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ABSTRACT

Due to ubiquitous use of software services, protecting the confiden-

tiality of private information stored in compute clouds is becoming

an increasingly critical problem. Although access control specifi-

cation languages and libraries provide mechanisms for protecting

confidentiality of information, without verification and validation

techniques that can assist developers in writing policies, complex

policy specifications are likely to have errors that can lead to unin-

tended and unauthorized access to data, possibly with disastrous

consequences. In this paper, we present a quantitative and differ-

ential policy analysis framework that not only identifies if one

policy is more permissive than another policy, but also quantifies

the relative permissiveness of access control policies. We quantify

permissiveness of policies using a model counting constraint solver.

We present a heuristic that transforms constraints extracted from

access control policies and significantly improves the model count-

ing performance. We demonstrate the effectiveness of our approach

by applying it to policies written in Amazon’s AWS Identity and

Access Management (IAM) policy language and Microsoft’s Azure

policy language.

CCS CONCEPTS

• Security and privacy → Logic and verification; Access con-

trol.
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1 INTRODUCTION

Modern software services run on compute clouds. Among the most

popular cloud service providers are Amazon Web Services (AWS),
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Microsoft Azure, and Google Cloud Platform (GCP), each of which

lets customers secure their services by writing access control policies.

Access control policies specify rules that allow authorized access

while denying unauthorized access to cloud data. Policies can be

written using many access control specification languages, like the

AWS Identity and Access Management (IAM) [40] language or the

eXtensible Access Control Markup Language (XACML) [64]. In

contrast, libraries such as CanCan [22] and Pundit [58] provide

support for specification of policies at the implementation level.

By themselves, these are useful languages and libraries; however,

without verification and validation techniques that can assist in

writing policies, policy specifications are likely to have errors that

can lead to unintended and unauthorized access to data. In fact,

incorrect specification of access control policies in cloud storage

services has resulted in the exposure of millions of customers’ data

to the public. For example, it was reported that [28] data records for

more than 2 million Dow Jones & Co. customers were exposed due

to an access control error. Exposed data included names, addresses,

account information, email addresses, and last four digits of credit

card numbers of subscribers. The exposed data was in a publicly

accessible AWS Simple Storage Service (s3) bucket. This is a dis-

astrous error in the policy specification for cloud storage buckets.

A similar error resulted data exposure of 50 thousand Australian

employees that included full names, passwords, salaries, IDs, phone

numbers, and credit card data [2]. Yet another error exposed the

account records of 14 million Verizon customers [63]. A vulnera-

bility in Microsoft’s Azure Cosmos DB service [10] allowed public

access to accounts and databases of thousands of customers.

These examples highlight the urgent need to develop techniques

to protect cloud data. Automatically finding access control issues

would prevent exposure of private data, protecting the privacy of

millions of people. Hence, it is necessary to develop automated

verification techniques that can analyze access control policies for

compute clouds. In order to check for correctness of a policy, it is

necessary to have a specification of correctness properties, but writ-

ing correctness properties manually can be challenging and time

consuming. Moreover, writing expected properties of the policy

is error-prone. Hence, when an inconsistency between a property

specification and a policy is identified, it does not necessarily mean

that the policy has an error; the property specification itself could

be erroneous. A differential policy analysis approach removes the

need to manually specify policy properties; instead, it compares

different policies and identifies inconsistencies among them. Basic

policies can be compared to a complex policy to verify that the
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latter does not have unintended consequences. For example, we

may want to verify that a complex policy specification is not more

permissive than a simple policy that specifies common sense access

rules. Moreover, differential policy analysis techniques can identify

differences between different versions of a policy. When a policy

specification is modified, it would be worthwhile to know how

the permissiveness of the policy has changed. However, a binary

answer to a question that compares two policies may be insufficient.

For example, it may not suffice that we know if one policy is more

permissive than another. We may want to know how much more

permissive a policy is than another, i.e., we may want to quantify

the relative permissiveness of different policies. Model counting

constraint solvers find the number of satisfying assignments for a

given constraint, within a given bound [8, 19, 24, 25, 47, 48]. They

have been applied to several quantitative analysis problems such

as probabilistic analysis, reliability analysis, and quantitative infor-

mation flow analysis [12–14, 18, 31, 35, 55–57].

In this paper we propose a framework to quantify permissiveness

of access control policies using model counting constraint solvers.

Our contributions include the following:

• A formal model for access control policies

• A formalization of access control policy permissiveness

• An automated approach for quantifying permissiveness of ac-

cess control policies by translating a policy to a SMT formula

and using a model counting constraint solver to quantify its

permissiveness

• An extension of the formal model and automated approach

to quantify relative permissiveness between policies

• A heuristic that transforms formulas extracted from policies

for improving model counting performance

• An open-source tool, qacky, that implements the auto-

mated approach to analyze policies written in AWS Identity

and Access Management (IAM) and Azure policy languages

• A publicly available policy dataset consisting of dozens of

real-world policies from AWS forums and Azure documenta-

tion, as well as hundreds of policies synthesized by applying

mutation techniques to the real-world policies

• An experimental evaluation of qacky on the dataset

The rest of the paper is organized as follows. In section 2 we first

introduce cloud policies and motivate the need for quantitative

permissiveness analysis. In Section 3 we present our formal policy

model, in Section 4 we discuss SMT-based policy analysis, in Section

5 we discuss quantitative permissiveness analysis, in Section 6 we

present our constraint transformation heuristic, in Section 7 we

discuss the implementation of our approach on AWS and Azure

policies, in Section 8 we discuss our experiments, in Section 9 we

survey related work, and in Section 10 we conclude the paper.

2 BACKGROUND AND MOTIVATION

In this section we first introduce access control policies for the

popular cloud services Amazon Web Services (AWS) and Microsoft

Azure. We then discuss several examples motivating the need for

quantitative analysis of access control policies.

2.1 Access Control Policies for the Cloud

Amazon Web Services Policies. Amazon Web Services (AWS) uses

a shared responsibility security model where AWS guarantees se-

curity of the cloud, but users are responsible for security in the

cloud. AWS lets users control who has access to their resources

with access control policies written in the AWS policy language.

Access requests are evaluated against policies and a dynamic en-

vironment context within a policy evaluation engine that either

allows or denies access.

AWS defines a policy language where policies either allow or

deny access through declarative statements. A statement is a 5-tuple

(Principal, Effect, Action, Resource, Condition) where

• Principal specifies a list of users, entities, or services

• Effect = {Allow,Deny} specifies whether the statement al-
lows or denies access

• Action specifies a list of actions

• Resource specifies a list of resources

• Condition is an optional list of conditions further constrain-

ing how access is allowed or denied

Each condition consists of a condition operator, condition key, and

condition value on elements of the request context. Full details

of the language can be found in [11]. Note that while most of the

elements of a policy are strings, certain condition keys specify other

types of constraints (e.g., s3:max-keys expects an integral number).

Additionally, the AWS policy language allows the use of two special

characters within strings: ‘*’, or wildcard, represents any string, and

‘?’ which represents any single character. Given an access request

and associated policy, permission is granted if and only if, for the

given principal, action, resource, and condition key values in the

request context, a statement in the policy allows access and no

statement in the policy explicitly denies access.

Microsoft Azure Policies. Like AWS, Azure uses a shared respon-

sibility security model, where security in the cloud is achieved by

role-based access control (RBAC). Azure RBAC defines a policy

language consisting of role definitions and role assignments. A

role definition is a set of allowed actions

(Actions ∪ DataActions) \ (NotActions ∪ NotDataActions)

where

• Actions is a list of allowed management actions

• DataActions is a list of allowed data actions

• NotActions ⊆ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 is a list of denied management actions
• NotDataActions ⊆ 𝑁𝑜𝑡𝐴𝑐𝑡𝑖𝑜𝑛𝑠 is a list of denied data actions.

A role assignment is a tuple (principalId, roleDefId, scope, condition)

where

• principalId identifies a Principal granted access

• roleDefId identifies the role definition

• scope identifies a set of Resources granted access

• condition is an optional expression for granting access

The scope is a path in Azure’s resource hierarchy, rooted at ‘/’.

Resources rooted at the path are granted access. Unlike in AWS,

the Azure condition is an infix logical expression. Azure has logical

operators and relational operators on strings and integral num-

bers, but it also supports cross product relational operators on sets,

like ForAnyofAllValues:StringEqals. Like AWS, Azure allows
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wildcards in strings (except scope). Given an access request, role

definition, and role assignment, permission is granted if and only

if, both the role definition and role assignment explicitly allow the

principal and action under the scope and condition.

2.2 Motivating Examples

Capital One Data Breach. Capital One is one of many companies

which use Amazon Web Services (AWS) for their cloud computing

needs. AWS provides an access control mechanism for controlling

access to resources through the Identity and Access Management

(IAM) policy specification language. AWS IAM allows customers to

create IAM roles and to give permissions to roles by attaching IAM

policies to the role. Policies written in the IAM policy language

allow AWS users to control access to resources and AWS services

through fine-grained permissions. A role can then be assumed

by a user or application. Recently, a server run by Capital One

was breached by an outside attacker who was able to run user

commands unrestricted [23, 52]. The attacker was then able to list

the buckets (which store resources as objects) on the server and

download the contents of each bucket. The attack itself involved two

main components. First, the attacker was able to gain authenticated

access to an AWS IAM role [23]. Secondly, the role had broad access

to S3 buckets due to a misconfigured policy. For confidentiality

reasons, the misconfigured policy is not publicly available.

The following represents a simplified model of the permissions

allowed in the Capital One data breach.

Effect : Allow
Action : [s3:ListBucket,s3:GetObject]
Resource : *

When attached to an IAM role, the policy grants broad access to the

s3 service, allowing the role to list and gather data within s3 buckets.

However, if the attached role is compromised by a malicious user (as

in the Capital One data breach) a great deal of data can be exposed.

A less permissive policy might restrict resources to a single bucket

Resource = [firewall, firewall/*]

or restrict resources to only two objects within a bucket

Resource = [firewall, firewall/log10, firewall/log20]

Existing policy analysis techniques [11, 38] can verify if a policy is

more or less permissive than another but they cannot quantify the

magnitude of permissiveness in each case. Our work can quantify

the differences in permissiveness between all three policies. If we

assume valid resources are alphanumeric and ’:’, ’-’, ’_’, ’/’ characters

with max length of 20, the initial policy allows the GetObject

action on 2.50× 1036 more resources than when access is restricted
to a single bucket, which allows action on 1.05×1020 more resources
than when access is restricted to two objects within a bucket.

Policies in the Wild. For the average user, the above policies are

simple enough to manually analyze without sophisticated tech-

niques. This is not always the case. Policies can be complex, espe-

cially to those unfamiliar with access control. AWS provides forums

where users can post their policies and get feedback from other

users (and AWS employees).We consider a set of policies taken from

the forums to showcase the usefulness of our approach. For simplic-

ity we assume values for fields in a policy contain alphanumeric

and ’:’, ’-’, ’_’, ’/’ characters.

"Statement": [{
"Effect": "Allow",
"Action": [

"s3:GetAccelerateConfiguration", ...,
"s3:ListBucketMultipartUploads"],

"Resource": "*"}]}

"Statement": [{
"Effect": "Allow",
"Action": [

"s3:DescribeJob", ...,
"s3:GetAccelerateConfiguration", ...,
"s3:GetObject",
"s3:GetObjectLegalHold", ...,
"s3:ListBucketMultipartUploads"],

"Resource": "*"}]}

"Statement": [{
"Effect": "Allow",
"Action": [

"s3:DescribeJob", ...,
"s3:GetAccelerateConfiguration", ...,
"s3:GetObjectLegalHold", ...,
"s3:ListBucketMultipartUploads"],

"Resource": "*"}]}

Figure 1: Initial (topmost, (a)), modified (middle, (b)), and

fixed (bottom, (c)), versions of a policy used by AWS Support

Quantifying Allowed Actions and Requests. In December 2021,

the AWSSupportServiceRolePolicy policy used by AWS Support

automated systems was modified to allow more actions. However,

this modification inadvertently allowed the action s3:getobject [6],

which greatly increased the number requests allowed by the policy

(due to the nature of the getobject action). A bot detected the

change and published it to GitHub, where several users raised con-

cerns about getobject [7]. Without humans who had substantial

AWS knowledge and who manually inspected the policy change,

this vulnerability may not have been mitigated as quickly, thus ne-

cessitating the need for automated verification. Additionally, prior

work (such as binary differential analysis) would be insufficient, as

an additional action would undoubtedly increase permissiveness

but the getobject action in particular increases permissiveness

by almost an order of magnitude. AWS eventually fixed the policy,

removing getobject. Simplified initial, modified, and fixed policies

are shown in Fig 1. The fixed policy does not allow getobject

We can quantify the permissiveness of Policy 1(a) in terms of how

many actions and requests are allowed by the policy. Assuming that

resources are no more than 100 characters long, our tool reports

that 24 actions and 4.09 × 10138 requests are allowed by the policy.
This result is with respect to the set of valid AWS s3 actions and all

possible resources, not the set of resources in the user’s organization.

If the set of resources is known, they can be added as a constraint

and then our approach would count the requests allowed by the

policy with respect to the set of known requests.

We can quantify the permissiveness of Policy 1(b) and 1(c). Our

tool reports that 47 actions and 2.22 × 10205 requests are allowed
by Policy 1(b). By removing getobject from Policy 1(b), our tool

reports that 46 actions and 1.78 × 10205 requests are allowed by

Policy 1(c). Note that both policies are identical except that Policy

1(c) does not contain the s3:getobject action. If instead of the

s3:getobject action being removed from Policy 1(b), another action

(such as s3:describejob) were removed, then our tool reports that

46 actions and 2.22 × 10205 requests (as opposed to 1.78 × 10205
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"Statement": [{
"Effect": "Allow",
"Principal": "*",
"Action": "s3:GetObject",
"Resource": "arn:aws:s3:::myexamplebucket /*"},

{
"Effect": "Deny",
"Principal": "*",
"Action": "s3:GetObject",
"Resource": "arn:aws:s3:::myexamplebucket /*"}]

"Statement": [{
"Effect": "Allow",
"Principal": "*",
"Action": "s3:GetObject",
"Resource": "arn:aws:s3:::myexamplebucket /*"},

{
"Effect": "Deny",
"Principal": "*",
"Action": "s3:GetObject",
"Resource": "arn:aws:s3:::myexamplebucket /*",
"Condition": {

"StringNotLike": {
"aws:userId": [

"AROAEXAMPLEID:*", "AIDAEXAMPLEID", "111111111111"]}}}]

Figure 2: Initial (top, (a)) and fixed (bottom, (b)) versions of

a policy for restricting access to certain users

requests) are allowed by the resulting policy. This demonstrates

the need for quantitative analysis in the context of access control.

Quantifying Allowed Users. Depending on the scenario, most

AWS users want a mix of public and private access to their data.

This entails creating complex policies specifying access to their

data, which often requires in-depth knowledge of the AWS policy

language. In one scenario, a user posted on the forums seeking help

in how to grant a specific set of users access to a bucket. The user

was unable to craft a policy without allowing unintended access.

Fig 2 shows the policies another user posted in response. Policy 2(a)

denies all access to any data (eliminating all access). Policy 2(b) is a

modification of the initial policy so that only a specific set of users

can access data within the bucket (as well as denying anonymous

access). Such policies that align with the user’s intention can be

difficult to craft, often due to complex access control logic needed

or sheer complexity in how permissions should be governed.

We can quantify the permissiveness of Policy 2(b) in terms of

how many aws:userIds are allowed by the policy. This lets the

user verify that a change in policy semantics matches the original

intention to only allow access for a certain set of users. Assuming

that valid aws:userIds are no more than 20 characters long, our tool

reports that 8.39 × 1010 aws:userIds are allowed by the policy out
of 2.50× 1036 possible aws:userIds. This result is with respect to the
set of all possible userIds, and not the set of userIds in the user’s

organization. If the set of userIds is known, they can be added as a

constraint and then our approach would count the userIds allowed

by the policy with respect to the set of known userIds.

If wemodify Policy 2(b) and remove the wildcard in the condition

that defines allowed userIds (i.e., the line "AROAEXAMPLEID:*"),
then our tool would report exactly the number of allowed userIds

(2 in this case). So, in a scenario where an AWS user wants to specify

a policy with a concrete number of permissions, our quantitative

analysis can be used to verify the quantity of permissions.

Quantifying Trusted Values Inferred From A Policy. Trust Safety,

introduced in [20], is the notion that a policy should not allow

untrusted (i.e. public) access. Determining if a policy is Trust Safe

requires inferring the set of trusted values from the policy by analyz-

ing the values for trusted keys and making sure they do not match

an “overly large” set of values. In [20] a syntactic check of the policy

is performed to look for values containing a wildcard character (“*”),

and if so, the policy is deemed not Trust Safe. However, in general,

a syntactic check cannot determine the size of a set of values in an

access control policy. Our approach can be used to precisely deter-

mine if the set of values is “overly large” by quantifying the size of

the set of values. If the size surpasses a predetermined threshold,

the policy would be deemed not Trust Safe.

3 POLICY MODEL

In this section, we introduce our policy model which forms the basis

of our framework. Our model is designed to be expressive enough to

model complex policy specifications that can be efficiently and pre-

cisely analyzed by modern verification and validation techniques.

We use an approach similar to [11] in defining our policy model.

An access control policy specifies who can do what under which

conditions. We define an access control model in which declarative

policies field access requests from a dynamic environment, and all

requests are initially denied. An access request is a tuple (𝛿, 𝑎, 𝑟, 𝑒) ∈
Δ ×𝐴 × 𝑅 × 𝐸 where Δ is the set of all possible principals making

a request, 𝑅 is the set of all possible resources which access is

allowed or denied, 𝐴 is the set of all possible actions, and 𝐸 is the
environment attributes involved in an access request. An access

control policy P = {𝜌0, 𝜌1, ...𝜌𝑛} consists of a set of rules 𝜌𝑖 where
each rule is defined as a partial function 𝜌 : Δ × 𝐴 × 𝑅 × 𝐸 ↩→
{𝐴𝑙𝑙𝑜𝑤, 𝐷𝑒𝑛𝑦}. The set of principals specified by a rule 𝜌 is

𝜌 (𝛿) = {𝛿 ∈ Δ : ∃𝑎, 𝑟, 𝑒 : (𝛿, 𝑎, 𝑟, 𝑒) ∈ 𝜌} (1)

𝜌 (𝑎) for 𝑎 ∈ 𝐴, 𝜌 (𝑟 ) for 𝑟 ∈ 𝑅, 𝜌 (𝑒) for 𝑒 ∈ 𝐸 are similarly defined.
Given a policy P = {𝜌0, 𝜌1, ...𝜌𝑛}, a request (𝛿, 𝑎, 𝑟, 𝑒) is granted

access if

∃𝜌𝑖 ∈ P : 𝜌𝑖 (𝛿, 𝑎, 𝑟, 𝑒) = 𝐴𝑙𝑙𝑜𝑤 ∧ �𝜌 𝑗 ∈ P : 𝜌 𝑗 (𝛿, 𝑎, 𝑟, 𝑒) = 𝐷𝑒𝑛𝑦

The policy grants access if the request is allowed by a rule in the
policy and is not revoked by any other rule in the policy. Explicit
denies overrule explicit allows (if a request is allowed by one rule
and denied by another rule, the request is ultimately denied). The
set of allow rules and deny rules for P are defined as:

PAllow = {𝜌𝑖 ∈ P : (𝛿𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑒𝑖 ) ∈ 𝜌𝑖 ∧ 𝜌𝑖 (𝛿𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑒𝑖 ) = Allow } (2)

PDeny = {𝜌 𝑗 ∈ P : (𝛿 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 , 𝑒 𝑗 ) ∈ 𝜌 𝑗 ∧ 𝜌 𝑗 (𝛿 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 , 𝑒 𝑗 ) = Deny } (3)

Given a policy P, the requests allowed by the policy are those in

which a policy rule grants the access through an Allow effect and

is not revoked by any policy rule with a Deny effect:

Allow(P) = {(𝛿, 𝑎, 𝑟, 𝑒) ∈ Δ ×𝐴 × 𝑅 × 𝐸

: ∃𝜌𝑖 ∈ P : (𝛿, 𝑎, 𝑟, 𝑒) ∈ 𝜌𝑖 ∧ 𝜌𝑖 (𝛿, 𝑎, 𝑟, 𝑒) = Allow

∧ �𝜌 𝑗 ∈ P : (𝛿, 𝑎, 𝑟, 𝑒) ∈ 𝜌 𝑗 ∧ 𝜌 𝑗 (𝛿, 𝑎, 𝑟, 𝑒) = Deny}

(4)
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The set of principals, resources, or actions allowed by a policy is

Allow(P,Δ) = {𝛿 ∈ Δ : (𝛿, 𝑎, 𝑟, 𝑒) ∈ Allow(P)} (5)

Allow(P, 𝐴) = {𝑎 ∈ 𝐴 : (𝛿, 𝑎, 𝑟, 𝑒) ∈ Allow(P)} (6)

Allow(P, 𝑅) = {𝑟 ∈ 𝑅 : (𝛿, 𝑎, 𝑟, 𝑒) ∈ Allow(P)} (7)

4 PERMISSIVENESS ANALYSIS

In this section we discuss how the permissiveness of our policy

model is analyzed. Given a policy, the goal is to determine what

requests are allowed by the policy, and if the policy is more or less

permissive than another policy. This is done by reducing policies

to logic formulas, similar to the approach used in [11, 38].

4.1 SMT Encoding of a Policy

The permissiveness of a policy is determined by the number of

requests that it allows: the more requests allowed by a policy, the

higher its permissiveness. The policy allowing all possible requests

is the most permissive policy, and the policy which denies all re-

quests is the least permissive policy. It follows that, given a policy,

reasoning over all possible requests allowed by the policy deter-

mines the permissiveness of the policy. We encode the set of possi-

ble requests by introducing variables {𝛿𝑠𝑚𝑡 ∈ Δ, 𝑟𝑠𝑚𝑡 ∈ 𝑅, 𝑎𝑠𝑚𝑡 ∈
𝐴, 𝑒𝑠𝑚𝑡 ∈ 𝐸} in the generated SMT formula.

�P� =

( ∨
𝜌∈PAllow

�𝜌�

) ∧
¬

( ∨
𝜌∈PDeny

�𝜌�

)
(8)

�𝜌� =

( ∨
𝛿 ∈𝜌 (𝛿)

𝛿𝑠𝑚𝑡 = 𝛿

) ∧ ( ∨
𝑎∈𝜌 (𝑎)

𝑎𝑠𝑚𝑡 = 𝑎

) ∧
( ∨
𝑟 ∈𝜌 (𝑟 )

𝑟𝑠𝑚𝑡 = 𝑟

) ∧ ( ∨
𝑒∈𝜌 (𝑒)

𝑒𝑠𝑚𝑡 = 𝑒

)
(9)

The SMT encoding of a policy P is given by �P� and represents the
set of requests allowed by P. Policy rules are encoded as values for

sets of (𝛿, 𝑎, 𝑟, 𝑒), where each value set potentially grants or revokes
permissions. Satisfying solutions to �P� correspond to requests
allowed by the policy, i.e.,

Allow(P) = {(𝛿, 𝑎, 𝑟, 𝑒) : (𝛿, 𝑎, 𝑟, 𝑒) |= �P�} (10)

4.2 Relative Permissiveness of Policies

For a single policy, equations 8, 9 provide a way to model the se-

mantics of a policy in isolation. Below, we provide a policy analysis

framework that, given two policies, determines the relative permis-

siveness between the two.

Intuitively, given two policies P1 andP2 we can determinewhether

one ismore permissive than the other by analyzing formulas �P1� ⇒
�P2� and �P2� ⇒ �P1�. However, it is possible that both policies
allow different sets of requests, or the set of requests overlap. In

general, there are four possible outcomes:

(1) Allow(P1) ⊂ Allow(P2)
(2) Allow(P1) ⊃ Allow(P2)
(3) Allow(P1) = Allow(P2)
(4) P1 and P2 do not subsume each other

The relative permissiveness of P1 and P2 directly follows from each

scenario: P1 is less permissive than P2, P1 is more permissive than

P2, P1 and P2 are equally permissive, or P1 and P2 are incompara-

ble. The calculation involves satisfiability checks of two formulas:

�P1� �⇒ �P2� and �P2� �⇒ �P1�

• If �P1� �⇒ �P2� is not satisfiable, then P1 cannot be more
permissive than P2 (P2 is at least as permissive as P1).

• If �P2� �⇒ �P1� is not satisfiable, then P2 cannot be more
permissive than P1 (P1 is at least as permissive as P2).

• If both �P1� �⇒ �P2� and �P2� �⇒ �P1� are not satisfiable,
then P1 and P2 are equivalent.

• Otherwise, P1 and P2 do not subsume each other.

Note that the formula �P1� �⇒ �P2� can be simplified as

�P1� �⇒ �P2� = �P1� ∧ ¬�P2� (11)

which can be checked using an SMT solver.

5 QUANTIFYING PERMISSIVENESS

Translating an access control policy into an SMT formula for sat-

isfiability checking allows some permissiveness analysis, but it

does not give insight as to how permissive a policy is. In this sec-

tion, we introduce a novel approach for more precise reasoning in

determining the permissiveness of a single policy or the relative

permissiveness of two policies.

Given P, Allow(P) is the set of all requests allowed by P. Let
|Allow(P) | denote the number of such requests. The permissive-
ness of P is given by

|Allow(P) | = |�P�| (12)

Where |�P�| denotes the number of models for formula �P�. Using
a model counting constraint solver, we can automatically compute

the value of |�P�|. Larger values for |�P�| indicate a more permissive
policy; lower values indicate a less permissive policy. A metric for

analyzing permissiveness of a policy is to consider the likelihood

that a randomly generated request is allowed by the policy. Let

𝐷 be the set of all possible requests, with |𝐷 | being the number
of all possible requests. If |�P�| = 0 all requests are denied by P,

if |�P�| = |𝐷 | all requests are allowed by P. Let 𝜎 = (𝛿, 𝑎, 𝑟, 𝑒) be
a request chosen uniformly at random from the set all possible

requests. The probability that 𝜎 is allowed by P is

𝑝 (𝜎 |= �P�) =
|�P�|

|𝐷 |
(13)

This effectively gives permissiveness of a policy with respect to

its domain. Higher probabilities indicate more permissive policies,

lower probabilities indicates less permissive policies. A probability

of 0.5 indicates the policy allows half of all possible requests. Note
that a probability of 0 indicates a policy which denies all requests

while a probability of 1 indicates a policy allowing all requests.

This approach can be extended for quantifying relative permis-

siveness between policies. Given policies P1, P2, the number of

requests allowed by P1 and not allowed by P2 is:

|�P1� �⇒ �P2�| = |{(𝛿, 𝑎, 𝑟, 𝑒) : (𝛿, 𝑎, 𝑟, 𝑒) |= �P1� ∧ ¬�P2�}| (14)

The number of requests allowed by P2 and not allowed by P1 is:

|�P2� �⇒ �P1�| = |{(𝛿, 𝑎, 𝑟, 𝑒) : (𝛿, 𝑎, 𝑟, 𝑒) |= �P2� ∧ ¬�P1�}| (15)

Recall that when calculating relative permissiveness there are four

possible outcomes: P1 is equivalent to P2, P1 is more permissive
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Algorithm 1 TransformActions(𝐹,𝑀):

Input: SMT formula 𝐹 , map𝑀
Output: SMT formula with mapping applied to actions

1: if 𝐹 ≡ 𝐹1 ∨ 𝐹2 then
2: return TransformActions(𝐹1, 𝑀) ∨ TransformActions(𝐹2, 𝑀)
3: else if 𝐹 ≡ 𝐹1 ∧ 𝐹2 then
4: return TransformActions(𝐹1, 𝑀) ∧ TransformActions(𝐹2, 𝑀)
5: else if 𝐹 ≡ (𝑎𝑠𝑚𝑡 = 𝑐) then return (𝑎𝑠𝑚𝑡 = 𝑀 (𝑐))
6: else if 𝐹 ≡ (𝑎𝑠𝑚𝑡 ≠ 𝑐) then return (𝑎𝑠𝑚𝑡 ≠ 𝑀 (𝑐))
7: else if 𝐹 ≡ (𝑎𝑠𝑚𝑡 ∈ 𝑟𝑒𝑔𝑒𝑥) then
8: 𝐹 ′ = False
9: for 𝑐𝑖 ∈ GetActionsFromRegex(𝑟𝑒𝑔𝑒𝑥) do
10: 𝐹 ′ = 𝐹 ′ ∨ (𝑎𝑠𝑚𝑡 = 𝑐𝑖 )
11: end for
12: return TransformActions(𝐹 ′, 𝑀)
13: end if
14: return 𝐹

than P2, P1 is less permissive than P2, or P1 and P2 are incomparable.

Using equations 14, 15:

• If P1 is more permissive than P2 then |�P1� �⇒ �P2�| quanti-
fies how much more permissive P1 is than P2

• If P2 is more permissive than P1 then |�P2� �⇒ �P1�| quanti-
fies how much more permissive P2 is than P1

• If P1 and P2 do not subsume each other, |�P1� �⇒ �P2�| and
|�P2� �⇒ �P1�| can be used to determine which policy is
objectively more permissive (total requests allowed)

6 CONSTRAINT TRANSFORMATION

In this sectionwe present a heuristic that transforms a set of equality

and inequality constraints for a string variable to a set of range

constraints on an ordered set. We do this by mapping a set of

string constants to an ordered set of values. As we discuss below,

this enables us to compactly encode constraints on policy actions

extracted from access control policies.

In practice, there are a finite number of valid actions in an access

control policy. For example, s3:GetObject is a valid action, but the

fictitious action s3:FooBar is not. For our analysis to be precise,

constraints specifying valid actions must be specified. Recall that

�P� is the constraint formula extracted from policy P. I.e., �P� ≡ 𝐹
where 𝐹 is an SMT formula. In a formula 𝐹 extracted from an access

control policy, we observe three types of terms that involve actions

𝑎𝑠𝑚𝑡 = 𝑐 𝑎𝑠𝑚𝑡 ≠ 𝑐 𝑎𝑠𝑚𝑡 ∈ 𝑟𝑒𝑔𝑒𝑥 (16)

where 𝑐 is a string constant and 𝑟𝑒𝑔𝑒𝑥 is a regular expression. We
first consider cases where only the first two types of terms are

present in a formula, and then discuss how the transformation

handles regular expression constraints. Consider the formula:

𝐹 ≡ (𝑎𝑠𝑚𝑡 = s3:ListBucket)

∨ (𝑎𝑠𝑚𝑡 = s3:ListBucketVersions)

∨ (𝑎𝑠𝑚𝑡 = s3:ListBucketMultipartUploads)

(17)

By mapping s3:ListBucket ↦→ 0, s3:ListBucketVersions ↦→ 1,

s3:ListBucketMultipartUploads ↦→ 2, 𝐹 can be rewritten as

𝐹 ≡ (𝑎𝑠𝑚𝑡 ≥ 0 ∧ 𝑎𝑠𝑚𝑡 ≤ 2) (18)

The use of range constraints gives a more compact encoding for

constraints on policy actions, particularly when there is a large

number of constraints on policy actions (such as the constraints

specifying the set of all valid actions). We introduce a constraint

Algorithm 2 DisjunctionToRange(𝐹 ):

Input: SMT formula 𝐹 with mapped actions
Output: Transformed SMT formula with disjunctions collapsed into range
constraints when possible

1: if 𝐹 ≡ 𝐹1 ∨ ... ∨ 𝐹𝑛 then
2: 𝐹𝑅 = False
3: 𝐹 ′ = False
4: 𝑆 = {}
5: for 𝐹𝑖 ∈ {𝐹1, ..., 𝐹𝑛 } do
6: if 𝐹𝑖 ≡ (𝑎𝑠𝑚𝑡 = 𝑐) then
7: 𝐹𝑅 = 𝐹𝑅 ∨ 𝐹𝑖
8: 𝑆 = 𝑆 ∪ {𝑐 }
9: else
10: 𝐹 ′ = 𝐹 ′ ∨ DisjunctionToRange(𝐹𝑖 )
11: end if
12: end for
13: if size(𝑆) ≥ 2 and size(𝑆) − 1 = max(𝑆) − min(𝑆) then
14: return 𝐹 ′ ∨ (𝑎𝑠𝑚𝑡 ≥ min(𝑆) ∧ 𝑎𝑠𝑚𝑡 ≤ max(𝑆))
15: else
16: return 𝐹 ′ ∨ 𝐹𝑅
17: end if
18: else if 𝐹 ≡ 𝐹1 ∧ ... ∧ 𝐹𝑛 then
19: 𝐹 ′ = True
20: for 𝐹𝑖 ∈ {𝐹1, ..., 𝐹𝑛 } do
21: 𝐹 ′ = 𝐹 ′ ∧ DisjunctionToRange(𝐹𝑖 )
22: end for
23: return 𝐹 ′

24: end if
25: return 𝐹

transformation which transforms the constraints on valid actions

into a much smaller set of range constraints. Let 𝑉 (𝑎) be the set of
all valid actions. The key insight is that the set𝑉 (𝑎) can be mapped
to a totally ordered set 𝑉 ′(𝑎) which can be compactly represented
using a combination of equality and inequality constraints. The

mapping and 𝑉 ′(𝑎) are straightforward to construct: each valid
action 𝑎 ∈ 𝑉 (𝑎) is mapped to a unique integer 𝑖 ∈ [0, |𝑉 (𝑎) | − 1],
and 𝑉 ′(𝑎) is the set of all such integers.
The constraint transformation heuristic consists of two phases:

the first applies the mapping to constraints on actions, the second

transforms disjunction constraints into range constraints. Given a

constraint formula in negation normal form and the actionmapping,

Algorithm 1 first transforms constraints containing action variable

𝑎𝑠𝑚𝑡 so it is consistent with the mapping. For constraints 𝑎𝑠𝑚𝑡 = 𝑐
or 𝑎𝑠𝑚𝑡 ≠ 𝑐 where 𝑐 is some string constant, 𝑐 is replaced by the inte-
ger according to the mapping. For regular expression constraints on

action 𝑎𝑠𝑚𝑡 ∈ 𝑟𝑒𝑔𝑒𝑥 , the function GetActionsFromRegex(𝑟𝑒𝑔𝑒𝑥)
returns all valid actions satisfied by the regex (the number of valid

actions is finite) and a disjunction on all possibilities is returned:

e.g., if the constraint is (𝑎𝑠𝑚𝑡 ∈ s3:ListB∗) (where ∗ corresponds to
a wildcard) then GetActionsFromRegex returns the only valid ac-

tions matching the regex, s3:ListBucket, s3:ListBucketVersions,

s3:ListBucketMultipartUploads. After the action constraints

have been mapped, Algorithm 2 attempts to transform equality con-

straints on actions under a single disjunction into range constraints

(such as in equation 18). If the transformation is not possible (e.g.,

the constants are not contiguous) the input formula is returned.

7 ANALYZING AWS AND AZURE POLICIES

Based on our proposed notion of policy permissiveness and our

approach for quantifying permissiveness, we have developed a

differential policy analysis framework for permissiveness analysis

of access control policies. Our framework is general enough to be
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applied to a variety of policies written in multiple policy languages.

To demonstrate the effectiveness of our approach, we show that it

can be applied to existing real world access control models: policies

for AWS IAM and Microsoft Azure.

7.1 Translation and Implementation

Scope and Translation of the AWS Policy Language. The AWS pol-

icy language is enormous, with each service having its own rules

on actions and resources. We consider three of the most popular

AWS services: Elastic Compute Cloud (ec2), Identity and Access

Management (iam), and Simple Storage Service (s3). We consider

two levels of constraints for each service. First, actions are con-

strained to the set of actions defined by the service. s3:ListBucket

or s3:PutObject are valid s3 actions but s3:FooBar is not. Sec-

ond, actions and resource types are constrained by each other:

certain actions can act only on certain resource types; e.g., action

S3:ListBucket operates on resource arn:aws:s3:::bucket. Addi-

tionally, resource types are constrained by naming requirements;

e.g., length of bucket names is between 3 and 63 characters

An AWS policy is a list of statements, each statement allow-

ing or denying access for a given set of principals, actions and

resources. For each statement, we create a rule 𝜌 capturing its se-
mantics. Principals, actions, and resources within a statement map

to Δ, 𝐴, 𝑅 in 𝜌 . Modeling conditions into environment attributes of
𝐸 is more complex. Each condition key together with a condition
operator specifies values for which access is allowed or denied.

The environment attributes are thus a set of tuples specifying the

condition key and their respective values, where the number of

tuples depends on the condition operator. For wildcard or anychar

(‘∗’,‘?’) symbols, we use regular expressions to capture the set of
allowed strings. For example, resource = bucket∗ translates to
(match resource /bucket.*/) where ‘.’ corresponds to anychar, ’/’ de-
notes the start and end of a regular expression, ‘*’ represents Kleene

star. We handle condition operators such as StringLike similarly.

Scope and Translation of the Azure Policy Language. Like AWS,

each Azure service has its respective set of rules on actions and

resources. We consider Azure VMs and Blob Storage, which are

analogous to ec2 and s3. We consider the same two levels of con-

straints as we do for AWS.

An Azure “policy” is given by a list of role definitions and a list of

role assignments. We join them together on the roleDefId into rules

𝜌 . For each 𝜌 , we map principalId to Δ, (𝐴𝑐𝑡𝑖𝑜𝑛𝑠 ∪ 𝐷𝑎𝑡𝑎𝐴𝑐𝑡𝑖𝑜𝑛𝑠) \
(𝑁𝑜𝑡𝐴𝑐𝑡𝑖𝑜𝑛𝑠∪𝑁𝑜𝑡𝐷𝑎𝑡𝑎𝐴𝑐𝑡𝑖𝑜𝑛𝑠) to𝐴, and 𝑠𝑐𝑜𝑝𝑒 to𝑅. The condition
is parsed into a tree whose leaves specify condition keys and their

respective values; these are the environment attributes. Like for

AWS, we use regex for wildcards.

Translating Action and Resource Type Constraints. Let T be the

set of constraints representing action and resource type restrictions.

Equation 12 now becomes

|�P�| = |�P� ∧ T| (19)

For comparing multiple policies, equations 14, 15 become

|�P1� �⇒ �P2�| = | (�P1� �⇒ �P2�) ∧ T| (20)

|�P2� �⇒ �P1�| = | (�P2� �⇒ �P1�) ∧ T| (21)

Algorithm 3 TranslatePolicy(P):

Input: policy P
Output: SMT formula �P� encoding P

1: �PAllow� = False
2: �PDeny� = False
3: for rule 𝜌 in P do
4: �𝛿� = Encode(𝜌 (𝛿))
5: �𝑎� = Encode(𝜌 (𝑎))
6: �𝑟� = Encode(𝜌 (𝑟 ))
7: �𝑒� = Encode(𝜌 (𝑒))
8: �𝜌� = �𝛿� ∧ �𝑎� ∧ �𝑟� ∧ �𝑒�
9: if 𝜌 ∈ �PAllow� then �PAllow� = �PAllow� ∨ �𝜌�
10: else �PDeny� = �PDeny� ∨ �𝜌�
11: end if
12: end for
13: return �P� = �PAllow� ∧ ¬�PDeny�

Algorithm 4 Permissiveness(P, 𝑏):

Input: policy P, bound 𝑏
Output: permissiveness of P

1: �P� = TranslatePolicy(P)
2: T = GetTypeConstraints()
3: if IsSAT(�P� ∧ T) then return CountModels(�P� ∧ T, 𝑏)
4: else return 0
5: end if

Algorithm 5 RelativePermissiveness(P1, P2, 𝑏):

Input: policies P1, P2; bound 𝑏
Output: relative permissiveness of P1, P2

1: �P1� = TranslatePolicy(P1)
2: �P2� = TranslatePolicy(P2)
3: T = GetTypeConstraints()
4: 𝐹1 = �P1� ∧ ¬�P2� ∧ T
5: 𝐹2 = �P2� ∧ ¬�P1� ∧ T
6: if IsSAT(𝐹1) and not IsSAT(𝐹2) then
7: return "P1 is more permissive", CountModels(𝐹1, 𝑏)
8: else if not IsSAT(𝐹1) and IsSAT(𝐹2) then
9: return "P2 is more permissive", CountModels(𝐹2, 𝑏)
10: else if not IsSAT(𝐹1) and not IsSAT(𝐹2) then
11: return "P1 and P2 are equivalent"
12: else if IsSAT(𝐹1) and IsSAT(𝐹2) then
13: return "P1 and P2 do not subsume each other",
14: CountModels(𝐹1, 𝑏), CountModels(𝐹2, 𝑏)
15: end if

We implement translation for T for AWS by scraping the AWS

resource and property types reference webpages to identify the

resource types each action can operate on. For Azure, we generate

constraints by reading a CSV file from the Azure Portal that relates

actions to resource types. Note that prior work [11, 20] does not

consider type constraints in their analysis of access control policies.

Policy Translator. Based on our approach, we implemented an

open-source tool called qacky that quantifies permissiveness or

relative permissiveness by translating policies into SMT formulas

and passing the formulas to a model counting constraint solver. Our

implementation uses the popular Automata-based Model Counter

(ABC) [8, 9] which uses automata-theoretic to model count string

and numeric constraints. ABC counts satisfying solutions to the

formula by constructing automata for an SMT formula and perform-

ing path counting on the automata. SMT formulas from qacky

can also be fed into other SMT-LIB-conformant constraint solvers,

such as Microsoft Z3.
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qacky translates a policy P into a SMT formula �P� by trans-
lating each rule 𝜌 , as shown in Algorithm 3. To quantify the per-

missiveness of a policy P, qacky translates P, appends the type

constraints T, and calls ABC to count the solutions satisfying �P�∧T,
as shown in Algorithm 4. To analyze the relative permissiveness

between two policies P1 and P2, qacky produces two SMT for-

mulas �P1� �⇒ �P2� and �P2� �⇒ �P1� and calls ABC to check their
satisfiability and to count models, as shown in Algorithm 5.

8 EXPERIMENTAL EVALUATION

Below, we first describe our methodology for gathering policies;

then we discuss the four experiments we conducted to evaluate our

approach and its implementation inqacky 1. The first experiment

benchmarks qacky, and it evaluates qacky’s performance and

identifies which factors influence the analysis. The second exper-

iment evaluates how effective qacky is at reasoning about the

relative permissiveness of access control policies. The third experi-

ment compares the performance of qacky with an enumerative

model counting approach based on SMT solvers. The fourth ex-

periment demonstrates that our approach can be applied to Azure

policies. Unless otherwise noted, all experiments use the constraint

transformation heuristic, and include type constraints.

In the experiments reported below we assume string variables

(principal, action, resource, condition keys) contain any of the 256

ASCII characters and at most 100 characters long, unless otherwise

specified. We report permissiveness as number of requests allowed

(a request is a tuple (𝛿, 𝑎, 𝑟, 𝑒)). Results are reported in log-scale.
For all experiments, we use a desktop machine with an Intel i5

3.5GHz X4 processor, 128GB DDR3 RAM, with a Linux 4.4.0-198

64-bit kernel, Z3 v4.8.11, and the latest build of ABC 2.

8.1 Policy Datasets

Due to security implications of making access control policies that

are used in an organization public, policies that are both publicly

available and representative of real-world policies are practically

non-existent. We are unaware of any such dataset for neither AWS

(those in [11, 21] were not released to the public) nor Azure policies.

To evaluate our approach, a comprehensive dataset is required. We

use two AWS policy datasets collected from users and argue these

datasets are representative of real-world policies and comprehen-

sive enough to show that our approach is effective. We also compile

a dataset of Azure role definitions from Microsoft Docs.

Obtaining AWS Policies from Users. The lack of publicly available

policy datasets for AWS means that finding quality policies is a

cumbersome task. AWS users tend not to share policies possibly

containing sensitive data (policies can leak organization structure).

However, we found this to not be the case when users needed

assistance designing and debugging their policies. AWS policies

can be complex and unwieldy, especially to those unfamiliar with

access control. Consequently, AWS provides forums where users

needing assistance often post their policies and other users (and

AWS employees) can provide assistance. Such policies are usually

sanitized and vary in complexity, making the AWS forums a good

source for compiling a dataset.

1Tool and benchmarks available at https://github.com/vlab-cs-ucsb/quacky
2https://github.com/vlab-cs-ucsb/ABC

AWS Policy Selection Criteria and Breakdown. As of 2021, AWS

offers more than 200 services, many of which use access control

policies and all of which have dedicated forums. We searched for

policies based on several criteria. We focused on iam, s3, and ec2

as they are among the most popular services and are more likely

to yield the best sample of policies. Our goal was to have a good

balance of simple and complex policies as well as policy sets, and

we only included policies that are semantically valid.

Out of several hundred forum posts dating back several years,

we identified 30 posts containing a total of 41 well-formed policies

(the vast majority of posts either contained no policies or frag-

mented/invalid policies): from ec2 9 posts with single policies and

2 posts with multiple policies (4 policies), from iam 2 posts with

single policies and 3 posts with multiple policies (6 policies), from

s3 9 posts with single policies and 5 posts with multiple policies (11

policies). From our observations, we found that when users sought

assistance via the forums, they often only posted a single policy in

isolation. Only 10 posts contained either multiple versions of the

same policy or multiple policies combined together in a policy set

(multiple AWS policies can be combined into a single policy).

Synthesizing AWS Policies Through Mutations. We synthesize

AWS policies through mutations for two reasons. First, we want a

larger dataset on which to evaluate our policy analysis framework

and tool. Second, we want to mimic realistic scenarios where the

semantic meaning of a policy is slightly modified by an employee

within some organization. Modifications to a policy can alter the

permissiveness of a policy in ways indiscernible without intensive

manual inspection. A simple modification could allow one more

user access to a resource or it could allow one thousand more users

access to a resource; in either case, the modified policy is more

permissive but clearly differs in magnitude. Synthesizing policies

through mutation is one approach for modeling such scenarios.

We use ideas frommutation testing to synthesize policies [53, 65].

Mutation testing is a widely used software testing technique for

measuring test suite strength. The technique applies mutations to

a program under test to generate variations of the program, and

evaluates them against a test suite. A faulty program, or mutant, is

killed if at least one test in the suite fails. The more mutants killed,

the higher the confidence in the test suite.

We synthesize mutants of a policy with mutations intended

to alter the permissiveness of a policy, which we use to evaluate

the effectiveness of our approach. We implement three types of

mutations which mimic realistic scenarios and generally yield more

permissive mutants:

(1) If a statement’s Effect is Deny, change it to Allow and negate

the statement’s Action and Resource keys to NotAction and

NotResource or vice versa.

(2) If a statement’s Action or Resource values are lists, change

them to a single string containing a wildcard. For example,

an Action list containing s3:ListBucket and s3:GetObject

is changed to a single string s3:*.

(3) If a statement contains any Conditions, remove them.

For each statement of a given policy, we create a set of applicable

mutation types. For example, consider a statement with an Allow

effect, a list of Action values, and a Condition. The set of applicable

mutations is {type 2, type 3} because the type 1 mutation does not
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Table 1: Times for each AWS service, with and without the

constraint transformation heuristic. Times are in seconds.

Without Transformation With Transformation

Min Max Avg Min Max Avg

ec2 2.08 880.18 128.98 0.50 33.41 10.11

iam 0.26 8.65 1.50 0.16 0.71 0.27

s3 0.06 29.60 3.64 0.05 7.37 0.77

Table 2: Results for each AWS service, with and without

type constraints. Permissiveness is the number of requests

allowed. AM is Arithmetic Mean, GM is Geometric Mean.

Avg exec time (s) 𝑙𝑜𝑔2(AM) 𝑙𝑜𝑔2(GM)
No Type Type No Type Type No Type Type

ec2 0.65 10.11 1,705.65 1,579.70 1,308.86 918.49

iam 0.05 0.27 1,598.60 1,321.92 827.41 669.75

s3 0.52 0.77 2,494.85 2,344.58 1,499.67 1,432.77

apply to the Allow effect. The power set of applicable mutation

types represents combinations of mutations that can be applied to

that statement. Thus, we create such a powerset for each statement.

By choosing one set from each powerset and applying the mutation

types in that set to its respective statement, we output a mutated

policy. From 9 original ec2 policies, we generated 240 mutants.

From 6 original iam policies, we generated 26 mutants. From 14

original s3 policies, we generated 280 mutants. In total, from 29

original policies, we generated 546 mutants.

Obtaining Azure Policies from Microsoft Docs. As of 2021, Azure

comprises more than 200 services and 120 built-in roles. We are

unaware of any forums where users post custom role definitions, so

we searched Microsoft Docs for built-in role definitions. We focused

on Azure VMs and Blob Storage because they are analogous to ec2

and s3. We obtained 2 policies from VMs and 3 from Blob Storage

for our proof of concept.

8.2 qacky Benchmarking

The goal of these experiments is to evaluate qacky’s performance

and identify which factors influence the effect of the analysis (in

terms of counts and time taken). We evaluate the performance and

effectiveness of qacky on 41 policies taken from AWS forums.

First we evaluate the effectiveness of the constraint transformation

heuristic from Section 5 by analyzing each policy, with type con-

straints, twice, both without the heuristic and with the heuristic

enabled. Then, we analyze each policy twice, once without type

constraints and once with type constraints.

Effectiveness of Constraint Transformation. The results, separated

by AWS service, are shown in Table 1. The decrease in minimum

times with the constraint transformation heuristic was between

16% for s3 to 76% for ec2. The maximum times decreased between

75% for s3 to 96% for ec2. The results for average times were similar,

with a decrease of between 78% for s3 to 92% for ec2. The heuristic

reduced the minimum, maximum, and average times by about an

order of magnitude for ec2, but not as much for iam and s3. This

may be because ec2 has more actions (311 as of writing) than both

iam (183) and s3 (223), and thus it may reap more benefits from

range constraints as opposed to equality constraints.

Impact of Type Constraints. The results for each AWS service

are shown in Table 2. Out of the 41 policies, 1 policy allowed no

request both with and without type constraints; 1 policy allowed

requests without type constraints but allowed none when type con-

straints were present. Without type constraints, qacky analyzed

each policy in under a second. Type constraints slow the analy-

sis considerably but drastically effect permissiveness, decreasing

the number of allowed requests by hundreds of orders of magni-

tude. This is due to type constraints restricting the set of possible

actions and constraining actions to only act on specific resource

types. Type constraints represent all possible action and resource

type restrictions and must be explicitly enumerated within the con-

straint, slowing down the analysis. For every policy, the presence of

type constraints resulted in a more precise analysis. Without type

constraints to model the semantics of the policy language, qacky

gives an overapproximation of the permissiveness for a policy.

8.3 Relative Permissiveness Quantification

The goal of this experiment is to evaluate how effective qacky

is at reasoning about the relative permissiveness of access control

policies, and to showcase the effectiveness of quantifying relative

permissiveness in general. We evaluate the effectiveness of qacky

in quantifying relative permissiveness between a policy and its

synthesized mutants. We record the average times and differences

in permissiveness between the mutants and the original policy.

Each policy P is compared against every one of its mutants P𝑚
twice: once to quantify the number of requests allowed by P but

not P𝑚 and once to quantify the number of requests allowed by P𝑚
but not P. We used type constraints, constraint transformation, and

a timeout of 10 minutes for each pair of comparisons. The results

are shown in Table 3. The third column shows the average time

across all pairs of comparisons.

Columns 3-6 of Table 3 show the distribution of permissiveness

between each policy and its mutants. The majority of mutants

were either less permissive, more permissive, or equivalent to the

original policy. Columns 7-10 show the results of quantifying the

difference in permissiveness whenever a policy and its mutant were

not equivalent and did not subsume each other. For each policy

and its set of mutants, columns 7 and 8 report the arithmetic and

geometric means for the number of requests allowed by P but not by

P𝑚 . Conversely, columns 9 and 10 report the means for the number

of requests allowed by P𝑚 but not by P.

8.4 Comparison with Enumerative Model
Counting

SAT/SMT solvers have been used in prior access control policy

analysis techniques to resolve queries about policy behavior (e.g.,

Zelkova,Margrave [11, 33, 51]). This often involves enumerating the

set of solutions to the query, through repeated calls to a constraint

solver. In each call, the constraints are revised by appending the

negation of all prior solutions. Our approach differs fundamentally
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Table 3: Results for AWS policies compared with their mutants. Arithmetic/Geometric Mean (AM/GM) for number of requests

allowed (log-scale,⊥ usedwhen the count is 0) are reported when themutant is less ormore permissive than its original policy.

Policy
Avg exec #P𝑚 Less #P𝑚 More

# Equivalent
# Neither P𝑚 Less permissive P𝑚 More permissive

time (s) permissive permissive subsumes log2(AM) log2(GM) log2(AM) log2(GM)

[ec2] P1 30.23 0 (0%) 60 (93.8%) 4 (6.3%) 0 (0%) ⊥ ⊥ 1823.2 1614.7

[ec2] P2 85.18 0 (0%) 28 (87.5%) 4 (12.5%) 0 (0%) ⊥ ⊥ 1361.5 1162.8

[ec2] P3 57.79 0 (0%) 6 (75%) 2 (25%) 0 (0%) ⊥ ⊥ 1331.8 993.2

[ec2] P4 71.64 0 (0%) 12 (75%) 4 (25%) 0 (0%) ⊥ ⊥ 461.8 431.6

[ec2] P5 24.48 0 (0%) 12 (37.5%) 4 (12.5%) 16 (50%) ⊥ ⊥ 1197.7 788.9

[ec2] P6 45.68 4 (25%) 8 (50%) 0 (0%) 4 (25%) 461.4 292.7 123.1 123.1

[ec2] P7 47.29 0 (0%) 28 (87.5%) 4 (12.5%) 0 (0%) ⊥ ⊥ 1361.5 1008.3

[ec2] P8 170.28 8 (25%) 0 (0%) 24 (75%) 0 (0%) 154.1 154.1 ⊥ ⊥
[ec2] P9 3.11 0 (0%) 0 (0%) 8 (100%) 0 (0%) ⊥ ⊥ ⊥ ⊥

[iam] P10 1.38 0 (0%) 2 (50%) 2 (50%) 0 (0%) ⊥ ⊥ 486.7 486.7

[iam] P11 4.71 0 (0%) 6 (75%) 2 (25%) 0 (0%) ⊥ ⊥ 1385.0 1288.9

[iam] P12 1.05 0 (0%) 2 (50%) 2 (50%) 0 (0%) ⊥ ⊥ 486.6 486.6

[iam] P13 6.13 0 (0%) 0 (0%) 2 (100%) 0 (0%) ⊥ ⊥ ⊥ ⊥
[iam] P14 0.92 0 (0%) 2 (50%) 2 (50%) 0 (0%) ⊥ ⊥ 5.6 5.6

[iam] P15 3.60 0 (0%) 2 (50%) 2 (50%) 0 (0%) ⊥ ⊥ 2124.9 2124.9

[s3] P16 2.28 6 (37.5%) 4 (25%) 4 (25%) 2 (12.5%) 628.9 628.9 684.7 684.7

[s3] P17 1.37 0 (0%) 6 (75%) 2 (25%) 0 (0%) ⊥ ⊥ 2287.3 1953.9

[s3] P18 1.02 0 (0%) 6 (75%) 2 (25%) 0 (0%) ⊥ ⊥ 800.4 536.2

[s3] P19 10.22 2 (25%) 4 (50%) 2 (25%) 0 (0%) 1484.7 1484.7 1276.9 1276.9

[s3] P20 3.46 0 (0%) 0 (0%) 16 (100%) 0 (0%) ⊥ ⊥ ⊥ ⊥
[s3] P21 1.38 0 (0%) 12 (75%) 4 (25%) 0 (0%) ⊥ ⊥ 684.7 684.7

[s3] P22 10.56 16 (25%) 40 (62.5%) 8 (12.5%) 0 (0%) 2192.0 2192.0 2294.7 2268.8

[s3] P23 2.51 0 (0%) 8 (50%) 8 (50%) 0 (0%) ⊥ ⊥ 5.6 5.6

[s3] P24 2.83 0 (0%) 0 (0%) 4 (100%) 0 (0%) ⊥ ⊥ ⊥ ⊥
[s3] P25 2.06 0 (0%) 4 (50%) 4 (50%) 0 (0%) ⊥ ⊥ 2144.0 2144.0

[s3] P26 0.67 0 (0%) 10 (62.5%) 6 (37.5%) 0 (0%) ⊥ ⊥ 1479.1 1435.1

[s3] P27 5.06 6 (18.8%) 20 (62.5%) 4 (12.5%) 2 (6.3%) 2056.0 2056.0 2378.8 2273.9

[s3] P28 2.57 0 (0%) 2 (50%) 2 (50%) 0 (0%) ⊥ ⊥ 684.7 684.7

[s3] P29 76.08 8 (12.5%) 24 (37.5%) 24 (37.5%) 8 (12.5%) 2076.9 2076.9 2268.9 2268.9

0 5 10 15 20

1 · 10−2

2 · 10−2

3 · 10−2

%
o
f
q
a
c
k
y
’s

0 5 10 15 20

4 · 10−5

8 · 10−5

1.2 · 10−4

Figure 3: Counts for the enumerative approach as percent-

age of the count from qacky on a simple policy over a 20

minute period, for bounds 18 (left) and 19 (right).

as we do not rely on enumerating solutions by repeatedly calling a

constraint solver, but rather we use a model counting constraint

solver (ABC) that can count all solutions in a single call.

In these experiments we compare our approach to an enumer-

ative approach using the Z3 SMT constraint solver [27, 49]. First,

we analyze a simple policy allowing 2 s3 actions on 2 resources:

arn:aws:s3:::foo* and arn:aws:s3:::bar.We varied the string bound

from 16 to 21 to let the wildcard match 0 to 5 characters (resp.), and

we set a 20 minute timeout. For bounds 16 and 17, both approaches

finished counting 4 and 516 models in 0.15 and 16.77 seconds (resp.)

Table 4: Average model counting rates for the enumerative

approach and qacky, with type constraints. The former’s

average model counting rates in the first half (0-5 min.) and

second half (5-10min.) of the 10minute timeout interval are

reported.

Average models counted per second

Enum. (0-5 min.) Enum. (5-10 min.) qacky

ec2 2.33 1.32 10474.53

iam 4.02 2.30 10398.54

s3 0.94 0.76 10705.92

for the enumerative approach and in 0.03 and 0.03 seconds (resp.)

for qacky. For bounds 18 to 21, the enumerative approach timed

out after counting 3446, 3217, 3340, 3125 models (resp.), whereas

qacky finished counting 1.3 × 105, 3.4 × 107, 8.6 × 109, 2.2 × 1012

models (resp.) within one second. The results for bounds 18 and 19

are shown in Fig. 3.

We also analyze the 41 AWS policies using both approaches. The

results are shown in Table 4. For each namespace, qacky yielded
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Table 5: Results forAzureVMandBlob Storage policies, with

and without type constraints. Permissiveness is the number

of requests allowed and is reported in log-scale (base 2)

Time (s) Permissiveness

No Type Type No Type Type

[VM] LoginUser 0.73 8.73 3096.01 1046.57

[VM] LoginAdmin 0.79 8.79 3096.01 1047.57

[BS] DataReader 0.36 1.43 1409.59 806.57

[BS] DataContributor 0.63 2.04 1411.18 808.89

[BS] DataOwner 0.37 3.76 2944.01 810.03

an astronomically greater average model counting rate than the

enumerative approach. Moreover, the average rate of the enumera-

tive approach decreased between the first and second halves of the

10 minute timeout interval. These results show that quantifying

permissiveness using an enumerative approach for policy analysis

(such as [51]) based on an off-the-shelf SMT or SAT solver is not a

viable option for quantitative permissiveness analysis.

8.5 Microsoft Azure Policies

The goal of this experiment is to demonstrate that our approach can

be used to analyze Azure policies. Like we did for AWS, we evaluate

the performance and effectiveness of qacky on the 5 policies taken

from Microsoft Docs. We analyze each policy twice, once without

type constraints and once with type constraints. Because many

string variables in Azure policies are more than 100 characters long,

we assume that they are at most 250 characters long.

The results are shown in Table 5. Like previous experiments,

there is a tradeoff between time and permissiveness. Without type

constraints, the two VM policies seem to have the same permis-

siveness in log scale (base 2), but with type constraints, it is clear

that more distinct requests are allowed by LoginAdmin than by

LoginUser. The Blob Storage DataReader, DataContributor, and

DataOwner policies are increasingly permissive. Without type con-

straints, DataOwner seems much more permissive than DataReader

and DataContributor. With type constraints, we see that 2810.03 dis-

tinct requests are allowed by DataOwner, whereas 2806.57, 2808.89

distinct requests are allowed byDataReader, DataContributor (resp.).

8.6 Threats to Validity

The policies extracted from AWS forums/Azure documentation are

based on a small sample and may not be representative enough. We

mitigate this threat by expanding the dataset through mutations,

creating a larger benchmark, and publicly releasing this bench-

mark. Our current experimental evaluation focuses on a subset of

AWS/Azure services (s3, ec2, iam for AWS and VM, BS for Azure).

Although our techniques are extensible, extensions of our approach

to more services requires further experimental evaluation.

9 RELATEDWORK

Access control has been the subject of extensive research [59–61],

many access policy languages have been proposed [1, 41–43], and

the problem with access policies becoming large and difficult to

reason about has been noted in the past [36].

There has been earlier work on verification of access control

policies [29, 39], as well as on assisting policy creation [30, 32].

Some earlier work analyze role based access control schemas using

the Alloy analyzer [62, 66].

The work most closely related to our work is that of Zelkova [11].

Zelkova is a closed-source tool for analyzing properties of AWS

policies which can automatically compare two AWS policies and

determine whether one is more permissive than the other. The two

crucial distinctions between Zelkova and our work is that (1) we

provide a general policy framework for analyzing access control

policies which can be applied to other policy languages, and (2)

we introduce a novel approach for quantifying the permissiveness

of access control policies (rather than a binary yes/no answer in

Zelkova). Both our work and Zelkova build from ideas from the SAT-

based checking of XACML [37]. In their approach, Hughes et al use

a bounded approach to analyze properties of XACML policies with

SAT solvers. Recent work has built upon Zelkova [21] but does not

provide quantitative assessments of permissiveness. Margrave [34]

is a tool that analyzes XACML policies using a multi-terminal deci-

sion diagrams. Margrave goes beyond binary/ternary differential

analysis, allowing a user to write general-purpose queries over

changes to a policy. In a later work [51], Margrave uses a SAT

solver to enumeratively produce sets of solutions to queries. Our

experiments show that this type of enumerative analysis approach

is not nearly scalable enough for meaningful quantitative analysis.

Verification techniques for analyzing access control policies em-

bedded in programs have been studied [17, 26, 50]. Derailer is inter-

active tool that let the developer traverse the tree of all data exposed

by an application and interactively generate a desired policy [50].

RubyX [26] is a tool for symbolic execution for Rails that can be

used to find access control bugs. CanCheck [17] is an automated

verification tool that uses first order logic encoding and theorem

proving for finding access control bugs in Rails applications.

Differential analysis techniques have also been investigated in

the past [3–5, 15, 16, 44–46, 54]. For example, in [54] differential

symbolic execution is used to find differences between original

and refactored code by summarizing procedures into symbolic

constraints and then comparing different summaries using an SMT

solver. SYMDIFF [44] computes the semantic difference between

two functions using the Z3 SMT solver [27, 49]. However, we are

not aware of any prior work on quantitative differential analysis.

10 CONCLUSIONS

Errors in access control policies used for controlling access to

data sources available on cloud servers can have disastrous conse-

quences. In this paper we presented a new approach for modeling

and quantifying permissiveness of access control policies. Our ap-

proach relies on model counting constraint solvers to assess the

permissiveness of a given policy. We implemented this approach

for AWS policies and experimentally evaluated its effectiveness

on AWS policies we collected from discussion forums. Our results

demonstrate that our quantitative permissiveness analysis approach

is applicable in practice. In future work, we aim to investigate how

quantitative analysis techniques can be applied to other policy

analysis problems, such as policy repair.
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