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Abstract—Attending selectively to emotion-eliciting stimuli is intrinsic to human vision. In this research, we investigate how emotion-
elicitation features of images relate to human selective attention. We create the EMOtional attention dataset (EMQOd). It is a set of diverse
emotion-eliciting images, each with (1) eye-tracking data from 16 subjects, (2) image context labels at both object- and scene-level.
Based on analyses of human perceptions of EMOd, we report an emotion prioritization effect: emotion-eliciting content draws stronger
and earlier human attention than neutral content, but this advantage diminishes dramatically after initial fixation. We find that human
attention is more focused on awe eliciting and aesthetic vehicle and animal scenes in EMOd. Aiming to model the above human attention
behavior computationally, we design a deep neural network (CASNet Il), which includes a channel weighting subnetwork that prioritizes
emotion-eliciting objects, and an Atrous Spatial Pyramid Pooling (ASPP) structure that learns the relative importance of image regions at
multiple scales. Visualizations and quantitative analyses demonstrate the model’s ability to simulate human attention behavior, especially

on emotion-eliciting content.

Index Terms—Human attention, image sentiment, human psychophysics, convolutional neural network, visual saliency.
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1 INTRODUCTION

UE to the capacity limits of the human brain, not all incoming
D environmental stimulation can be processed in parallel and
evaluated thoroughly [1], [2]. All visual stimuli are in competition
to become the focus of the eyes and encoded into visual short-
term memory before it is filled up. Such phenomenon is known
as selective attention [3], [4], [2], [5], [6]. Selective attention is a
hallmark of human visual attention, and it is an important topic
among researchers from various domains, ranging from psychology,
neuroscience, to computer vision [7], [8], [9], [10], [11], [12].
Substantial research finds that the emotional relevance of
a stimulus influences selective attention [13], [14], [15], [16],
[17], [18]. For example, people preferentially attend to emotion-
eliciting stimuli (i.e., an object or scene that elicits an emotional
response in the observer), such as cute babies or erotic scenes
[19], [20]. Although many neuroimaging and behavioral studies
have investigated how emotion-eliciting stimuli affect attention [21],
[14], [22], few computer vision studies have—due in part to the lack
of an eye-tracking dataset that includes emotion-eliciting stimuli.
Advances in understanding the relationship between semantics and
attention [23], [24], [25], [26], [27], [28] are ahead of those for
how sentiment relates with human attention.
In this research, we systematically evaluate how emotion-
eliciting features of images relate to human attention. We then
model the relations computationally. We first present the E-
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MOtional attention dataset (EMOd)—a human-annotated dataset
focusing on image sentiment and human attention (see Fig. 1).
We perform statistical analyses on EMOd to determine how
emotion-eliciting content relates to human visual attention. Re-
sults indicate that emotion-eliciting content draws human visual
attention strongly, quickly, but briefly—which we refer to as
the emotion prioritization effect. Analyses further find that the
emotional tone of scenes as a whole, correlates to human attention.
Building on these findings, we propose a deep neural network
(DNN) to model human attention computationally. The model
(CASNet II) learns the relative importance of salient regions within
an image and prioritizes emotion-eliciting content when predicting
human attention. Such automatic assessment of visual attention
has many applications, such as understanding user behavior,
facilitating social advertising, and aiding autonomous driving
[29], [30]. Our code, models, and dataset are available online
at https://github.com/Fanshaojing/emotionalattention/.

We summarize our main contributions as follows:

1) We provide a novel image dataset (EMOd) featuring image
sentiment and visual attention. It is the first dataset to include
eye-tracking data as well as extensive annotations about image
context—emotions, objects, semantics, and scenes—enabling
research on these topics together with attention.

2) We evaluate how image sentiment relates to human attention
at both object- and scene-levels. We discover the emotion
prioritization effect—for our images, people attend to emotion-
eliciting content not only strongly, quickly, but also briefly. We
find that the emotional tone of the scene as a whole correlates
with different human fixation patterns. For our dataset, awe
eliciting and aesthetic animal and vehicle scenes have more
focused human attention.

We computationally model human attention behavior by
designing a deep learning network (CASNet II), and apply
it on automated saliency prediction. CASNet II consists of
two mechanisms to encode relative importance of regions and

3)
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Fig. 1: Example images from EMOtional attention dataset (EMOd),
along with emotions that observers indicated as strongly elicited
by the images and colormaps visualizing human attention.

objects within an image. First, it employs an Atrous Spatial
Pyramid Pooling (ASPP) structure to learn the multi-scale
context information. Second, it uses a channel weighting
subnetwork to highlight emotion-eliciting objects. Our model,
with a much simpler structure but carefully designed to encode
emotion prioritization, achieves the top performance on five
benchmark datasets when evaluated by the normalized mean
of all metrics.

The current research extends our previous work [31] in the
following ways. (a) We extend the analyses on EMOd from object-
level to scene-level, and from spatial to temporal (i.e., eye saccades,
attention shift rank [32]). We report three new observations and
discuss related insights. (b) We use an improved model (CASNet
ID) to simulate human attention behavior computationally. CASNet
II is built on our previous model (hereafter, CASNet I) [31]. Two
improvements were made in CASNet II over CASNet 1. First,
we changed to a customized Atrous Spatial Pyramid Pooling
(ASPP) structure [33] to encode multi-scale, contextual saliency.
The enlarged receptive fields from ASPP enable CASNet II to
learn the relative importance in bigger image regions, extending
previous object-based prioritization to a larger image area. Second,
we replace the dual-stream architecture in CASNet I with a single
stream, and reduce the input image scale. With these changes,
CASNet II better models the human emotion prioritization effect,
and significantly outperforms CASNet I in saliency prediction on
all five benchmark datasets. It also improves the processing speed
by almost 300%—CASNet II only takes 0.09 second to process

2

one image whereas CASNet I needs 0.25 second on the same
NVIDIA 1080Ti GPU. (¢) We test our new model on two additional
widely-used benchmark datasets MIT1003 [34] and OSIE [35] to
demonstrate its generalizability. (d) We include five latest state-
of-the-art methods for a more comprehensive comparison, namely
EML-NET [36], DeepGaze II [37], MSI-Net [38], GazeGAN [39],
SAM-ResNet [40]. (e) We provide new network visualizations and
quantitative analyses to understand how CASNet II outperforms
in modeling human attention behavior. (f) We perform new
experiments to investigate the models’ performance cross emotional
and non-emotional datasets. Readers can refer to the supplementary
material for a detailed summary of the above improvements.

The remainder of the paper is organized as follows. Section 2
describes related research. Section 3 describes the construction of
the EMOd dataset. Section 4 presents our analyses and empirical
modeling of the psychophysics data. In Section 5, we describe our
computational modeling of human attention behavior and test it
on five benchmark datasets. In Section 6, we summarize our main
findings and potential future applications.

2 RELATED RESEARCH

People have a remarkable ability to selectively attend to some
regions in a scene [2], [4], [5], [6]. A plethora of research
from multiple disciplines has evaluated selective attention. In this
section, we discuss the most relevant research on selective attention,
automated human attention prediction, and eye-tracking datasets.

Selective attention. The preferential processing of high-
priority stimuli in the environment is an essential function of
selective attention. For example, scientists have reported a hallmark
feature of selective attention to be people’s sensitivity to faces [41],
[42], [43].

Scientists have also found that human attention generally
prioritizes emotion-eliciting content over non-emotion-eliciting
content [44], [14], [16], [45]. Emotion-eliciting stimuli—such as
smiling faces, babies, and erotic scenes—attract human attention
more than neutral stimuli [46], [35]. People tend to focus more
on positive parts than negative parts in abstract paintings [47].
Memory of emotional videos modulates eye movements when
viewing static scenes from the videos [48]. Salient objects influence
the observers’ emotional reactions to a whole image [49]. Visual
“catchiness” of relevant information in online media can impact
observer affect [50]. Also relevant is the non-emotional process
referred to as the gaze-cuing effect, in which observers attend to
the target of another person’s gaze [51]. Our research builds on this
prior research from multiple disciplines and extends it in the field
of computer science. More specifically, we analyze how emotion-
eliciting stimuli relate to human attention allocation on images
of general scenes, providing a broad research scope. Furthermore,
we computationally model the findings from human participants
to show how understanding human attention behavior helps in
automated saliency prediction.

Human attention prediction. Modeling visual saliency has
raised much interest in theory and applications [52], [53], [54],
[55], [56], [57]. Early saliency prediction models use pixel-level
image attributes, such as contrast, color, orientation, and intensity
[58], [59], [60]. An earlier advocate for context-aware saliency is
[24], which also focuses on low-level image features. Recently,
the resurgence of deep neural networks (DNNs) has resulted in
large gains in saliency prediction [61], [62], [63], [64], [65], [66],
[67], [68], such as SALICON [69], DeepGaze II [37], EML-NET
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Fig. 2: User interface of (a) EMOd object-labeling platform, and (b) EMOd image-annotation platform.

[36], MSI-Net [38], SAM [40], and DeepFix [70]. While DNN-
based models achieve considerable performance improvement,
existing models do not explicitly model or offer insights about the
relative importance of multiple objects in context. As suggested by
Bylinskii and colleagues [71], in order to approach human-level
performance, saliency models need to incorporate high-level image
concepts, such as text or motion, and reason about the relative
importance of image regions.

Building on these suggestions, researchers seek to incorporate
increasingly higher-level perceptual properties of images [8], [54],
[35], [71]. Their models attempt to encode various high-level
concepts. For example, several studies explore how human attention
is directed towards faces with emotional expressions [16], [72],
[73]. Studies in [74] find for action images that observers have
extensive fixation transitions between interacting objects. [75]
focuses on human attention on text.

More recently, [76] makes preliminary attempt to incorporate
color-based emotion-eliciting information in saliency prediction.
[77] and [78] included object sentiments in their saliency prediction
networks. However, saliency researchers have not yet attempted
to systematically measure or model the relation between emotion-
eliciting objects and attention. One major reason could be the
lack of a proper dataset with both emotion-eliciting content and
eye-tracking data. In our research, we develop a novel eye-tracking
dataset focusing on emotional attention. The dataset allows us to
comprehensively assess the relation between emotional content and
human attention, and inspires a new model design that effectively
addresses the emotion prioritization effect in attention allocation
within an image.

Eye-tracking datasets with emotion-eliciting information.
A few datasets feature emotion-eliciting images have been proposed,
such as the EMOTIC Dataset [79]; the DeepSent dataset [78], and
the Twitter dataset [80]. Without eye tracking data, however, they
are unsuitable for our purposes.

Two related datasets that we use as benchmarks for saliency
prediction (see Sec. 5.3) are NUSEF [23] and CAT2000 [81].
NUSEEF is 751 emotion-eliciting images that depict mostly faces,
nudes, and human actions. CAT2000’s training set contains 2000
images of diverse scenes, such as emotion-eliciting images and
cartoons. However, these two datasets have limited emotion-
eliciting content and no object labels. Emotion labels are absent
in other commonly used eye-tracking datasets (for an overview
see [82]). In this research, we present the first eye-tracking dataset
to include images of diverse emotion-eliciting scenarios, together
with extensive image annotations.

Measuring human attention requires customized eye-tracking

qtuires IEEE permission. See http://www.ieee.or:

equipment, making crowdsourcing difficult. Researchers have been
trying to combine crowdsourcing techniques with eye tracking data
collection [83], [84]. Some methods for large-scale attention data
collection include using webcams and mouse/finger movements
[85], [86], [871, [88], [89], [90], but their validity is not completely
established for images of diverse scenes. Indeed, [88] reports
that their measures of attention are disproportionately influenced
by the image semantics, e.g., the number of objects presented
in an image. None of these methods to date have been applied
specifically to emotion-eliciting images. Thus, how the emotion-
eliciting properties of an image impacts attention measurement is
unknown. Seeking maximal validity for our dataset, we use the
gold-standard: measuring with eye-tracking equipment in controlled
laboratory conditions [91].

3 EMOTIONAL ATTENTION DATASET

In this section, we provide details on how we constructed EMO-
tional attention dataset (EMOd), a new dataset of 1019 emotion-
eliciting images, with eye-tracking data and annotations at object
and image levels. This dataset is aimed for research on visual
saliency and image sentiment.

3.1

The EMOd dataset was constructed from two sources: (1) a subset
(321) photos of the International Affective Picture System (IAPS)
[100], and (2) a set of 698 photos collected by the authors. From
IAPS, we selected 321 photos that were identified as primarily
eliciting one emotion in a study by [93]. This subset has also been
used in other computer vision research on emotion assessment
[101], [102], [98]. The aim of our own collection was to make
the dataset more diverse regarding how observers’ emotions are
evoked. We grouped the 698 images into six types based on how
they evoked emotions (parenthetical numbers are how many images
were that type): emotion-eliciting objects (29), emotion-eliciting
activities (158), emotion-eliciting gist (145), emotion-eliciting
spatial layout (105), emotion-eliciting color and illumination (121),
and emotionally-neutral images (140). Readers can refer to the
supplementary material for example images of the six types.

Image collection

3.2 Psychophysics study I: eye tracking

Sixteen subjects aged 21 to 35 years old (27.0 £ 4.7) freely
observed all EMOd images on a 22-inch LCD monitor. The screen
resolution was 1920 x 1080. The visual angle of the stimuli was
about 38.94° x 29.20°. Subject eye movements were recorded
at 1000Hz using an Eyelink 1000 eye tracker. Each image was
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TABLE 1: Descriptions of semantic attributes of objects labeled in EMOd dataset. The fourth and fifth columns indicate the
number of objects in each category, and the number of images containing the specific category of objects, respectively.

Type Category Description Object No. Image No.
Face (emotional) Faces with obvious emotional expressions. 899 422
Directly related to Face (neutral) Faces without obvious emotional expressions. 890 443
humans Gazed Objects gazed upon by a human or animal. 111 92
Touched Objects touched by a human or animal. 322 244
Related to other Sound Obj:ects prloducing sound (e.g., people talking) 995 667
(nonvisual) human Smell Objects Wlth a scent (e.g., a flower, a cup of coffee). 386 309
senses Taste Food, drmk,_etc. _ _ 104 54
Touch Notably tactile objects (e.g., a sharp knife). 664 570
To attract attention Text Digits, letters, words, and sentences. 360 169
or to interact with Wachability Objects made to be viewed (e.g., pictures, traffic 186 78
humans signs).
Operability Natural or man-made objects held or used with hands. 689 445
Imply motion Motion Moving objects, includes gesturing humans/animals. 955 672

TABLE 2: List of 33 scene-level attributes in the EMOd dataset.

Attribute type

Detailed attributes

Emotions [92], [93]
Fear; Disgust

Happiness; Surprise; Awe; Excitement; Amusement; Contentment; Sadness; Anger;

Self-Assessment Manikin [94]

Valence; Arousal; Dominance

Semantics [95]

Familiarity; Unusualness; Dynamics; Informativeness; Natural object

Aesthetics [96], [97]

Aesthetics; High quality; Colorfulness; Natural color; Sharpness

Spatial layout [98]

Have objects of focus; Single object focus; Close-up shot; Centered; Symmetry

Naturalness [99] Photorealism

Related to people [99]

Attractive person; Posing; Eye contact; Positive expression

presented for 3 seconds, followed by a drift correction that required
subjects to fixate in the screen center and press the space bar to
continue.

3.3 Psychophysics study II: object-level annotation

We built an online EMOd object-labeling system based on the
LabelMe platform [103] (see Fig. 2 (a)). Three paid undergraduate
students from the National University of Singapore labeled the
object contour and object name for all objects in each image.
Each object was also labeled according to its sentiment category
(i.e., negative, neutral, or positive) and semantic category. The
design of semantic categories is based on [35], which includes four
types: (1) directly relating to humans (i.e., emotional face, neutral
face, touched, gazed), (2) relating to other (nonvisual) senses of
humans (i.e., sound, smell, taste, touch), (3) designed to attract
attention or for interaction with humans (i.e., text, watchability,
operability), and (4) objects with implied motion. Table 1 lists all
semantic categories. We adopted a similar approach to previous
research [104], [105], [106] by keeping the majority votes for
object’s labels. We had an overall agreement of 82% for all labeled
objects, suggesting decent consistency among participants’ labels.

3.4 Psychophysics study lll: scene-level annotation

We also built an EMOd scene-annotation platform to collect
human perceptions of scene-level attributes (see Fig. 2 (b)). Our
attributes list covers both semantic and sentiment aspects of
the images, including (1) 10 basic emotions commonly studied
in psychology [92], [93]: happiness, surprise, awe, excitement,
amusement, contentment, sadness, anger, fear, and disgust; (2)
valence, arousal, dominance measured with the Self-Assessment
Manikin for non-verbal pictorial assessment [94]; (3) high-level
attributes commonly studied in computer vision, such as aesthetics,

image quality, photorealism, depths of field, and symmetry [107],
[98], [95]. Table 2 shows the detailed list of the 33 attributes.

For the 698 images we collected, we deployed the EMOd image-
annotation platform on AMT and recruited 348 AMT workers
(> 95% approval rate in Amazon’s system) to annotate. For
the IAPS data set, due to copyright restrictions, we recruited 10
undergraduate students from the National University of Singapore
to annotate them on the platform within the campus intranet. The
detailed questionnaire is in the supplementary material. On average,
each image was annotated by 10 participants. For each image we
computed the score of each attribute by averaging the answers given
by the 10 participants, then transformed scores for each attribute to
arange of [0, 1] with raw scores of 1 becoming 0 and raw scores of
9 becoming 1. Averaging across the raters for each image, we got
an average Cronbach’s alpha [108] of .88 across the 1019 images
in EMOd dataset, indicating a good internal consistency among the
annotators [108]. For more details on EMOd construction, human
annotations and data reliability, please refer to the supplementary
material.

4 VISUAL SENTIMENTS AND HUMAN ATTEN-
TION

We analyzed the data in EMOd to explore how emotion-eliciting
properties of images related to human attention, at both object- and
scene-levels.

4.1

For each image, we compute a fixation map by placing at each
fixation location a Gaussian distribution with sigma equal to one
degree of visual angle and then normalizing the map to maximum
1 (a common method in saliency research [109]). Fig. 1 visualizes
fixation maps by overlaying colormaps on original images. We

Definitions and methods
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Fig. 3: Emotion-eliciting objects receive more (a) and earlier (b) human attention than neutral objects. In all figures in this paper, error
bars represent standard error. Images in (c) and (d) illustrate how emotion-eliciting objects (outlined in blue), such as the crying face and
broken card, are more salient and draw attention earlier than neutral/less emotional stimuli (outlined in gray). In each pair of numbers,
the first number is the attention score and the second number indicates attention shift rank.

define the attention score of an object as the maximum fixation-
map value that is inside the object’s contour. Attention scores thus
range between 0 and 1 [46].

Our analyses are performed at two levels: (1) object-level,
focusing on how the human attention of an individual object is
affected by its emotion-eliciting properties; and (2) scene-level,
investigating how image sentiment as a whole affects human
attention. We use inferential statistical analysis techniques, such
as univariate analyses of variance (ANOVA), post-hoc Tukey tests,
simple effects analysis, and Spearman’s rank correlation. These
analyses are standard in behavioral and other sciences. See, for
example, [110] for an introduction to these inferential statistics.

4.2 Object-level analyses

In this subsection, we report our findings on how observer attention
on an object correlates with the object’s sentiment category and
semantic attributes.

Observation 1 (Emotion prioritization effect): Emotion-
eliciting objects receive more and earlier human attention than
neutral objects. Furthermore, people attend to emotion-eliciting
objects not only strongly, quickly, but also briefly—a positive or
negative object is more likely to draw human attention at first
fixation, but the advantage diminishes quickly during subsequent
fixations.

Observation 1 is based on the following analyses. First, a
two-way ANOVA has the attention scores of each object as
the dependent variable, and sentiment and semantic categories
as the independent variables. Attention scores are influenced by
both sentiment category (F'(2,4263) = 22.96,p < .001!) and
semantic category (F'(12,4263) = 4.31,p < .001). The larger
F score of sentiment over semantics (22.96 v.s. 4.31) suggests
sentiment impacts attention more than semantics. Post hoc Tukey
tests indicate that neutral objects have lower attention scores than
negative and positive objects (ps?> < .001), and attention scores for
negative and positive objects do not significantly differ, p = .270
(see Fig. 3 (a)).

Second, we define attention shift rank as the descending values
indicating the order in which distinct objects are attended by
observers, one at a time [32]. Objects with higher attention
shift ranks have earlier fixations in a fixation sequence. ANOVA

1. We report the results of ANOVAs as, ”F'(df.ondition, dferror) = F value,
p = p value”. If a p value is smaller than the conventional significance level
threshold of .05, we reject the null hypothesis of no difference among the
means.

2. Throughout the paper, ps represents the plural form of p.
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Fig. 4: (a) Human observers fixated first on emotion-eliciting
objects more than neutral objects, but the attention prioritization
quickly diminishes. (b) Viewers fixated on the emotion-eliciting
objects (i.e., food (1) and crocodile’s mouth (2)) before the neutral
human body (3).

indicates a strong effect of sentiment on attention shift rank for
the objects, F'(2,42993) = 74.16,p < .001. Post hoc Tukey
tests show that both positive and negative objects have higher
attention shift rank than neutral objects (ps < .001), but negative
and positive objects do not significantly differ, p = .423, see
Fig. 3 (b). Analyses suggest a strong correlation between objects’
attention score and attention shift rank (Spearman’s rank correlation
p = .80), indicating that objects that are more salient also draw
attention earlier.

We also evaluate how the first six fixations are distributed
across positive, neutral, and negative objects. We randomly pick an
equal number (373) of negative, neutral, and positive objects. We
select only from images containing 3 to 6 objects to minimize any
effect of image complexity on fixation order. Objects categorized
as positive or negative have more fixations than do neutral objects
at first fixation, but subsequent fixations show little difference (see
Fig. 4). By showing for the first time that attention prioritization
diminishes drastically after initial fixation for the EMOd dataset,
our findings reveal a more nuanced understanding of the claim
that human attention prioritizes emotion-eliciting stimuli over non-
emotion-eliciting stimuli [14], [16], [45].

Observation 2: The emotion prioritization effect (Observation
1) is stronger for human-related objects than objects unrelated to
humans. For example, happy faces are prioritized over neutral faces
more than fascinating architecture is over common architecture.

This is indicated by a significant interaction of sentiment
category and semantic category, F'(24,4263) = 3.62,p < .001,
which means that emotion prioritization differs across various
combinations of sentiment and semantics. Simple effects analysis
shows that emotion prioritization occurs primarily for semantic

categories of “touched”, “gazed”, “motion”, “sound” (see Fig. 5
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Fig. 5: (a) Emotion prioritization is stronger for human-related objects: those being touched, gazed upon, or with motion or sound. (b-c)
Examples of gazed-upon objects and their respective attention scores. The emotion-eliciting gazed-upon object—the injection point on
the crying child’s arm (b) has a higher attention score than the neutral gazed-upon object—the box of dye in the lady’s hand (c).
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the linear regression line of image points, and each dot represents one image.

(a)). Objects being “touched” and “gazed” upon, and objects with
“sound” by definition relate to humans. The majority (> 75%)
of “motion” in EMOd are coded as being on human bodies or
human faces, so such objects also relate to people. This suggests
that the emotion prioritization effect is stronger on human-related
objects. Fig. 5 (b-c) illustrates this interaction using images with
gazed-upon objects. To evaluate the gaze-cuing effect, independent
samples t-test compares the attention shift rank of faces with gaze
cues with faces targeted by gaze cues. Results show that faces
with gaze cues have higher attention shift ranks than faces targeted
by gaze cues (£(12) = 3.82,p = .003), suggesting a potential
gaze-cuing effect for faces. Independent samples ¢-test shows no
significant gaze-cuing effect for objects of non-face categories
(t(44) = 0.31,p = .762), which may be due to the multiple
confounding factors on human attention such as object semantics
and sentiments.

Exploratory analyses evaluated other low- and mid-level factors
that might influence attention score and attention shift rank.
Results indicate significant effects for object’s location, color, and
luminance (Spearman’s rank correlation, ps > .32). Readers can
refer to the supplementary materials for details.

Observation 3: Human attention varies on objects with differ-
ent semantic attributes. Human faces and human-related objects
draw stronger attention.

Following up on the main effect of object semantic category,
post hoc Tukey tests indicate that object categories with highest
attention scores are “‘gazed” upon, “face (emotional)” and “face

9

(neutral)”, followed by “sound”, “motion”, “touch”, “smell” and
“taste” (see supplementary material for details). This is consistent
with previous findings [10], [11], [35], [12], which reports that
human faces and human-related objects generally attract more
attention.

4.3 Scene-level analyses

In addition to the object-level analyses, here we report correlations
of human attention with the 33 scene-level attributes (see Table 2
for the detailed list). Previous findings suggest that human attention
patterns differ across scene categories [81], and image contexts
affect visual attention [24]. Informed by these findings, we compute
the Spearman’s rank correlation (p) between the number of fixations
and scene-level attributes separately for each scene category.

Observation 4: For images of indoor scenes in our dataset,
human attention is more focused (i.e., less diffused) with a more
focused or a less informative scene®.

Fixation counts positively correlate with the attribute “infor-
mativeness” (p = .27,p < .001, n = 59), and “having focused
objects” (p = .25,p < .001, n = 59) across all images. With
a fixed viewing time of 3 seconds, fewer fixations (i.e., longer
fixation duration) indicate human attention is more focused.

Observation 5: Human attention is more focused for awe-
eliciting and aesthetic images of animal and vehicle scenes.

3. The image “having focused objects” and “informativeness” are among
the 33 scene-level attributes rated by our participants. Readers can refer to the
supplementary materials for details on attributes annotation.

qtuires IEEE permission. See http://www.ieeeorglgublicationsﬁstandards/publications/ri hts/index.html for more information.
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Fig. 7: The architecture of the proposed DNN (CASNet II). An Atrous Spatial Pyramid Pooling (ASPP) structure with four branches
(inside the gray dashed rectangle) is used to capture the contextual information for each pixel at multiple resolution scales. A channel
weighting subnetwork (inside the dashed orange rectangle) computes a set of 1024-dimensional feature weights for each image (instead
of only one for the whole image) to capture the relative importance of the semantic features of a particular image. The gray dashed
arrows illustrate how the relative saliency of different regions within an image are modified through the subnetwork.

Spearman’s rank correlation indicate that two attributes in-
dicating positive emotions—“awe” and ‘“‘aesthetics”—negatively
correlate with fixation counts, more so in animal and vehicle scenes
(|pls > .18,ps < .05, n = 139, 65, respectively). In contrast, two
attributes indicating negative emotions—‘sadness” and “disgust”—
positively correlate with fixation counts for animal scenes (ps
> 17,ps < .05, n = 139). Fig. 6 shows example images from
vehicle and indoor scenes on the respective attributes. Readers
can refer to the supplementary material for a detailed list of all
correlated scene attributes. Notably, other factors might influence
human fixation allocation, such as the number of objects in a scene
and regions toward which people tend to look (e.g., windows). Thus,
we need to be cautious in making cause-effect claims regarding
scene-level attributes and human attention.

We further compute the correlation between scene-level at-
tributes and human fixations across time. We use four statistics
commonly used in fixation analysis, namely fixation duration,
saccade duration, saccade length, and saccade velocity [111]. Below
we report the main finding.

Observation 6: Humans exhibit longer fixation duration and
lower saccade velocity on more emotionally positive images, but
shorter fixation duration and faster saccade on more informative
images and more emotionally negative images.

We dichotomized each attribute ratings by setting an upper
bound threshold as 0.67 (being positive) and a lower bound
threshold as .33 (being negative) for emotional attributes [112].
Fixation patterns differed significantly between the two groups of
several high-level attributes, such as “aesthetic”, “awe”, and “sad”
(paired samples t-tests, ps < .001). In particular, positive (awe,
excitement, happy) images of animals and vehicles had longer
fixation duration and lower saccade velocity. This corroborates
Observation 5, which shows that human attention is more focused
for awe-eliciting and aesthetic animal and vehicle scenes.

Readers can refer to the supplementary material for detailed
distribution of these attributes and their correlation with human
attention behavior.

In summary, human attention varies according to different
emotion-eliciting properties at both object- and scene-levels. A
notable caveat for our findings is that we cannot make definitive
claims regarding causality. Our methods capture some of the most
likely causal variables, but they do not control for other unidentified

qtuires IEEE

permission. See http://www.ieee.or;

variables that could correlate with our measured variables and be
the true variables influencing human attention. Future research
could experimentally isolate the critical variables to increase the
internal validity of our correlational findings [113].

5 COMPUTATIONAL MODELING

This section reports how we computationally model human
attention. We demonstrate how encoding emotion prioritization can
help automated saliency prediction.

5.1

The proposed DNN model is illustrated in Fig. 7. In the following
paragraphs, we discuss the motivation, mechanisms, and design
of our model, which is focused on contextual saliency—saliency
regarding both spatial and semantic context of the scene.

We construct the backbone of our model based on the VGG-16
network architecture. The model design is motivated by two aspects.
First, our human studies indicate human emotion prioritization is
often present in large image regions and not limited to single
objects. Second, we notice that the final output saliency map of
the computational model depends on the size of the receptive
view. A larger receptive view enables the model to capture more
information around the targeted pixels in the output saliency map.
Ideally, our network should be able to learn contextual information
for each pixel at multiple resolution scales. To achieve this, we
employ an Atrous Spatial Pyramid Pooling (ASPP) [33] at the last
layers of the VGG-16 network (the gray dashed rectangle in Fig.
7). The initial design goal of ASPP is semantic segmentation to
detect object boundaries at different scales. We customize it for
saliency prediction in two ways. First, we adjust the size of the
atrous rates to focus on the holistic context information instead
of object boundaries. We then empirically design the pyramid
pooling structure with four branches to extract multi-scale context
information while ensuring high network efficiency. By doing so,
the ASPP structure in CASNet II improves contextual saliency
learning with more resolution scales. The enlarged receptive
fields allow the model to better learn the relative importance
among multiple objects/areas, extending the previous object-based
prioritization to prioritization in larger image regions.

In particular, we first replace the three vanilla convolutional
layers in block Conv4 to atrous convolutional layers with rates

Model design
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1, 2, and 3, respectively. Such replacement enlarges the receptive
field without increasing the computation overhead. We then apply
a four-branch pyramid pooling structure to learn the saliency score
for each pixel under different resolution levels of context. The first
branch is a 1x 1 vanilla convolutional layer representing the same
size of feature maps from block Conv4. The other three branches
are designed to gain information from larger receptive fields. We
set the kernel size to 3x 3, and the atrous rates to be 3, 6, and 9,
respectively. The larger receptive fields help obtain more holistic
contextual information within larger image regions. The ASPP
structure produces 1024-dimensional multiple-scale feature maps
for later processing.

To address emotion prioritization, we further design a channel
weighting subnetwork (the orange dashed rectangle in Fig. 7) that
encodes contextual information, enabling the network to high-
light emotion-eliciting objects from the surroundings. The model
automatically computes a 1024-dimensional feature importance,
which corresponds to an image’s 1024 feature maps. This allows
the subnetwork to learn the relative importance of the image’s
semantic features. Specifically, to compute the weight, we first
apply a 4x4 max pooling on the 1024 channels of concatenated
feature maps to reduce their dimensionality and spatial variance.
We then flatten the output and apply a fully-connected layer to
compute a 1024-dimensional vector. Each dimension represents
the saliency weight of the corresponding input channel. The fully-
connected layer allows the model to learn the relative weights of
different objects or regions in a scene based on both their spatial
locations and semantic features. Finally, the weights are applied to
the input feature in a channel-wise multiplication.

We feed images of 640x480x3 pixels to the network. The
output of backbone network streams are re-scaled to the same
spatial resolution, and stacked together to form multi-scale deep
features of dimension 40x30x1024. Each channel corresponds
to an activation map representing a certain visual pattern in the
image at different resolutions. We then perform a convolutional
layer after the new subnetwork with a 1x1 kernel to reduce the
1024-channel 2D images into a single-channel 2D saliency map of
dimension 40x% 30 pixels. Finally, we resize the saliency map back
to the dimension of the original image.

5.2 DNN parameters

We initialize the training to the pre-trained parameters for VGG-16
on ImageNet. A combination of mean squared error (MSE) and
Normalized Scanpath Saliency (NSS) is used as the loss function.
We set the same weights for NSS and MSE. We use a fixed
loss function combination for all experiments. The parameters
of the DNN are then learned end-to-end on the training images
with stochastic gradient descent. The learning rate is 10~° and
the batch size is 4. A momentum of 0.9 and a weight decay of
0.0005 are used. We train the model for 30 epochs. Each epoch
contains 1250 iterations. We pre-train our network using a mouse
contingency based saliency dataset—SALICON [86]. The entire
training procedure takes about one day on a single NVIDIA 1080Ti
GPU using Tensorflow 2 [114].

5.3 Experiment datasets

We test our model on five eye-tracking datasets, three of them
have image collections focused on emotion-eliciting content. The
first is EMOd, with 1019 emotion-eliciting images. The second
is the NUSEF dataset [23], which has 751 images that depict

ublication/redistribution re

8

mostly emotion-eliciting objects and human actions. The third is the
training set of CAT2000 [81], which contains 2000 diverse images
including including emotional, cartoon, social, and so on. The other
two datasets, MIT1003 [34] and OSIE [35], are widely used in
saliency prediction, although they do not focus on emotion-eliciting
content. MIT1003 contains 1003 natural indoor and outdoor scenes,
and is commonly used on MIT/Tuebingen Saliency Benchmark
[120]. OSIE dataset is a collection of 700 aesthetic photographs
from Flickr and Google. By testing our algorithms on datasets with
different features, we aim to have a comprehensive evaluation of
the proposed method.

5.4 Comparison methods

First, we compare the proposed saliency prediction model (i.e.,
CASNet II—Context-Adaptive Saliency Network II) with two of
our previous versions: i) our model published in CVPR 2018 [31]
(i.e., CASNet I, the prior version of CASNet II without the ASPP
structure ); ii) a model without the weighting subnetwork (i.e., N-
CASNet—Not Context-Adaptive Saliency Network). More details
are reported in the Ablation Study in subsection 5.7.

We further compare our models with 10 others. Eight are state-
of-the-art DNN-based models: EML-NET [36], DeepGaze II [37],
MSI-Net [38], GazeGAN [39], SAM-ResNet [40], SALICON*[64],
SalGAN [116], and ML-Net [67]. Two are non-DNN models with
top performance in the non-DNN model category: Boolean Map
based Saliency (BMS) [117] and Saliency via Sparse Residual
& Outlier Detection (SROD) [118]. Two are classic bottom-up
approaches: Graph-Based Visual Saliency (GBVS) [119] and Itti-
Koch model (IttiKoch) [58]. These models are top performers on
the MIT/Tuebingen Saliency Benchmark [120] in their respective
categories. To ensure fair comparisons, all DNN-based models are
trained on the SALICON dataset to achieve their best possible
performance, and all models are directly tested on the five
benchmark datasets without training/fine-tuning on them. We
disabled the pre-computed center bias in DeepGaze II as we
presume all models have no prior knowledge about the test data.
For our three versions of CASNet and three comparison models
whose codes are publicly available, we run them three times by
training on the SALICON dataset, and report the mean and standard
deviation.

5.5 Evaluation metrics

Following the MIT/Tuebingen Saliency Benchmark [120], we use
8 metrics for comprehensive evaluation. The Area Under the ROC
Curve (AUC) [121] treats the saliency map as a binary classifier.
We use two variants of AUC: AUC-Judd and AUC-Borji [122],
and shuffled-AUC (sAUC) [123] which alleviates the effects of
center bias. Although comprehensive and commonly used in the
community, AUC by nature is not able to distinguish between
cases where models predict different relative importance values
for different regions of an image [122], [71], [124], as needed
in our study. We further use five similarity metrics to measure
the similarity between the saliency map and fixation map, namely
Normalized Scanpath Saliency (NSS) [125], Linear Correlation
Coefficient (CC) [126], histogram intersection (SIM) [127], the
Kullback-Leibler divergence (KL) [128], and Information Gain
(IG) [129], [122]. See [122] for an introduction of these metrics.

4. We use the code of OpenSALICON (a publicly available implementation
of SALICON) [115].

uires IEEE permission. See http://www.ieeeor%/gqlblicationsﬁstandards/publications/ri%hts/indexhtml for more information.
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TABLE 3: Results on the EMOd dataset. In all subsequent tables in this paper, the best performance in each metric is highlighted in bold.
For Tables 3-7, the performance of models in the first six rows are the means of three runs. The numbers in the parentheses indicate the
standard deviation. “1” indicates higher values are better. “|” indicates lower values are better.

AUC-Judd T AUCBoni T sAUC T NSS T 1G T CC T SIM T KL 7
CASNet II (ours) __ 0.84 (0.002)  0.81 (0.002) _ 0.79 (0.000) _ 1.81 (0.005) _ 1.80 (0.004) _ 0.68 (0.002) _ 0.57 (0.006) _ 5.55 (0.001)
CASNetI[31]  0.83(0.001) 0.81(0.001) 0.79 (0.002) 1.73 (0.003) 1.51 (0.005) 0.66 (0.002) 0.57 (0.002)  5.74 (0.003)
N-CASNet 0.81 (0.008)  0.79 (0.003)  0.77 (0.001)  1.61 (0.007)  1.50 (0.020)  0.60 (0.005)  0.51 (0.035)  5.70 (0.082)
EML-NET [36] _ 0.83 (0.001) 0.78 (0.003) _ 0.77 (0.003) _1.91 (0.003) 0.33 (0.231) _ 0.70 (0.001) _ 0.60 (0.001)  6.52 (0.157)
MSI-Net [38] 0.84 (0.002)  0.81 (0.002) 0.78 (0.004) 1.80 (0.019) 1.28 (0.004)  0.68 (0.006)  0.60 (0.007)  5.89 (0.002)
SALICON [115]  0.83 (0.001) 0.81(0.001)  0.79 (0.001)  1.64 (0.001) 0.63 (0.001)  0.59 (0.000) 0.52 (0.000)  5.66 (0.000)

DeepGaze II [37] 0.83 0.82 0.80 1.39 1.26 0.52 0.46 5.93
GazeGAN [39] 0.82 0.80 0.76 1.60 1.21 0.61 0.56 6.62
SAM-ResNet [40] 0.83 0.73 0.72 1.90 0.41 0.68 0.60 6.46
SalGAN [116] 0.83 0.80 0.78 1.74 1.13 0.66 0.58 5.83
ML-Net [67] 0.82 0.76 0.74 1.74 1.21 0.62 0.56 5.78
BMS [117] 0.77 0.75 0.74 1.12 1.02 0.42 0.45 5.94
SROD [118] 0.74 0.73 0.72 0.98 0.88 0.37 0.42 6.04
GBVS [119] 0.79 0.78 0.75 1.18 1.13 0.47 0.48 5.86
IttiKoch [58] 0.73 0.72 0.70 0.88 0.88 0.35 0.43 6.04

TABLE 4: Results on the NUSEF dataset.

AUC-Judd T AUC-Borji T sAUC T NSS T 1G T CC T SIM T KL T
CASNet II (ours) __ 0.84 (0.003)  0.79 (0.003) _ 0.77 (0.002) _ 1.82 (0.001) _ 1.36 (0.038) _ 0.70 (0.001) _ 0.57 (0.004) _ 5.36 (0.022)
CASNetI[31]  0.83(0.003) 0.79 (0.003) 0.76 (0.003) 1.75 (0.020) 0.62 (0.063) 0.67 (0.008)  0.58 (0.005)  5.85 (0.043)
N-CASNet 0.81 (0.002)  0.79 (0.003)  0.76 (0.002)  1.67 (0.001)  1.12 (0.011)  0.64 (0.001)  0.49 (0.002)  5.53 (0.008)
EML-NET [36] _ 0.83 (0.002) 0.75 (0.003) _ 0.73 (0.003) _1.81 (0.003) 0.31 (0.002) 0.68 (0.002) 0.60 (0.002) _ 7.15 (0.195)
MSI-Net [38] 0.84 (0.001)  0.79 (0.001)  0.76 (0.001)  1.82(0.003)  0.15(0.010)  0.70 (0.001)  0.61 (0.001)  6.17 (0.007)
SALICON [115]  0.82 (0.001)  0.80 (0.001)  0.77 (0.001)  1.68 (0.001) 1.19 (0.003)  0.65 (0.001)  0.53 (0.001)  5.47 (0.002)

DeepGaze 1I [37] 0.80 0.79 0.77 1.33 0.49 0.51 0.46 5.96
GazeGAN [39] 0.82 0.79 0.76 1.64 0.85 0.64 0.57 6.85
SAM-ResNet [40] 0.83 0.70 0.69 1.76 0.46 0.65 0.57 7.25
SalGAN [116] 0.83 0.78 0.75 1.72 0.51 0.66 0.58 5.90
ML-Net [67] 0.82 0.74 0.71 1.66 0.11 0.61 0.55 6.20
BMS [117] 0.77 0.75 0.72 1.08 0.67 0.42 0.44 5.84
SROD [118] 0.74 0.74 0.71 0.95 0.62 0.37 0.42 5.88
GBVS [119] 0.80 0.79 0.74 1.21 0.96 0.49 0.48 5.64
IttiKoch [58] 0.71 0.70 0.67 0.77 0.56 0.31 0.40 5.92

TABLE 5: Results on the CAT2000 dataset.

AUC-Judd 1 AUC-Borji 1 sAUC 1 NSS 1T IG 1 CC 1T SIM T KL 1
CASNet II (ours) 0.83 (0.003)  0.81 (0.004)  0.78 (0.004) 1.55(0.008) 0.42(0.016) 0.60 (0.004) 0.56 (0.001) 5.82 (0.012)
CASNet I [31] 0.81 (0.006)  0.79 (0.004)  0.76 (0.003) 1.48 (0.013) 0.23(0.194) 0.57 (0.005) 0.54 (0.021)  5.96 (0.123)
N-CASNet 0.77 (0.032)  0.75(0.014)  0.73 (0.007) 1.24 (0.101) 0.06 (0.210)  0.48 (0.039)  0.47 (0.048) 6.08 (0.133)
EML-NET [36] 0.83 (0.001)  0.78 (0.003)  0.75(0.003) 1.62(0.005) 0.61 (0.003) 0.61 (0.003) 0.58 (0.003) 6.79 (0.139)
MSI-Net [38] 0.82 (0.001)  0.80 (0.001)  0.77 (0.001) 1.48 (0.014) 0.17 (0.024) 0.57 (0.004)  0.57 (0.001)  6.00 (0.017)
SALICON [115] 0.81 (0.001)  0.80(0.002)  0.76 (0.001) 1.43(0.002) 0.28 (0.008) 0.55(0.001) 0.52 (0.001) 5.91 (0.006)

DeepGaze II [37] 0.80 0.79 0.76 1.24 -0.15 0.48 0.48 6.22
GazeGAN [39] 0.83 0.81 0.78 1.52 -0.58 0.59 0.57 6.52
SAM-ResNet [40] 0.84 0.76 0.74 1.77 -0.21 0.65 0.59 6.25
SalGAN [116] 0.81 0.80 0.77 1.45 0.08 0.56 0.53 6.08
ML-Net [67] 0.79 0.73 0.70 1.31 0.04 0.49 0.51 6.08
BMS [117] 0.78 0.77 0.73 1.15 -0.13 0.44 0.49 6.21
SROD [118] 0.77 0.76 0.72 1.07 -0.11 0.41 0.48 6.06
GBVS [119] 0.80 0.79 0.75 1.24 0.18 0.49 0.50 5.99
IttiKoch [58] 0.71 0.70 0.66 0.76 -0.25 0.30 0.42 6.29
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Fig. 8: Qualitative results generated by our saliency model in comparison with state-of-the-art methods. Our model (CASNet II)
outperforms other models in both location and order, by taking into consideration contextual information (e.g., encoding relative
importance of occurring faces in the first two rows, objects in the third and fourth row, and highlighting areas of interest in scene images
in the last three rows). Due to space limit, we only show examples from nine DNN-based models, which are top performers on EMOd
dataset.

TABLE 6: Results on the MIT1003 dataset.

AUC-Judd 1+ AUC-Borji 1 sAUC 1 NSS 1 1IG 1 CC 1T SIM T KL 1

CASNet II (ours) 0.88 (0.001) 0.86 (0.001)  0.83 (0.002) 2.25(0.007) 2.08 (0.014)  0.65 (0.000) 0.47 (0.004) 5.39 (0.013)

CASNet I [31] 0.87 (0.002)  0.86 (0.002)  0.82(0.003) 2.09 (0.027) 1.96 (0.013) 0.61 (0.007) 0.47 (0.003) 5.46 (0.010)

N-CASNet 0.85 (0.002)  0.83(0.002) 0.80(0.002) 1.99(0.001) 1.65(0.015) 0.57 (0.001) 0.38 (0.003) 5.69 (0.010)

EML-NET [36] 0.88 (0.001) 0.83(0.003) 0.80(0.002) 2.40 (0.008) 1.47 (0.118) 0.67 (0.002)  0.55(0.002) 5.78 (0.079)

MSI-Net [38] 0.88 (0.001)  0.86 (0.002) 0.82(0.003) 2.20(0.010) 2.03 (0.036) 0.64 (0.005) 0.50 (0.005) 5.41 (0.023)

SALICON [115] 0.86 (0.001)  0.85(0.001) 0.82(0.001) 1.97(0.014) 1.81(0.001) 0.58 (0.003) 0.42 (0.000) 5.57 (0.001)
DeepGaze 1I [37] 0.86 0.85 0.83 1.61 1.36 0.47 0.34 5.89
GazeGAN [39] 0.86 0.84 0.81 2.17 1.21 0.57 0.48 597
SAM-ResNet [40] 0.88 0.78 0.76 2.37 1.61 0.65 0.54 5.68
SalGAN [116] 0.88 0.84 0.82 2.06 1.02 0.63 0.50 5.08
ML-Net [67] 0.85 0.77 0.75 2.06 0.88 0.59 0.50 5.31
BMS [117] 0.78 0.77 0.74 1.21 0.34 0.36 0.35 6.01
SROD [118] 0.76 0.75 0.72 1.06 0.17 0.32 0.32 6.12
GBVS [119] 0.82 0.81 0.76 1.34 0.54 0.42 0.38 5.86
IttiKoch [58] 0.75 0.73 0.70 0.96 0.18 0.29 0.33 6.12

5.6 Experiment results on particular metrics, which may be useful for specific applications.
As illustrated in Fig. 8, CASNet II is most advantageous on

We report statistical results in Tables 3 — 7. Qualitative results  jmages showing multiple emotion-eliciting objects (first two rows

0162-8828 (c) 2021 IEEE. Personal use is permitted, but re

for the EMOd dataset are shown in Fig. 8. Our model (CASNet
II), with the channel weighting subnetwork and ASPP structure,
is most advantageous on datasets focusing on emotion-eliciting
content (i.e., EMOd, OSIE). To have a concise overview of the
comparison, we compute an average score over all metrics for each
model. Specifically, we use z-score transformation to normalize
each column of metrics first. We then compute the mean of all
columns of metrics (with a negative weight of KL). No model
stands out on every metric (Tables 3 — 7). When evaluated by the
normalized mean of all metrics in Table 8, our model achieves the
best performance on all datasets, suggesting the efficacy of the
model design. Notably, however, different models have advantages

ublication/redistribution re

in Fig. 8) or images without obvious focal objects (last four rows in
Fig. 8). This advantage demonstrates the efficacy of the proposed
ASPP structure and channel weighting subnetwork.

5.7 Ablation study

In this subsection, we further evaluate the effectiveness of each
component of the model. To do this, we compare the performance
of the three versions of our method: i) CASNet II (model with
both ASPP structure and channel weighting subnetwork); ii)
CASNet I (model with channel weighting subnetwork, but without
ASPP structure); iii) N-CASNet (model without channel weighting
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TABLE 7: Results on the OSIE dataset.

AUC-Judd T+ AUC-Borji 1 sAUC 1 NSS 1+ 1IG 1+ CC 1T SIM T KL J

CASNet II (ours) 0.89 (0.001)  0.86 (0.001)  0.85(0.002) 2.49 (0.009) 2.41(0.017) 0.78 (0.001) 0.59 (0.006) 4.91 (0.016)

CASNet I [31] 0.89 (0.002) 0.86 (0.003)  0.84 (0.003) 2.33(0.029) 2.20(0.030) 0.74 (0.011)  0.60 (0.007)  5.03 (0.020)

N-CASNet 0.88 (0.002) 0.86 (0.002) 0.85(0.002) 2.33(0.010) 2.12(0.012) 0.73 (0.001) 0.50 (0.003) 5.12 (0.008)

EML-NET [36] 0.90 (0.001) 0.84 (0.003)  0.83 (0.003) 2.71 (0.007) 1.59 (0.120)  0.80 (0.002)  0.67 (0.001) 5.38 (0.075)

MSI-Net [38] 0.90 (0.002) 0.86 (0.002) 0.85(0.002) 2.45(0.012) 2.10(0.050) 0.78 (0.003) 0.64 (0.004) 5.08 (0.033)

SALICON [115] 0.89 (0.001) 0.87 (0.001)  0.85(0.001) 2.23(0.015) 2.20 (0.005) 0.72 (0.003) 0.53 (0.001) 5.06 (0.004)
DeepGaze II [37] 0.90 0.89 0.88 1.87 1.81 0.60 0.44 5.35
GazeGAN [39] 0.88 0.86 0.84 2.17 1.06 0.70 0.59 5.77
SAM-ResNet [40] 0.89 0.77 0.77 2.68 1.45 0.77 0.65 5.46
SalGAN [116] 0.89 0.85 0.84 2.29 2.17 0.74 0.62 5.05
ML-Net [67] 0.89 0.78 0.77 2.53 2.10 0.75 0.62 5.06
BMS [117] 0.83 0.81 0.79 1.41 1.68 0.46 0.43 5.46
SROD [118] 0.81 0.80 0.78 1.33 1.50 0.44 0.40 5.58
GBVS [119] 0.81 0.80 0.76 1.30 1.61 0.44 0.42 5.49
IttiKoch [58] 0.76 0.75 0.72 1.02 1.39 0.34 0.39 5.65

Stimuli CASNet Il CASNet | N-CASNet Difference image 1 Difference image 2

Fig. 9: Examples of how our models gradually improve the relative saliency among different objects in a scene, to closely match human
emotion prioritization. The last two columns visualize the difference between predictions from CASNet II and CASNet I (difference
image 1), and CASNet I and N-CASNet (difference image 2): colors close to orange/red indicate increased saliency after applying the
subnetwork for contextual saliency, whereas colors close to blue/green indicate decreased saliency.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but re

subnetwork or ASPP structure). The results are shown in the first
three rows in Tables 3 — 7. Fig. 9 gives qualitative examples to
show how CASNet II and CASNet I use contextual information
to improve saliency prediction by learning the relative importance
of emotion-eliciting objects, which more closely matches human
emotion prioritization than N-CASNet.

Contribution of channel weighting subnetwork: To ana-
lyze the contribution of the channel weighting subnetwork, we
compare the performance of CASNet I and N-CASNet. On all
five datasets, CASNet I consistently outperforms N-CASNet.
The results demonstrate the efficacy of our contextual saliency
mechanism. Furthermore, as suggested in [129], [122], NSS and
IG take into account the relative importance of the salient regions,

ublication/redistribution re

thus are the best evaluation measures for contextual saliency.
CASNet II beats the other methods on these two metrics across all
three datasets, demonstrating its advantage on contextual saliency.
Notably, CASNet I consistently outperforms N-CASNet on all
datasets (Table 3 — 7), and its advantage is largest on NSS and IG.
This suggests the effectiveness of learning the relative weights of
salient regions inside an image through the proposed subnetwork.

Contribution of ASPP structure: The channel weighting
subnetwork discussed above aims to highlight emotion-eliciting
objects. However, this is insufficient to encode the holistic contex-
tual information, which we found was important for observers of
EMOd. The ASPP structure is used to model contextual saliency
at multiple scales. With the ASPP structure, the largest receptive
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Human

Stimuli

CASNet Il

Fig. 11: This figure shows the interim heatmaps with the highest weights from CASNet II, CASNet I and N-CASNet before the last fully
convolutional layer. The heatmaps from CASNet II are closer to human groundtruth than CASNet I on images with multiple human
focuses (first three rows), and images with relatively small focused areas (last three rows). This suggests that the ASPP structure in
CASNet II allows for larger receptive fields with more resolution scales, thus enabling the model to learn the contextual saliency within a
larger area in the image and capture human attention more precisely for the whole scene. The results of CASNet I are closer to human
groundruth than N-CASNet, suggesting the channel-weighting subnetwork help re-direct the attention to the emotional areas.

TABLE 8: Normalized means of all z-scored metrics (AUC-Judd,
AUC-Borji, sAUC, NSS, IG, CC, SIM, KL). Our model (CASNet
ID) achieves the top performance on all five benchmark datasets.

Model EMOd | NUSEF | CAT2000 | MIT1003 | OSIE
CASNetII | 097 0.96 0.87 0.90 0.84
CASNet | 0.73 0.58 0.50 0.71 0.64
N-CASNet | 0.45 0.48 -0.43 0.18 0.74
EML-NET | 0.08 -0.25 -0.20 0.66 0.47

MSI-Net 0.71 0.59 0.58 0.89 0.74
SALICON | 0.66 0.68 0.44 0.46 0.56
DeepGazell | 0.16 -0.06 0.86 -0.05 0.20
GazeGAN 0.01 0.30 0.21 0.26 -0.15
SAM-ResNet| -0.32 -0.38 0.38 0.41 -0.07
SalGAN 0.53 0.46 0.32 0.72 0.60
ML-Net 0.15 -0.15 -0.46 0.07 0.23
BMS -0.83 -0.65 -0.53 -1.20 -0.82
SROD -1.34 -1.00 -0.67 -1.58 -1.10
GBVS -0.42 -0.02 0.03 -0.68 -1.08
IttiKoch -1.53 -1.54 -1.90 -1.74 -1.80

TABLE 9: Normalized means of all z-scored metrics (AUC-
Judd, AUC-Borji, SAUC, NSS, IG, CC, SIM, KL) of four model
versions on five benchmark datasets. CASNet II contains both
channel-weighting subnetwork and ASPP structure, CASNet I has
channel-weighting subnetwork only, CASNet only has ASPP, and
N-CASNet contains neither channel-weighting subnetwork nor
ASPP structure.

Model EMOd | NUSEF | CAT2000 | MIT1003 | OSIE
CASNet II 0.72 1.04 0.80 0.51 0.35
CASNet I 0.36 -0.08 0.30 0.10 0.25
CASNet 0.07 0.13 0.28 0.15 0.36
N-CASNet | -1.15 -1.09 -1.38 -0.77 -0.95
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Fig. 10: Emotional objects are predicted as being more salient than
neutral objects by CASNet II, which is consistent with the emotion
prioritization effect of human observers.

field of CASNet II covers almost 90% of the whole image area
(receptive view: 580%580, input image size: 480%640), whereas
without ASPP, the largest receptive view of CASNet I only makes
up for 32% of the image region (receptive view: 196*196, input
image size: 300¥400). Readers can refer to Table S5 and Figs.
S7-S8 in the supplementary material for more details. As shown
in Tables 3 — 7, CASNet II (with ASPP structure) significantly
outperforms CASNet I (without ASPP structure) on all five
benchmark datasets. CASNet II is consistently better on all three
AUC metrics, NSS, and CC. These results demonstrate the efficacy
of ASPP structure in learning contextual saliency. Meanwhile, using
a single stream framework with ASPP structure, CASNet II also
has higher computing efficiency compared to the dual-stream based
CASNet I—it only takes 0.09 second for CASNet II to process one
image whereas CASNet I needs 0.25 second on the same NVIDIA
1080Ti GPU. We further tested the model with only the ASPP
structure (i.e., without the channel-weighting subnetwork) on five
benchmark datasets. Result show that the ASPP structure alone is
able to raise the saliency prediction performance, but it achieves its
best performance when accompanied with the channel weighting
subnetwork (see Tables S6 - S10 in the supplementary material).
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To better demonstrate the contribution of the ASPP structure
and channel weighting subnetwork, we compute an average score
over all metrics for different models in the ablation study using the
same approach as described in Sec. 5.6. Table 9 reports a summary
of the means of different models on five datasets. As seen from
the table, both ASPP structure and channel weighting subnetwork
boost performance (with a 100% or above increment on averaged
metrics) in saliency prediction on all five benchmarks except the
OSIE dataset. As most OSIE images have clear focal objects with a
clean background [35], the ASPP structure and subnetwork do not
contribute much. Readers can refer to the supplementary material
for details.

CASNet Il
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L = o J . o &A‘v
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CASNet |

Stimuli

Human fixation map

Stimuli

Human fixation map

Fig. 12: Examples of neuron responses before the last fully
connected convolutional layer. For each image, the 5 patches on
the first row are the high activations of the channels with the largest
weights, and those on the second row are the high activations
of the channels with minimum weights. The highest response
patches of CASNet II show stronger emotions (e.g., emotional
faces, scenes of sunrise) than those of CASNet I and N-CASNet.
The differences in emotion-eliciting content between the highest
and lowest patches increases from N-CASNet to CASNet II. These
observations suggest that the ASPP structure and channel-weighting
subnetwork effectively direct CASNet II’s attention to emotion-
eliciting content.

qtuires IEEE permission. See http://www.ieee.or;
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5.8 Visualizations and discussion

In this subsection, we explore how the models encode emotion
prioritization through quantitative analyses and visualizations.

Emotion prioritization: Do the models exhibit emotion prior-
itization like humans do? To see, we perform the same analyses
as in Sec. 4.2, except calculating an object’s attention score as the
highest value of the normalized (predicted) saliency map in the
object’s contour. We compute the average predicted saliency scores
of negative, neutral, and positive objects in EMOd by CASNet
II. The result (Fig. 10) is similar to Fig. 3. This suggests that the
proposed model has a considerable ability to model human emotion
prioritization. An ANOVA (object saliency scores as the dependent
variable, object emotion types as the independent variable) show
that emotion type significantly influences the predicted saliency
score F'(2,2534) = 81.22,p < .001, supporting the emotion
prioritization effect of CASNet II.

We repeat the computation process of Fig. 10 for CASNet I
and N-CASNet, as well as on the three best performing comparison
methods (DeepGaze II, EML-NET and MSI-Net). An ANOVA
(object saliency scores as the dependent variable, object emotion
types as the independent variable) for each model indicates that the
comparison models have a similar behavior to prioritize emotional
objects (F's > 80.21), but such effect is not as strong as CASNet
IT (indicated by a larger ANOVA F'-value of CASNet II over other
methods, CASNet II: 129.26, CASNet I: 92.17, N-CASNet: 87.95,
DeepGaze II: 80.21, EML-Net: 90.28, MSI-Net: 84.87).

Finally, we perform similar analyses as Fig. 3 for a) images
with both emotion-eliciting and neutral objects distributed over
large image regions, and b) images with gazing cues, for CASNet
II, CASNet I and N-CASNet. Results indicate that CASNet II has
the strongest emotion prioritization effect in the above images,
suggesting the advantage of the ASPP structure in capturing the
emotion-eliciting characteristics in scenes with interacting objects
or spread-out objects. The detailed statistics and visualizations are
reported in the supplementary material.

DNN visualization: We first visualize our network to analyze
the efficacy of the ASPP structure. For CASNet II (with channel-
weighting subnetwork and ASPP structure), CASNet I (with the
channel-weighting subnetwork only), and N-CASNet (without the
channel-weighting subnetwork or ASPP structure), we identify the
five feature maps before the last fully convolutional layer with
the highest weights for each image. Results show that the feature
maps from CASNet II are more refined than those of CASNet
I and are closer to human groundtruth. This advantage is more
obvious for images with multiple focal points, and images with
relatively small focal areas (see Fig. 11). For a better visualization,
we combine each feature map with the original stimuli to form
an interim heatmap. Due to space limit, only 3 interim heatmaps
with from each model are shown. These observations suggest that
the ASPP structure in CASNet II allows for larger receptive fields
and more resolution scales, thus enabling the model to learn the
contextual saliency within a larger area in the image and model
human attention more precisely for the whole scene. Meanwhile,
the channel-weighting subnetwork help re-direct the attention to
the emotional areas.

We perform additional visualizations to examine the models’
ability in emotion prioritization. For each image, we extract the
top 5 patches with highest and lowest responses, respectively, after
the fully connected convolutional layer for CASNet II, CASNet
I and N-CASNet. As illustrated in Fig. 12, the highest response
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patches of CASNet II and CASNet I show stronger emotions (e.g.,
emotional faces, scenes of sunrise) than those of N-CASNet, and
there is a larger difference in emotion-eliciting content between
the highest and lowest patches in CASNet II than in CASNet I and
N-CASNet. These observations suggest that the ASPP structure
and channel-weighting subnetwork in CASNet II more effectively
directs the model’s attention to emotion-eliciting content.

We corroborate Fig. 12 with quantitative analyses. For the
three model versions (CASNet II, CASNet I and N-CASNet),
we calculate the means of saliency scores of positive, negative,
and neutral objects that fall within the selected patches. ANOVAs
indicate a significant effect of model type on the saliency scores
on all three types of objects, F'(2,3054)s > 46.85,ps < .001.
Post hoc Tukey tests suggest that the highest patches of CASNet II
have higher saliency scores than those of CASNet I and N-CASNet
(ps < .001) for both emotion-eliciting and emotionally-neutral
objects. Separate paired samples ¢-tests within each model show
a significantly higher average saliency score for the patches with
the highest response compared to those with the lowest response
(ps < .001) for CASNet II and CASNet I, but not for N-CASNet.
The above analyses suggest that CASNet II has higher emotion
prioritization ability than CASNet I and N-CASNet. They also show
that the advantages of the ASPP structure and channel weighting
subnetwork can be generalized to all objects (i.e., not limited to
emotion-eliciting content.)

Cross datasets performance: We perform additional experi-
ments to test the performance across emotional and non-emotional
datasets. We explore if existing approaches trained on EMOd
dataset will improve their emotion prioritization performance. More
specifically, we first train our three models and three comparison
methods (EML-NET, MSI-Net, and SALICON, whose codes are
publicly available) on SALICON dataset and fine-tune them on
EMOd. We then test them on the NUSEF dataset which focuses
on affective content. We further test the above models on non-
emotional datasets MIT1003 and OSIE. The results are reported in
Tables S11-S13 in the supplementary material. There is no evident
performance boost in general (|t|s < 1.56, ps > .16). However,
paired samples ¢-tests indicate a significant increase on NSS for
CASNet II, CASNet I and SALICON on MIT1003 (¢(2)s > 4, ps
< .05) and OSIE (£(2)s > 17, ps < .003) datasets, suggesting
that fine-tuning on EMOd helps these models do better on attention
prioritization [71]. This is especially useful for certain applications
like content-aware image re-targeting and image rendering, where a
high NSS is preferred [71]. Readers can refer to the supplementary
material for more discussions.

6 CONCLUSION

Selective attention is intrinsic to human vision. In this paper we
propose EMOd—a new emotional-attention dataset for research on
selective attention due to emotion-eliciting content. Analyses on
EMOd show that eye fixations correlate with human affective
responses to the visual content of the images at both object-
and scene-levels. We design a deep learning model (CASNet
II) to computationally model the human attention behavior. The
model, with a much simpler structure but carefully designed to
encode emotion prioritization, achieves the top performance on five
benchmark datasets when evaluated by the normalized mean of all
metrics. This suggests that understanding human behavior helps
create simple yet effective computational models.

qtuires IEEE permission. See http://www.ieee.or;
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Our research distinguishes itself from other investigations into
human attention by its comprehensive analyses on the relationships
among human affective responses and visual attention on complex
scenes, with a DNN model that effectively mimics human attention
in this context. The analysis framework and the resulting findings
not only provide unique contributions toward understanding human
visual attention, but also have a variety of related applications, such
as improving computer vision deep learning models, emotion-aware
robots, and online advertising.
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