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ABSTRACT

Due to ubiquitous use of software services, protecting the confiden-
tiality of private information stored in compute clouds is becoming
an increasingly critical problem. Although access control specifi-
cation languages and libraries provide mechanisms for protecting
confidentiality of information, without verification and validation
techniques that can assist developers in writing policies, complex
policy specifications are likely to have errors that can lead to unin-
tended and unauthorized access to data, possibly with disastrous
consequences. In this paper, we present a quantitative and differ-
ential policy analysis framework that not only identifies if one
policy is more permissive than another policy, but also quantifies
the relative permissiveness of access control policies. We quantify
permissiveness of policies using a model counting constraint solver.
We present a heuristic that transforms constraints extracted from
access control policies and significantly improves the model count-
ing performance. We demonstrate the effectiveness of our approach
by applying it to policies written in Amazon’s AWS Identity and
Access Management (IAM) policy language and Microsoft’s Azure
policy language.
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1 INTRODUCTION

Modern software services run on compute clouds. Among the most
popular cloud service providers are Amazon Web Services (AWS),
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Microsoft Azure, and Google Cloud Platform (GCP), each of which
lets customers secure their services by writing access control policies.
Access control policies specify rules that allow authorized access
while denying unauthorized access to cloud data. Policies can be
written using many access control specification languages, like the
AWS Identity and Access Management (IAM) [40] language or the
eXtensible Access Control Markup Language (XACML) [64]. In
contrast, libraries such as CanCan [22] and Pundit [58] provide
support for specification of policies at the implementation level.
By themselves, these are useful languages and libraries; however,
without verification and validation techniques that can assist in
writing policies, policy specifications are likely to have errors that
can lead to unintended and unauthorized access to data. In fact,
incorrect specification of access control policies in cloud storage
services has resulted in the exposure of millions of customers’ data
to the public. For example, it was reported that [28] data records for
more than 2 million Dow Jones & Co. customers were exposed due
to an access control error. Exposed data included names, addresses,
account information, email addresses, and last four digits of credit
card numbers of subscribers. The exposed data was in a publicly
accessible AWS Simple Storage Service (s3) bucket. This is a dis-
astrous error in the policy specification for cloud storage buckets.
A similar error resulted data exposure of 50 thousand Australian
employees that included full names, passwords, salaries, IDs, phone
numbers, and credit card data [2]. Yet another error exposed the
account records of 14 million Verizon customers [63]. A vulnera-
bility in Microsoft’s Azure Cosmos DB service [10] allowed public
access to accounts and databases of thousands of customers.
These examples highlight the urgent need to develop techniques
to protect cloud data. Automatically finding access control issues
would prevent exposure of private data, protecting the privacy of
millions of people. Hence, it is necessary to develop automated
verification techniques that can analyze access control policies for
compute clouds. In order to check for correctness of a policy, it is
necessary to have a specification of correctness properties, but writ-
ing correctness properties manually can be challenging and time
consuming. Moreover, writing expected properties of the policy
is error-prone. Hence, when an inconsistency between a property
specification and a policy is identified, it does not necessarily mean
that the policy has an error; the property specification itself could
be erroneous. A differential policy analysis approach removes the
need to manually specify policy properties; instead, it compares
different policies and identifies inconsistencies among them. Basic
policies can be compared to a complex policy to verify that the
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latter does not have unintended consequences. For example, we
may want to verify that a complex policy specification is not more
permissive than a simple policy that specifies common sense access
rules. Moreover, differential policy analysis techniques can identify
differences between different versions of a policy. When a policy
specification is modified, it would be worthwhile to know how
the permissiveness of the policy has changed. However, a binary
answer to a question that compares two policies may be insufficient.
For example, it may not suffice that we know if one policy is more
permissive than another. We may want to know how much more
permissive a policy is than another, i.e., we may want to quantify
the relative permissiveness of different policies. Model counting
constraint solvers find the number of satisfying assignments for a
given constraint, within a given bound [8, 19, 24, 25, 47, 48]. They
have been applied to several quantitative analysis problems such
as probabilistic analysis, reliability analysis, and quantitative infor-
mation flow analysis [12-14, 18, 31, 35, 55-57].

In this paper we propose a framework to quantify permissiveness
of access control policies using model counting constraint solvers.
Our contributions include the following:

o A formal model for access control policies

o A formalization of access control policy permissiveness

e Anautomated approach for quantifying permissiveness of ac-
cess control policies by translating a policy to a SMT formula
and using a model counting constraint solver to quantify its
permissiveness

e An extension of the formal model and automated approach
to quantify relative permissiveness between policies

o A heuristic that transforms formulas extracted from policies
for improving model counting performance

e An open-source tool, QUACKY, that implements the auto-
mated approach to analyze policies written in AWS Identity
and Access Management (IAM) and Azure policy languages

e A publicly available policy dataset consisting of dozens of
real-world policies from AWS forums and Azure documenta-
tion, as well as hundreds of policies synthesized by applying
mutation techniques to the real-world policies

e An experimental evaluation of QUACKY on the dataset

The rest of the paper is organized as follows. In section 2 we first
introduce cloud policies and motivate the need for quantitative
permissiveness analysis. In Section 3 we present our formal policy
model, in Section 4 we discuss SMT-based policy analysis, in Section
5 we discuss quantitative permissiveness analysis, in Section 6 we
present our constraint transformation heuristic, in Section 7 we
discuss the implementation of our approach on AWS and Azure
policies, in Section 8 we discuss our experiments, in Section 9 we
survey related work, and in Section 10 we conclude the paper.

2 BACKGROUND AND MOTIVATION

In this section we first introduce access control policies for the
popular cloud services Amazon Web Services (AWS) and Microsoft
Azure. We then discuss several examples motivating the need for
quantitative analysis of access control policies.
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2.1 Access Control Policies for the Cloud

Amazon Web Services Policies. Amazon Web Services (AWS) uses
a shared responsibility security model where AWS guarantees se-
curity of the cloud, but users are responsible for security in the
cloud. AWS lets users control who has access to their resources
with access control policies written in the AWS policy language.
Access requests are evaluated against policies and a dynamic en-
vironment context within a policy evaluation engine that either
allows or denies access.

AWS defines a policy language where policies either allow or
deny access through declarative statements. A statement is a 5-tuple
(Principal, Effect, Action, Resource, Condition) where

e Principal specifies a list of users, entities, or services

o Effect = {Allow, Deny} specifies whether the statement al-
lows or denies access

o Action specifies a list of actions

® Resource specifies a list of resources

e Condition is an optional list of conditions further constrain-
ing how access is allowed or denied

Each condition consists of a condition operator, condition key, and
condition value on elements of the request context. Full details
of the language can be found in [11]. Note that while most of the
elements of a policy are strings, certain condition keys specify other
types of constraints (e.g., S3:MAX-KEYs expects an integral number).
Additionally, the AWS policy language allows the use of two special
characters within strings: “’, or wildcard, represents any string, and
‘?” which represents any single character. Given an access request
and associated policy, permission is granted if and only if, for the
given principal, action, resource, and condition key values in the
request context, a statement in the policy allows access and no
statement in the policy explicitly denies access.

Microsoft Azure Policies. Like AWS, Azure uses a shared respon-
sibility security model, where security in the cloud is achieved by
role-based access control (RBAC). Azure RBAC defines a policy
language consisting of role definitions and role assignments. A
role definition is a set of allowed actions

(Actions U DataActions) \ (NotActions U NotDataActions)

where

o Actions is a list of allowed management actions

o DataActions is a list of allowed data actions

o NotActions C Actions is a list of denied management actions
e NotDataActions C NotActions is alist of denied data actions.

A role assignment is a tuple (principalld, roleDefld, scope, condition)
where

o principalld identifies a Principal granted access

e roleDefld identifies the role definition

o scope identifies a set of Resources granted access

e condition is an optional expression for granting access

The scope is a path in Azure’s resource hierarchy, rooted at 7.
Resources rooted at the path are granted access. Unlike in AWS,
the Azure condition is an infix logical expression. Azure has logical
operators and relational operators on strings and integral num-
bers, but it also supports cross product relational operators on sets,
like FORANYOFALLVALUES:STRINGEQUALS. Like AWS, Azure allows
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wildcards in strings (except scope). Given an access request, role
definition, and role assignment, permission is granted if and only
if, both the role definition and role assignment explicitly allow the
principal and action under the scope and condition.

2.2 Motivating Examples

Capital One Data Breach. Capital One is one of many companies
which use Amazon Web Services (AWS) for their cloud computing
needs. AWS provides an access control mechanism for controlling
access to resources through the Identity and Access Management
(IAM) policy specification language. AWS IAM allows customers to
create JAM roles and to give permissions to roles by attaching IAM
policies to the role. Policies written in the IAM policy language
allow AWS users to control access to resources and AWS services
through fine-grained permissions. A role can then be assumed
by a user or application. Recently, a server run by Capital One
was breached by an outside attacker who was able to run user
commands unrestricted [23, 52]. The attacker was then able to list
the buckets (which store resources as objects) on the server and
download the contents of each bucket. The attack itself involved two
main components. First, the attacker was able to gain authenticated
access to an AWS IAM role [23]. Secondly, the role had broad access
to S3 buckets due to a misconfigured policy. For confidentiality
reasons, the misconfigured policy is not publicly available.

The following represents a simplified model of the permissions
allowed in the Capital One data breach.

Effect : Allow
Action : [s3:ListBucket,s3:GetObject]
Resource : *

When attached to an IAM role, the policy grants broad access to the
s3 service, allowing the role to list and gather data within s3 buckets.
However, if the attached role is compromised by a malicious user (as
in the Capital One data breach) a great deal of data can be exposed.
A less permissive policy might restrict resources to a single bucket
Resource = [firewall, firewall/*]

or restrict resources to only two objects within a bucket
Resource = [firewall, firewall/logl@, firewall/log20]
Existing policy analysis techniques [11, 38] can verify if a policy is
more or less permissive than another but they cannot quantify the
magnitude of permissiveness in each case. Our work can quantify
the differences in permissiveness between all three policies. If we
assume valid resources are alphanumeric and ’?’,’-’,’’,’/’ characters
with max length of 20, the initial policy allows the GETOBJECT
action on 2.50 X 103 more resources than when access is restricted
to a single bucket, which allows action on 1.05%10?° more resources
than when access is restricted to two objects within a bucket.

Policies in the Wild. For the average user, the above policies are
simple enough to manually analyze without sophisticated tech-
niques. This is not always the case. Policies can be complex, espe-
cially to those unfamiliar with access control. AWS provides forums
where users can post their policies and get feedback from other
users (and AWS employees). We consider a set of policies taken from
the forums to showcase the usefulness of our approach. For simplic-
ity we assume values for fields in a policy contain alphanumeric
and 2, -’ ’,’/’ characters.
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"Statement": [{

"Effect": "Allow",

"Action": [
"s3:GetAccelerateConfiguration", ...,
"s3:ListBucketMultipartUploads"],

"Resource": "x"}7}

"Statement": [{

"Effect": "Allow",

"Action": [
"s3:DescribeJob", ...,
"s3:GetAccelerateConfiguration", ...,
"s3:GetObject",
"s3:GetObjectLegalHold", ...
"s3:ListBucketMultipartUploads"],

"Resource": "x"}1}

"Statement": [{

"Effect": "Allow",

"Action": [
"s3:DescribeJob", ...,
"s3:GetAccelerateConfiguration", ...,
"s3:GetObjectLegalHold", ...
"s3:ListBucketMultipartUploads"],

"Resource": "x"}]1}

Figure 1: Initial (topmost, (a)), modified (middle, (b)), and
fixed (bottom, (c)), versions of a policy used by AWS Support

Quantifying Allowed Actions and Requests. In December 2021,
the AWSSupportServiceRolePolicy policy used by AWS Support
automated systems was modified to allow more actions. However,
this modification inadvertently allowed the action s3:GETOBJECT [6],
which greatly increased the number requests allowed by the policy
(due to the nature of the GETOBJECT action). A bot detected the
change and published it to GitHub, where several users raised con-
cerns about GETOBJECT [7]. Without humans who had substantial
AWS knowledge and who manually inspected the policy change,
this vulnerability may not have been mitigated as quickly, thus ne-
cessitating the need for automated verification. Additionally, prior
work (such as binary differential analysis) would be insufficient, as
an additional action would undoubtedly increase permissiveness
but the GETOBJECT action in particular increases permissiveness
by almost an order of magnitude. AWS eventually fixed the policy,
removing GETOBJECT. Simplified initial, modified, and fixed policies
are shown in Fig 1. The fixed policy does not allow GETOBJECT

We can quantify the permissiveness of Policy 1(a) in terms of how
many actions and requests are allowed by the policy. Assuming that
resources are no more than 100 characters long, our tool reports
that 24 actions and 4.09 X 1038 requests are allowed by the policy.
This result is with respect to the set of valid AWS s3 actions and all
possible resources, not the set of resources in the user’s organization.
If the set of resources is known, they can be added as a constraint
and then our approach would count the requests allowed by the
policy with respect to the set of known requests.

We can quantify the permissiveness of Policy 1(b) and 1(c). Our
tool reports that 47 actions and 2.22 x 10%% requests are allowed
by Policy 1(b). By removing GETOBJECT from Policy 1(b), our tool
reports that 46 actions and 1.78 x 1029 requests are allowed by
Policy 1(c). Note that both policies are identical except that Policy
1(c) does not contain the s3:GETOBJECT action. If instead of the
S3:GETOBJECT action being removed from Policy 1(b), another action
(such as s3:DESCRIBEJOB) were removed, then our tool reports that
46 actions and 2.22 x 10%%% requests (as opposed to 1.78 x 1020
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"Statement": [{
"Effect": "Allow",
"Principal": "*",
"Action": "s3:GetObject",
"Resource": "arn:aws:s3:::myexamplebucket/*x"7},

"Effect": "Deny",

"Principal": "x",

"Action": "s3:GetObject",

"Resource": "arn:aws:s3:::myexamplebucket/*"}]

"Statement": [{

"Effect": "Allow",

"Principal": "x",

"Action": "s3:GetObject",

"Resource": "arn:aws:s3:::myexamplebucket/*"7},

{

"Effect": "Deny",

"Principal": "x",

"Action": "s3:GetObject",

"Resource": "arn:aws:s3:
"Condition": {
"StringNotLike": {
"aws:userId": [
"AROAEXAMPLEID: %",

:myexamplebucket/x"

"AIDAEXAMPLEID", "111111111111"133}}]

Figure 2: Initial (top, (a)) and fixed (bottom, (b)) versions of
a policy for restricting access to certain users

requests) are allowed by the resulting policy. This demonstrates
the need for quantitative analysis in the context of access control.

Quantifying Allowed Users. Depending on the scenario, most
AWS users want a mix of public and private access to their data.
This entails creating complex policies specifying access to their
data, which often requires in-depth knowledge of the AWS policy
language. In one scenario, a user posted on the forums seeking help
in how to grant a specific set of users access to a bucket. The user
was unable to craft a policy without allowing unintended access.
Fig 2 shows the policies another user posted in response. Policy 2(a)
denies all access to any data (eliminating all access). Policy 2(b) is a
modification of the initial policy so that only a specific set of users
can access data within the bucket (as well as denying anonymous
access). Such policies that align with the user’s intention can be
difficult to craft, often due to complex access control logic needed
or sheer complexity in how permissions should be governed.

We can quantify the permissiveness of Policy 2(b) in terms of
how many aws:userlds are allowed by the policy. This lets the
user verify that a change in policy semantics matches the original
intention to only allow access for a certain set of users. Assuming
that valid aws:userIds are no more than 20 characters long, our tool
reports that 8.39 x 10'° aws:userlds are allowed by the policy out
of 2.50 x 103® possible aws:userlds. This result is with respect to the
set of all possible userlds, and not the set of userlds in the user’s
organization. If the set of userlIds is known, they can be added as a
constraint and then our approach would count the userlds allowed
by the policy with respect to the set of known userlds.

If we modify Policy 2(b) and remove the wildcard in the condition
that defines allowed userlds (i.e., the line "AROAEXAMPLEID: "),
then our tool would report exactly the number of allowed userIds
(2 in this case). So, in a scenario where an AWS user wants to specify
a policy with a concrete number of permissions, our quantitative
analysis can be used to verify the quantity of permissions.
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Quantifying Trusted Values Inferred From A Policy. Trust Safety,
introduced in [20], is the notion that a policy should not allow
untrusted (i.e. public) access. Determining if a policy is Trust Safe
requires inferring the set of trusted values from the policy by analyz-
ing the values for trusted keys and making sure they do not match
an “overly large” set of values. In [20] a syntactic check of the policy
is performed to look for values containing a wildcard character (“*”),
and if so, the policy is deemed not Trust Safe. However, in general,
a syntactic check cannot determine the size of a set of values in an
access control policy. Our approach can be used to precisely deter-
mine if the set of values is “overly large” by quantifying the size of
the set of values. If the size surpasses a predetermined threshold,
the policy would be deemed not Trust Safe.

3 POLICY MODEL

In this section, we introduce our policy model which forms the basis
of our framework. Our model is designed to be expressive enough to
model complex policy specifications that can be efficiently and pre-
cisely analyzed by modern verification and validation techniques.
We use an approach similar to [11] in defining our policy model.
An access control policy specifies who can do what under which
conditions. We define an access control model in which declarative
policies field access requests from a dynamic environment, and all
requests are initially denied. An access request is a tuple (8, a,7,¢e) €
A X A X R X E where A is the set of all possible principals making
a request, R is the set of all possible resources which access is
allowed or denied, A is the set of all possible actions, and E is the
environment attributes involved in an access request. An access
control policy P = {pg, p1, ...pn} consists of a set of rules p; where
each rule is defined as a partial function p : A X AXRXE —
{Allow, Deny}. The set of principals specified by a rule p is

p(8)={6eA:3are:(dare)ep} (1)

p(a) fora € A, p(r) for r € R, p(e) for e € E are similarly defined.
Given a policy P = {py, p1, ...pn}, a request (8, a,r, e) is granted
access if

dp; € P: pi(S,a,r,e) = Allow A ﬂpj €P:pj(d.ar,e) =Deny

The policy grants access if the request is allowed by a rule in the
policy and is not revoked by any other rule in the policy. Explicit
denies overrule explicit allows (if a request is allowed by one rule
and denied by another rule, the request is ultimately denied). The
set of allow rules and deny rules for P are defined as:

Paiow = {pi €P: (Si.ai.1i, i) € pi A pi(Si,ai,rirei) = Allow}  (2)
Ppeny = {pj €P: (8j,aj,rj.ej) € pj A pj(Jj,aj,rj,ej) = Deny} (3)
Given a policy P, the requests allowed by the policy are those in

which a policy rule grants the access through an Allow effect and
is not revoked by any policy rule with a Deny effect:

ArLow(P) = {(8,a,r,e) e AXAXRXE

:dp;i eP:(d,ar,e) €piApi(S,ar,e)=Allow (4)
AApj €P:(8,are) € pjApj(d ar,e) = Deny}
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The set of principals, resources, or actions allowed by a policy is

ALLow(P,A) ={5 € A: (8,a,r,e) € ALLow(P)} (5)
ALLow(P,A) ={a€ A: (S,a,r,e) € ALLow(P)} (6)
ALLow(P,R) = {r e R: (6,a,r,e) € ALLow(P)} (7)

4 PERMISSIVENESS ANALYSIS

In this section we discuss how the permissiveness of our policy
model is analyzed. Given a policy, the goal is to determine what
requests are allowed by the policy, and if the policy is more or less
permissive than another policy. This is done by reducing policies
to logic formulas, similar to the approach used in [11, 38].

4.1 SMT Encoding of a Policy

The permissiveness of a policy is determined by the number of
requests that it allows: the more requests allowed by a policy, the
higher its permissiveness. The policy allowing all possible requests
is the most permissive policy, and the policy which denies all re-
quests is the least permissive policy. It follows that, given a policy,
reasoning over all possible requests allowed by the policy deter-
mines the permissiveness of the policy. We encode the set of possi-
ble requests by introducing variables {dsm: € A, rsmt € R, asms €
A, esmt € E} in the generated SMT formula.

F=( Vo) AV b)) ®

PEP Allow P EPDeny
[[p]] = ( \/ Ssmt = 5) A ( \/ Asmt = a) /\ O]
Sep(8) acp(a)
( \/ rsmtzr)/\( \/ esmtze)
rep(r) e€p(e)

The SMT encoding of a policy P is given by [P] and represents the
set of requests allowed by P. Policy rules are encoded as values for
sets of (8, a, r, ), where each value set potentially grants or revokes
permissions. Satisfying solutions to [P] correspond to requests
allowed by the policy, i.e.,

Arow(P) = {(8,a,r,€) : (8,a,r,¢) E [P]} (10)

4.2 Relative Permissiveness of Policies

For a single policy, equations 8, 9 provide a way to model the se-
mantics of a policy in isolation. Below, we provide a policy analysis
framework that, given two policies, determines the relative permis-
siveness between the two.

Intuitively, given two policies P1 and P, we can determine whether
one is more permissive than the other by analyzing formulas [P1] =
[P.] and [P2] = [P1]. However, it is possible that both policies
allow different sets of requests, or the set of requests overlap. In
general, there are four possible outcomes:

(1) Arrow(Py) c ArLow(P2)

(2) ArLow(Py) D ArLow(P2)

(3) ArLow(P;) = ALLow(P7)

(4) Py and P do not subsume each other
The relative permissiveness of P; and P, directly follows from each
scenario: P; is less permissive than Pz, P; is more permissive than
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Py, P and P, are equally permissive, or P; and P, are incompara-
ble. The calculation involves satisfiability checks of two formulas:
[P1] = [P2] and [P2] = [P1]
o If [P1] = [P2] is not satisfiable, then P; cannot be more
permissive than Py (P2 is at least as permissive as Py).
o If [P2] = [P1] is not satisfiable, then P, cannot be more
permissive than P; (P; is at least as permissive as Py).
o If both [P;] = [P2] and [P2] ## [Pi] are not satisfiable,
then P; and P, are equivalent.
e Otherwise, P; and Py do not subsume each other.

Note that the formula [P;] % [P2] can be simplified as
[P1] = [P2] = [P1] A —[P2] 11)

which can be checked using an SMT solver.

5 QUANTIFYING PERMISSIVENESS

Translating an access control policy into an SMT formula for sat-
isfiability checking allows some permissiveness analysis, but it
does not give insight as to how permissive a policy is. In this sec-
tion, we introduce a novel approach for more precise reasoning in
determining the permissiveness of a single policy or the relative
permissiveness of two policies.

Given P, ALLow (P) is the set of all requests allowed by P. Let
|ALLow (P)| denote the number of such requests. The permissive-
ness of P is given by

|ALLow (P)| = |[P]] (12)

Where |[P]| denotes the number of models for formula [P]. Using
a model counting constraint solver, we can automatically compute
the value of |[P]|. Larger values for |[P]| indicate a more permissive
policy; lower values indicate a less permissive policy. A metric for
analyzing permissiveness of a policy is to consider the likelihood
that a randomly generated request is allowed by the policy. Let
D be the set of all possible requests, with |D| being the number
of all possible requests. If [[P]| = 0 all requests are denied by P,
if |[P]| = |D| all requests are allowed by P. Let 0 = (§,a,7,¢) be
a request chosen uniformly at random from the set all possible
requests. The probability that o is allowed by P is
|[PTI

plo E[P]) = Dl (13)

This effectively gives permissiveness of a policy with respect to
its domain. Higher probabilities indicate more permissive policies,
lower probabilities indicates less permissive policies. A probability
of 0.5 indicates the policy allows half of all possible requests. Note
that a probability of 0 indicates a policy which denies all requests
while a probability of 1 indicates a policy allowing all requests.

This approach can be extended for quantifying relative permis-
siveness between policies. Given policies P1, P2, the number of
requests allowed by P; and not allowed by P; is:

[[P1] = [Pl = {(S.a.r.e) : (8,a,r.e) = [P1] A =[P} (14)
The number of requests allowed by P, and not allowed by P; is:
[[P2] = [P1]l = {(S.a.r.e) : (5,a,r.e) = [P2] A=[P1]} (15)

Recall that when calculating relative permissiveness there are four
possible outcomes: P; is equivalent to P2, P; is more permissive
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Algorithm 1 TRANSFORMACTIONS(F, M):

Algorithm 2 DisjuNcTIONTORANGE(F):

Input: SMT formula F, map M
Output: SMT formula with mapping applied to actions
1: if F = F; V F, then
2 return TRANSFORMACTIONS (F;, M) V TRANSFORMACTIONS (Fz, M)
3: else if F = F; A F, then
4: return TRANSFORMACTIONS (Fj, M) A TRANSFORMACTIONS (Fy, M)
5: else if F = (asm; = c¢) then return (asm,: = M(c))
6: else if F = (asm; # c) then return (as;,; # M(c))
7: else if F = (asm: € regex) then
8

F’ = FaLsE
9: for ¢; € GETAcTIONSFROMREGEX (regex) do
10: F' =F' V (asme = ¢i)
11: end for
12: return TRANSFORMACTIONS (F/, M)
13: end if

14: return F

than Py, P; is less permissive than Py, or P; and P, are incomparable.
Using equations 14, 15:
e If Py is more permissive than Py then |[P1] = [P2]| quanti-
fies how much more permissive Py is than Py
o If Py is more permissive than P; then |[P2] = [P1]| quanti-
fies how much more permissive Py is than P;
e If Py and Py do not subsume each other, |[P1] 5 [P2]| and
[[P2] =* [P1]| can be used to determine which policy is
objectively more permissive (total requests allowed)

6 CONSTRAINT TRANSFORMATION

In this section we present a heuristic that transforms a set of equality
and inequality constraints for a string variable to a set of range
constraints on an ordered set. We do this by mapping a set of
string constants to an ordered set of values. As we discuss below,
this enables us to compactly encode constraints on policy actions
extracted from access control policies.

In practice, there are a finite number of valid actions in an access
control policy. For example, s3:GETOBJECT is a valid action, but the
fictitious action s3:FOOBAR is not. For our analysis to be precise,
constraints specifying valid actions must be specified. Recall that
[P] is the constraint formula extracted from policy P. Le., [P] = F
where F is an SMT formula. In a formula F extracted from an access
control policy, we observe three types of terms that involve actions

Asmt = C Asmt # € asmr € regex (16)

where c is a string constant and regex is a regular expression. We
first consider cases where only the first two types of terms are
present in a formula, and then discuss how the transformation
handles regular expression constraints. Consider the formula:
F = (asmt = s3:LISTBUCKET)
V (asmt = S3:LISTBUCKETVERSIONS) (17)
V (asmt = $3:LISTBUCKETMULTIPARTUPLOADS)

By mapping s3:LISTBUCKET + 0, s3:LISTBUCKETVERSIONS — 1,
$3:LISTBUCKETMULTIPARTUPLOADS — 2, F can be rewritten as

F = (asmt =2 0 A agme < 2) (18)

The use of range constraints gives a more compact encoding for
constraints on policy actions, particularly when there is a large
number of constraints on policy actions (such as the constraints
specifying the set of all valid actions). We introduce a constraint

Input: SMT formula F with mapped actions
Output: Transformed SMT formula with disjunctions collapsed into range
constraints when possible

1: if F=F, V...V F, then

2: Fgr = FALSE

3 F’ = FALSE

4 S={}

5: for F; € {F,....,F,} do

6 if F; = (asmt = c) then

7 Fr=FRrVF;

8: S=SU{c}

9: else

10: F’ = F’ V DisjuncTioNTORANGE (F;)
11: end if

12: end for
13: if s1ze(S) > 2 and s1ze(S) — 1 = max(S) — min(S) then

14: return F' V (asms = MIN(S) A dsme < MAX(S))
15: else

16: return F' V FR

17: end if

18: elseif F = F; A ... A F,, then

19: F’ = Trug

20: for F; € {Fy,....,F,} do

21: F’ = F’ A DisjuncTIONTORANGE (F;)
22: end for

23: return F’

24: end if

25: return F

transformation which transforms the constraints on valid actions
into a much smaller set of range constraints. Let V(a) be the set of
all valid actions. The key insight is that the set V(a) can be mapped
to a totally ordered set V’(a) which can be compactly represented
using a combination of equality and inequality constraints. The
mapping and V’(a) are straightforward to construct: each valid
action a € V(a) is mapped to a unique integer i € [0, |V (a)| — 1],
and V’(a) is the set of all such integers.

The constraint transformation heuristic consists of two phases:
the first applies the mapping to constraints on actions, the second
transforms disjunction constraints into range constraints. Given a
constraint formula in negation normal form and the action mapping,
Algorithm 1 first transforms constraints containing action variable
asmy SO it is consistent with the mapping. For constraints agp,; = ¢
or asm # ¢ where c is some string constant, ¢ is replaced by the inte-
ger according to the mapping. For regular expression constraints on
action aspm; € regex, the function GETACTIONSFROMREGEX(regex)
returns all valid actions satisfied by the regex (the number of valid
actions is finite) and a disjunction on all possibilities is returned:
e.g., if the constraint is (asm; € s3:LisTBx*) (where * corresponds to
a wildcard) then GETAcTIONSFROMREGEX returns the only valid ac-
tions matching the regex, s3:LISTBUCKET, $3:LISTBUCKETVERSIONS,
s3:LIsSTBUCKETMULTIPARTUPLOADS. After the action constraints
have been mapped, Algorithm 2 attempts to transform equality con-
straints on actions under a single disjunction into range constraints
(such as in equation 18). If the transformation is not possible (e.g.,
the constants are not contiguous) the input formula is returned.

7 ANALYZING AWS AND AZURE POLICIES

Based on our proposed notion of policy permissiveness and our
approach for quantifying permissiveness, we have developed a
differential policy analysis framework for permissiveness analysis
of access control policies. Our framework is general enough to be
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applied to a variety of policies written in multiple policy languages.
To demonstrate the effectiveness of our approach, we show that it
can be applied to existing real world access control models: policies
for AWS IAM and Microsoft Azure.

7.1 Translation and Implementation

Scope and Translation of the AWS Policy Language. The AWS pol-
icy language is enormous, with each service having its own rules
on actions and resources. We consider three of the most popular
AWS services: Elastic Compute Cloud (£c2), Identity and Access
Management (1am), and Simple Storage Service (s3). We consider
two levels of constraints for each service. First, actions are con-
strained to the set of actions defined by the service. s3:L1ISTBUCKET
or s3:PuTOBJECT are valid s3 actions but s3:FOOBAR is not. Sec-
ond, actions and resource types are constrained by each other:
certain actions can act only on certain resource types; e.g., action
S3:L1STBUCKET operates on resource ARN:AWS:S3:::BUCKET. Addi-
tionally, resource types are constrained by naming requirements;
e.g., length of bucket names is between 3 and 63 characters

An AWS policy is a list of statements, each statement allow-
ing or denying access for a given set of principals, actions and
resources. For each statement, we create a rule p capturing its se-
mantics. Principals, actions, and resources within a statement map
to A, A, R in p. Modeling conditions into environment attributes of
E is more complex. Each condition key together with a condition
operator specifies values for which access is allowed or denied.
The environment attributes are thus a set of tuples specifying the
condition key and their respective values, where the number of
tuples depends on the condition operator. For wildcard or anychar

’/?”) symbols, we use regular expressions to capture the set of
allowed strings. For example, resource = BUCKET* translates to
(MATCH resource /bucket’/) where . corresponds to anychar, ’/’ de-
notes the start and end of a regular expression, “*’ represents Kleene
star. We handle condition operators such as STRINGLIKE similarly.

Scope and Translation of the Azure Policy Language. Like AWS,
each Azure service has its respective set of rules on actions and
resources. We consider Azure VMs and Blob Storage, which are
analogous to EC2 and s3. We consider the same two levels of con-
straints as we do for AWS.

An Azure “policy” is given by a list of role definitions and a list of
role assignments. We join them together on the roleDefld into rules
p. For each p, we map principalld to A, (Actions U DataActions) \
(NotActionsUNotDataActions) to A, and scope to R. The condition
is parsed into a tree whose leaves specify condition keys and their
respective values; these are the environment attributes. Like for
AWS, we use regex for wildcards.

Translating Action and Resource Type Constraints. Let T be the
set of constraints representing action and resource type restrictions.
Equation 12 now becomes

\[PTI = 1[P] A T (19)
For comparing multiple policies, equations 14, 15 become

[[P1] = [P2]I| = [([P1] = [Pz]) A TI (20)
[[P2] = [P1]l = I([P2] = [P1]) A T (21)
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Algorithm 3 TransLATEPOLICY (P):

Input: policy P
Output: SMT formula [P] encoding P
1: [Pajiow] = FALSE
2: [Ppeny] = FALSE
3: for rule p in P do
: [6] = Encobe(p(9))
[a] = Encope(p(a))
[r] = Encope(p(r))
[e] = Encope(p(e))
0] = [81 A [a] A [7] A [e]
9 if p € [Pauow] then [Payow] = [Pauow] v [p]
10: else [Ppeny] = [Ppeny] V [p]
11: end if
12: end for
13: return [P] = [Pasow] A ~[Ppeny]

BRI A

Algorithm 4 PERMISSIVENESS(P, b):

Input: policy P, bound b
Output: permissiveness of P
1: [P] = TransLATEPOLICY(P)
2: T = GETTYPECONSTRAINTS()
3: if IsSSAT([P] A T) then return CountMopELs([P] A T, b)
4: else return 0
5: end if

Algorithm 5 RELATIVEPERMISSIVENESS(Py, Po, b):

Input: policies Py, P2; bound b
Output: relative permissiveness of Py, P,
: [P1] = TransLaTEPOLICY(P;)
: [P;] = TransLaTEPOLICY(P2)
T = GETTYPECONSTRAINTS()
¢ Fy=[Pi] A=[P] AT
: B =[P] A-[Pi] AT
. if ISSAT(F;) and not ISSAT(F;) then
return "P; is more permissive", CouNTMODELS(F}, b)
: else if not ISSAT(F;) and IsSSAT(F;) then
9: return "P; is more permissive", COUNTMODELS(F3, b)
10: else if not ISSAT(F;) and not IsSAT(F;) then
11: return "P; and P, are equivalent”
12: else if ISSAT(F;) and ISSAT(F;) then
13: return "P; and P, do not subsume each other",
14: CounTMOoDELS(Fy, b), CouNTMODELS(F3, b)
15: end if

I R I S N

We implement translation for T for AWS by scraping the AWS
resource and property types reference webpages to identify the
resource types each action can operate on. For Azure, we generate
constraints by reading a CSV file from the Azure Portal that relates
actions to resource types. Note that prior work [11, 20] does not
consider type constraints in their analysis of access control policies.

Policy Translator. Based on our approach, we implemented an
open-source tool called QUACKY that quantifies permissiveness or
relative permissiveness by translating policies into SMT formulas
and passing the formulas to a model counting constraint solver. Our
implementation uses the popular Automata-based Model Counter
(ABC) [8, 9] which uses automata-theoretic to model count string
and numeric constraints. ABC counts satisfying solutions to the
formula by constructing automata for an SMT formula and perform-
ing path counting on the automata. SMT formulas from QuAcky
can also be fed into other SMT-LIB-conformant constraint solvers,
such as Microsoft Z3.
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QUACKY translates a policy P into a SMT formula [P] by trans-
lating each rule p, as shown in Algorithm 3. To quantify the per-
missiveness of a policy P, QuAcKY translates P, appends the type
constraints T, and calls ABC to count the solutions satisfying [P] AT,
as shown in Algorithm 4. To analyze the relative permissiveness
between two policies P; and Py, Quacky produces two SMT for-
mulas [P1] 5 [P2] and [P2] = [P1] and calls ABC to check their
satisfiability and to count models, as shown in Algorithm 5.

8 EXPERIMENTAL EVALUATION

Below, we first describe our methodology for gathering policies;
then we discuss the four experiments we conducted to evaluate our
approach and its implementation in Quacky !. The first experiment
benchmarks QUACKY, and it evaluates QUACKY’s performance and
identifies which factors influence the analysis. The second exper-
iment evaluates how effective QUACKY is at reasoning about the
relative permissiveness of access control policies. The third experi-
ment compares the performance of QuAcky with an enumerative
model counting approach based on SMT solvers. The fourth ex-
periment demonstrates that our approach can be applied to Azure
policies. Unless otherwise noted, all experiments use the constraint
transformation heuristic, and include type constraints.

In the experiments reported below we assume string variables
(principal, action, resource, condition keys) contain any of the 256
ASCII characters and at most 100 characters long, unless otherwise
specified. We report permissiveness as number of requests allowed
(a request is a tuple (8, a,r, e)). Results are reported in log-scale.
For all experiments, we use a desktop machine with an Intel i5
3.5GHz X4 processor, 128GB DDR3 RAM, with a Linux 4.4.0-198
64-bit kernel, Z3 v4.8.11, and the latest build of ABC 2.

8.1 Policy Datasets

Due to security implications of making access control policies that
are used in an organization public, policies that are both publicly
available and representative of real-world policies are practically
non-existent. We are unaware of any such dataset for neither AWS
(those in [11, 21] were not released to the public) nor Azure policies.
To evaluate our approach, a comprehensive dataset is required. We
use two AWS policy datasets collected from users and argue these
datasets are representative of real-world policies and comprehen-
sive enough to show that our approach is effective. We also compile
a dataset of Azure role definitions from Microsoft Docs.

Obtaining AWS Policies from Users. The lack of publicly available
policy datasets for AWS means that finding quality policies is a
cumbersome task. AWS users tend not to share policies possibly
containing sensitive data (policies can leak organization structure).
However, we found this to not be the case when users needed
assistance designing and debugging their policies. AWS policies
can be complex and unwieldy, especially to those unfamiliar with
access control. Consequently, AWS provides forums where users
needing assistance often post their policies and other users (and
AWS employees) can provide assistance. Such policies are usually
sanitized and vary in complexity, making the AWS forums a good
source for compiling a dataset.

Tool and benchmarks available at https://github.com/vlab-cs-ucsb/quacky
Zhttps://github.com/vlab-cs-ucsb/ABC
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AWS Policy Selection Criteria and Breakdown. As of 2021, AWS
offers more than 200 services, many of which use access control
policies and all of which have dedicated forums. We searched for
policies based on several criteria. We focused on 1aM, s3, and EC2
as they are among the most popular services and are more likely
to yield the best sample of policies. Our goal was to have a good
balance of simple and complex policies as well as policy sets, and
we only included policies that are semantically valid.

Out of several hundred forum posts dating back several years,
we identified 30 posts containing a total of 41 well-formed policies
(the vast majority of posts either contained no policies or frag-
mented/invalid policies): from Ec2 9 posts with single policies and
2 posts with multiple policies (4 policies), from 1aM 2 posts with
single policies and 3 posts with multiple policies (6 policies), from
s3 9 posts with single policies and 5 posts with multiple policies (11
policies). From our observations, we found that when users sought
assistance via the forums, they often only posted a single policy in
isolation. Only 10 posts contained either multiple versions of the
same policy or multiple policies combined together in a policy set
(multiple AWS policies can be combined into a single policy).

Synthesizing AWS Policies Through Mutations. We synthesize
AWS policies through mutations for two reasons. First, we want a
larger dataset on which to evaluate our policy analysis framework
and tool. Second, we want to mimic realistic scenarios where the
semantic meaning of a policy is slightly modified by an employee
within some organization. Modifications to a policy can alter the
permissiveness of a policy in ways indiscernible without intensive
manual inspection. A simple modification could allow one more
user access to a resource or it could allow one thousand more users
access to a resource; in either case, the modified policy is more
permissive but clearly differs in magnitude. Synthesizing policies
through mutation is one approach for modeling such scenarios.

We use ideas from mutation testing to synthesize policies [53, 65].
Mutation testing is a widely used software testing technique for
measuring test suite strength. The technique applies mutations to
a program under test to generate variations of the program, and
evaluates them against a test suite. A faulty program, or mutant, is
killed if at least one test in the suite fails. The more mutants killed,
the higher the confidence in the test suite.

We synthesize mutants of a policy with mutations intended
to alter the permissiveness of a policy, which we use to evaluate
the effectiveness of our approach. We implement three types of
mutations which mimic realistic scenarios and generally yield more
permissive mutants:

(1) If a statement’s Effect is Deny, change it to Allow and negate
the statement’s Action and Resource keys to NotAction and
NotResource or vice versa.

(2) If a statement’s Action or Resource values are lists, change
them to a single string containing a wildcard. For example,
an Action list containing s3:L1sTBUCKET and s3:GETOBJECT
is changed to a single string s3:*.

(3) If a statement contains any Conditions, remove them.

For each statement of a given policy, we create a set of applicable
mutation types. For example, consider a statement with an Allow
effect, a list of Action values, and a Condition. The set of applicable
mutations is {type 2, type 3} because the type 1 mutation does not
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Table 1: Times for each AWS service, with and without the
constraint transformation heuristic. Times are in seconds.

Without Transformation With Transformation

Min Max Avg Min Max Avg
EC2 | 2.08 880.18 12898 | 050 3341  10.11
1AM | 026 8.65 150 | 0.16 071 0.27
s3] 006  29.60 3.64 | 0.05 737 0.77

Table 2: Results for each AWS service, with and without
type constraints. Permissiveness is the number of requests
allowed. AM is Arithmetic Mean, GM is Geometric Mean.

Avg exec time (s) log2(AM) log2(GM)

No Type Type NoType Type NoType  Type
EC2 0.65 10.11 | 1,705.65 1,579.70 | 1,308.86 918.49
1AM 0.05 0.27 | 1,598.60 1,321.92 827.41 669.75
s3 0.52 0.77 | 2,494.85 2,344.58 | 1,499.67 1,432.77

apply to the Allow effect. The power set of applicable mutation
types represents combinations of mutations that can be applied to
that statement. Thus, we create such a powerset for each statement.
By choosing one set from each powerset and applying the mutation
types in that set to its respective statement, we output a mutated
policy. From 9 original Ec2 policies, we generated 240 mutants.
From 6 original 1aM policies, we generated 26 mutants. From 14
original s3 policies, we generated 280 mutants. In total, from 29
original policies, we generated 546 mutants.

Obtaining Azure Policies from Microsoft Docs. As of 2021, Azure
comprises more than 200 services and 120 built-in roles. We are
unaware of any forums where users post custom role definitions, so
we searched Microsoft Docs for built-in role definitions. We focused
on Azure VMs and Blob Storage because they are analogous to Ec2
and s3. We obtained 2 policies from VMs and 3 from Blob Storage
for our proof of concept.

8.2 quacky Benchmarking

The goal of these experiments is to evaluate QUACKY’s performance
and identify which factors influence the effect of the analysis (in
terms of counts and time taken). We evaluate the performance and
effectiveness of QUACKY on 41 policies taken from AWS forums.
First we evaluate the effectiveness of the constraint transformation
heuristic from Section 5 by analyzing each policy, with type con-
straints, twice, both without the heuristic and with the heuristic
enabled. Then, we analyze each policy twice, once without type
constraints and once with type constraints.

Effectiveness of Constraint Transformation. The results, separated
by AWS service, are shown in Table 1. The decrease in minimum
times with the constraint transformation heuristic was between
16% for s3 to 76% for £c2. The maximum times decreased between
75% for s3 to 96% for Ec2. The results for average times were similar,
with a decrease of between 78% for s3 to 92% for Ec2. The heuristic
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reduced the minimum, maximum, and average times by about an
order of magnitude for Ec2, but not as much for 1am and s3. This
may be because Ec2 has more actions (311 as of writing) than both
1AM (183) and s3 (223), and thus it may reap more benefits from
range constraints as opposed to equality constraints.

Impact of Type Constraints. The results for each AWS service
are shown in Table 2. Out of the 41 policies, 1 policy allowed no
request both with and without type constraints; 1 policy allowed
requests without type constraints but allowed none when type con-
straints were present. Without type constraints, QUACKY analyzed
each policy in under a second. Type constraints slow the analy-
sis considerably but drastically effect permissiveness, decreasing
the number of allowed requests by hundreds of orders of magni-
tude. This is due to type constraints restricting the set of possible
actions and constraining actions to only act on specific resource
types. Type constraints represent all possible action and resource
type restrictions and must be explicitly enumerated within the con-
straint, slowing down the analysis. For every policy, the presence of
type constraints resulted in a more precise analysis. Without type
constraints to model the semantics of the policy language, Quacky
gives an overapproximation of the permissiveness for a policy.

8.3 Relative Permissiveness Quantification

The goal of this experiment is to evaluate how effective Quacky
is at reasoning about the relative permissiveness of access control
policies, and to showcase the effectiveness of quantifying relative
permissiveness in general. We evaluate the effectiveness of guacky
in quantifying relative permissiveness between a policy and its
synthesized mutants. We record the average times and differences
in permissiveness between the mutants and the original policy.

Each policy P is compared against every one of its mutants Py,
twice: once to quantify the number of requests allowed by P but
not Py, and once to quantify the number of requests allowed by Py,
but not P. We used type constraints, constraint transformation, and
a timeout of 10 minutes for each pair of comparisons. The results
are shown in Table 3. The third column shows the average time
across all pairs of comparisons.

Columns 3-6 of Table 3 show the distribution of permissiveness
between each policy and its mutants. The majority of mutants
were either less permissive, more permissive, or equivalent to the
original policy. Columns 7-10 show the results of quantifying the
difference in permissiveness whenever a policy and its mutant were
not equivalent and did not subsume each other. For each policy
and its set of mutants, columns 7 and 8 report the arithmetic and
geometric means for the number of requests allowed by P but not by
Pp,. Conversely, columns 9 and 10 report the means for the number
of requests allowed by Py, but not by P.

8.4 Comparison with Enumerative Model
Counting

SAT/SMT solvers have been used in prior access control policy
analysis techniques to resolve queries about policy behavior (e.g.,
Zelkova, Margrave [11, 33, 51]). This often involves enumerating the
set of solutions to the query, through repeated calls to a constraint
solver. In each call, the constraints are revised by appending the
negation of all prior solutions. Our approach differs fundamentally
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Table 3: Results for AWS policies compared with their mutants. Arithmetic/Geometric Mean (AM/GM) for number of requests
allowed (log-scale, | used when the count is 0) are reported when the mutant is less or more permissive than its original policy.

. Avg exec #Pm Less #P More . # Neither P Less permissive P77, More permissive
Policy time (s) permissive permissive # Equivalent subsumes logy (AM) logy (GM) logy (AM) logy (GM)
[Ec2] P 30.23 0 (0%) 60 (93.8%) 4(6.3%) 0 (0%) 1 i 1823.2 1614.7
[Ec2] P 85.18 0 (0%) 28 (87.5%) 4(12.5%) 0 (0%) 1 i 1361.5 1162.8
[Ec2] P 57.79 0 (0%) 6 (75%) 2 (25%) 0 (0%) 1 1 1331.8 993.2
[Ec2] P4 71.64 0 (0%) 12 (75%) 4(25%) 0 (0%) 1 1 461.8 431.6
[Ec2] P 24.48 0 (0%) 12 (37.5%) 4(12.5%) 16 (50%) 1 1 1197.7 788.9
[Ec2] P 45.68 4(25%) 8 (50%) 0 (0%) 4(25%) 461.4 292.7 123.1 123.1
[Ec2] P 47.29 0 (0%) 28 (87.5%) 4(12.5%) 0 (0%) 1 1 1361.5 1008.3
[Ec2] P 170.28 8 (25%) 0 (0%) 24 (75%) 0 (0%) 154.1 154.1 1 1
[Ec2] P 3.11 0 (0%) 0 (0%) 8 (100%) 0 (0%) 1 1 1 1
[1am] P10 1.38 0 (0%) 2 (50%) 2 (50%) 0 (0%) 1 1 486.7 486.7
[1am] P11 4.71 0 (0%) 6 (75%) 2 (25%) 0 (0%) 1 1 1385.0 1288.9
[1am] P12 1.05 0 (0%) 2 (50%) 2 (50%) 0 (0%) 1 1 486.6 486.6
[1am] P13 6.13 0 (0%) 0 (0%) 2 (100%) 0 (0%) 1 1 1 1
[1am] P14 0.92 0 (0%) 2 (50%) 2 (50%) 0 (0%) 1 1 5.6 5.6
[1am] P15 3.60 0 (0%) 2 (50%) 2 (50%) 0 (0%) 1 1 2124.9 21249
[s3] P16 2.28 6 (37.5%) 4(25%) 4(25%) 2 (12.5%) 628.9 628.9 684.7 684.7
[s3] P17 1.37 0 (0%) 6 (75%) 2 (25%) 0 (0%) 1 1 2287.3 1953.9
[s3] P18 1.02 0 (0%) 6 (75%) 2 (25%) 0 (0%) 1 1 800.4 536.2
[s3] P19 10.22 2 (25%) 4 (50%) 2 (25%) 0 (0%) 1484.7 1484.7 1276.9 1276.9
[s3] P20 3.46 0 (0%) 0 (0%) 16 (100%) 0 (0%) 1 1 1 1
[s3] P21 1.38 0(0%) 12 (75%) 4(25%) 0 (0%) 1 1 684.7 684.7
[s3] P22 10.56 16 (25%) 40 (62.5%) 8 (12.5%) 0 (0%) 2192.0 2192.0 2294.7 2268.8
[s3] P23 2.51 0 (0%) 8 (50%) 8 (50%) 0 (0%) 1 1 5.6 5.6
[s3] P24 2.83 0 (0%) 0 (0%) 4 (100%) 0 (0%) 1 1 1 1
[s3] P25 2.06 0 (0%) 4 (50%) 4 (50%) 0 (0%) 1 1 2144.0 2144.0
[s3] P26 0.67 0 (0%) 10 (62.5%) 6 (37.5%) 0 (0%) 1 1 1479.1 1435.1
[s3] P27 5.06 6 (18.8%) 20 (62.5%) 4(12.5%) 2 (6.3%) 2056.0 2056.0 2378.8 2273.9
[s3] P28 2.57 0 (0%) 2 (50%) 2 (50%) 0 (0%) 1 1 684.7 684.7
[s3] P29 76.08 8 (12.5%) 24 (37.5%) 24 (37.5%) 8 (12.5%) 2076.9 2076.9 2268.9 2268.9
» Table 4: Average model counting rates for the enumerative
o approach and Quacky, with type constraints. The former’s
E average model counting rates in the first half (0-5 min.) and
2) second half (5-10 min.) of the 10 minute timeout interval are
o L reported.
I3
0 5 10 15 20 0 5 10 15 20

Average models counted per second

Figure 3: Counts for the enumerative approach as percent- Enum. (0-5min.) Enum. (5-10 min.) QUACKY
age of the count from QUACKY on a simple policy over a 20
& A by Doy EC2 | 2.33 132 1047433
minute period, for bounds 18 (left) and 19 (right).
1AM | 4.02 230 10381
s3 | 0.94 0.76 107059

as we do not rely on enumerating solutions by repeatedly calling a
constraint solver, but rather we use a model counting constraint
solver (ABC) that can count all solutions in a single call.

In these experiments we compare our approach to an enumer-
ative approach using the Z3 SMT constraint solver [27, 49]. First,
we analyze a simple policy allowing 2 s3 actions on 2 resources:
ARN:AWS:53::FOO" and ARN:AWS:s3:::BAR. We varied the string bound
from 16 to 21 to let the wildcard match 0 to 5 characters (resp.), and
we set a 20 minute timeout. For bounds 16 and 17, both approaches
finished counting 4 and 516 models in 0.15 and 16.77 seconds (resp.)
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for the enumerative approach and in 0.03 and 0.03 seconds (resp.)
for guacky. For bounds 18 to 21, the enumerative approach timed
out after counting 3446, 3217, 3340, 3125 models (resp.), whereas
QUACKY finished counting 1.3 x 10°, 3.4 X 107, 8.6 x 107, 2.2 x 1012
models (resp.) within one second. The results for bounds 18 and 19
are shown in Fig. 3.

We also analyze the 41 AWS policies using both approaches. The
results are shown in Table 4. For each namespace, QUACKY yielded
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Table 5: Results for Azure VM and Blob Storage policies, with
and without type constraints. Permissiveness is the number
of requests allowed and is reported in log-scale (base 2)

Time (s) Permissiveness

No Type Type NoType Type
[VM] LoginUser 0.73 8.73 3096.01 1046.57
[VM] LoginAdmin 079 879 | 3096.01 1047.57
[BS] DataReader 036  1.43 | 1409.59  806.57
[BS] DataContributor 0.63 204 | 1411.18 808.89
[BS] DataOwner 0.37 3.76 2944.01 810.03

an astronomically greater average model counting rate than the
enumerative approach. Moreover, the average rate of the enumera-
tive approach decreased between the first and second halves of the
10 minute timeout interval. These results show that quantifying
permissiveness using an enumerative approach for policy analysis
(such as [51]) based on an off-the-shelf SMT or SAT solver is not a
viable option for quantitative permissiveness analysis.

8.5 Microsoft Azure Policies

The goal of this experiment is to demonstrate that our approach can
be used to analyze Azure policies. Like we did for AWS, we evaluate
the performance and effectiveness of QUACKY on the 5 policies taken
from Microsoft Docs. We analyze each policy twice, once without
type constraints and once with type constraints. Because many
string variables in Azure policies are more than 100 characters long,
we assume that they are at most 250 characters long.

The results are shown in Table 5. Like previous experiments,
there is a tradeoff between time and permissiveness. Without type
constraints, the two VM policies seem to have the same permis-
siveness in log scale (base 2), but with type constraints, it is clear
that more distinct requests are allowed by LoginAdmin than by
LoginUser. The Blob Storage DataReader, DataContributor, and
DataOwner policies are increasingly permissive. Without type con-
straints, DataOwner seems much more permissive than DataReader
and DataContributor. With type constraints, we see that 281003 dis-
tinct requests are allowed by DataOwner, whereas 2806.57 5808.89
distinct requests are allowed by DataReader, DataContributor (resp.).

8.6 Threats to Validity

The policies extracted from AWS forums/Azure documentation are
based on a small sample and may not be representative enough. We
mitigate this threat by expanding the dataset through mutations,
creating a larger benchmark, and publicly releasing this bench-
mark. Our current experimental evaluation focuses on a subset of
AWS/Azure services (s3, EC2, 1AM for AWS and VM, BS for Azure).
Although our techniques are extensible, extensions of our approach
to more services requires further experimental evaluation.

9 RELATED WORK

Access control has been the subject of extensive research [59-61],
many access policy languages have been proposed [1, 41-43], and
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the problem with access policies becoming large and difficult to
reason about has been noted in the past [36].

There has been earlier work on verification of access control
policies [29, 39], as well as on assisting policy creation [30, 32].
Some earlier work analyze role based access control schemas using
the Alloy analyzer [62, 66].

The work most closely related to our work is that of Zelkova [11].
Zelkova is a closed-source tool for analyzing properties of AWS
policies which can automatically compare two AWS policies and
determine whether one is more permissive than the other. The two
crucial distinctions between Zelkova and our work is that (1) we
provide a general policy framework for analyzing access control
policies which can be applied to other policy languages, and (2)
we introduce a novel approach for quantifying the permissiveness
of access control policies (rather than a binary yes/no answer in
Zelkova). Both our work and Zelkova build from ideas from the SAT-
based checking of XACML [37]. In their approach, Hughes et al use
a bounded approach to analyze properties of XACML policies with
SAT solvers. Recent work has built upon Zelkova [21] but does not
provide quantitative assessments of permissiveness. Margrave [34]
is a tool that analyzes XACML policies using a multi-terminal deci-
sion diagrams. Margrave goes beyond binary/ternary differential
analysis, allowing a user to write general-purpose queries over
changes to a policy. In a later work [51], Margrave uses a SAT
solver to enumeratively produce sets of solutions to queries. Our
experiments show that this type of enumerative analysis approach
is not nearly scalable enough for meaningful quantitative analysis.

Verification techniques for analyzing access control policies em-
bedded in programs have been studied [17, 26, 50]. Derailer is inter-
active tool that let the developer traverse the tree of all data exposed
by an application and interactively generate a desired policy [50].
RubyX [26] is a tool for symbolic execution for Rails that can be
used to find access control bugs. CanCheck [17] is an automated
verification tool that uses first order logic encoding and theorem
proving for finding access control bugs in Rails applications.

Differential analysis techniques have also been investigated in
the past [3-5, 15, 16, 44-46, 54]. For example, in [54] differential
symbolic execution is used to find differences between original
and refactored code by summarizing procedures into symbolic
constraints and then comparing different summaries using an SMT
solver. SYMDIFF [44] computes the semantic difference between
two functions using the Z3 SMT solver [27, 49]. However, we are
not aware of any prior work on quantitative differential analysis.

10 CONCLUSIONS

Errors in access control policies used for controlling access to
data sources available on cloud servers can have disastrous conse-
quences. In this paper we presented a new approach for modeling
and quantifying permissiveness of access control policies. Our ap-
proach relies on model counting constraint solvers to assess the
permissiveness of a given policy. We implemented this approach
for AWS policies and experimentally evaluated its effectiveness
on AWS policies we collected from discussion forums. Our results
demonstrate that our quantitative permissiveness analysis approach
is applicable in practice. In future work, we aim to investigate how
quantitative analysis techniques can be applied to other policy
analysis problems, such as policy repair.
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