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Stochastic differential equations (SDEs) are used to describe a wide variety of complex 
stochastic dynamical systems. Learning the hidden physics within SDEs is crucial for 
unraveling fundamental understanding of these systems’ stochastic and nonlinear behavior. 
We propose a flexible and scalable framework for training artificial neural networks to 
learn constitutive equations that represent hidden physics within SDEs. The proposed 
stochastic physics-informed neural ordinary differential equation framework (SPINODE) 
propagates stochasticity through the known structure of the SDE (i.e., the known physics) 
to yield a set of deterministic ODEs that describe the time evolution of statistical moments 
of the stochastic states. SPINODE then uses ODE solvers to predict moment trajectories. 
SPINODE learns neural network representations of the hidden physics by matching 
the predicted moments to those estimated from data. Recent advances in automatic 
differentiation and mini-batch gradient descent with adjoint sensitivity are leveraged to 
establish the unknown parameters of the neural networks. We demonstrate SPINODE on 
three benchmark in-silico case studies and analyze the framework’s numerical robustness 
and stability. SPINODE provides a promising new direction for systematically unraveling 
the hidden physics of multivariate stochastic dynamical systems with multiplicative noise.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Stochastic dynamical systems are ubiquitous in a wide range of science and engineering problems, such as dynamical 
systems governed by Brownian motion or those that experience random perturbations from their surrounding environment 
[1–5]. Stochastic differential equations (SDEs) are used to describe the complex behavior of a wide variety of stochastic 
dynamical systems, including those involving electrical and cell signal processing [6–8], colloidal/molecular self-assembly 
[9,10], nucleation processes [11,12], and predator-prey dynamics [13,14]. An important challenge in constructing and study-
ing SDEs is that they often contain physics that are either unknown or cannot be directly measured (e.g., free energy 
and diffusion landscapes [15,16], transmission functions in models of disease spread [17,18], etc.). Creating a systematic 
framework to learn the hidden physics within SDEs is thus crucial for unraveling fundamental understanding of stochastic 
dynamical systems.
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A fairly general representation of SDEs is given by:

dx = f (x, g(x))dt + h(x, g(x))dw, (1)

where x is the system state that is generally vector-valued, t is the time, and w is generally a multivariable Gaussian white 
noise process. The “modeled” or “known” physics is comprised of f (·), h(·), and the structure of the SDE (i.e., the additive 
relationship between f (·) and h(·) and the multiplicative relationship between h(·) and w). In this work, we consider g(x)
to be the “unmodeled” or “unknown” hidden physics. We thus seek to investigate strategies to create a flexible and scalable 
framework for systematically learning the hidden physics g(x) within SDEs of form Eq. (1) from stochastic trajectory data.

The most commonly reported methods for learning g(x) from stochastic trajectory data involve evaluating the time limits 
of the first and second conditional moments [19–30]:

f (x, g(x)) = lim
τ→0

1

τ

〈
(ξ(t + τ ) − ξ(t))|ξ(t) = x

〉
, (2a)

h(x, g(x)) = lim
τ→0

1

2τ

〈
(ξ(t + τ ) − ξ(t))2|ξ(t) = x

〉
, (2b)

where ξ denotes a realization of the stochastic process with a δ-function distribution at the starting point t , ξ(t) = x, τ
is the sampling time, and the angular brackets denote ensemble averaging. In practice, τ → 0 must be extrapolated or τ
must be chosen to be sufficiently small to represent the limit. As the lower bound of τ is often determined by experimental 
limitations, the primary challenge facing works [22–30] is how to determine a robust way to extrapolate τ → 0. Common 
approaches to address this challenge involve adding correction terms to Eq. (2b) [22], using autocorrelation functions to 
simplify Eq. (2b) [31], employing kernel-based regressions over τ [23], and iteratively updating the limit evaluations based 
on computed probability distributions [25]. However, such methods generally rely on inflexible, data-intensive, and system-
specific sampling techniques and/or have been shown to be non-viable when short time linear regions do not exist in the 
trajectory data [15,16,23].

Alternative approaches for learning g(x) leverage Bayesian inference to estimate transition rates along adjacent intervals 
of x, e.g., [10,15,16,32–36]. The hidden physics g(x) can then be recovered by exploiting relationships derived from the 
Fokker-Planck equation [37]. Although Bayesian inference approaches have been shown to be less sensitive to the sampling 
time than those that depend on extrapolating τ → 0 [15,16], these approaches either (i) learn g(x) at discrete values of 
x and then fit analytic functions to these discrete values [10,15,16,32–34], or (ii) represent the unknown g(x) using basis 
functions and learn the coefficients of those basis functions [35,36]. The former approach can become intractable when the 
dimension of x is large, or when g(x) is highly nonlinear and thus requires x to be finely discretized. The latter approach 
can be highly sensitive to the choice of basis functions and can exhibit other numerical issues. As such, this latter approach 
often requires a priori knowledge about the stochastic system to inform the choice of basis functions [35].

To address the shortcomings described above, we propose a new framework for learning the hidden physics g(x) in 
Eq. (1), which we refer to as stochastic physics-informed neural ordinary differential equations (SPINODE). SPINODE ap-
proximates g(x) as an artificial neural network, where the weights and biases within the neural network represent the 
SDE hidden physics. Artificial neural networks provide a scalable and flexible way of approximating the potentially highly 
nonlinear relationship between g(x) and continuous values of x without the need for a priori assumptions about the form 
of that relationship [38–40]. SPINODE then combines the notions of neural ordinary differential equations (neural ODEs) 
[41,42] and physics-informed neural networks (PINN) [43–47] to learn the weights and biases within the neural network 
that approximates g(x) from state trajectory data. If we had access to the true state distribution at particular time points 
(which is generally non-Gaussian due to the nonlinear terms appearing in Eq. (1)), we could attempt to identify the neural 
network parameters that minimize a distributional loss function (e.g., the sum of the Kullback–Leibler divergence between 
the true and predicted distribution). However, not only would this loss function be more complicated to evaluate, we often 
do not have direct access to exact state distributions since these must be estimated from a finite set of state trajectories 
collected from simulations or experiments. Therefore, we opt for a more tractable moment-matching framework [48–50] in 
this work, which is an established method in statistics for simplifying the distribution matching problem. There are two key 
advantages to the moment-matching approach in the context of partially known SDEs:

• We only require moments of the state to be measured at discrete time points (with potentially varying sample times) 
from some known initial state distribution, which are easier to estimate than the full probability distribution or condi-
tional moments.

• The predicted moments of the state based on Eq. (1) can be estimated using established uncertainty propagation tech-
niques. As long as we can differentiate through the chosen uncertainty propagation method, we can use concepts from 
the neural ODE framework to compute derivatives needed for efficient training while preserving important features 
from the underlying SDE.

Although SPINODE can be adapted to handle a variety of different uncertainty propagation methods, we mostly focus on 
the unscented transform (UT) method [51–53] due to its ability to gracefully tradeoff between accuracy and computational 
efficiency. The UT method, when applied to Eq. (1), yields simple analytic expressions for the mean and covariance of 
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Fig. 1. Stochastic physics-informed neural ordinary differential equations framework (SPINODE). The key steps include (i) estimating the time evolution 
of statistical moments m(i)

x (tk) from repeated stochastic dynamical system trajectories, (ii) approximating the hidden physics as a neural network (e.g., 
g(x; θ) = [g1(x; θ), g2(x; θ)]� , where the unknown weights and biases are θ ), (iii) using uncertainty propagation to propagate stochasticity through the 
known structure of the stochastic differential equation, (iv) using ODE solvers within the neural ODE framework to predict the time evolution of statistical 
moments m̂(i)

x (tk), and (v) using moment-matching and mini-batch gradient descent with adjoint sensitivity to learn “optimal” weights and biases θ∗ . (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

the states in terms of the solution to a relatively small set of ODEs. By defining and evaluating the model in terms of 
ODE solvers, we immediately gain the well-known benefits of such solvers including: (i) memory efficiency, (ii) adaptive 
computation with error control, and (iii) prediction at arbitrary sets of non-uniform time points [41]. All of these benefits 
are important when developing an efficient training algorithm for the neural network representation of g(x) for which the 
loss gradient with respect to the neural network parameters can be computed using adjoint sensitivity methods [41,42,54].

To highlight the differences between SPINODE and previous methods, let us turn back to Eq. (2), which essentially 
computes the time derivative of the mean and covariance of x at some time t by some limit approximation. Previous 
works [19–30] have proposed many different strategies for interpolating measured state data from a finite set of discrete 
time points to estimate this limit; however, these strategies are largely system-specific. SPINODE, on the other hand, uses 
advanced uncertainty propagation and ODE solvers to directly predict state moment data at any set of time points. Since 
these underlying methods have been developed to apply to a diverse set of systems, including those that involve high-
dimensional, nonlinear, and stiff dynamics, SPINODE can be flexibly applied to systems arising from all different types 
of applications, which we demonstrate by applying SPINODE to a variety of systems in this work. Furthermore, we note 
that although SPINODE is primarily described in the context of the first two moments in this paper for simplicity, it can 
naturally incorporate any number of moments (e.g., skew and kurtosis) when learning g(x). This suggests that SPINODE has 
the potential to better handle highly non-Gaussian state distributions, which may arise when f (·), h(·), or g(·) are highly 
nonlinear.

We demonstrate the efficacy, flexibility, and scalability of SPINODE on three benchmark in-silico case studies. The dynam-
ics of each system are described by SDEs of form Eq. (1) that contain nonlinear and state-dependent hidden physics terms. 
The first case study is a two-state model for directed colloidal self-assembly with an exogenous input [55], the second is 
a four-state competitive Lotka-Volterra model with a coexistence equilibrium [56], and the third is a six-state susceptible-
infectious-recovered (SIR) epidemic model for disease spread [57]. We show that SPINODE is able to efficiently learn the 
hidden physics within these SDEs with high accuracy. We analyze the numerical robustness and stability of SPINODE and 
provide suggestions for future research. Furthermore, we have released a fully open-source version of SPINODE on GitHub 
with end-to-end examples [58], so that interested readers can easily reproduce and extend the results described in this 
work.

2. Methods

A schematic overview of the proposed SPINODE framework is shown in Fig. 1. Repeated stochastic dynamical system 
trajectories are recorded to estimate the time evolution of statistical moments of the stochastic state, m(i)

x (tk) for all i =
1, . . . , Nm where Nm denotes the total number of moments considered (left). The hidden physics g(x; θ) are represented by a 
(deep) neural network that is parameterized by unknown weights and biases denoted by θ (center). Established uncertainty 
3
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propagation methods are used to propagate stochasticity through Eq. (1) and ODE solvers within the neural ODE framework 
are used to predict the time evolution of the moments for fixed neural network parameters, m̂(i)

x (tk; θ) (left to center). A 
loss function is constructed using the predicted and data-estimated moments (center). Mini-batch gradient descent with 
adjoint sensitivity is used to update the parameters θ by minimizing the loss function (right). The hidden physics, g(x; θ), 
are considered “learned” once the mini-batch gradient descent algorithm converges. The subsequent subsections describe 
in more detail how data is collected and how SPINODE uses uncertainty propagation, neural ODEs, moment-matching, and 
mini-batch gradient descent to learn the weights and biases within the neural networks that approximate the unknown 
hidden physics within SDEs.

2.1. Data collection

Data collection is accomplished by repeating stochastic dynamical system trajectories starting from identical initial con-
ditions. Here, N trajectories start from some initial condition x0. During each trajectory, state values x are recorded at 
time points tk for K + 1 total time steps. The N recorded values of each x(tk) are used to estimate moments m(i)

x (tk). For 
simplicity, we primarily focus on the first two moments, the state mean and covariance, which are calculated as follows:

μx(tk) = 1

N

N∑
n=1

xn(tk),

�x(tk) = 1

N

N∑
n=1

(xn(tk) − μx(tk))(xn(tk) − μx(tk))
�, (3)

where n ∈ {1, . . . , N} denotes the trajectory index.
Repeated stochastic trajectories from only one initial condition may not explore a large percentage of the state space. 

To compensate for this, the stochastic trajectories can be collected from multiple unique initial conditions. In this work, we 
choose initial conditions by performing a grid search within a specified range of state values of interest. We note, however, 
that more efficient sampling techniques, e.g., [59–63] can also be used, which will be explored in future work.

Although this work estimates moments of the stochastic states from repeated stochastic trajectories from identical initial 
conditions, we recognize that this strategy is not applicable for systems in which one does not have control over initial 
conditions, number of replica runs, or consistent measurement times. In such cases, probability distributions of state tra-
jectories can be learned using methods that may not necessarily require such fine control over the observed trajectory 
data. Potentially suitable distribution estimation methods include variational autoencoders [64–66], generative adversarial 
networks [45,67–69], and/or energy-based models [70–72]. SPINODE is able to accommodate any data collection method 
from which the shape of the probability distribution (and thus the moments) can be estimated at discrete time points from 
observed trajectory data.

2.2. Moment prediction

As motivated in the introduction, an important advantage of the moment-matching framework is that we can rely on 
efficient uncertainty propagation methods that do not require access to the full distribution of the states. Unscented trans-
form (UT) [51,52,73–75] is one such example of an efficient uncertainty propagation method that estimates moments from 
a set of well-placed samples (known as sigma points) that can be efficiently evaluated using a neural ODE solver.

Before applying UT to SDEs, let us first summarize the UT method for estimating the moments of a random variable 
y = F (z) that is some static nonlinear transformation F : Rn → Rm of a random input z ∈Rn . We assume knowledge of the 
mean m ∈Rn and covariance P ∈Rn×n of z. Given this information, UT involves the following 3 steps:

1. Form the set of 2n + 1 sigma points from the columns of the matrix A = √
(n + λP ), which denotes the Cholesky 

decomposition, as follows

z(0) =m, (4)

z(i) =m + [A]i , i = 1, . . . ,n,

z(i) =m − [A]n−i , i = n + 1, . . . ,2n,

where [A]i denotes the ith column of the matrix A. Then, compute the associated weights of each of these sigma points

W (m)
0 = λ

n + λ
, (5)

W (c)
0 = λ

2
,

(n + λ) − (1− α + β)

4
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W (m)
i = 1

2(n + λ)
, i = 1, . . . ,2n,

W (c)
i = 1

2(n + λ)
, i = 1, . . . ,2n,

where λ is a scaling factor defined by

λ = α2(n + κ) − n, (6)

and α, β , and κ are positive constants. Typically, one should set α to be small (e.g., 10−3), β = 2, and κ = 0 based on 
observations from [52].

2. Transform each of the sigma points as follows

y(i) = F (z(i)), i = 0, . . . ,2n. (7)

3. Compute estimates for the mean and covariance of y

μ̂y =
2n∑
i=0

W (m)
i y(i), (8)

�̂y =
2n∑
i=0

W (c)
i

(
y(i) − μ̂y

)(
y(i) − μ̂y

)�
,

As shown in X, we can compactly represent UT in matrix form as follows

Z = [
m · · · m

] +
√

α2(n + κ)
[
0

√
P −√

P
]
, (9)

Y = F (Z),

μ̂y = Y wm,

�̂y = YW Y�,

where Z denotes the matrix of sigma points and wm ∈ R2n+1 and W ∈ R2n+1×2n+1 are a vector and matrix defined in 
terms of the mean and covariance weight factors, respectively

wm = [W (m)
0 , . . . ,W (m)

2n ]�, (10)

W = (
I − [

wm · · · wm
])

diag(W (c)
0 , . . . ,W (c)

2n )
(
I − [

wm · · · wm
])�

and I denotes the identity matrix of appropriate size. This representation will be helpful when applying UT to SDEs of the 
form Eq. (1). Since both x and w are random quantities, it is more convenient to write out the SDE in the following form

dz(t)

dt
= F (z(t); θ) + De(t), (11)

where e(t) is a zero-mean white noise process with covariance Qc(t) and D is a dispersion matrix. We can express Eq. (1)
in this form by defining an augmented state z(t) = [x(t), w(t)]� and defining F (·) and D as follows

F (z(t); θ) =
[
f (x(t), g(x(t); θ)) + h(x(t), g(x(t); θ))w(t)

0

]
, D =

[
0 0
0 I

]
.

As shown in [53] (Algorithm 4.4), the predicted mean and covariance for any time t ≥ tk can be computed from the initial 
mean m(tk) = [μx(tk), 0]� and covariance P (tk) = diag(�x(tk), I) (estimated from data as discussed in the previous section) 
by integrating the following differential equations

dm(t)

dt
= F (Z(t); θ)wm, (12)

dP (t)

dt
= Z(t)F�(Z(t); θ) + F (Z(t); θ)W Z�(t) + DQc(t)D

�,

where the sigma points Z(t) are defined similarly to that in Eq. (9), with m(t) and P (t) now being functions of time. We 
can then recover the original state mean and covariance by simple transformation of the augmented state

μ̂x(t|tk; θ) = [
I 0

]
m(t; θ), �̂x(t|tk; θ) =

[
I 0
0 0

]
P (t; θ), (13)
5
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where we have used the notation t|tk to denote predicted quantities given initial information at time tk .
We use ODE solvers within the neural ODE framework [41,42] to integrate Eq. (12) since F (·) is defined in terms of an 

embedded neural network used to represent the unknown/hidden physics g(·). The flexible choice of ODE solver provides 
SPINODE with the ability to accurately handle systems with high-dimensional, stiff, and/or nonlinear dynamics. Another 
advantage of explicitly integrating the SDE (as opposed to applying a fixed time step discretization) is that we can handle 
potentially sparse, non-uniform time grids {t0, t1, . . . , tK }. Although we have only exploited information provided by the first 
two moments of the state distribution, UT can also straightforwardly incorporate higher-order moment data, as described 
in [74,75]. As shown in Section 4.2, incorporating higher-order moments into the prediction scheme can lead to improved 
performance when learning g(·) due to better placement of the sigma points.

2.3. Moment-matching

Since we represent the hidden physics g(x; θ) with a neural network, we need to define a proper loss function to 
estimate θ . In other words, given a loss function L(θ), we can translate our goal of “learning the hidden physics” into 
solving the following optimization problem:

θ� = argminθ L(θ). (14)

A natural loss function for the moment-matching problem is the reconstruction error of the moments, which can be defined 
as follows

L(θ) =
K∑

k=1

Nm∑
i=1

‖m(i)
x (tk) − m̂(i)

x (tk|tk−1; θ)‖2, (15)

which simplifies to the following expression when only the first two moments are considered

L(θ) =
K∑

k=1

‖μx(tk) − μ̂x(tk|tk−1; θ)‖2 + ‖�x(tk) − �̂x(tk|tk−1; θ)‖2, (16)

where ‖ · ‖2 denotes the sum of squared values of all elements in the vector/matrix. We solve Eq. (14) via mini-batch 
gradient descent, which estimates the gradient of the loss function as follows

∇θ L(θ) ≈ 1

B

∑
k∈B

∇θ Lk(θ), (17)

where Lk(θ) = ‖μx(tk) − μ̂x(tk|tk−1; θ)‖2 + ‖�x(tk) − �̂x(tk|tk−1; θ)‖2 is the error in the kth data point, B is the number 
of “mini-batch” samples, and B ⊂ {1, . . . , K } is a set of B randomly drawn indices. We can efficiently evaluate the gradient 
estimate in Eq. (17) using the adjoint sensitivity method described in [41,54]. Therefore, SPINODE can be easily implemented 
using open-source deep learning software such as PyTorch [76] – we have provided an implementation for the case studies 
considered in this work on GitHub [58].

2.4. Simplified training procedure with approximate unscented transform

Based on the UT-based ODEs in Eq. (12) and the structure of F (·), the evaluation of the mean and covariance are fully 
coupled, that is, m(t) and P (t) must be simultaneously integrated to evaluate the loss function and its gradient. Since this 
procedure can be computationally expensive, it is useful to derive alternative approximations that can lead to a simplified 
training procedure. A particularly important special case of Eq. (1) is when the hidden physics g(·) are fully separable, i.e.,

dx = f (x, g1(x; θ1)) + h(x, g2(x; θ2))dw, (18)

where g1(x; θ1) and g2(x; θ2) denote two completely independent neural networks (each with their own set of local param-
eters). According to Eq. (12), θ = {θ1, θ2} must still be trained simultaneously since the sigma points depend on both the 
mean and covariance.

To simplify the training process, we present an approximate UT that formulates independent ODEs that describe the time 
evolution of the transformed sigma points Y = F (Z), where Z = [Zx, Zw ]�:

dY

dt
= f (Zx(t), g1(Z

x(t); θ)) + h(Zx(t), g(Zx(t); θ))Zw(t). (19)

The predictions of Y combined with Eq. (9) can be used to predict the mean and covariance. More importantly, since Z w(t)
has a mean of zero and appears in an additive fashion, as long as the weights are chosen in a symmetric fashion, the 
h(Zx(t), g(Zx(t); θ))Z w(t) term will cancel when evaluating the mean of the state. Therefore, in this case, the predicted 
6



J. O’Leary, J.A. Paulson and A. Mesbah Journal of Computational Physics 468 (2022) 111466
state mean only depends on θ1, i.e., μ̂x(t|tk; θ1). Assuming that the predicted state covariance depends weakly on θ1, we 
can then separately train θ1 and θ2. In particular, we sequentially solve the following two smaller optimization problems:

θ�
1 = argminθ1

K∑
k=0

‖μx(tk) − μ̂x(tk|tk−1; θ1)‖2, (20)

θ�
2 = argminθ2

K∑
k=0

‖�x(tk) − �̂x(tk|tk−1; θ�
1 , θ2)‖2.

Note that the second optimization problem above is solved using a fixed functional form for the drift term g1(x; θ�
1 ). Al-

though heuristic in nature, this decomposed training strategy greatly reduces the number of parameters that need to be 
simultaneously considered when evaluating the loss function gradients. Not only does this significantly reduce computa-
tional cost, it also limits the search space such that we are less likely to find solutions that result in overfitting.

2.5. Validation criteria using predicted state distribution

It is important to note that there can be many values for parameters θ that result in small or even zero loss function 
values since moments only provide limited information about the underlying distributions. In other words, even though 
two different sets of neural network parameters produce the same loss function value, they may result in substantially 
different predicted state distributions. We can develop a validation test to determine whether or not a given set of optimal 
parameter values θ� results in accurate state distributions. In particular, we can evaluate the sum of the Kullback–Leibler 
(KL) divergence [77] between the measured state distributions pxk and predicted p̂xk (θ

�) state distributions from a given 
initial condition over time, i.e.,

Validation Error =
KV∑
k=0

∫
X

pxk (x) log

(
pxk (x)

p̂xk (x; θ�)

)
dx, (21)

where KV denotes the number of validation time steps. Note that one can easily modify this definition to include multiple 
initial conditions and other controlled input values. Since we cannot evaluate either of these distributions exactly, we need 
to rely on established sample-based probability density function estimation techniques such as kernel density estimation 
[78]. We recommend using this validation error criteria to decide if the hidden physics have been learned accurately enough 
to make reasonable predictions. Whenever the validation error is large, there may be a need to either modify the training 
strategy, increase the number of moments considered in the loss function, or collect additional data. Due to its simplicity, 
it is useful to start with the training procedure described in Section 2.4 and, if it does not pass the validation error test 
described in this section, apply the more detailed coupled training strategy.

3. Case studies

We demonstrate SPINODE on three benchmark in-silico case studies from the literature: (i) a two-state model for directed 
colloidal self-assembly with an exogenous input [55], (ii) a four-state competitive Lotka-Volterra model with a coexistence 
equilibrium [56], and (iii) a six-state SIR epidemic model for disease spread [57]. Each of these stochastic dynamical systems 
can be modeled by Eq. (1), and, since the hidden physics are fully separable in each case, Eq. (18).

State trajectory data is collected by discretizing Eq. (1) according to an Euler-Maruyama discretization scheme [79,80]. 
These discretized SDEs are meant to represent the “real” system dynamics. Data-estimated moments m(i)

x (tk) are then col-
lected according to the approach described in Section 2.1 and the SPINODE framework outlined in Sections 2.2–2.4 is used 
to learn (or reconstruct) the hidden physics g(x) from the collected stochastic trajectory data. SPINODE’s performance is 
evaluated by assessing the accuracy of the reconstructed hidden physics. In each case study, moments m(i)

x (tk) are calcu-
lated from 105 replicates of 50 time-step state trajectories from 2000 unique initial conditions (which leads to 105 total 
moments m(i)

x (tk)). As mentioned in Section 2.1, the number of initial conditions could very likely be decreased by employ-
ing more advanced sampling strategies, but exploring such strategies is beyond the scope of this work. Section 4.2 examines 
the relationship between the total number of data points and trajectory replicates and the hidden physics reconstruction 
accuracy.

3.1. Case study 1: directed colloidal self-assembly with an exogenous input

The first case study is a two-state model for directed colloidal self-assembly with an exogenous input [55]. Here, the 
voltage of an external electric field is adjusted to mediate the two-dimensional self-assembly of silica micro-particles. The 
system dynamics are modeled according to Eq. (1). Denote x as an order parameter that represents crystal structure (i.e., 
7
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the system state), u as the electric field voltage (i.e., the exogenous input), Kb as Boltzmann’s constant, and T as the 
temperature:

dx = g1(x,u)dt + √
2g2(x,u)dw,

g1(x,u) = d

dx

(
g2(x,u)

)
− d

dx

(
F (x,u)

) g2(x,u)

KbT
,

g2(x,u) = 4.5 × 10−3e−(x−2.1−0.75u)2 + 0.5× 10−3,

F (x,u) = 10KbT (x− 2.1 − 0.75u)2. (22)

The hidden physics are the drift coefficient, g1(x, u), and the diffusion coefficient, g2(x, u). Note that g1(x, u) is a function of 
a g2(x, u) and the free energy landscape F (x, u). This relationship provides an example of how drift and diffusion coefficients 
can be used to derive other hidden system physics.

We chose this case study because the hidden physics are highly nonlinear and depend on an exogenous input. To our 
knowledge, no previously reported approach for learning SDE hidden physics has explicitly learned g(x, u). Instead, existing 
approaches typically seek to learn g(x) at discrete values of u and interpolate [9,10,15,32,55]. This requires repeating the en-
tire hidden physics learning procedure for many discrete values of u and, thus, demands a trade-off between computational 
cost and accuracy. SPINODE, on the other hand, directly learns g(x, u) over the entire (x, u) state space.

3.2. Case study 2: competitive Lotka-Volterra with a coexistence equilibrium

The second case study is a four-state competitive Lotka-Volterra model with a coexistence equilibrium [56]. The stochas-
tic dynamics are modeled according to Eq. (1). Note that x = [x1, x2]� and xeqi are the coexistence equilibrium points:

dx1 = g1(x)1dt + √
2g2(x)1dw1,

dx2 = g1(x)2dt + √
2g2(x)2dw2,

g1(x)1 = x1(1− x1 − k1x2),

g1(x)2 = x2(1− x2 − k2x1),

g2(x)1 = x1(x2 − xeq2 ),

g2(x)2 = x2(x1 − xeq1 ),

xeq1 = 1− k1
1− k1k2

, xeq2 = 1− k2
1− k1k2

,

k1 = 0.4, k2 = 0.5. (23)

The hidden physics are the two-dimensional drift and diffusion coefficients, g1(x1, x2) and g2(x1, x2). As a result, we seek 
to train two multi-input, multi-output neural networks that approximate the hidden physics. The drift coefficient neural 
network takes x1 and x2 as input and outputs g1(x1, x2)1 and g1(x1, x2)2. The diffusion coefficient neural network takes x1
and x2 as input and outputs g2(x1, x2)1 and g2(x1, x2)2.

We chose this case study because both the drift and diffusion coefficients are multi-dimensional and nonlinear. We apply 
SPINODE to this “more complex” SDE to demonstrate the framework’s scalability. Note that no aspect of the framework was 
altered from its implementation for the previous case study.

3.3. Case study 3: susceptible-infectious-recovered epidemic model

The third case study is a six-state SIR epidemic model for disease spread [57]. The stochastic dynamics are modeled 
according to Eq. (1):

dS = (b − dS − g(S, I) + γ R)dt + σ1Sdw1,

dI = (g(S, I) − (d + μ + δ)I)dt + σ2 Idw2,

dR = (μI − (d + γ )R)dt + σ3Rdw3,

g(S, I) = kSh I

Sh + α Ih
,

b = 1, d = 0.1, k = 0.2, α = 0.5, γ = 0.01, μ = 0.05,

δ = 0.01, h = 2, σ1 = 0.2, σ2 = 0.2, σ3 = 0.1. (24)
8
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Fig. 2. Learned hidden physics of directed colloidal self-assembly system with an exogenous input. SPINODE learns the drift and diffusion coefficients 
g1(x, u) and g2(x, u) of the stochastic dynamical system described by Eq. (22) with high accuracy.

The hidden physics is the infection transmission rate, g(S, I), which plays a key role in determining disease spread dynamics 
in many epidemic models [17,18,57,63,81–84]. The form of g(S, I) is widely considered to be unknown, and each of the 
above-listed references propose different versions of this function. We apply SPINODE to Eq. (24) to learn g(S, I). We chose 
this case study to demonstrate that SPINODE can not only broadly learn drift and diffusion coefficients but also can learn 
specific unknown physics terms within complex SDEs.

The hidden physics g(S, I) primarily contribute to the deterministic dynamics (i.e., f (x, g(x) in Eq. (1)) and appears in 
the time evolution equations for both S and I in Eq. (24). The resulting loss function used to train g(S, I; θ) is then given 
by:

min
θ

K∑
k=0

∥∥μ̂S(tk) − μS(tk))
∥∥2 + ∥∥μ̂I (tk) − μI (tk))

∥∥2
, (25)

while the loss functions used to train g1(x, u) and g1(x1, x2) in the previous two case studies were given by Eq. (20).

4. Results and discussion

4.1. Learning hidden physics

We demonstrate SPINODE on the case studies outlined in Section 3. In each case study, moments m(i)
x (tk) (e.g., means and 

covariances) are estimated from stochastic trajectory data. The approximate UT method described in Section 2.4 is then used 
to yield deterministic ODEs that describe the time evolution of the sigma points. An Euler ODE scheme is used to solve these 
ODEs and thus predict the time evolution of the means and covariances. Mini-batch gradient descent with adjoint sensitivity 
is then used to (i) match the predicted means and covariances to the data-estimated means and covariances and (ii) train 
the neural networks g(x; θ) that approximate the true hidden physics g(x). Note that the time intervals over which the 
means and covariances are predicted (i.e., the sampling times) are approximately 1/50th of the time it takes each system to 
reach steady state.

In principle, SPINODE’s performance can vary from run-to-run due to the randomness involved in neural network weight 
initialization and assigning data-estimated moments m(i)

x (tk) to training, validation, and test sets. We thus assessed SPIN-
ODE’s performance by calculating the root mean squared errors (RMSE) between the learned hidden physics g(x; θ∗) and 
the actual system hidden physics g(x) over 30 SPINODE runs with randomly selected initial weight values and training/val-
idation/test set data assignments. Table 1 shows the mean and standard deviations of these RMSEs while Figs. 2 – 4 show a 
visual comparison of g(x; θ∗) and g(x) for representative runs. In each case, SPINODE learns the hidden physics g(x; θ∗) with 
high accuracy and low run-to-run variation. We note that in the real-world, the actual values of the hidden physics g(x) will 
be unavailable. In these cases, SPINODE’s performance should be validated via the methodology described in Section 2.5., 
i.e., by comparing the data-estimated moments of trajectories from the real dynamics m(i)

x (tk) to those generated from the 
learned dynamics involving f (·), h(·), and g(x, θ∗). Visual representations of the time-evolution of the probability distribu-
tions of the states from randomly selected initial conditions and exogenous input values for the colloidal self-assembly and 
Lotka-Volterra case studies are shown in Figs. 5 – 6.

We further note that the hidden physics reconstructions shown in Figs. 2 – 4 and Table 1 essentially occur under “ideal” 
conditions – as g(x; θ) is trained using a large number of moments m(i j)

x (tk) that are estimated from a large number of 
repeated trajectories from a large number of initial conditions (see Section 2.1 and Section 3 for details). In addition, the 
sampling times are identical to the discretization times used in the Euler-Maruyama simulations that represent the “true” 
system dynamics. This last point motivated the use of an Euler ODE solver to predict the moment time-evolution. In the next 
section, we assess the performance of SPINODE in terms of decreasing the number of repeated trajectories used to estimate 
9
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Fig. 3. Learned hidden physics of competitive Lotka-Volterra with a coexistence equilibrium. SPINODE learns the drift and diffusion coefficients g1(x1, x2)1,2
and g2(x1, x2)1,2 of the stochastic dynamical system described by Eq. (23) with high accuracy.

Fig. 4. Learned hidden physics of susceptible-infectious-recovered (SIR) epidemic model. SPINODE learns g(S, I) from Eq. (24) with high accuracy.

the moments m(i j)
x (tk), decreasing the total number of moments m(i j)

x (tk) used to train g(x; θ), altering the uncertainty 
propagation strategy, and adjusting the sampling time.

4.2. Numerical robustness

Figs. 7-8 show RMSEs between the learned hidden physics g(x; θ∗) and the actual system hidden physics g(x) for the 
Lotka-Volterra and SIR epidemic case studies as a function of the total number of repeated trajectories used to calculate 
the data-estimated moments m(i)

x (tk). As can be seen, the RMSEs converge between 103 and 104 total repeats in both case 
studies and the RMSEs grow very quickly under 102 total repeats. Figs. 7-8 highlight that SPINODE’s ability to the learn 
the hidden physics g(x) critically hinges on how accurately moments m(i j)

x (tk) can be estimated from data. In this work, 
moments are estimated from data by repeating (many) stochastic trajectories from identical initial conditions. Section 2.1
discusses how this strategy is not appropriate for systems in which one does not have control over initial conditions, number 
of replica runs, consistent measurement times, etc. Section 2.1 also suggests potential methods for learning data-estimated 
moments in such cases.
10
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Table 1
Reconstruction root mean square errors of learned hidden physics. SPINODE is used to learn the hidden physics of 
the case studies in Sections 3.1 (directed colloidal self-assembly with an exogenous input), 3.2 (competitive Lotka-
Volterra with a coexistence equilibrium), and 3.3 (susceptible-infectious-recovered epidemic model). The root mean 
square error (RMSE) between the learned hidden physics g(x; θ∗) and actual hidden physics g(x) is then calculated. 
This process is repeated 30 times with randomly selected initial weight values and training/validation/test set data 
assignments. The means and standard deviations (std) of the calculated RMSEs are shown. For each case study, 
SPINODE learns the hidden physics g(x; θ∗) with high accuracy and low run-to-run variation.
Case Study RMSE Mean RMSE Std

Colloidal Self-Assembly, g1(x,u) 1.33× 10−4 2.77× 10−5

Colloidal Self-Assembly, g2(x,u) 4.97× 10−5 4.67× 10−6

Lotka-Volterra , g1(x1, x2)1 9.20 × 10−4 1.24× 10−4

Lotka-Volterra , g1(x1, x2)2 7.91× 10−4 7.59× 10−5

Lotka-Volterra , g2(x1, x2)1 3.93× 10−3 5.97× 10−5

Lotka-Volterra , g2(x1, x2)2 4.88× 10−3 7.15× 10−5

Susceptible-Infectious-Recovered , g(S, I) 2.62× 10−3 1.89× 10−4

Fig. 5. Time evolution of kernel density estimates for directed colloidal self-assembly system with an exogenous input. Trained neural networks g1(x, u; θ�
1 )

and g2(x, u; θ�
2 ) are used to simulate the system dynamics from a randomly selected initial condition with a randomly selected exogenous input. The true 

dynamics are then simulated using the same initial condition and exogenous input. In each case, the stochastic trajectory is repeated 105 times and kernel 
density functions are calculated at each sampling time. Estimates of the kernel density function for the “true” and “learned” dynamics at select sampling 
times are plotted against one another. SPINODE reproduces the kernel density function with high accuracy.

Fig. 6. Time evolution of kernel density estimates for Lotka-Volterra with a coexistence equilibrium. Trained neural networks g1(x1, x2; θ�
1 ) and g2(x1, x2; θ�

1 )

are used to simulate the system dynamics from a randomly selected initial condition. The true dynamics are then simulated using the same initial condition. 
In each case, the stochastic trajectory is repeated 105 times and kernel density functions are calculated at each sampling time. Estimates of the kernel 
density function for the “true” and “learned” dynamics at select sampling times are plotted against one another. SPINODE reproduces the kernel density 
function with high accuracy.

Figs. 9-10 plot the RMSEs between the learned hidden physics g(x; θ∗) and the actual system hidden physics g(x) for 
the Lotka-Volterra and SIR epidemic case studies as a function of the total number of data-estimated moments m(i)

x (tk)
used to train g(x; θ). In this case, each moment m(i)

x (tk) is estimated using 105 total repeated trajectories – only the total 
number of moments used to train g(x; θ ) is varied. Both figures show that more training data can lead to a more accurate 
recovery of the hidden physics. The amount of training data required for the RMSEs to converge depends on a combination 
of the complexity of g(x) and the “informativeness” of the loss function used to train g(x; θ). For example, the behavior 
of g(S, I) in SIR epidemic case study can be considered more nonlinear than that of g1(x1, x2)1 and g1(x1, x2)2 in the 
Lotka-Volterra case study, which is more nonlinear still than that of g2(x1, x2)1 and g2(x1, x2)2 in the Lotka-Volterra case 
study. Correspondingly, the RMSEs of g2(x1, x2)1 and g2(x1, x2)2 converge after fewer total data points than the other 
11
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Fig. 7. Sampling sensitivity analysis: competitive Lotka-Volterra with a coexistence equilibrium. SPINODE trains the neural networks that approximate 
g1(x1, x2)1,2 and g2(x1, x2)1,2 after decreasing the total number of repeated stochastic trajectories used to estimate the moments m(i)

x (tk) from data. The 
root mean square errors (RMSEs) between the learned and actual hidden physics are then calculated. The RMSEs converge around 103 total repeats for 
g1(x1, x2)1,2 and 102 total repeats for g2(x1, x2)1,2.

Fig. 8. Sampling sensitivity analysis: susceptible-infectious-recovered (SIR) epidemic model. SPINODE trains the neural network that approximates g(S, I)
after decreasing the total number of repeated stochastic trajectories used to estimate the moments m(i)

x (tk) from data. The root mean square error (RMSE) 
between the learned and actual hidden physics is then calculated. The RMSE converges around 104 total repeats.

Fig. 9. Training data size sensitivity analysis: competitive Lotka-Volterra with a coexistence equilibrium. SPINODE trains the neural networks that approx-
imate g1(x1, x2)1,2 and g2(x1, x2)1,2 after decreasing the size of the training data (i.e., the total number of data-estimated moments m(i)

x (tk)). The root 
mean square error (RMSE) between the learned and actual hidden physics is then calculated. The RMSEs converge around 2.5 × 104 total moments for 
g1(x1, x2)1,2 and 5 × 103 total moments for g2(x1, x2)1,2.

hidden physics terms. Despite the more nonlinear behavior of g(S, I), however, its RMSE converges earlier than the RMSEs 
of g1(x1, x2)1 and g1(x1, x2)2. We note that the cost function used to train g(S, I) is more “informative” than the cost 
functions used to train g1(x1, x2) and g2(x1, x2) – compare Eq. (20) to Eq. (25)) – as Eq. (25) contains added information 
from multiple known “physical” terms in Eq. (24). Overall, the general notion that more training data can lead to higher-
performing neural network models is expected [85]. However, the fact that g(S, I)’s RMSE seems to converge at fewer total 
data points suggests the previously reported observation [43] that incorporating more physics into the cost function can 
reduce data requirements for training neural networks.

We next use the colloidal self-assembly case study to investigate SPINODE’s sensitivity to the chosen uncertainty prop-
agation method. Fig. 11 shows SPINODE’s reconstruction of the hidden physics g1(x, u) and g2(x, u) when propagating 
stochasticity via linearization [73] and two methods based on unscented transform – UT-2M and UT-4M. UT-2M, which is 
12
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Fig. 10. Training data size sensitivity analysis: susceptible-infectious-recovered (SIR) epidemic model. SPINODE trains the neural networks that approximate 
g(S, I) after decreasing the size of the training data (i.e., the total number of data-estimated moments m(i)

x (tk)). The root mean square error (RMSE) between 
the learned and actual hidden physics is then calculated. The RMSE converges slightly before 104 total moments.

Fig. 11. Uncertainty propagation sensitivity analysis: directed colloidal self-assembly with an exogenous input. SPINODE trains neural networks that approxi-
mate g1(x, u) and g2(x, u) using three different uncertainty propagation methods: linearization (Lin), unscented transform with two moments (UT-2M) and 
unscented transform with four moments (UT-4M). UT-2M describes the time evolution of the mean and covariance based on the data-estimated mean and 
covariance at previous time points while UT-4M describes the time evolution of the mean and covariance based on the data-estimated means, covariance, 
skew, and kurtosis at previous time points. SPINODE with UT-2M and UT-4M significantly outperforms SPINODE with linearization, while SPINODE with 
UT-4M slightly outperforms SPINODE with UT-2M for learning g2(x, u).

explained in detail in Sections 2.2 and 2.4, describes the time evolution of the mean and covariance based on the data-
estimated mean and covariance at previous time points. UT-4M, which can be viewed as an extension of UT-2M based on 
the work in [74], describes the time evolution of the mean and covariance based on the data-estimated means, covari-
ance, skew, and kurtosis at previous time points. SPINODE with both UT methods significantly outperforms SPINODE with 
linearization. This performance discrepancy indicates that the UT methods propagate stochasticity through Eq. (22) much 
more accurately than the linearization method does. While SPINODE with UT-2M and UT-4M learn g1(x, u) with near iden-
tical accuracy, the RMSE of SPINODE with UT-4M’s recovery of g2(x, u) is marginally lower than the RMSE of SPINODE with 
UT-2M’s recovery of g2(x, u) (i.e., 8.64 × 10−5 vs. 4.67 × 10−5). UT-4M thus leads to a more accurate prediction of the 
time evolution of the covariance than UT-2M does, as only the covariance is used to train g2(x, u) (see Eq. (20)). The latter 
point supports our earlier remark that SPINODE’s ability to incorporate higher moments can make SPINODE well-suited for 
learning g(x) when f (x, (g(x)) and h(x, (g(x)) are highly nonlinear and the distribution of x is non-Gaussian as a result. We 
note that although kernel density estimations in Fig. 5 appear fairly Gaussian, the relatively minor skews and kurtoses of 
the distributions of x(t) are still large enough to affect the uncertainty propagation.

We further investigate SPINODE’s sensitivity to uncertainty propagation by extending the sampling times at which data-
estimated moments are collected. All previous results for the colloidal self-assembly case study used a sampling time of 
1 second. Fig. 12a plots the RMSEs of g1(x, u) and g2(x, u) (when UT-4M is implemented for uncertainty propagation) as 
a function of sampling time. The RMSE increases nearly linearly with sampling time. Fig. 12b shows that the prediction 
errors for the mean and covariance also increase nearly linearly with sampling time. It is thus reasonable to suggest that 
SPINODE’s sensitivity to sampling time in the colloidal self-assembly case study can be attributed to the sensitivity of the 
uncertainty propagation method to the sampling time.

Above all else, Figs. 11,12 demonstrate SPINODE’s sensitivity to the choice of uncertainty propagation method. Section 1
discusses how SPINODE can in principle accommodate any uncertainty propagation method. As a result, the uncertainty 
propagation method should be viewed as a “hyper-parameter” within SPINODE. We finally discuss the choice of the ODE 
solver within SPINODE. Because the case study simulation data was generated via an Euler-Maruyama discretization, an 
Euler ODE solver within SPINODE yielded the most accurate reconstructions of the hidden physics. The current implementa-
tion of SPINODE [58], however, includes other advanced, even adaptive time-step solvers that have been shown to accurately 
13
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Fig. 12. Sampling time sensitivity analysis: directed colloidal self-assembly with an exogenous input. (a) SPINODE trains neural networks that approximate 
g1(x, u) and g2(x, u) using the UT-4M uncertainty propagation method with different sampling times. The root mean square error (RMSE) between the 
learned and actual hidden physics is then calculated. (b) UT-4M is used to propagate stochasticity through the true dynamics (i.e., Eq. (22)) for each of 
the data-estimated moments in the training data set at different sampling times. The RMSEs between the predicted and the data-estimated means and 
covariances at the next sampling time are then calculated. The errors in reconstructing the hidden physics and predicting the mean and covariance grow 
nearly linearly with the sampling time.

integrate high-dimensional, stiff, and nonlinear ODEs [41]. The choice of ODE solver should thus also be viewed as a “hyper-
parameter” within SPINODE. In fact, known hyper-parameter optimization strategies such as Bayesian Optimization [86] can 
be used to determine the “best” ODE solver to use during training.

5. Conclusions and future work

We proposed a flexible and scalable framework based on the notions of neural ordinary differential equations, physics-
informed neural networks, and moment-matching for training deep neural networks to learn constitutive equations that rep-
resent hidden physics within stochastic differential equations. We demonstrated the proposed stochastic physics-informed 
neural ordinary differential equation framework on three benchmark in-silico case studies from the literature. We analyzed 
the performance of the proposed framework in terms of its repeatability, sensitivity to weight initialization and training/val-
idation/testing set allocation, total number of data points, total number of repeated trajectories, uncertainty propagation 
method, and sampling time. We showed the framework’s scalability by learning highly nonlinear hidden physics within 
multidimensional stochastic differential equations with multiplicative noise. We illustrated the framework’s flexibility by (i) 
learning both general drift and diffusion coefficients (with or without an exogenous input) and specific unknown functions 
within stochastic differential equations for different systems and (ii) demonstrating that key aspects of the framework (e.g., 
the choice of uncertainty propagation method) can be easily and independently adjusted. An open challenge is the fact that 
a large number of repeated state trajectories are required to accurately learn hidden physics. We will focus future work 
on learning probability distributions directly from data instead of estimating moments from repeated stochastic trajecto-
ries from identical initial conditions. To this end, we will explore variational autoencoders [64–66], generative adversarial 
networks [45,67–69], and energy-based models [70–72]. Other open challenges include optimizing the uncertainty propa-
gation method and choice of ODE solver during neural network training. We will explore optimizing these hyper-parameter 
choices using methods based on Bayesian optimization [86]. We will finally explore updating the current implementation 
of the neural ODE framework based on [41] with more recent and advanced neural ODE framework implementations (e.g., 
[42]).
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