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Abstract—In this article, real-time jamming detection against
unmanned aerial vehicles (UAVs) is proposed via the integration
of a software-defined radio (SDR) with an on-board Raspberry Pi
processor. The SDR is utilized for capturing and forwarding the
radio frequency signals to a receiver module hosted in the
processor. This module extracts signal features characterized by
orthogonal frequency division multiplexing (OFDM) parameters,
energy parameters, and signal-to-noise ratio (SNR) parameters.
Upon feature extraction, the aforementioned module exploits a
machine learning (ML) classifier for detecting and classifying four
jamming types; namely, barrage, single-tone, successive-pulse,
and protocol-aware. The resulting configuration yielded in an
overall detection rate (DR) of 93% and a false alarm rate (FAR) of
1.1%, which are in proximity to their counterparts obtained
during the validation stage of the receiver module.

Index Terms—Jamming classification, machine learning (ML),
orthogonal frequency division multiplexing (OFDM), software-
defined radio (SDR), unmanned aerial vehicles (UAVs).

[. INTRODUCTION

NMANNED arial vehicles (UAVs) have recently seen

a widespread use for a variety of applications, such as

research missions, mailing delivery, and disaster
management. With autonomous control, UAVs (e.g., drones)
are inherently susceptible to a variety of cyberattacks aiming
for sabotaging their operations or accessing their data and
trajectory information. In other words, a malfunction resulting
from a cyberattack (i.e., jamming) potentially compromises
sensitive payloads or, in some extreme scenarios, leads to aerial
collisions. Hence, the risks of cyberattacks associated with the
functionality of UAVs must be acknowledged and mitigated.

Cyberattacks on UAVs branch into data interception, data
manipulation, and denial-of-service. Data interception is often
encountered with broadcast authentication protocols, which use
cryptographic and non-cryptographic techniques [1-5]. On the
other hand, secure location verification (e.g., multilateration)
were adopted to sideline the impacts of data manipulation
attacks [6,7]. However, these solutions are inefficient for
jamming detection provided that attackers can easily launch
interference with software-defined radios (SDRs) to disrupt the
trajectory of a UAV. As a result, developing jamming detection

techniques that also adhere to the existing standards is of grave
importance. In this work, radiometric transmissions (i.e., signal
features) are used to train a machine learning (ML) algorithm
within a receiver module for jamming detection and classification.
To this end, SDR units are exploited to launch jamming attacks
and collect signal features. The underlying approach facilitates
minimal modifications to standards and considers realistic attack
setups unlike other reported efforts that assume software/hardware
changes and simulation-based scenarios [8—17]. It is noteworthy to
point out that ML was proposed for satellite communications,
vehicle Ad Hoc networks, 5G networks, Internet of Things, and
UAVs with applications to jamming detection, trajectory
optimization, swarm communication, situational awareness, and
malicious attack mitigation [18-25].

The groundwork of this research was laid for in a previous
effort that resulted in large experimental datasets of signal
features [26]. These features were obtained via SDRs and
GNURadio flowgraphs built with an external computer. Feature
extraction was followed by training and validating multiple ML
algorithms for detecting/classifying different jamming attacks.
The work herein extends on [26] in the following aspects:

1. The ML algorithm with the highest detection rate (DR)
is integrated with the GNURadio feature extraction
flowgraph to create an all-inclusive seamless receiver
module that is capable of preforming real-time
decision-making for jamming detection/classification.

2. The developed module is incorporated into a drone via on-
board Raspberry Pi processor paired with a low-profile
SDR (i.e., HackRF One). This entails loading the
processor with the Python code generated from the overall
module and verifying the jamming classification process.

This article is organized as follows: Section II details the
integration of the ML algorithm and GNURadio feature
extraction flowgraph into one receiver module. Here, the
extracted features are fed directly to the classification
algorithm. Section III elaborates on exploiting the module to
enable a drone for detecting and classifying specific jamming
types. This setup is realized with on-board SDR and Raspberry
Pi processer. Conclusions are provided in Section I'V.
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Fig. 1. Simplified GNURadio flowgraphs for (a) launching jamming attacks and (b) receiver module for extracting signal features and
executing jamming detection/classification. Further details on each jamming attack and ML training/testing are available in [26].

II. MODULE DEVELOPMENT AND VALIDATION

In this section, a real-time jamming detection/classification
module is developed and tested on a computer prior porting to
the drone’s on-board processor. This module enables the
detection and classification of four types of jamming attacks:
barrage, single-tone, successive-pulse, and protocol-aware.
This module also considers IEEE 802.11 orthogonal frequency
division multiplexing (OFDM) communication technology at
2.4 GHz center frequency. Fig. 1(a) shows a simplified
GNURadio flowgraph that conveys how each jamming type is
launched, whereas Fig. 1(b) illustrates the feature extraction
and ML classification blocks at the receiver side. The five-class
random forest (RF) classifier developed in a previous effort is
utilized here for its high DR, i.e., 92% in comparison to the
other investigated algorithms [26]. In this setup, eight signal
features are extracted. Of these features, three are OFDM-
specific (i.e., subcarrier length, cyclic prefix length, subcarrier
spacing). The subcarrier length indicates the number of the
subcarriers being used. The cyclic prefix length controls symbol
overlapping, and the subcarrier spacing is the frequency
separation among subcarriers [27]. The OFDM Estimator block
shown in Fig. 1(b) is used to extract these features [28]. Two
other features are energy-specific; namely, average received
power and threshold. The latter is a binary indicator that returns
1 once the average received power exceeds a certain level and
returns 0 otherwise. Such features are extracted with the use of
the Energy Detector block [28]. Finally, three additional
features; specifically, signal-to-noise ratio (SNR), average
signal power, and average noise power are extracted from the
SNR Estimator Probe block. It is worthy to be pointed out that
the average received power obtained from the Energy Detector

block conveys noise energy; whereas the average signal power
obtained from the SNR Estimator Probe presents the estimated
signal power excluding noise power. For the training and
validation of the RF classifier, a total of 23,565 signal samples
were collected following the attack scenario reported in [26, Fig.
2]. Of these samples, 10,071 were obtained under no jamming,
whereas 3,392, 3,367, 3,378, and 3,357 were obtained in the
presence of barrage, single-tone, successive-pulse, and protocol-
aware jamming, respectively. The complete dataset with the
23,565 samples is provided in [29]. While developing the
classifier, 10-fold cross-validation was used and grid search is
utilized for finding the optimal hyper-parameters.

The jamming classifcation block receives all features from
the feature extraction block and writes classification parameter
C,C=0,1...4,toa file according to the jamming type as
depicted in Table 1. The resulting C values are utilized in
evaluating the classification accuracy (i.e., DR) by comparing
the predictions of the module with the actual launched jamming
type. Fig. 2 illustrates the pseudo code for the receiver module.
Also, Fig. 3 shows a sample output file with prediction results
for C =0 (i.e., No Jamming), which results in 100% DR. This
DR is calculated and updated for every set of extracted features.
The Prediction together with the Jamming Type are printed to
validate the functionality of the developed receiver module.

TABLE I

CLASSIFICATION PARAMETER AND CORRESPONDING JAMMING TYPE
Parameter C  Jamming Type

0 No Jamming

1 Barrage

2 Single-tone

3 Successive-pulse
4 Protocol-aware
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Algorithm: Real-Time Jamming Classification

Given:  Features — Feature Extraction.py
Model — Jamming_Classification.py
Y Actual — List with actual jamming type
YPredict — List of predicted outputs
C — Jamming Type // C € {0,4}

: Procedure: Real Time Jamming Classification Module()

: Prediction = Jamming_Classification.predict(Features)
: YActual.append(C) // Replace with jamming type
: YPredict.append(Prediction)

DR = DetectionRate(Y Actual, YPredict)

: Loop: for each Prediction do

print Prediction to console window

® U BEWN —

: end for

9: Print DetectionRate to console window
10: File = open(Results File.txt)
11: File.write(Prediction, DRx100, C)

12: end Procedure

Fig. 2. Pseudocode of the receiver module for jamming classification.

The receiver module in Fig. 1(b) is also tested by calculating the
DR while a jammer is in proximity to a receiver terminal (i.e.,
computer). To collect experimental data, two computers are
utilized. The first computer uses an SDR to function as a receiver
running the developed module. This computer has a 64-bit
Windows 10 machine with Intel®Core™i7- 7700HQ CPU @ 2.8
GHz processor and 32 GB of memory. The second computer is for
launching each of the jamming attacks via another SDR. Fig. 4
presents sample outputs of 15 predictions for each attack type. The
receiver module demonstrates a DR of 100% for barrage and
successive-pulse types. Moreover, the resulting DR for single-tone
and protocol-aware are 93.33% and 40%, respectively. The high
misprediction in protocol-aware is attributed to its spectral
similarities to barrage jamming and is expected to improve with the
increase of samples. It is to be stressed that the DR is updated as
samples are added. For instance, Fig. 4(b) shows that sample 1 is
mispredicted. Hence, DR assumes one misprediction out of a single
attempt, i.e., 0%. After correctly predicting sample 2, the DR is
updated with one correct prediction out of two attempts, i.e., 50%.
Finally, after receiving all samples, the overall DR is found to be 14
correct predictions of 15 predictions, i.e., 93.33%. Accordingly, the
DR can be expressed as follows:

Prediction DR(%) Jamming Type
0 100.00 0
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

LN RWNR

[ =
N = O

N
w
OCoOO0OO0OO0OO0OO0OO0OO0OOOOO

[ eNelNeNelNoNeNe oo o No No

i
e

15:

o
o

Fig. 3. Sample output file under no jamming attack (C = 0).

Prediction DR(%) Jamming Type || Prediction DR(%) Jamming Type
1. 1 100.00 1 1: 1 0.00 2
21 100.00 2 2 50.00 2
3: 1 100.00 1 3 2 66.67 2
4: 1 100.00 1 4: 2 75.00 2
5: 1 100.00 1 5. 2 80.00 2
6: 1 100.00 1 6 2 83.33 2
7: 1 100.00 1 7. 2 85.71 2
8 1 100.00 1 8 2 87.50 2
9: 1 100.00 1 9: 2 88.89 2
10: 1 100.00 1 10: 2 90.00 2
11: 1 100.00 1 11: 2 90.91 2
12: 1 100.00 1 12: 2 91.67 2
13: 1 100.00 1 13: 2 92.31 2
14: 1 100.00 1 14: 2 92.86 2
15: 1 100.00 1 15 2 93.33 2
(a) (b)

Prediction DR(%) Jamming Type|| Prediction DR(%) Jamming Type
1. 3 100.00 3 1 2 0.00 4
2: 3 100.00 3 2.2 0.00 4
3 3 100.00 3 3 2 0.00 4
4: 3 100.00 3 4: 2 0.00 4
50 3 100.00 3 50 2 0.00 4
6: 3 100.00 3 6: 2 0.00 4
7: 3 100.00 3 7.2 0.00 4
8 3 100.00 3 8 4 12.50 4
9: 3 100.00 3 9: 4 22.22 4
10: 3 100.00 3 10: 4 30.00 4
11: 3 100.00 3 11: 4 36.36 4
12: 3 100.00 3 12: 1 33.33 4
13: 3 100.00 3 13: 4 38.46 4
14: 3 100.00 3 14: 1 3571 4
15: 3 100.00 3 15: 4 40.00 4

(©) (d)

Fig. 4. Sample output file for each jamming type: (a) barrage,
(b) single-tone, (c) successive-pulse, and (d) protocol-aware.

Correctly Predicted Samples
R = (D

Samples in the Dataset

III. MODULE IMPLEMENTATION

The receiver module depicted in Fig. 1(b) is adopted in a
Clover 4.2 open-source drone from COEX, as featured in Fig. 5.
This drone is equipped with Raspberry Pi 4 that facilitates 64-bit
ARM Cortex-A72 quad-core CPU @ 1.5 GHz processor and 1
GB of memory [30]. This processor is interfaced with HackRF
One SDR via micro-USB cable for receiving the radio frequency
transmissions at 2.4 GHz (i.e., drone operating frequency). Once
these transmissions are captured, two Python-based subroutines
are executed: Feature Extraction.py for extracting the eight
above-mentioned features and Jamming_Classification.py for
exploiting these features for running, in real-time, a five-class ML
classifier for detecting jamming presence and specifying its type.

Prior implementing the module, the training and validation of
the RF classifier are repeated using the Raspberry processor to
calculate the detection/classification time and to establish a
comparison between the computer and Raspberry processors
considering DR, F-score (FS), and false-alarm rate (FAR). The
calculations of these evaluation metrics are performed as follows:

Precision x Recall
F-score =2 2)
Precision + Recall

False Positive Samples
FAR =

"~ False Positive+True Negative Samples

(€)
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In (2), the “Precision” is defined as the number of positive
samples predicted as positive (i.e., true positive) divided by the
sum of true positive and negative samples predicted as positive
(i.e., false positive). Also, the “Recall” is the number of true
positive samples divided by the sum of true positive and positive
samples predicted as negative (i.e., false negative). F-score is
computed from the Precision and Recall to represent their
harmonic mean. Finally, the FAR is the number of false positive
samples divided by the sum of false positive and true negative
samples predicted by the classifier. Table II illustrates that the
validation accuracy (VA) and DR of the developed classifier are
higher than 92% for both processors. In addition, the testing time
with the use of the Raspberry processor is 10.64 seconds. Since
this testing time results from classifying nearly 7,070 samples
(i.e., 30% of the overall dataset), the average processing time of
the five-class RF model to classify a sample is 1.5 ms, enabling
real-time jamming detection/classification. Fig. 6 illustrates the
resulting confusion matrices of the classifier after completing the
training/testing with the computer and Raspberry Pi processors.
Such matrices indicate that none of the jamming attacks are
misclassified as No Jamming. Misclassification, however, occurs
mostly among barrage and protocol-aware jamming types mainly
due to their similar spectral properties. The weighted FARs are
computed from these matrices to be 1.33% and 1.10% for the
computer and raspberry Pi processors, respectively. Furthermore,

TABLE II
MODEL EVALUATION METRICS UTILIZING COMPUTER AND RASPBERRY PI
VA (%) DR(%) FS Training(sec) Testing (sec)
Computer  92.20+0.600 92.20 092 5404 0411
Raspb.Pi  93.57+£0.006 9349 091 971.69 10.64

Actual Label
Single  Success.
Clean Barrage tone pulse P-aware
1 1 1 1 3000
@ 3.016 0 0 0 0
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w
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& 000% 1.78% 042% 0.00% 11.75%
= -0
(b)

Fig. 6. Confusion matrices for testing the five-class RF model
with (a) computer and (b) Raspberry Pi processors.

TABLE III
UPDATED ACCURACY SCORE FOR EACH JAMMING CASE FOR 100 SAMPLES
Parameter C 0 1 2 3 4
No. of Misclassifications 0 31 0 0 40
DR (%) 100 69 100 100 60

it can be inferred from the confusion matrix in Fig. 6(b) that, of
the 7,070 testing samples, the resulting DRs of the classifier for
C=0,1,2,3, and 4 are 100%, 83.7%, 95.1%, 99.9%, and 77%,
respectively. After validating the classifier using Raspberry, the
Python code obtained from the overall GNURadio receiver module
is built in the drone as described in Fig. 5. All five scenarios (i.e.,
no jamming, barrage, single-tone, successive-pulse, protocol-
aware) are tested while the drone is idling. In these tests, an SDR
is used to launch each jamming type considering a 1.5-meter
jammer-drone separation to enable the receiver module for
capturing and classifying 100 samples per scenario. The DR for all
scenarios is calculated and updated as elaborated in Section IT and
is summarized in Table III. The developed module showed 100%
accuracy in detecting jamming presence. Also, no misclassification
occurs when there is no jamming or when either single-tone or
successive-pulse is launched. On the other hand, barrage is
misclassified 31% of the time (18% as single-tone, 13% as
protocol-aware); whereas protocol-aware is misclassified 40% of
the time (33% as barrage, 5% as single-tone, 2% as successive-
pulse). Such results suggest that the proposed receiver module
provides a viable solution for jamming detection and classification.
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V. CONCLUSION

Real-time jamming detection and classification configuration
with applications to UAVs is proposed via the integration of an
SDR with on-board Raspberry Pi processor. The SDR is
utilized for capturing and forwarding the radio frequency
signals to a receiver module hosted in the processor. This
module extracts OFDM, energy, and SNR signal features and
exploits an ML algorithm for detecting and classifying four
jamming types: barrage, single-tone, successive-pulse, and
protocol-aware. The resulting configuration yielded in an
overall DR and FAR of 93% and 1.10%, respectively. These
values are in proximity to their counterparts obtained during the
validation of the receiver module. Future work entails testing
the developed module while the drone is in operation and
implementing jamming mitigation protocols such as path
rescheduling and beamforming front-end circuitry.
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