

Real-time Classification of Jamming Attacks against

UAVs via on-board Software-defined Radio and

Machine Learning-based Receiver Module

J. Price(1), Y. Li(1), K. Al Shamaileh(1), Q. Niyaz(1), N. Kaabouch(2), and V. Devabhaktuni(3)

(1) Electrical and Computer Engineering Department, Purdue University Northwest, Hammond 46323, IN, USA
(2) School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks 58202, ND, USA

(3) Electrical and Computer Engineering Department, The University of Maine, Orono 04469, ME, USA

E-mail: kalshama@pnw.edu

Abstract—In this article, real-time jamming detection against

unmanned aerial vehicles (UAVs) is proposed via the integration

of a software-defined radio (SDR) with an on-board Raspberry Pi

processor. The SDR is utilized for capturing and forwarding the

radio frequency signals to a receiver module hosted in the

processor. This module extracts signal features characterized by

orthogonal frequency division multiplexing (OFDM) parameters,

energy parameters, and signal-to-noise ratio (SNR) parameters.

Upon feature extraction, the aforementioned module exploits a

machine learning (ML) classifier for detecting and classifying four

jamming types; namely, barrage, single-tone, successive-pulse,

and protocol-aware. The resulting configuration yielded in an

overall detection rate (DR) of 93% and a false alarm rate (FAR) of

1.1%, which are in proximity to their counterparts obtained

during the validation stage of the receiver module.

Index Terms—Jamming classification, machine learning (ML),

orthogonal frequency division multiplexing (OFDM), software-

defined radio (SDR), unmanned aerial vehicles (UAVs).

I. INTRODUCTION

NMANNED arial vehicles (UAVs) have recently seen

a widespread use for a variety of applications, such as

research missions, mailing delivery, and disaster

management. With autonomous control, UAVs (e.g., drones)

are inherently susceptible to a variety of cyberattacks aiming

for sabotaging their operations or accessing their data and

trajectory information. In other words, a malfunction resulting

from a cyberattack (i.e., jamming) potentially compromises

sensitive payloads or, in some extreme scenarios, leads to aerial

collisions. Hence, the risks of cyberattacks associated with the

functionality of UAVs must be acknowledged and mitigated.

Cyberattacks on UAVs branch into data interception, data

manipulation, and denial-of-service. Data interception is often

encountered with broadcast authentication protocols, which use

cryptographic and non-cryptographic techniques [1–5]. On the

other hand, secure location verification (e.g., multilateration)

were adopted to sideline the impacts of data manipulation

attacks [6,7]. However, these solutions are inefficient for

jamming detection provided that attackers can easily launch

interference with software-defined radios (SDRs) to disrupt the

trajectory of a UAV. As a result, developing jamming detection

techniques that also adhere to the existing standards is of grave

importance. In this work, radiometric transmissions (i.e., signal

features) are used to train a machine learning (ML) algorithm

within a receiver module for jamming detection and classification.

To this end, SDR units are exploited to launch jamming attacks

and collect signal features. The underlying approach facilitates

minimal modifications to standards and considers realistic attack

setups unlike other reported efforts that assume software/hardware

changes and simulation-based scenarios [8–17]. It is noteworthy to

point out that ML was proposed for satellite communications,

vehicle Ad Hoc networks, 5G networks, Internet of Things, and

UAVs with applications to jamming detection, trajectory

optimization, swarm communication, situational awareness, and

malicious attack mitigation [18–25].

The groundwork of this research was laid for in a previous

effort that resulted in large experimental datasets of signal

features [26]. These features were obtained via SDRs and

GNURadio flowgraphs built with an external computer. Feature

extraction was followed by training and validating multiple ML

algorithms for detecting/classifying different jamming attacks.

The work herein extends on [26] in the following aspects:

1. The ML algorithm with the highest detection rate (DR)

is integrated with the GNURadio feature extraction

flowgraph to create an all-inclusive seamless receiver

module that is capable of preforming real-time

decision-making for jamming detection/classification.

2. The developed module is incorporated into a drone via on-

board Raspberry Pi processor paired with a low-profile

SDR (i.e., HackRF One). This entails loading the

processor with the Python code generated from the overall

module and verifying the jamming classification process.

This article is organized as follows: Section II details the

integration of the ML algorithm and GNURadio feature

extraction flowgraph into one receiver module. Here, the

extracted features are fed directly to the classification

algorithm. Section III elaborates on exploiting the module to

enable a drone for detecting and classifying specific jamming

types. This setup is realized with on-board SDR and Raspberry

Pi processer. Conclusions are provided in Section IV.

U

252

978-1-6654-8009-3/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 E

le
ct

ro
 In

fo
rm

at
io

n
Te

ch
no

lo
gy

 (e
IT

) |
 9

78
-1

-6
65

4-
80

09
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

eI
T5

38
91

.2
02

2.
98

13
92

3

Authorized licensed use limited to: Purdue University Northwest. Downloaded on August 03,2022 at 00:34:17 UTC from IEEE Xplore. Restrictions apply.

out

UHD:USRP Sink

command

in

Async_msgs

Random Source

UChar To Float

Multiply Const

Add Const
Float To Complex

Constant Source

out out

out

out

out

outin

in re

im

outout

in

 Single-tone

Protocol-aware

 Barrage Successive-pulse

Vector Source

Noise Type: Successive Pulses

Signal Source

Noise Type: Cosine

Noise Source

Noise Type: Gaussian

Soapy Source

(HackRF Device)
out

Channel Model

SNR Estimator Probe

FFTcommand

in out

outin

in signal

OFDM Estimator

Complex to Mag^2

Noise Source

Energy Detector

Random Forest

Classifier

in ofdm_out

in out

out

in

in

out

ED_out

in

snr

noise

ED IN

SIGNAL IN

NOISE IN

OFDM IN

SNR IN out Null Sinkin

Null Sink

(a)

(b)

Capturing RF Signals via SDR

Jamming_Classification.pyFeature_Extraction.py

Fig. 1. Simplified GNURadio flowgraphs for (a) launching jamming attacks and (b) receiver module for extracting signal features and

executing jamming detection/classification. Further details on each jamming attack and ML training/testing are available in [26].

II. MODULE DEVELOPMENT AND VALIDATION

In this section, a real-time jamming detection/classification

module is developed and tested on a computer prior porting to

the drone’s on-board processor. This module enables the

detection and classification of four types of jamming attacks:

barrage, single-tone, successive-pulse, and protocol-aware.

This module also considers IEEE 802.11 orthogonal frequency

division multiplexing (OFDM) communication technology at

2.4 GHz center frequency. Fig. 1(a) shows a simplified

GNURadio flowgraph that conveys how each jamming type is

launched, whereas Fig. 1(b) illustrates the feature extraction

and ML classification blocks at the receiver side. The five-class

random forest (RF) classifier developed in a previous effort is

utilized here for its high DR, i.e., 92% in comparison to the

other investigated algorithms [26]. In this setup, eight signal

features are extracted. Of these features, three are OFDM-

specific (i.e., subcarrier length, cyclic prefix length, subcarrier

spacing). The subcarrier length indicates the number of the

subcarriers being used. The cyclic prefix length controls symbol

overlapping, and the subcarrier spacing is the frequency

separation among subcarriers [27]. The OFDM Estimator block

shown in Fig. 1(b) is used to extract these features [28]. Two

other features are energy-specific; namely, average received

power and threshold. The latter is a binary indicator that returns

1 once the average received power exceeds a certain level and

returns 0 otherwise. Such features are extracted with the use of

the Energy Detector block [28]. Finally, three additional

features; specifically, signal-to-noise ratio (SNR), average

signal power, and average noise power are extracted from the

SNR Estimator Probe block. It is worthy to be pointed out that

the average received power obtained from the Energy Detector

block conveys noise energy; whereas the average signal power

obtained from the SNR Estimator Probe presents the estimated

signal power excluding noise power. For the training and

validation of the RF classifier, a total of 23,565 signal samples

were collected following the attack scenario reported in [26, Fig.

2]. Of these samples, 10,071 were obtained under no jamming,

whereas 3,392, 3,367, 3,378, and 3,357 were obtained in the

presence of barrage, single-tone, successive-pulse, and protocol-

aware jamming, respectively. The complete dataset with the

23,565 samples is provided in [29]. While developing the

classifier, 10-fold cross-validation was used and grid search is

utilized for finding the optimal hyper-parameters.

The jamming classifcation block receives all features from

the feature extraction block and writes classification parameter

C, C = 0, 1 … 4, to a file according to the jamming type as

depicted in Table 1. The resulting C values are utilized in

evaluating the classification accuracy (i.e., DR) by comparing

the predictions of the module with the actual launched jamming

type. Fig. 2 illustrates the pseudo code for the receiver module.

Also, Fig. 3 shows a sample output file with prediction results

for C = 0 (i.e., No Jamming), which results in 100% DR. This

DR is calculated and updated for every set of extracted features.

The Prediction together with the Jamming Type are printed to

validate the functionality of the developed receiver module.

TABLE I

CLASSIFICATION PARAMETER AND CORRESPONDING JAMMING TYPE

Parameter C Jamming Type

0 No Jamming

1 Barrage

2 Single-tone

3 Successive-pulse

4 Protocol-aware

253

Authorized licensed use limited to: Purdue University Northwest. Downloaded on August 03,2022 at 00:34:17 UTC from IEEE Xplore. Restrictions apply.

Algorithm: Real-Time Jamming Classification

Given: Features – Feature_Extraction.py

 Model – Jamming_Classification.py

YActual – List with actual jamming type

YPredict – List of predicted outputs

C – Jamming Type // C ∈ {0,4}

1: Procedure: Real_Time_Jamming_Classification_Module()

2: Prediction = Jamming_Classification.predict(Features)

3: YActual.append(C) // Replace with jamming type

4: YPredict.append(Prediction)

5: DR = DetectionRate(YActual, YPredict)

6: Loop: for each Prediction do

7: print Prediction to console window

8: end for

9: Print DetectionRate to console window

10: File = open(Results_File.txt)

11: File.write(Prediction, DR×100, C)

12: end Procedure

Fig. 2. Pseudocode of the receiver module for jamming classification.

The receiver module in Fig. 1(b) is also tested by calculating the

DR while a jammer is in proximity to a receiver terminal (i.e.,

computer). To collect experimental data, two computers are

utilized. The first computer uses an SDR to function as a receiver

running the developed module. This computer has a 64-bit

Windows 10 machine with Intel®CoreTMi7- 7700HQ CPU @ 2.8

GHz processor and 32 GB of memory. The second computer is for

launching each of the jamming attacks via another SDR. Fig. 4

presents sample outputs of 15 predictions for each attack type. The

receiver module demonstrates a DR of 100% for barrage and

successive-pulse types. Moreover, the resulting DR for single-tone

and protocol-aware are 93.33% and 40%, respectively. The high

misprediction in protocol-aware is attributed to its spectral

similarities to barrage jamming and is expected to improve with the

increase of samples. It is to be stressed that the DR is updated as

samples are added. For instance, Fig. 4(b) shows that sample 1 is

mispredicted. Hence, DR assumes one misprediction out of a single

attempt, i.e., 0%. After correctly predicting sample 2, the DR is

updated with one correct prediction out of two attempts, i.e., 50%.

Finally, after receiving all samples, the overall DR is found to be 14

correct predictions of 15 predictions, i.e., 93.33%. Accordingly, the

DR can be expressed as follows:

 Prediction DR(%) Jamming Type
1: 0 100.00 0
2: 0 100.00 0
3: 0 100.00 0
4: 0 100.00 0
5: 0 100.00 0
6: 0 100.00 0
7: 0 100.00 0
8: 0 100.00 0
9: 0 100.00 0
10: 0 100.00 0
11: 0 100.00 0
12: 0 100.00 0
13: 0 100.00 0
14: 0 100.00 0
15: 0 100.00 0

Fig. 3. Sample output file under no jamming attack (C = 0).

Prediction DR(%) Jamming Type
1: 1 100.00 1
2: 1 100.00 1
3: 1 100.00 1
4: 1 100.00 1
5: 1 100.00 1
6: 1 100.00 1
7: 1 100.00 1
8: 1 100.00 1
9: 1 100.00 1
10: 1 100.00 1
11: 1 100.00 1
12: 1 100.00 1
13: 1 100.00 1
14: 1 100.00 1
15: 1 100.00 1

Prediction DR(%) Jamming Type
1: 1 0.00 2
2: 2 50.00 2
3: 2 66.67 2
4: 2 75.00 2
5: 2 80.00 2
6: 2 83.33 2
7: 2 85.71 2
8: 2 87.50 2
9: 2 88.89 2
10: 2 90.00 2
11: 2 90.91 2
12: 2 91.67 2
13: 2 92.31 2
14: 2 92.86 2
15: 2 93.33 2

(a) (b)

 Prediction DR(%) Jamming Type
1: 3 100.00 3
2: 3 100.00 3
3: 3 100.00 3
4: 3 100.00 3
5: 3 100.00 3
6: 3 100.00 3
7: 3 100.00 3
8: 3 100.00 3
9: 3 100.00 3
10: 3 100.00 3
11: 3 100.00 3
12: 3 100.00 3
13: 3 100.00 3
14: 3 100.00 3
15: 3 100.00 3

 Prediction DR(%) Jamming Type
1: 2 0.00 4
2: 2 0.00 4
3: 2 0.00 4
4: 2 0.00 4
5: 2 0.00 4
6: 2 0.00 4
7: 2 0.00 4
8: 4 12.50 4
9: 4 22.22 4
10: 4 30.00 4
11: 4 36.36 4
12: 1 33.33 4
13: 4 38.46 4
14: 1 35.71 4
15: 4 40.00 4

 (c) (d)

Fig. 4. Sample output file for each jamming type: (a) barrage,

(b) single-tone, (c) successive-pulse, and (d) protocol-aware.

Correctly Predicted Samples

DR
Samples in the Dataset

= (1)

III. MODULE IMPLEMENTATION

The receiver module depicted in Fig. 1(b) is adopted in a

Clover 4.2 open-source drone from COEX, as featured in Fig. 5.

This drone is equipped with Raspberry Pi 4 that facilitates 64-bit

ARM Cortex-A72 quad-core CPU @ 1.5 GHz processor and 1

GB of memory [30]. This processor is interfaced with HackRF

One SDR via micro-USB cable for receiving the radio frequency

transmissions at 2.4 GHz (i.e., drone operating frequency). Once

these transmissions are captured, two Python-based subroutines

are executed: Feature_Extraction.py for extracting the eight

above-mentioned features and Jamming_Classification.py for

exploiting these features for running, in real-time, a five-class ML

classifier for detecting jamming presence and specifying its type.

Prior implementing the module, the training and validation of

the RF classifier are repeated using the Raspberry processor to

calculate the detection/classification time and to establish a

comparison between the computer and Raspberry processors

considering DR, F-score (FS), and false-alarm rate (FAR). The

calculations of these evaluation metrics are performed as follows:

Precision Recall

F-score 2
Precision Recall


=

+
 (2)

False Positive Samples

FAR
False Positive+True Negative Samples

= (3)

254

Authorized licensed use limited to: Purdue University Northwest. Downloaded on August 03,2022 at 00:34:17 UTC from IEEE Xplore. Restrictions apply.

Python Environment

Write to File

Capturing RF Signals via SDR

Feature_Extraction.py

Jamming_Classification.py

 Feature_Extraction.py
– Three OFDM features
– Two energy features
– Three SNR features

Jamming_Classification.py
– Random forest algorithm

– Five-class classifier

Features...

Fig. 5. Hardware-software configurations for classifying jamming.

In (2), the “Precision” is defined as the number of positive

samples predicted as positive (i.e., true positive) divided by the

sum of true positive and negative samples predicted as positive

(i.e., false positive). Also, the “Recall” is the number of true

positive samples divided by the sum of true positive and positive

samples predicted as negative (i.e., false negative). F-score is

computed from the Precision and Recall to represent their

harmonic mean. Finally, the FAR is the number of false positive

samples divided by the sum of false positive and true negative

samples predicted by the classifier. Table II illustrates that the

validation accuracy (VA) and DR of the developed classifier are

higher than 92% for both processors. In addition, the testing time

with the use of the Raspberry processor is 10.64 seconds. Since

this testing time results from classifying nearly 7,070 samples

(i.e., 30% of the overall dataset), the average processing time of

the five-class RF model to classify a sample is 1.5 ms, enabling

real-time jamming detection/classification. Fig. 6 illustrates the

resulting confusion matrices of the classifier after completing the

training/testing with the computer and Raspberry Pi processors.

Such matrices indicate that none of the jamming attacks are

misclassified as No Jamming. Misclassification, however, occurs

mostly among barrage and protocol-aware jamming types mainly

due to their similar spectral properties. The weighted FARs are

computed from these matrices to be 1.33% and 1.10% for the

computer and raspberry Pi processors, respectively. Furthermore,

TABLE II

MODEL EVALUATION METRICS UTILIZING COMPUTER AND RASPBERRY PI

 VA (%) DR (%) FS Training (sec) Testing (sec)

Computer 92.20 ± 0.600 92.20 0.92 5.404 0.411
Raspb. Pi 93.57 ± 0.006 93.49 0.91 971.69 10.64

(a)

(b)

Fig. 6. Confusion matrices for testing the five-class RF model

with (a) computer and (b) Raspberry Pi processors.

TABLE III

UPDATED ACCURACY SCORE FOR EACH JAMMING CASE FOR 100 SAMPLES
Parameter C 0 1 2 3 4

No. of Misclassifications 0 31 0 0 40

DR (%) 100 69 100 100 60

it can be inferred from the confusion matrix in Fig. 6(b) that, of

the 7,070 testing samples, the resulting DRs of the classifier for

C = 0, 1, 2, 3, and 4 are 100%, 83.7%, 95.1%, 99.9%, and 77%,

respectively. After validating the classifier using Raspberry, the

Python code obtained from the overall GNURadio receiver module

is built in the drone as described in Fig. 5. All five scenarios (i.e.,

no jamming, barrage, single-tone, successive-pulse, protocol-

aware) are tested while the drone is idling. In these tests, an SDR

is used to launch each jamming type considering a 1.5-meter

jammer-drone separation to enable the receiver module for

capturing and classifying 100 samples per scenario. The DR for all

scenarios is calculated and updated as elaborated in Section II and

is summarized in Table III. The developed module showed 100%

accuracy in detecting jamming presence. Also, no misclassification

occurs when there is no jamming or when either single-tone or

successive-pulse is launched. On the other hand, barrage is

misclassified 31% of the time (18% as single-tone, 13% as

protocol-aware); whereas protocol-aware is misclassified 40% of

the time (33% as barrage, 5% as single-tone, 2% as successive-

pulse). Such results suggest that the proposed receiver module

provides a viable solution for jamming detection and classification.

255

Authorized licensed use limited to: Purdue University Northwest. Downloaded on August 03,2022 at 00:34:17 UTC from IEEE Xplore. Restrictions apply.

V. CONCLUSION

Real-time jamming detection and classification configuration

with applications to UAVs is proposed via the integration of an

SDR with on-board Raspberry Pi processor. The SDR is

utilized for capturing and forwarding the radio frequency

signals to a receiver module hosted in the processor. This

module extracts OFDM, energy, and SNR signal features and

exploits an ML algorithm for detecting and classifying four

jamming types: barrage, single-tone, successive-pulse, and

protocol-aware. The resulting configuration yielded in an

overall DR and FAR of 93% and 1.10%, respectively. These

values are in proximity to their counterparts obtained during the

validation of the receiver module. Future work entails testing

the developed module while the drone is in operation and

implementing jamming mitigation protocols such as path

rescheduling and beamforming front-end circuitry.

ACKNOWLEDGMENT

This research is funded by the National Science Foundation,

Secure and Trustworthy Cyberspace under Award no. 2006662.

REFERENCES

[1] M. Strohmeier, V. Lenders, and I. Martinovic. “On the security of the
automatic dependent surveillance-broadcast protocol,” IEEE Commun.

Surveys & Tutorials, vol. 17, no. 2, pp.1066–1087, 2014.
[2] M. Manesh and N. Kaabouch, “Analysis of vulnerabilities, attacks,

countermeasures and overall risk of the Automatic Dependent

Surveillance-Broadcast (ADS-B) system,” Int. J. Critical Infra. Protec.,

vol. 19, pp. 16–31, 2017.
[3] K. Wesson, T. Humphreys, and B. Evans, “Can cryptography secure next

generation air traffic surveillance?” IEEE Sec. Priv. Mag., draft (2014),

last accessed on March 2, 2022.
[4] C. Giannatto, Jr., “Challenges of implementing automatic dependent

surveillance broadcast in the nextgen air traffic management system,”

Ph.D. dissertation, Univ. Maine, Orono, ME, USA, 2015.
[5] B. Danev, H. Luecken, S. Capkun, and K. El Defrawy, “Attacks on

physical-layer identification,” in Proc. 3rd ACM Conf. Wireless Net. and

Sec. (WiSec), 2010, pp. 89–98.
[6] S. Brands and D. Chaum, “Distance-bounding protocols,” in Proc.

Workshop Theory Appl. Cryptograph. Techn. Berlin, Germany: Springer,

1993, pp. 344–359.
[7] B. Xiao, B. Yu, and C. Gao, “Detection and localization of sybil nodes in

VANETs,” in Proc. Workshop Dependability Issues Wireless Ad Hoc

Netw. Sensor Netw. (DIWANS), 2006, pp. 1–8.
[8] M. Sliti, W. Abdallah, and N. Boudriga, “Jamming attack detection in

optical UAV networks,” in Proc. 20th Int. Conf. Transparent Opt. Netw.

(ICTON), 2018, pp. 1–5.
[9] D. Karagiannis and A. Argyriou, “Jamming attack detection in a pair of

RF communicating vehicles using unsupervised machine learning,” Veh.

Commun., vol. 13, pp. 56–63, 2018.
[10] Y. Arjoune, F. Salahdine, M. S. Islam, E. Ghribi, and N. Kaabouch, “A

novel jamming attacks detection approach based on machine learning for

wireless communication,” in Proc. Int. Conf. Inf. Netw. (ICOIN), 2020,
pp. 459–464.

[11] L. Mokdad, J. Ben-Othman, and A. T. Nguyen, “DJAVAN: Detecting

jamming attacks in vehicle ad hoc networks,” Perform. Eval., vol. 87, pp.
47–59, 2015.

[12] A. Nguyen, L. Mokdad, and J. Ben Othman, “Solution of detecting

jamming attacks in vehicle ad hoc networks,’’ in Proc. 16th ACM Int.
Conf. Model., Anal. Simul. Wireless Mobile Syst., 2013, pp. 405–410.

[13] J. Grover, N. K. Prajapati, V. Laxmi, and M. Gaur, “Machine learning
approach for multiple misbehavior detection in vanet,” in Proc. 1st Int.

Conf. Adv. Comput. Commun. (ACC), Kochi, India, 2011, pp. 644–653.
[14] H. Liu, B. Lang, M. Liu, and H. Yan, “CNN and RNN based payload

classification methods for attack detection,” Knowl.-Based Syst., vol. 163,

pp. 332–341, 2019.

[15] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-
Nemrat, and S. Venkatraman, “Deep learning approach for intelligent

intrusion detection system,” IEEE Access, vol. 7, pp. 41525–41550, 2019.

[16] X. Wang, X. Wang, and S. Mao, “RF sensing in the Internet of Things: A
general deep learning framework,” IEEE Commun. Mag., vol. 56, no. 9,

pp. 62–67, 2018.

[17] C. Liu, J. Wang, X. Liu, and Y.-C. Liang, “Deep CM-CNN for spectrum
sensing in cognitive radio,” IEEE J. Sel. Areas Commun., vol. 37, no. 10,

pp. 2306–2321, Oct. 2019.

[18] S. Gecgel and G. K. Kurt, “Intermittent jamming against telemetry and
telecommand of satellite systems and a learning-driven detection

strategy,” in Proc. 3rd ACM Workshop Wireless Secur. Mach. Learn.

(WiseML), 2021, pp. 43–48.
[19] S. Gecgel, C. Goztepe, and G. K. Kurt, “Jammer detection based on

artificial neural networks: A measurement study,” in Proc. ACM

Workshop Wireless Secur. Mach. Learn. (WiseML), 2019, pp. 43–48.
[20] O. Puñal, I. Aktaş, C.J. Schnelke, G. Abidin, K. Wehrle, and J. Gross,

“Machine learning-based jamming detection for IEEE 802.11: Design and

experimental evaluation,” in Proc. IEEE Int. Symp. World Wireless,
Mobile Multimedia Netw., 2014, pp. 1–10.

[21] B. Upadhyaya, S. Sun, and B. Sikdar, “Machine learning-based jamming

detection in wireless IoT networks,” in Proc. IEEE VTS Asia Pacific

Wireless Commun. Symp. (APWCS), 2019, pp. 1–5.

[22] M. Hachimi, G. Kaddoum, G. Gagnon, and P. Illy, “Multi-stage jamming

attacks detection using deep learning combined with kernelized support
vector machine in 5G cloud radio access networks,” in Proc. Int. Symp.

Netw., Comput. Commun. (ISNCC), 2020, pp. 1–5.
[23] P. Bithas, E. Michailidis, N. Nomikos, D. Vouyioukas, and A. G. Kanatas,

“A survey on machine-learning techniques for UAV-based

communications,” Sensors, vol. 19, no. 23, p. 5170, 2019.
[24] Q. Wu, H. Wang, X. Li, B. Zhang, and J. Peng, “Reinforcement

learningbased anti-jamming in networked UAV radar systems,” Appl.

Sci., vol. 9, no. 23, p. 5173, 2019.
[25] X. Lu, L. Xiao, C. Dai, and H. Dai, “UAV-aided cellular communications

with deep reinforcement learning against jamming,” IEEE Wireless

Commun., vol. 27, no. 4, pp. 48–53, 2020.
[26] Y. Li, J. Pawlak, J. Price, K. Al Shamaileh, Q. Niyaz, S. Paheding, and V.

Devabhaktuni, “Jamming Detection and Classification in OFDM-based

UAVs via Feature-and Spectrogram-tailored Machine Learning,” IEEE
Access, vol. 10, pp. 16859–16870, 2022.

[27] Y. Cho, J. Kim, W. Yang, and C. Kang, “Introduction OFDM. Wiley, pp. 111–

151, 2010. [Online]. Available: https://ieeexplore.ieee.org/book/5675894.
[28] S. Müller and C. Richardson. GitHub—Gnuradio/Gr-Inspector: Signal

Analysis Toolbox for GNU Radio. Accessed: Dec. 21, 2021. [Online].

Available: https://github.com/gnuradio/gr-inspector.
[29] GitHub: UAVs Jamming Detection and Classification. Accessed: Mar. 1,

2022. Available: https://github.com/michaelevol/uavs_jamming_detection.

[30] COEX. Accessed: Jan. 12, 2022. [Online]. Available: https://coex.tech/clover.

256

Authorized licensed use limited to: Purdue University Northwest. Downloaded on August 03,2022 at 00:34:17 UTC from IEEE Xplore. Restrictions apply.

