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Abstract—In this article, real-time jamming detection against 

unmanned aerial vehicles (UAVs) is proposed via the integration 

of a software-defined radio (SDR) with an on-board Raspberry Pi 

processor. The SDR is utilized for capturing and forwarding the 

radio frequency signals to a receiver module hosted in the 

processor. This module extracts signal features characterized by 

orthogonal frequency division multiplexing (OFDM) parameters, 

energy parameters, and signal-to-noise ratio (SNR) parameters. 

Upon feature extraction, the aforementioned module exploits a 

machine learning (ML) classifier for detecting and classifying four 

jamming types; namely, barrage, single-tone, successive-pulse, 

and protocol-aware. The resulting configuration yielded in an 

overall detection rate (DR) of 93% and a false alarm rate (FAR) of 

1.1%, which are in proximity to their counterparts obtained 

during the validation stage of the receiver module. 
 

Index Terms—Jamming classification, machine learning (ML), 

orthogonal frequency division multiplexing (OFDM), software-

defined radio (SDR), unmanned aerial vehicles (UAVs). 

 

I. INTRODUCTION 

NMANNED arial vehicles (UAVs) have recently seen 

a widespread use for a variety of applications, such as 

research missions, mailing delivery, and disaster 

management. With autonomous control, UAVs (e.g., drones) 

are inherently susceptible to a variety of cyberattacks aiming 

for sabotaging their operations or accessing their data and 

trajectory information. In other words, a malfunction resulting 

from a cyberattack (i.e., jamming) potentially compromises 

sensitive payloads or, in some extreme scenarios, leads to aerial 

collisions. Hence, the risks of cyberattacks associated with the 

functionality of UAVs must be acknowledged and mitigated. 
 

Cyberattacks on UAVs branch into data interception, data 

manipulation, and denial-of-service. Data interception is often 

encountered with broadcast authentication protocols, which use 

cryptographic and non-cryptographic techniques [1–5]. On the 

other hand, secure location verification (e.g., multilateration) 

were adopted to sideline the impacts of data manipulation 

attacks [6,7]. However, these solutions are inefficient for 

jamming detection provided that attackers can easily launch 

interference with software-defined radios (SDRs) to disrupt the 

trajectory of a UAV. As a result, developing jamming detection 

 
 

techniques that also adhere to the existing standards is of grave 

importance. In this work, radiometric transmissions (i.e., signal 

features) are used to train a machine learning (ML) algorithm 

within a receiver module for jamming detection and classification. 

To this end, SDR units are exploited to launch jamming attacks 

and collect signal features. The underlying approach facilitates 

minimal modifications to standards and considers realistic attack 

setups unlike other reported efforts that assume software/hardware 

changes and simulation-based scenarios [8–17]. It is noteworthy to 

point out that ML was proposed for satellite communications, 

vehicle Ad Hoc networks, 5G networks, Internet of Things, and 

UAVs with applications to jamming detection, trajectory 

optimization, swarm communication, situational awareness, and 

malicious attack mitigation [18–25]. 
 

The groundwork of this research was laid for in a previous 

effort that resulted in large experimental datasets of signal 

features [26]. These features were obtained via SDRs and 

GNURadio flowgraphs built with an external computer. Feature 

extraction was followed by training and validating multiple ML 

algorithms for detecting/classifying different jamming attacks. 

The work herein extends on [26] in the following aspects: 
 

1. The ML algorithm with the highest detection rate (DR) 

is integrated with the GNURadio feature extraction 

flowgraph to create an all-inclusive seamless receiver 

module that is capable of preforming real-time 

decision-making for jamming detection/classification. 
 

2. The developed module is incorporated into a drone via on-

board Raspberry Pi processor paired with a low-profile 

SDR (i.e., HackRF One). This entails loading the 

processor with the Python code generated from the overall 

module and verifying the jamming classification process. 
 

This article is organized as follows: Section II details the 

integration of the ML algorithm and GNURadio feature 

extraction flowgraph into one receiver module. Here, the 

extracted features are fed directly to the classification 

algorithm. Section III elaborates on exploiting the module to 

enable a drone for detecting and classifying specific jamming 

types. This setup is realized with on-board SDR and Raspberry 

Pi processer. Conclusions are provided in Section IV. 
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Fig. 1. Simplified GNURadio flowgraphs for (a) launching jamming attacks and (b) receiver module for extracting signal features and 

executing jamming detection/classification. Further details on each jamming attack and ML training/testing are available in [26].

 

II. MODULE DEVELOPMENT AND VALIDATION 

In this section, a real-time jamming detection/classification 

module is developed and tested on a computer prior porting to 

the drone’s on-board processor. This module enables the 

detection and classification of four types of jamming attacks: 

barrage, single-tone, successive-pulse, and protocol-aware. 

This module also considers IEEE 802.11 orthogonal frequency 

division multiplexing (OFDM) communication technology at 

2.4 GHz center frequency. Fig. 1(a) shows a simplified 

GNURadio flowgraph that conveys how each jamming type is 

launched, whereas Fig. 1(b) illustrates the feature extraction 

and ML classification blocks at the receiver side. The five-class 

random forest (RF) classifier developed in a previous effort is 

utilized here for its high DR, i.e., 92% in comparison to the 

other investigated algorithms [26]. In this setup, eight signal 

features are extracted. Of these features, three are OFDM-

specific (i.e., subcarrier length, cyclic prefix length, subcarrier 

spacing). The subcarrier length indicates the number of the 

subcarriers being used. The cyclic prefix length controls symbol 

overlapping, and the subcarrier spacing is the frequency 

separation among subcarriers [27]. The OFDM Estimator block 

shown in Fig. 1(b) is used to extract these features [28]. Two 

other features are energy-specific; namely, average received 

power and threshold. The latter is a binary indicator that returns 

1 once the average received power exceeds a certain level and 

returns 0 otherwise. Such features are extracted with the use of 

the Energy Detector block [28]. Finally, three additional 

features; specifically, signal-to-noise ratio (SNR), average 

signal power, and average noise power are extracted from the 

SNR Estimator Probe block. It is worthy to be pointed out that 

the average received power obtained from the Energy Detector  

 
 

block conveys noise energy; whereas the average signal power 

obtained from the SNR Estimator Probe presents the estimated 

signal power excluding noise power. For the training and 

validation of the RF classifier, a total of 23,565 signal samples 

were collected following the attack scenario reported in [26, Fig. 

2]. Of these samples, 10,071 were obtained under no jamming, 

whereas 3,392, 3,367, 3,378, and 3,357 were obtained in the 

presence of barrage, single-tone, successive-pulse, and protocol-

aware jamming, respectively. The complete dataset with the 

23,565 samples is provided in [29]. While developing the 

classifier, 10-fold cross-validation was used and grid search is 

utilized for finding the optimal hyper-parameters.  
 

The jamming classifcation block receives all features from 

the feature extraction block and writes classification parameter 

C, C = 0, 1 … 4, to a file according to the jamming type as 

depicted in Table 1. The resulting C values are utilized in 

evaluating the classification accuracy (i.e., DR) by comparing 

the predictions of the module with the actual launched jamming 

type. Fig. 2 illustrates the pseudo code for the receiver module. 

Also, Fig. 3 shows a sample output file with prediction results 

for C = 0 (i.e., No Jamming), which results in 100% DR. This 

DR is calculated and updated for every set of extracted features. 

The Prediction together with the Jamming Type are printed to 

validate the functionality of the developed receiver module. 
 

TABLE I 

CLASSIFICATION PARAMETER AND CORRESPONDING JAMMING TYPE 

Parameter C Jamming Type 

0 No Jamming 

1 Barrage 

2 Single-tone 

3 Successive-pulse 

4 Protocol-aware 
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Algorithm: Real-Time Jamming Classification 

Given: Features        – Feature_Extraction.py 

 Model        – Jamming_Classification.py 

YActual        – List with actual jamming type 

YPredict        – List of predicted outputs 

C        – Jamming Type // C ∈ {0,4} 

 

1: Procedure: Real_Time_Jamming_Classification_Module() 

2: Prediction          =   Jamming_Classification.predict(Features) 

3: YActual.append(C)                   // Replace with jamming type 

4: YPredict.append(Prediction) 

5: DR                   =   DetectionRate(YActual, YPredict) 

6: Loop: for each Prediction do 

7:     print Prediction to console window 

8: end for 

9: Print DetectionRate to console window 

10: File                =   open(Results_File.txt) 

11: File.write(Prediction, DR×100, C) 

12: end Procedure 
  

Fig. 2. Pseudocode of the receiver module for jamming classification. 
 

The receiver module in Fig. 1(b) is also tested by calculating the 

DR while a jammer is in proximity to a receiver terminal (i.e., 

computer). To collect experimental data, two computers are 

utilized. The first computer uses an SDR to function as a receiver 

running the developed module. This computer has a 64-bit 

Windows 10 machine with Intel®CoreTMi7- 7700HQ CPU @ 2.8 

GHz processor and 32 GB of memory. The second computer is for 

launching each of the jamming attacks via another SDR. Fig. 4 

presents sample outputs of 15 predictions for each attack type. The 

receiver module demonstrates a DR of 100% for barrage and 

successive-pulse types. Moreover, the resulting DR for single-tone 

and protocol-aware are 93.33% and 40%, respectively. The high 

misprediction in protocol-aware is attributed to its spectral 

similarities to barrage jamming and is expected to improve with the 

increase of samples. It is to be stressed that the DR is updated as 

samples are added. For instance, Fig. 4(b) shows that sample 1 is 

mispredicted. Hence, DR assumes one misprediction out of a single 

attempt, i.e., 0%. After correctly predicting sample 2, the DR is 

updated with one correct prediction out of two attempts, i.e., 50%. 

Finally, after receiving all samples, the overall DR is found to be 14 

correct predictions of 15 predictions, i.e., 93.33%. Accordingly, the 

DR can be expressed as follows: 
 

 

   Prediction             DR(%)            Jamming Type 
1:       0            100.00       0 
2:       0            100.00       0 
3:       0            100.00       0 
4:       0            100.00       0 
5:       0            100.00       0 
6:       0            100.00       0 
7:       0            100.00       0 
8:       0            100.00       0 
9:       0            100.00       0 
10:     0            100.00       0 
11:     0            100.00       0 
12:     0            100.00       0 
13:     0            100.00       0 
14:     0            100.00       0 
15:     0            100.00       0 

 
Fig. 3. Sample output file under no jamming attack (C = 0). 

Prediction              DR(%)            Jamming Type 
1:       1         100.00    1 
2:       1         100.00    1 
3:       1         100.00    1 
4:       1         100.00    1 
5:       1         100.00    1 
6:       1         100.00    1 
7:       1         100.00    1 
8:       1         100.00    1 
9:       1         100.00    1 
10:     1         100.00    1 
11:     1         100.00    1 
12:     1         100.00    1 
13:     1         100.00    1 
14:     1         100.00    1 
15:     1         100.00    1 

Prediction              DR(%)            Jamming Type 
1:       1           0.00          2 
2:       2           50.00     2 
3:       2           66.67     2 
4:       2           75.00     2 
5:       2           80.00     2 
6:       2           83.33     2 
7:       2           85.71     2 
8:       2           87.50     2 
9:       2           88.89     2 
10:     2           90.00     2 
11:     2           90.91     2 
12:     2           91.67     2 
13:     2           92.31     2 
14:     2           92.86     2 
15:     2           93.33     2  

(a)      (b) 

  Prediction             DR(%)             Jamming Type 
1:       3           100.00       3 
2:       3           100.00       3 
3:       3           100.00       3 
4:       3           100.00       3 
5:       3           100.00       3 
6:       3           100.00       3 
7:       3           100.00       3 
8:       3           100.00       3 
9:       3           100.00       3 
10:     3           100.00       3 
11:     3           100.00       3 
12:     3           100.00       3 
13:     3           100.00       3 
14:     3           100.00       3 
15:     3           100.00       3 

   Prediction          DR(%)            Jamming Type 
1:       2              0.00       4  
2:       2              0.00       4 
3:       2              0.00       4 
4:       2              0.00       4 
5:       2              0.00       4 
6:       2              0.00       4 
7:       2              0.00       4 
8:       4             12.50       4 
9:       4             22.22       4 
10:     4             30.00       4 
11:     4             36.36       4 
12:     1             33.33       4 
13:     4             38.46       4 
14:     1             35.71       4 
15:     4             40.00       4 

 
                        (c)      (d) 

Fig. 4. Sample output file for each jamming type: (a) barrage, 

(b) single-tone, (c) successive-pulse, and (d) protocol-aware. 

 

          
Correctly Predicted Samples

DR
Samples in the Dataset

=           (1) 

 

III. MODULE IMPLEMENTATION 

The receiver module depicted in Fig. 1(b) is adopted in a 

Clover 4.2 open-source drone from COEX, as featured in Fig. 5. 

This drone is equipped with Raspberry Pi 4 that facilitates 64-bit 

ARM Cortex-A72 quad-core CPU @ 1.5 GHz processor and 1 

GB of memory [30]. This processor is interfaced with HackRF 

One SDR via micro-USB cable for receiving the radio frequency 

transmissions at 2.4 GHz (i.e., drone operating frequency). Once 

these transmissions are captured, two Python-based subroutines 

are executed: Feature_Extraction.py for extracting the eight 

above-mentioned features and Jamming_Classification.py for 

exploiting these features for running, in real-time, a five-class ML 

classifier for detecting jamming presence and specifying its type.  
 

Prior implementing the module, the training and validation of 

the RF classifier are repeated using the Raspberry processor to 

calculate the detection/classification time and to establish a 

comparison between the computer and Raspberry processors 

considering DR, F-score (FS), and false-alarm rate (FAR). The 

calculations of these evaluation metrics are performed as follows: 
 

         
Precision Recall

F-score 2
Precision Recall


=

+
          (2) 

 

       
False Positive Samples

FAR
False Positive+True Negative Samples

=          (3) 
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Fig. 5. Hardware-software configurations for classifying jamming. 

 

In (2), the “Precision” is defined as the number of positive 

samples predicted as positive (i.e., true positive) divided by the 

sum of true positive and negative samples predicted as positive 

(i.e., false positive). Also, the “Recall” is the number of true 

positive samples divided by the sum of true positive and positive 

samples predicted as negative (i.e., false negative). F-score is 

computed from the Precision and Recall to represent their 

harmonic mean. Finally, the FAR is the number of false positive 

samples divided by the sum of false positive and true negative 

samples predicted by the classifier. Table II illustrates that the 

validation accuracy (VA) and DR of the developed classifier are 

higher than 92% for both processors. In addition, the testing time 

with the use of the Raspberry processor is 10.64 seconds. Since 

this testing time results from classifying nearly 7,070 samples 

(i.e., 30% of the overall dataset), the average processing time of 

the five-class RF model to classify a sample is 1.5 ms, enabling 

real-time jamming detection/classification. Fig. 6 illustrates the 

resulting confusion matrices of the classifier after completing the 

training/testing with the computer and Raspberry Pi processors. 

Such matrices indicate that none of the jamming attacks are 

misclassified as No Jamming. Misclassification, however, occurs 

mostly among barrage and protocol-aware jamming types mainly 

due to their similar spectral properties. The weighted FARs are 

computed from these matrices to be 1.33% and 1.10% for the 

computer and raspberry Pi processors, respectively. Furthermore, 

 
TABLE II 

MODEL EVALUATION METRICS UTILIZING COMPUTER AND RASPBERRY PI  

 VA (%) DR (%) FS Training (sec) Testing (sec) 

Computer 92.20 ± 0.600 92.20 0.92 5.404 0.411 
Raspb. Pi 93.57 ± 0.006 93.49 0.91 971.69 10.64 

 
(a) 

 
(b) 

Fig. 6. Confusion matrices for testing the five-class RF model 

with (a) computer and (b) Raspberry Pi processors. 

 
TABLE III 

UPDATED ACCURACY SCORE FOR EACH JAMMING CASE FOR 100 SAMPLES 
Parameter C 0 1 2 3 4 

No. of Misclassifications 0 31 0 0 40 

DR (%) 100 69 100 100 60 

 

it can be inferred from the confusion matrix in Fig. 6(b) that, of 

the 7,070 testing samples, the resulting DRs of the classifier for 

C = 0, 1, 2, 3, and 4 are 100%, 83.7%, 95.1%, 99.9%, and 77%, 

respectively. After validating the classifier using Raspberry, the 

Python code obtained from the overall GNURadio receiver module 

is built in the drone as described in Fig. 5. All five scenarios (i.e., 

no jamming, barrage, single-tone, successive-pulse, protocol-

aware) are tested while the drone is idling. In these tests, an SDR 

is used to launch each jamming type considering a 1.5-meter 

jammer-drone separation to enable the receiver module for 

capturing and classifying 100 samples per scenario. The DR for all 

scenarios is calculated and updated as elaborated in Section II and 

is summarized in Table III. The developed module showed 100% 

accuracy in detecting jamming presence. Also, no misclassification 

occurs when there is no jamming or when either single-tone or 

successive-pulse is launched. On the other hand, barrage is 

misclassified 31% of the time (18% as single-tone, 13% as 

protocol-aware); whereas protocol-aware is misclassified 40% of 

the time (33% as barrage, 5% as single-tone, 2% as successive-

pulse). Such results suggest that the proposed receiver module 

provides a viable solution for jamming detection and classification. 
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V. CONCLUSION 

Real-time jamming detection and classification configuration 

with applications to UAVs is proposed via the integration of an 

SDR with on-board Raspberry Pi processor. The SDR is 

utilized for capturing and forwarding the radio frequency 

signals to a receiver module hosted in the processor. This 

module extracts OFDM, energy, and SNR signal features and 

exploits an ML algorithm for detecting and classifying four 

jamming types: barrage, single-tone, successive-pulse, and 

protocol-aware. The resulting configuration yielded in an 

overall DR and FAR of 93% and 1.10%, respectively. These 

values are in proximity to their counterparts obtained during the 

validation of the receiver module. Future work entails testing 

the developed module while the drone is in operation and 

implementing jamming mitigation protocols such as path 

rescheduling and beamforming front-end circuitry. 
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