting state. For example, in NNs, weights are often initialized
according to a random distribution prior to training. Poor initialization can cause models to anchor in local minima,
which is especially true for deep neural networks. However, if physical or other contextual knowledge is used to
help inform the initialization of the weights, model training can be accelerated and may require fewer training
samples [132]. One way to inform the initialization to assist in model training and escaping local minima is to use
an ML technique known as transfer learning. In transfer learning, a model is pre-trained on a related task prior
to being fine-tuned with limited training data to fit the desired task. The pre-trained model serves as an informed
initial state that ideally is closer to the desired parameters for the desired task than random initialization. One way
to achieve this is to use the physics-based model’s simulated data to pre-train the ML model. This is similar to the
common application of pre-training in computer vision, where CNNSs are often pre-trained with very large image
datasets before being fine-tuned on images from the task at hand [259].

Jia et al. use this strategy in the context of modeling lake temperature dynamics [130, 132]. They pre-train their
Physics-Guided Recurrent Neural Network (PGRNN) models for lake temperature modeling on simulated data
generated from a physics-based model and fine tune the NN with little observed data. They showed that pre-training,
even using data from a physical model with an incorrect set of parameters, can still significantly reduce the training
data needed for a quality model. In addition, Read et al. [231] demonstrated that models using both physics-guided
initialization and a physics-guided loss function are able to generalize better to unseen scenarios than traditional
physics-based models. In this case, physics-guided initialization allows the model to have a physically-consistent
starting state prior to seeing any observations.

Another application can be seen in robotics, where images from robotics simulations have been shown to be
sufficient without any real-world data for the task of object localization [267], while reducing data requirements
by a factor of 50 for object grasping [39]. Then, in autonomous vehicle training, Shah et al. [247] showed that
pre-training the driving algorithm in a simulator built on a video game physics engine can drastically lessen
data needs. More generally, we see that simulation-based pre-training of applications allows for significantly less
expensive data collection than is possible with physical robots.

Physics-guided model initialization has also been employed in chemical process modeling [180, 181, 298]. Yan
et al. [298] use Gaussian process regression for process modeling that has been transferred and adapted from a
similar task. To adapt the transferred model, they used scale-bias correcting functions optimized through maximum
likelihood estimation of parameters. Furthermore, Gaussian process models come equipped with uncertainty
quantification which is also informed through initialization. A similar transfer and adapt approach is seen in Lu et
al. [180], but for an ensemble of NNs transferred from related tasks. In both studies, the similarity metrics used to
find similar systems are defined by considering various common process characteristics and behaviors.

Physics-guided initialization can also be done using a self-supervised learning method, which has been widely
used in computer vision and natural language processing. In the self-supervised setting, deep neural networks
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learn discriminative representations using pseudo labels created from pre-defined pretext tasks. These pretext tasks
are designed to extract complex patterns related to our target prediction task. For example, the pretext task can
be defined to predict intermediate physical variables that play an important role in underlying processes. This
approach can make use of a physics-based model to simulate these intermediate physical variables, which can then
be used to pre-train ML models by adding supervision on hidden layers. As an illustration of this approach, Jia et
al. [133] have shown promising results for modeling temperature and flow in river networks by using upstream
water variables simulated by a physics-based PRMS-SNTemp model [265] to pre-train hidden variables in a graph
neural network.

3.3 Physics-Guided Design of Architecture

Although the physics-based loss and initialization in the previous sections help constrain the search space of ML
models during training, the ML architecture is often still a black box. In particular, they do not encode physical
consistency or other desired physical properties into the ML architecture. A recent research direction has been
to construct new ML architectures that can make use of the specific characteristics of the problem being solved.
Furthermore, incorporating physics-based guidance into architecture design has the added bonus of making the
previously black box algorithm more interpretable, a desirable but typically missing feature of ML models used
in physical modeling. In the following paragraphs, we discuss several contexts in which physics-guided ML
architectures have been used. Much of the work in this section is focused largely on neural network architectures.
The modular and flexible nature of NNs in particular makes them prime candidates for architecture modification.
For example, domain knowledge can be used to specify node connections that capture physics-based dependencies
among variables. We also include subsections on multi-task learning and structures of Gaussian processes to show
how task interrelationships or informed prior distributions can inform ML models.

Intermediate Physical Variables. One way to embed physical principles into NN design is to ascribe physical
meaning for certain neurons in the NN. It is also possible to declare physically relevant variables explicitly. In
lake temperature modeling, Daw et al. [68] incorporate a physical intermediate variable as part of a monotonicity-
preserving structure in the LSTM architecture. This model produces physically consistent predictions in addition
to appending a dropout layer to quantify uncertainty. Muralidlar et al. [204] used a similar approach to insert
physics-constrained variables as the intermediate variables in the convolutional neural network (CNN) architecture
which achieved significant improvement over state-of-the-art physics-based models on the problem of predicting
drag force on particle suspensions in moving fluids.

An additional benefit of adding physically relevant intermediate variables in an ML architecture is that they
can help extract physically meaningful hidden representation that can be interpreted by domain scientists. This
is particularly valuable, as standard deep learning models are limited in their interpretability since they can only
extract abstract hidden variables using highly complex connected structure. This is further exacerbated given the
randomness involved in the optimization process.

Another related approach is to fix one or more weights within the NN to physically meaningful values or
parameters and make them non-modifiable during training. A recent approach is seen in geophysics where
researchers use NNs for the waveform inversion modeling to find subsurface parameters from seismic wave data.
In Sun et al. [256], they assign most of the parameters within a network to mimic seismic wave propagation during
forward propagation of the NN, with weights corresponding to values in known governing equations. They show
this leads to more robust training in addition a more interpretable NN with meaningful intermediate variables.

Encoding invariances and symmetries. In physics, there is a deep connection between symmetries and invariant
quantities of a system and its dynamics. For example, Noether’s Law, a common paradigm in physics, demonstrates
a mapping between conserved quantities of a system and the system’s symmetries (e.g. translational symmetry
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can be shown to correspond to the conservation of momentum within a system). Therefore, if an ML model is
created that is translation-invariant, the conservation of momentum becomes more likely and the model’s prediction
becomes more robust and generalizable.

State-of-the-art deep learning architectures already encode certain types of invariance. For example, RNNs
encode temporal invariance and CNNs can implicitly encode spatial translation, rotation, and scale invariance.
In the same way, scientific modeling tasks may require other invariances based on physical laws. In turbulence
modeling and fluid dynamics, Ling et al [173] define a tensor basis neural network to embed rotational invariance
into a NN for improved prediction accuracy. This solves a key problem in ML models for turbulence modeling
because without rotational invariance, the model evaluated on identical flows with axes defined in other directions
could yield different predictions. This work alters the NN architecture by adding a higher-order multiplicative
layer that ensures the predictions lie on a rotationally invariant tensor basis. In a molecular dynamics application,
Anderson et al. [12] show that a rotationally covariant NN architecture can learn the behavior and properties of
complex many-body physical systems.

In a general setting, Wang et al. [281] show how spatiotemporal models can be made more generalizable by
incorporating symmetries into deep NNs. More specifically, they demonstrated the encoding of translational
symmetries, rotational symmetries, scale invariances, and uniform motion into NNs using customized convolutional
layers in CNNs that enforce desired invariance properties. They also provided theoretical guarantees of invariance
properties across the different designs and showed additional to significant increases in generalization performance.

Incorporating symmetries, by informing the structure of the solution space, also has the potential to reduce the
search space of an ML algorithm. This is important in the application of discovering governing equations, where
the space of mathematical terms and operators is exponentially large. Though in its infancy, physics-informed
architectures for discovering governing equations are beginning to be investigated by researchers. In Section 2.7,
symbolic regression is mentioned as an approach that has shown success. However, given the massive search space
of mathematical operators, analytic functions, constants, and state variables, the problem can quickly become
NP-hard. Udrescu et al. [270] designs a recursive multidimensional version of symbolic regression that uses a NN
in conjunction with techniques from physics to narrow the search space. Their idea is to use NNs to discover hidden
signs of "simplicity", such as symmetry or separability in the training data, which enables breaking the massive
search space into smaller ones with fewer variables to be determined.

In the context of molecular dynamics applications, a number of researchers [28, 310] have used a NN per
individual atom to calculate each atom’s contribution to the total energy. Then, to ensure the energy invariance with
respect to the possibility of interchanging two atoms, the structure of each NN and the values of each network’s
weight parameters are constrained to be identical for atoms of the same element. More recently, novel deep
learning architectures have been proposed for fundamental invariances in chemistry. Schutt et al. [245] proposes
continuous-filter convolutional (cfconv) layers for CNNs to allow for modeling objects with arbitrary positions
such as atoms in molecules, in contrast to objects described by Cartesian-gridded data such as images. Furthermore,
their architecture uses atom-wise layers that incorporate inter-atomic distances that enabled the model to respect
quantum-chemical constraints such as rotationally invariant energy predictions as well as energy-conserving force
predictions. As we can see, because molecular dynamics often ascribes importance to different important geometric
properties of molecules (e.g. rotation), network architectures dealing with invariances can be effective for improving
performance and robustness of ML models.

Architecture modifications incorporating symmetry are also seen extensively in dynamical systems research
involving differential equations. In a pioneering work by Ruthotto et al [236], three variations of CNNs are proposed
to improve classifiers for images. Each variation uses mathematical theories to guide the design of the CNN based
on fundamental properties of PDEs. Multiple types of modifications are made, including adding symmetry layers
to guarantee the stability expressed by the PDEs and layers that convert inputs to kinematic eigenvalues that satisfy
certain physical properties. They define a parabolic CNN inspired by anisotropic filtering, a hyperbolic CNN based
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on Hamiltonian systems, and a second order hyperbolic CNN. Hyperbolic CNNs were found to preserve the energy
in the system as intended, which set them apart from parabolic CNNs that smooth the output data, reducing the
energy. Furthermore, though solving PDEs with neural networks has traditionally focused on learning on Euclidean
spaces, recently Li et al. [171] proposed a new architecture which includes "Fourier neural operators" to generalize
this to functional spaces. They showed it achieves greater accuracy compared to previous ML-based solvers and
also can solve entire families of PDEs instead of just one. There is a vast amount of other work using physics-guided
architecture towards solving PDEs and other PDE-related applications as well which are not included in this survey
(e.g. see ICLR workshop on deep learning for differential equations ([5]))

A recent direction also relating to conserved or invariant quantities is the incorporation of the Hamiltonian
operator into NNs [64, 112, 268, 317]. The Hamiltonian operator in physics is the primary tool for modeling the
time evolution of systems with conserved quantities, but until recently the formalism had not been integrated with
NNs. Greydanus et al. [112] design a NN architecture that naturally learns and respects energy conservation and
other invariance laws in simple mass-spring or pendulum systems. They accomplish this through predicting the
Hamiltonian of the system and re-integrating instead of predicting the state of physical systems themselves. This is
taken a step further in Toth et al. [268], where they show that not only can NNs learn the Hamiltonian, but also
the abstract phase space (assumed to be known in Greydanus et al. [112]) to more effectively model expressive
densities in similar physical systems and also extend more generally to other problems in physics. Recently, the
Hamiltonian-parameterized NNs above have also been expanded into NN architectures that perform additional
differential equation-based integration steps based on the derivatives approximated by the Hamiltonian network
[61].

Encoding other domain-specific physical knowledge. Various other domain-specific physical information can be
encoded into architecture that doesn’t exactly correspond to known invariances but provides meaningful structure
to the optimization process depending on the task at hand. This can take place in many ways, including using
domain-informed convolutions for CNNs, additional domain-informed discriminators in GANS, or structures
informed by the physical characteristics of the problem. For example, Sadoughi et al. [239] prepend a CNN with
a Fast Fourier Transform layer and a physics-guided convolution layer based on known physical information
pertaining to fault detection of rolling element bearings. A similar approach is used in Sturmfels et al. [255], but the
added beginning layer instead serves to segment different areas of the brain for domain guidance in neuroimaging
tasks. In the context of generative models, Xie et al. [296] introduce tempoGAN, which augments a general
adversarial network with an additional discriminator network along with additional loss function terms that preserve
temporal coherence in the generation of physics-based simulations of fluid flow. This type of approach, though
found mostly in NN models, has been extended to non-NN models in Baseman et al. [24], where they introduce a
physics-guided Markov Random Field that encodes spatial and physical properties of computer memory devices
into the corresponding probabilistic dependencies.

Fan et al. [89] define new architectures to solve the inverse problem of electrical impedance tomography, where
the goal is to determine the electrical conductivity distribution of an unknown medium from electrical measurements
along its boundary. They define new NN layers based on a linear approximation of both the forward and inverse
maps relying on the nonstandard form of the wavelet decomposition [33].

Architecture modifications are also seen in dynamical systems research encoding principles from differential
equations. Chen et al. [58] develop a continuous depth NN based on the Residual Network [122] for solving ordinary
differential equations. They change the traditionally discretized neuron layer depths into continuous equivalents
such that hidden states can be parameterized by differential equations in continuous time. This allows for increased
computational efficiency due to the simplification of the backpropagation step of training, and also creates a more
scalable normalizing flow, an architectural component for solving PDEs. This is done by by parameterizing the
derivative of the hidden states of the NN as opposed to the states themselves. Then, in a similar application, Chang
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et al. [53] uses principles from the stability properties of differential equations in dynamical systems modeling to
guide the design of the gating mechanism and activation functions in an RNN.

Currently, human experts have manually developed the majority of domain knowledge-encoded employed
architectures, which can be a time-intensive and error-prone process. Because of this, there is increasing interest in
automated neural architecture search methods [20, 85, 126]. A young but promising direction in ML architecture
design is to embed prior physical knowledge into neural architecture searches. Ba et al. [18] adds physically
meaningful input nodes and physical operations between nodes to the neural architecture search space to enable the
search algorithm to discover more ideal physics-guided ML architectures.

Auxiliary Task in Multi-Task Learning. Domain knowledge can be incorporated into ML architecture as auxiliary
tasks in a multi-task learning framework. Multi-task learning allows for multiple learning tasks to be solved at the
same time, ideally while exploiting commonalities and differences across tasks. This can result in improved learning
efficiency and predictions for one or more of the tasks. Therefore, another way to implement physics-based learning
constraints is to use an auxiliary task in a multi-task learning framework. Here, an example of an auxiliary task in a
multi-task framework might be related to ensuring physically consistent solutions in addition to accurate predictions.
The promise of such an approach was demonstrated for a computer vision task by integrating auxiliary information
(e.g. pose estimation) for facial landmark detection [315]. In this paradigm, a task-constrained loss function can be
formulated to allow errors of related tasks to be back-propagated jointly to improve model generalization. Early
work in a computational chemistry application showed that a NN could be trained to predict energy by constructing
a loss function that had penalties for both inaccuracy and inaccurate energy derivatives with respect to time as
determined by the surrounding energy force field [219]. In particle physics, De Oliveira et al. [72] uses an additional
task for the discriminator network in a generative adversarial network (GAN) to satisfy certain properties of particle
interaction for the production of jet images of particle energy.

Physics-guided Gaussian process regression. Gaussian process regression (GPR) [287] is a nonparametric,
Bayesian approach to regression that is increasingly being used in ML applications. GPR has several benefits,
including working well on small amounts of data and enabling uncertainty measurements on predictions. In GPR,
first a Gaussian process prior must be assumed in the form of a mean function and a matrix-valued kernel or
covariance function. One way to incorporate physical knowledge in GPR is to encode differential equations into
the kernel [258]. This is a key feature in Latent Force Models which attempt to use equations in the physical
model of the system to inform the learning from data [10, 182]. Alvarez et al. [10] draw inspiration from similar
applications in bioinformatics [101, 165], which showed an increase in predictive ability in computational biology,
motion capture, and geostatistics datasets. More recently, Glielmo et al. [108] propose a vectorial GPR that encodes
physical knowledge in the matrix-valued kernel function. They show rotation and reflection symmetry of the
interatomic force between atoms can be encoded in the Gaussian process with specific invariance-preserving
covariant kernels. Furthermore, Raissi et al. [225] show that the covariance function can explicitly encode the
underlying physical laws expressed by differential equations in order to solve PDEs and learn with smaller datasets.

3.4 Hybrid Physics-ML Models

Contrary to previous sections where the focus has been on augmenting ML models specifically, numerous ap-
proaches combine physics-based models with ML models where both are operating simultaneously. We call these
Hybrid Physics-ML models. In the context of Figure 1, hybrid models can be viewed as replacing mechanistic
model F() with a new model in which F() and an ML model are working together, or a subcomponent of F() is
replaced with ML. Hence, such methods are also referred to as ML-enhanced physical models by some researchers
[100].
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3.4.1 Residual modeling. The oldest and most common approach for directly addressing the imperfection
of physics-based models in the scientific community is residual modeling, where an ML model (usually linear
regression) learns to predict the errors, or residuals, made by a physics-based model [94, 266]. A visualization is
shown in Figure 3. The key concept is to learn biases of the physical model (relative to observations) and use it to
correct the physical model’s predictions. However, one key limitation in residual modeling is its inability to enforce
physics-based constraints (like in Section 3.1) because such approaches model the errors instead of the physical
quantities in scientific problems.

f PHY
PHY
Input Drivers (D) N )
nput Drivers Y% <
Train 2 Ypredicted
Error
f Training
N
ML Error Testing

Fig. 3. An illustration of the concept of residual modeling where an ML model fyr is trained to model the error made
by the physics-based model fpyy. Final predictions are then the sum of the predictions made by fpyy and the
residual modeled by far. Processes shown in red and blue are training and testing respectively. Figure adapted
from [94].

Recently, a key area in which residual modeling has been applied is in reduced order models (ROMs) of
dynamical systems (described in Section 2.4). After reducing model complexity to create a ROM, an ML model can
be used to model the residual due to the truncation. ROM methods were created in response to the problem of many
detailed simulations being too expensive to be used in various engineering tasks including design optimization and
real-time decision support. In San et al. [241, 242], a simple NN used to model the error due to the model reduction
is shown to sharply reduce high error regions when applied to known differential equations. Also, in Wan et al.
[278], an RNN is used to. model the residual between a ROM for prediction of extreme weather events and the
available data projected to a reduced-order space.

As another example, in Kani et al. [138] a physics-driven "deep residual recurrent neural network (DR-RNN)"
is proposed to find the residual minimiser of numerically discretized PDEs. Their architecture involves a stacked
RNN embedded with the dynamical structure of the PDEs such that each layer of the RNN solves a layer of the
residual equations. They showed that DR-RNN sharply reduces both computational cost and time discretization
error of the reduced order modeling framework. Finally in Blakseth et al. [36], a feed-forward neural network is
used generate a corrective source term that augments the discretized governing equation of a physics-based model
for improved prediction performance. This is a more advanced residual model since the ML model is modifying
the governing equation itself instead of just the output.

3.4.2 Output of physical model as input to ML model. In recent years many other hybrid physics-ML models
have been created that extend beyond residual modeling. Another straightforward method to combine physics-based
and ML models is to feed the output of a physics-based model as input to an ML model. Karpatne et al [140]
showed that using the output of a physics-based model as one feature in an ML model along with inputs used to
drive the physics-based model for lake temperature modeling can improve predictions. Visualization of this method
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is shown in Figure 4. As we discuss below, there are multiple other ways of constructing a hybrid model, including
replacing part of a larger physical model, or weighting predictions from different modeling paradigms depending
on context.

Input Drivers (D)

fPHY Input Drivers (D) Yoy }—» fHBD — Ypred

Hybrid Physics-Data Model
Y (HPD)

PHY

Fig. 4. Diagram of a hybrid physics-ML model which accepts the output of a physical model as input to an ML model
(Figure adapted from Karpatne et al. [140]). In the diagram, the physics-based model converts the input drivers D to
simulated outputs Ypgy. Then, the hybrid physics-ML model fgpp jointly uses the input drivers D and the simulated
outputs Ypyy to make the final prediction Y4

3.4.3 Replacing part of a physical model with ML. In one variant of hybrid physics-ML models, ML models
are used to replace one or more components of a physics-based model or to predict an intermediate quantity that
is poorly modeled using physics. For example, to improve predictions of the discrepancy of Reynolds-Averaged
Navier—Stokes (RANS) solvers in fluid dynamics, Parish et al. [212] propose a NN to estimate variables in the
turbulence closure model to account for missing physics. They show this correction to traditional turbulence models
results in convincing improvements of predictions. In Hamilton et al. [117], a subset of the mechanistic model’s
equations are replaced with data-driven nonparametric methods to improve prediction beyond the baseline process
model. In Zhang et al. [312], a physics-based architecture for power system state estimation embeds a deep learning
model in place of traditional predicting and optimization techniques. To do this, they substitute NN layers into an
unrolled version of an existing solution framework which drastically reduced the overall computational cost due to
the fast forward evaluation property of NNs, but kept information of the underlying physical models of power grids
and of physical constraints.

ML models for parameterization (see Section 2.3) can also be viewed as a type of hybrid modeling. The vast
majority of these efforts use black box ML models [52, 109, 207, 230], but some of these parameterization models
can use more sophisticated physics-guided versions of ML as we mentioned in Section 3.1.

3.4.4 Combining predictions from both physical model and ML model. In another class of hybrid frame-
works, the overall prediction is a combination of predictions from a physical model and an ML model, where the
weights depend on prediction circumstance. For example, long-range interactions (e.g. gravity) can often be more
easily modeled by classical physics equations than more stochastic short-range interactions (quantum mechanics)
that are better modeled using data-driven alternatives. Hybrid frameworks like this have been used to adaptively
combine ML predictions for short-range processes and physics model predictions for long-range processes for
applications in chemical reactivity [305] and seismic activity prediction [211]. Estimator quality at a given time
and location can also be used to determine whether a prediction comes from the physical model or the ML model,
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which was shown in Chen et al. [60] for air pollution estimation and in Vlachas et al. [276] for dynamical system
forecasting more generally. In the context of solving PDEs, Malek et al [188] showcases a hybrid NN and traditional
optimization technique to find the closed analytical form of the solution of a PDE. In this hybrid solver, there exist
two terms, a term described by the NN and a term described by traditional optimization techniques.

3.4.5 ML informing or augmenting physics-model for inverse modeling. Moreover, in inverse modeling,
there is a growing use of hybrid models that first use physics-based models to perform the direct inversion, then use
deep learning models to further refine the inverse model’s predictions. Multiple works have shown an effective
application for this in computed tomography (CT) reconstructions [45, 135]. Another common technique in inverse
modeling of images (e.g. medical imaging, particle physics imaging), is the use of CNNs as deep image priors
[271]. To simultaneously exploit data and prior knowledge, Senouf et al. [246] embed a CNN that serves as the
image prior for a physics-based forward model for MRIs.

3.5 Requirements and Benefits from Different Physics-ML Methodologies

Physics-ML Method Requirements Possible Benefits

Physical consistency,
Loss Function

Known physical relationship
(e.g. physical laws, PDEs)

Improved generalization,
Reduced observations required,
Improved accuracy

Initialization Synthetic data from mechanistic model | Reduced observations required
available during training Improved accuracy
Intermediate physical variables/processes, Interpretability,
or hard constraints (e.g. symmetries), Physical consistency,
Architecture or task interrelationships, Improved generalization,
or informed prior distributions Reduced solution search space,
Improved accuracy
Hybrid Operational mechanistic model Improved accuracy

available during run time

Table 2. Summary of requirements and possible benefits from different physics-ML methodologies. The left column
corresponds to the four types of methods described earlier in Section 3

Methodologies for integrating scientific knowledge in ML described in this section encompass the vast majority
of work on this topic. Table 2 summarizes these by listing the requirements needed for different types of methods
and the corresponding possible benefits. As we can see, depending on the context of the problem or available
resources, different methods can be optimal. Hybrid methods like residual modeling are the simplest case, as
they require no process-based knowledge beyond an operational mechanistic model to be used during run time.
Physics-guided loss functions require additional domain expertise to determine what terms to add to the loss
function, and ML cross-validation techniques are also recommended to weight the different loss function terms.
Many of the foundational works on physics-guided loss functions also include open source code that could be
adapted to new applications (e.g. Raissi et al. [226], Read et al. [231], Wang et al. [282]). For physics-guided
initialization, domain expertise can be used to determine the most relevant synthetic data for the application, but
the ML can remain process-agnostic. Physics-guided architecture is often the most complex approach, where
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both domain and ML expertise is needed, for example, to customize neural networks by establishing physically
meaningful connections and nodes. Note that there can also be multiple Physics-ML method options for a given
computational benefit. For example, incorporating physical consistency into ML models can be done through
weak constraints as in a loss function, hard constraints through new architectures, or indirectly through physically
consistent training data from a mechanistic model simulation.

Note that for a given application-centric objective, only some of these methods may be applicable. For example,
hybrid methods will not be suitable for solving PDEs since the goal of reduced computational complexity cannot be
reached if the existing solver is still needed to produce the output (y, in Figure 1). Also in the case of discovering
governing equations, there often isn’t a known physical model to compare to for either creating a residual model or
hybrid approach. Data generation applications also do not make sense for residual modeling since the purpose is to
simulate a data distribution rather than improve on a physical model.

Many of the physics-ML methods can also be combined. For example, a physics-guided loss function, physics-
guided architecture, and physics-guided initialization could all be applied to an ML model. We saw in Section 3.1
that Jia et al. [130] and Read et al. [231] in particular combined physics-guided loss functions with physics-guided
initialization. Also, Karpatne et al [140] combined a physics-guided loss function with a hybrid physics-ML
framework. More recently, Jia et al [133] combine physics-guided initialization and physics-guided architecture.

An overall goal of physics-ML methods presented in this section is to address resource efficiency issues (i.e.,
the ability to solve problems with less computational resources in the context of objectives defined in Section 2)
while maintaining high predictive performance, sample efficiency, and interpretability relative to traditional ML
approaches. For example, physics-ML methods for solving PDEs (Section 2.5) are likely to be more computationally
efficient than direct numerical approaches and more physically consistent than traditional ML approaches. As
another example, for the objective of downscaling (Section 2.2), physics-ML methods can be expected to provide
high resolution y, but at much smaller computational cost than possible via traditional mechanistic models and
provide much better quality output while using fewer training samples relative to traditional ML approaches.
Another major utility of physics-ML methods is to reduce the overall solution search space, which has a direct
impact on sample efficiency (i.e. reduced number of observations required) and the amount of computation time
taken for model training. For example, physics-ML methods for discovering governing equations can be expected
to work with much fewer observations and take less computation time relative to traditional ML methods.

4 AREAS OF CURRENT WORK AND POSSIBILITIES FOR CROSS-FERTILIZATION

Table 3 provides a systematic organization and taxonomy of the application-centric objectives and methods of
existing physics-based ML applications. This table provides a convenient organization for papers discussed in this
survey and other papers that could not be discussed because of space limitations. Importantly, analysis of works
within our taxonomy uncovers knowledge gaps and potential crossovers of methods between disciplines that can
serve as ideas for future research.

Indeed, there are a myriad of opportunities for taking ideas across applications, objectives, and methods, as well
as bringing them back to the traditional ML discipline. For example, the physics-guided NN approaches developed
for aquatic sciences [121, 132] can be used in any application where an imperfect mechanistic model is available.
Raissi et al. [224] take physics-guided loss function methods to solve PDEs and extend them to inverse modeling
problems in fluid dynamics. Furthermore, Daw et al. [68] develop a monotonicity-preserving architecture for lake
temperature based on previous work done using loss function terms and a hybrid physics-ML architecture [140].
As another example Jia et al. [133] use physics to inform the propagation of knowledge in a graph neural network.
Future research along this direction may shed light on the interpretability of hidden variables in graph neural
network models and also how to build dynamic graph structures based on physics.
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From Table 3, it is easy to see that several boxes are rather sparse or entirely empty, many of which represent
opportunities for future work. For example, ML models for parameterization are increasingly being used in
domains such as climate science and weather forecasting [153], all of which can benefit from the integration of
physical principles. Furthermore, principles from super-resolution frameworks, originally developed in the context
of computer vision applications, are beginning to be applied to downscaling to create higher resolution climate
predictions [273]. However, most of these do not incorporate physics (e.g., through additional loss function terms
or an informed design of architecture). The fact that nearly all of the other methods (columns) except for hybrid
modeling are applicable to this task shows that there is tremendous scope for new exploration, where research
pursued in these columns in the context of other objectives can be applied for this objective. We also see a lot of
opportunities for new research on physics-guided initialization, where, for example, an ML algorithm could be
pre-trained for inverse modeling.

Not all promising research directions are covered by Table 3 and the previous discussion. For instance, one
promising direction is to forecast future events using ML and continuously update model states by incorporating
ideas from data assimilation [137]. An instance of this is pursued by Dua et al. [80] to build an ML model that
predicts the parameters of a physical model using past time series data as an input. Another instance of this approach
is seen in epidemiology, where Magri et al. [187] used a NN for data assimilation to predict a parameter vector that
captures the time evolution of a COVID-19 epidemiological model. Such approaches can benefit from the ideas in
Section 3 (e.g., physics-based loss, intermediate physics variables, etc.). Another direction is to combine scientific
knowledge and machine learning to better inform human decisions on environmental or engineering systems.
For example, by using anticipated water temperature, one may build new reinforcement learning algorithms to
dynamically decide when and how much water to release from reservoirs to a river network [131]. Similarly, such
techniques for decision making can be used for automated control in the power plant.

5 CONCLUDING REMARKS

Given the current deluge of sensor data and advances in ML methods, we envision that the merging of principles
from ML and physics will play an invaluable role in the future of scientific modeling to address the pressing
environmental and physical modeling problems facing society. The application-centric objectives defined in Section
2 span the primary communities and disciplines that have both contributed to and benefit from physics-ML
integration in a significant way. We believe these categories both provide perspective on the different ways of
viewing the physics-ML integration methodologies in Section 3 for different purposes and also allow for coverage
of a variety of disciplines that have been pursuing these ideas mostly-independently in recent years. Researchers
working in one of these objectives can see how their methods fit within the taxonomy and relate them to how they
are being used in other objectives. Our hope is that this survey will accelerate the cross-pollination of ideas among
these diverse research communities.

The discussion and structure provided in this survey also serve to benefit the ML community, where, for example,
techniques for adding physical constraints to loss functions can be used to enforce fairness in predictive models, or
realism for data generated by GANSs. Further, novel architecture designs can enable new ways to incorporate prior
domain information (beyond what is usually done using Bayesian frameworks) and can lead to better interpretability.

This survey focuses primarily on improving the modeling of engineering and environmental systems that are
traditionally solved using mechanistic modeling. However, the general ideas discussed here for integrating scientific
knowledge in ML have wider applicability, and such research is already being pursued in many other contexts.
For example, there are several interesting works in system control which often involves reinforcement learning
techniques (e.g., combining model predictive control with Gaussian processes in robotics [13], informed priors
for neuroscience modeling [104], physics-based reward functions in computational chemistry [63], and fluidic
feedback control from a cylinder [152]). Other examples include identifying features of interest in the output of
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Table 3. Table of literature classified by objective and method

Physics-Guided
Loss Function
3.1

Physics-Guided
Initialization
(3.2)

Physics-Guided
Architecture
(3.3)

Hybrid Model (3.4)

Residual (3.4.1) ‘ Other (3.4.2-3.4.5)

Improve or
replace physical
model (2.1)

[266] [10] [219] [158]
[140] [182] [203] [76]
[86] [130] [174] [204]
[231] [313] [121] [125]
[187] [92] [306]

[180] [298] [184]
[267] [39] [247]
[133] [130]
[231] [298]

[173] [66] [24]
[255] [12] [17]
[203] [204] [213]
[239] [125]
[281] [214] [176]

[266] [297] [279]
[241] [278] [293]
[174] [19]

[109] [113] [240]
[117] [140] [253]
[60] [78] [179] [211]

[305] [312] [276]
[302] [111] [187]

[249] [310] [309] (551 [36]
(311] [245] [78]
Parameterization (2.2) ‘ (310] [32] [31] [306] ‘ (28] [321 [312) ‘
Downscaling (2.3) ‘ [37] [134] ‘ [201] [274] ‘
Reduced Order (209] [16] [167] [138] [86] [210] | [138] [241] [242] (671
Models (2.4) [278] 11151 [210]
Solve (226] [251] [301] [303] (58] [236] [53] [70] [188]
PDEs (2.5) [70] [196] [228] [248] [192] [252] [26] [61]
(318] [82] [102] [144] [149] [88] [299] [216]
[202] [216] [195] [195] [225] [145]
[23] [90] [320] [154] [198] [171] [44]
Tnverse [224] [136] [35] [89] [256] [123] [212] [117] [135] [257]
modeling [150] [48] [45] [79] [246]
2.6)

Discover Governing
Equations (2.7)

[227] [178]

[270] [177] [62]
[169]

Data Generation

[72] [49] [37] [316]

[59]1 [296] [248]

(2.8) [151] [292] [308]
Uncertainty [290] [303] [288] [298] [184] [68] [300] [288] 771
Quantification (2.9) [304] [318] [102] [274]

computational simulations of physics-based models (e.g., high-impact weather predictions [194], segmentation of
climate models [202], and tracking phenomena from climate model data [97, 237]). There is also recent work on
encoding domain knowledge in geometric deep learning [41, 50] that is finding increasing use in computational
chemistry [71,°81, 95], physics [25, 54], hydrology [133], geostatistics [14, 294], and neuroscience [155]. We
expect that there will be a lot of potential for cross-over of ideas amongst these different efforts that will greatly
expedite research in this nascent field.
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