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Abstract

Accurate predictions of water temperature are the foun-
dation for many decisions and regulations, with direct
impacts on water quality, fishery yields, and power pro-
duction. Building accurate broad-scale models for lake
temperature prediction remains challenging in practice
due to the variability in the data distribution across dif-
ferent lake systems monitored by static and time-series
data. In this paper, to tackle the above challenges,
we propose a novel machine learning based approach
for integrating static and time-series data in deep re-
current models, which we call Invertibility-Aware-Long
Short-Term Memory(IA-LSTM), and demonstrate its
effectiveness in predicting lake temperature. Our pro-
posed method integrates components of the Invertible
Network and LSTM to better predict temperature pro-
files (forward modeling) and infer the static features
(i.e., inverse modeling) that can eventually enhance the
prediction when static variables are missing. We eval-
uate our method on predicting the temperature profile
of 450 lakes in the Midwestern U.S. and report relative
improvement of 4% to capture data heterogeneity and
simultaneously outperform baseline predictions by 12%
when static features are unavailable.

1 Introduction

The seasonal water temperature value of thousands
of water bodies regulates the water flow and directly
influences local water supply quality [1], food resources
[2], and aquatic life [3]. In the context of global
warming, accurate prediction of the water temperature
in lakes can provide crucial information to policy-
makers and assist in their timely intervention.
Recently, machine learning (ML) models have
shown a great promise for predicting lake tempera-
ture using meteorological drivers (weather, tempera-
ture, rainfall) [4, 5]. However, lake temperature pre-
diction using data-driven/ML methods is challenging
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Figure 1: Demonstration of the importance of static fea-
tures in learning a target lake temperature (green points).
Red line shows network output trained solely using time-
series data, and the Blue line shows network output trained
using both static and time-series data.

because the relationship between input (meteorological
drivers) and target (water temperature response) is gov-
erned by inherent characteristics of different lakes. For
example, the same amount of solar radiation can have
different warming effects for lakes with different hyp-
sography (e.g., depth and surface area) and other water
properties (e.g., clarity and wind exposure). See Figure
1 for a demonstration of the importance of static fea-
tures in predicting lake temperature. Additional com-
plexity arises given that some of these system charac-
teristics are unknown or difficult to measure. One in-
tuitive approach for handling the data heterogeneity is
to build individual models separately for each system
[4]. However, there are hundreds of thousands of wa-
ter bodies, making it costly to collect a large number of
training samples for every system that will be needed to
train high-quality individual models for capturing com-
plex processes.

Our approach in this paper is to build a global
ML model for a large number of lakes. To capture the
data heterogeneity, the ML model needs to incorporate
both lake characteristics (which are often assumed to
be static over time) and dynamic time-series of mete-
orological drivers [6]. As static and time-series vari-
ables often make complementary contributions to pre-
dicting water temperature, the ML model needs to effec-
tively incorporate both types of variables to maximize
its prediction power. Recurrent neural networks (RNN)
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provide a powerful approach to model time-series data
by exploiting temporal information. In fact, LSTMs
are now extensively used for environmental modeling
[7], where both static and time-series variables are sup-
plied as input (here static variables are repeated at each
time step). However, original RNN models were not
designed to exploit static data. Recently, researchers
have explored two approaches. First approach uses
two separate neural networks to learn representations
of time-series data (e.g., LSTM) and static characteris-
tics (e.g., CNN) and then concatenate them at the final
layer [8, 9]. Second approach learns a representation
of the static characteristics using a feed forward neural
network (FFN) and then feeds this learned representa-
tion at each time-step along with time-series data into
an LSTM [10, 11]. Since all these models employ a
feed-forward neural network, they cannot be used when
static characteristics are not present, which is common
for many lakes in the U.S. This motivates us to ask the
question: Can we develop a novel neural network archi-
tecture that can accurately capture data heterogeneity
through a forward modeling process, and further recover
static features when they are missing through an inverse
modeling process ?

Inverse modeling [12] appears in many fields of engi-
neering when the goal is to recover “hidden” character-
istics of a system from “observed” data. In general, the
forward problem, i.e., generating observations/outputs
from parameters, is well-defined; while the inverse prob-
lem is generally ill-posed, i.e., one may not be able to
uniquely recover the input field given noisy and incom-
plete observations. In recent years, deep learning tech-
niques have shown remarkable success for solving in-
verse problems in various fields such as medical imag-
ing [13], and many more. However, most methods
train separate models to model forward and inverse pro-
cesses. Recently flow-based invertible neural network
models [14, 15] have been used to solve inverse problems
that are mathematically invertible by architectural de-
sign, which allows them to model forward and inverse
processes within a single network. Consequently, mod-
els can be trained on a forward process and provide the
inverse for free by running them backward.

This paper aims to build a global predictive model
with both forward and inverse modeling processes.
The forward modeling process aims to predict water
temperature from climate drivers while also capturing
the data heterogeneity. The inverse modeling process
adapts the model to unmonitored lakes where static
variables are missing. Specifically, we integrate static
and time-series data in deep recurrent models, which
we call Invertibility-Aware Long-Short Term Memory
(TA-LSTM). To the best of our knowledge, this paper is
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the first to present an integration method that can solve
both forward and inverse problem. The model consists
of two components, namely an invertible network and
an LSTM network, and both components are trained
together in an end-to-end fashion. In particular, the
invertible network is constructed using the concepts of
real NVP [14] that consists of several affine coupling lay-
ers. We evaluated our proposed method on Midwestern
U.S. lakes for which data are available from the U.S. Ge-
ological Survey (USGS) [16] and show that (1) our pro-
posed method improves the prediction performance by
4% over the state of the art model when both static and
time-series data is present (forward model) and (2) it
can effectively infer static variables when they are miss-
ing, and the prediction using inferred variables bring
12% improvement in predicting temperature profile.

2 Literature Review

Integrating Static and Time-series Data : Re-
current Neural Network (RNN) and its variations are
among the most extensively researched deep neural net-
works for handling sequential temporal data. While pre-
dicting future events, the majority of the RNN-based
models merely utilize dynamic data. Only a few stud-
ies use both static and dynamic data for prediction
by leveraging a separate algorithm, such as the feed-
forward (FFN) or convolutional network [9]. These
models concatenate the learned representation of static
and time-series data either at the latter layers [8, 9] or
feed them together into RNN at each time step [10, 11].
For example, [10] presents a deep-learning approach
that takes static information (i.e., demographics, family
history, blood group) into a FFN and dynamic informa-
tion (patients’ visits at different times) into an RNN to
predict future clinical events. In a parallel study, but in
musical research, authors[8] developed a neural network
architecture by combining FFN and LSTM to gener-
ate drum sequences. In this design, dynamic data from
three bands of the drum was fed into an LSTM layer and
FFN was used to model bass information (static data).
The outputs of both layers were fused to predict the
final sequence. Likewise, [11] propose a multi-modal fu-
sion technique that exploits the correlation of static and
dynamic time-series data through cross-modal imputa-
tion in an integrated recurrent model for oncology early
warning systems. Recently [17] combines both static
and dynamic data for human design decision prediction
by integrating FFN and RNN. All the above models ad-
dress forward modeling. Still, because of their design,
none of them are meant to infer the static variables (i.e.,
inverse modeling) that could be used to enhance predic-
tion when static variables are missing.
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Inverse Problems and Invertible Neural Net-
work: Inverse problems always exist together with
their forward problem. The goal of the inverse problem
is to recover "hidden” information (which we cannot
observe directly or is very expensive to observe) from
readily available ”observed” data. The inverse prob-
lem is generally ill-posed, i.e., multiple input values
exist for the same observations [18]. Commonly used
methods for inverse modeling [19] are computationally
expensive and often produce inconsistent results. Re-
cently, deep learning techniques [12] have successfully
solved inverse problems; however, most methods train
separate models for learning inverse processes. Train-
ing a separate inverse model ignores the connection to
its forward problem, losing the potential to exploit the
shared knowledge between them. Furthermore, direct
optimization of those problems requires two dedicated
models to be trained separately, increasing the compu-
tational requirements. To avoid training two separate
models Jayaram et al [20] construct a forward model,
numerically invert, and optimize it to find the most
likely input to generate that output. Lately, a new class
of neural networks, called Invertible Neural Networks
(INNs), have been introduced by [14, 15] based on the
ideas of normalizing flow. INNs are bijective functions
which can be trained on a forward process .# : R4 — R¢
and we get inverse mapping .Z ! : R? — R? for free
by running them backwards. Their bijective architec-
ture allows direct log-likelihood training, which makes
it a popular choice for solving many inverse problems
like superresolution [21]. INNs have three distinctive
properties[22]: (i) it models forward/inverse mapping
within a single network (shared parameters), (ii) invert-
ible architecture allows free inverse mapping, and (iii)
addressing the ill-posed problems via addition of latent
variables to have a one-to-one mapping between input
and output. In this work, we integrate components of
INN in our LSTM model, which incorporates both static
and time-series features to address heterogeneity and in-
fer the static variables (i.e., inverse modeling) that can
eventually enhance the prediction when static variables
are missing/not available.

3 Problem Formulation & Preliminaries

We illustrate our approach for the problem of modeling
the temperature of water in a lake at depth d and time
t. Mathematically, we assume a dataset of n samples (n
is the number of lakes in our case) {s;, X;,Y;}? ;. For
each sample, daily climate drivers are represented by X;
as a multivariate input time series for 7" timestamp i.e.
X, = [z}, 2?,...,xT] where z! € RP= indicates input
vector at time ¢t € T with D, dimension. s; € RPs
denotes the static characteristic vector of the lake with

D, dimensions. Y; = [y}, y2,...,yT], where y? € RP¢
denotes the daily temperature observations at multiple
depths corresponding to (X, s;).

Forward Modeling Here the goal is to accurately
model heterogeneity by integrating the daily climate
drivers (X;) with the static characteristics (s;) of a
lake to learn a forward operator ¢ that predicts the
temperature of water in a lake at depth d and time t i.e
4:X,8s—>Y.

Inverse Modeling The inverse problem aims to
recover the static characteristics/variables (s;) for a lake
given a few samples of temperature observations (Y;)
and input climate drivers (X;) of a lake. With a known
forward operator ¢4, the generic solution of the inverse
problem can be written as:

st = msinﬁ(%(X, $),Y)+ \%Z(s) (3.1)
where £(.) is a distance metric, % is the regularizer
with A as the regularization parameter. These static
variables have utility to enhance the prediction of Y;
when static variables are missing.

4 Method

4.1 The architecture of TA-LSTM Our proposed
[A-LSTM is built upon LSTM and Invertible Neural
Networks (INNs). We first describe these two compo-
nents and then combine them to build the TA-LSTM
model.

LSTM is a type of recurrent neural network de-
signed to avoid exploding and vanishing gradient prob-
lems. Therefore it is particularly suited for tasks where
long range temporal dependencies between events exist
such as ours. Each LSTM cell has a cell state ¢!, and
the following three gates: Forget gate f, output gate
o' and input gate 3 which serves as a memory and al-
lows preserving information from the past. The value
of each gate is computed as follows, where W, ;; o are
learnable weight matrices and by, f ; o] are learnable bias
vectors.

¢ =o(W.[n 2!+ b,)
Fr=o(Wsh' ' 2! + b))
it = o(Wi. k't 2] 4 b;)

ol = J(WO.[ht_l, :Bt] + b,)

(4.2)

The forget gate f' is used to filter the information
inherited from ¢'~! and the input gate i’ is used to
filter the candidate cell state €'. Then we compute the

new cell state and the hidden information as follows:
d=flocliitge

. ft . (4.3)

h' = o' ® tanh(c")
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Figure 2: In Static-repeat IA-LSTM, the output of INN is concatenated with the input time series of LSTM
at every time step, whereas in Static-last TA-LSTM the output of INN is concatenated with the output layer of

LSTM (best seen in color).

where ® denotes the element-wise product. According
to the above equations, we can observe that the compu-
tation of h' combines the information at current time
step ! and previous time step h' "' and ¢!, and thus
encodes the temporal patterns learned from data.

Invertible Neural Network (INNs) are bijective
functions with a forward mapping .# : R¢ — R? and an
inverse mapping .# ~! : R? — R?. This inverse mapping
can be computed in closed-form [23, 14, 15]. To create
a fully invertible neural network, we follow real non-
volume preserving architecture proposed by [14]. The
basic unit of this network is a reversible bijective net-
work consisting of two complementary affine coupling
layers. In the forward process, the input is split into
two parts . Hereby (equation 4.4), the input vector w is
split into two halves w; and wus, which are transformed
by an affine function with coefficients exp(s;) and ¢;
(i € 1,2), using element-wise multiplication (®) and
addition. s;(-) and ¢;(-) are scale and translation func-
tions, respectively, which are modeled by neural net-
works trained in the forward pass.

vy = u; ® exp(s2(uz)) + ta(uz)

4.4
v2 = U ® exp(s1(v1)) + t1(v1) &)
Given the output v = [vy,vs], the above expres-
sions are easily invertible as follows:
Uz = (v2 — t1(v1)) @ exp(—s1(v
2 = (v2 — t1(v1)) ® exp(—s1(v1)) (4.5)

uy = (v1 — t2(u2)) ® exp(—s2(u2))

Importantly, the mappings s; and ¢; can be arbitrar-
ily complicated functions and need not themselves be in-
vertible. In our implementation, we implement bijectiv-
ity by a succession of several fully connected layers with
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leaky ReLU activations. A deep INN is composed of a
sequence of these reversible blocks. We also insert per-
mutation layers between reversible blocks, which shuffle
the elements of the subsequent layers’s input in a ran-
domized but fixed way. This causes the splits [uy, us)
to vary between layers and enhances interaction among
the individual variables. One advantage of INNs is that
can we get the inverse .# ~! for free once we train them
on the well-understood forward process .%. This offers
a unique opportunity for building a unified model that
integrates both the forward and inverse modeling pro-
cesses.

Invertibility-Aware-LSTM (IA-LSTM) is an
integrated RNN-based model for modeling the lake
temperature (y!) using static characteristics (s;) and

historic climate drivers (Xi[tﬂm])7 where w is the value
of the historic window used. We use INN for modeling
static information and LSTM for modeling time series
data.

In particular, we wish to use INN to extract the
information from static variables s that accounts for
the data heterogeneity across multiple lakes and embed
such information into a hidden representation p. It is
noteworthy that the representation p is intrinsically in
a lower dimension compared to s due to the irrelevant
and redundant information in static variables. This
poses a challenge for training INN because it needs
equivalent information between input and output so as
to learn both the forward and inverse processes. To
counteract the inherent information loss of the forward
process [22], we introduce Gaussian latent variables z
to augment the hidden representation p, and use INN
to learn a mapping s — g, where the representation g
is comprised of two parts ¢ = [p, z]. The training of the
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forward process optimizes the mapping % ( ) = [p, Z]
and implicitly determines the inverse s = Yp, 2]).

To combine both models (INN and LSTM), we use
two different approaches. In our first approach (Figure
2 — red line), the static information is first processed
by INN and then concatenated with input time series
at every time step. We call this approach as Static-
repeat TA-LSTM. Our second approach (Figure 2 — blue
line) also employs INN to process static information and
then concatenates the INN output with the output layer
of LSTM (i.e., the hidden representation) before using
them for prediction. We denote the second approach
as Static-last IA-LSTM. A fully-connected (FC) layer is
used to map these features to lake temperature.

We train our method with two loss functions: one
for predicting true outcome £, and the other to en-
courage z to follow Gaussian distribution £,. Depend-
ing on the problem, £, can be any supervised loss. In
our case, we train our model with mean square loss.
We implement £, using Maximum Mean Discrepancy
(MMD) loss [22] with the Inverse Multiquadratic kernel
k(x,2) = W , where ¢ > 0 and only requires
samples from the distributions to be compared. MMD
enforces that p and z are independent upon convergence
(i.e. p(z|p) = p(z)) and does not encode the same
information twice. Since the magnitude of the MMD
depends upon the kernel choice, the relative weight of
the losses £, and L, are adjusted as hyperparameteres
such that their effect is approximately equal. To in-
crease model capacity [22], we also pad the input and
output of the network with an equal number of zeros.
Specifically, given the dimension of the static variables
is small and the learning task for transformation is com-
plex, we find it beneficial to pad zeros. This does not
change the intrinsic dimensions of static variables and
their representation but enables the TA-LSTM interior
layers to embed the data into a larger representation
space.

4.2 Inverse modeling with TA-LSTM Once TA-
LSTM is trained, it can be easily applied to forward
modeling (i.e., given static features and time-series cli-
mate drivers, it can predict lake temperatures). How-
ever, it is difficult to find accurate solutions for equation
3.1 because this is usually a non-convex problem due to
the non-convexity of 4(X, s). Existing solutions of in-
verse problems are often addressed using the Bayesian
formulation:

p(Y]X, s)p(s|X)

sl X) o PO,

(4.6)

There are two challenges associated with this ap-
proach. First, the likelihood is computationally expen-
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sive since the inference of the static variables requires
multiple forward model evaluations. Second, if the di-
mension of the quantity of interest is high, then obtain-
ing posterior samples is not a trivial task. In this present
work, we aim to bypass Bayes’ rule and directly build
an inverse surrogate model for the posterior distribution
p(8]Y, X) using a finite set of forward evaluation of the
time-series, static variables and corresponding temper-
ature from various lakes.

Algorithm 1 Algorithm for inferring s € RP, given
9 = [9rsTm,9inn] and pairs of (X,Y)

1: procedure INFER(s)

2 Initialize q

3 while NOT converged do

4 L+ ||Q£$7—M(X, q) — Y|| > Calculate error
5: q" — q* —avVgqL —|z|| > Gradient Descent
6

7

8

9

> Infer s* € RPs

end while
= Gznn(g¥) > Run INN backward
return s*
: end procedure

We construct the inverse surrogate as follows: In
the first step, an efficient TA-LSTM model ¢ is built
for the forward process. We denote the LSTM part of
the model as 41,57y and the INN part of the model as
“;nn. To obtain static characteristics, we need some
observation pairs of (X,Y). In the second stage, we
fix 95Ty and we calculate ¢ = [p, z] via gradient
descent by taking the gradient of ¥, g7as with respect to
q. This is detailed in Algorithm 1. As with any other
inverse problem, the same pair of (X,Y) can map to
several g* representations, particularly if the model is
trained on limited data points. To reduce variance in the
final result, we use prior knowledge of z. Our Forward
model ¥, 57 is trained to predict Y from [p, 2], where
the distribution of z is chosen as Gaussian. We utilize
this information to add regularization term to the cost
function, penalizing samples that have statistics that are
not consistent with z ~ A(0,1). Lastly, after recovering
q*, we use invertible property of INN and run ¥;yy in
reverse mode according to equation 4.5 and recover the
estimated values of the static variables s. These static
variables can then be used to model heterogeneity along
with climate drivers X.

5 Experiments and Results

5.1 Dataset Description In this study, we used
data from 450 lakes located in the Midwestern U.S.,
where in-situ temperature data was collected for each
lake between 1980 and 2019. The dataset is available
through a data release on the U.S. Geological Survey’s
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ScienceBase platform [5, 16]. All the lakes differed in
depth, size, and location. The temperature measure-
ments are highly variable for different depths in the
lake. Lake temperature dynamics is complex, with
lakes in this region freezing in winter and thawing in
the spring, with many - but not all - lakes developing
density-based stratification during the warmer seasons
with warmer waters overlying colder deeper waters. The
seasonal variation in water temperature can range from
0 in the winter to nearly 35 degrees C in the summer.
As such, temperature measurements vary across depth
and through time, making the prediction problem even
harder.

Static features for lakes consist of water clarity
(light attenuation coefficient), shoreline development
factor (SDF), latitude, longitude, maximum depth,
log transformed surface area, mean temperature, and
percent of the time a General Lake Model simulation
stratified for a given lake. In total we have 8 static
features used in this study. Further explanation of these
variables can be found in the corresponding data release
[16]. The static features remain constant over time
and depth. A lake’s dynamic time-series consists of air
temperature, shortwave radiation, longwave radiation,
relative humidity, wind speed, rain, and snow. All-time-
series data are inferred from meteorological datasets and
thus remain constant across depth but changes across
time t.

Out of 450 lake, 200 were used to build the model,
and the rest are considered “artificially unmonitored”,
where data is only used for final evaluation. For 200
lakes, we partitioned the data into three contiguous
time windows for training (70%), validation(10%), and
testing(20%). We used earlier years for training and
later years for testing. In total, we have 428,656
samples. We pool the training, validation, and test
subsets of each lake to create a comprehensive set.
Finally, we choose the model maximizing the accuracy
of the broad validation set.

5.2 Learning Models In this section, we provide a
brief discussion of the models used in our evaluation.
For the models that combined static and dynamic
features, we use them in two variants, i.e. Static-
repeat [SR]: static variables or their representations are
concatenated with climate drivers before they are fed
into LSTM at every time step and Static-last [SL]: static
variables or their representations are concatenated with
hidden representation extracted by LSTM. We trained
and tested the following model configurations:
LSTM[24]: LSTM model was trained using only
the dynamic time-series input features and ignore the
static variables. It has 64 memory units followed by
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In-Distribution Out-Distribution
Per Sample | Mean Per Sample ‘ Mean
LSTM 3.64+0.15 [ 342+0.18 | 4.03£0.22 | 3.92+0.23
SL. CT-LSTM 2.561£0.16 | 2.30+£0.21 | 2.97+0.21 | 2.73+£0.28
SL. FFN-LSTM | 2.484+0.19 | 2.24+0.12 | 2.83+£0.22 | 2.66+0.23
SL. TA-LSTM 2.454+0.08 | 2.21£0.19 | 2.81£0.22 | 2.59+£0.21
SR. CT-LSTM 2.42+£0.12 | 225+£0.14 | 2494+0.20 | 2.34+£0.13
SR. FFN-LSTM | 1.854+0.09 | 1.65+0.06 | 2.48+0.18 | 2.32+£0.15
SR. TA-LSTM | 1.78 £0.09 | 1.59+0.04 | 2.42+0.12 | 2.28 £0.11
Table 1: Test root mean square error (RMSE; in °C)

when static features are provided for the various methods
compared here. Per sample is the average RMSE for
individual observation over multiple dates, multiple depths,
and lakes. Mean is the mean of per-lake RMSE values of
multiple lakes. In-distribution samples come from training
lakes (years of test samples are different) and out-distribution
samples are from lakes not in the training set.

a dense layer. The LSTMs were run in sequence-to-
sequence mode and use the same configuration of LSTM
in all the below models. CT-LSTM|[25]: LSTM model
trained using both the dynamic time-series input fea-
tures and static variables. We refer to this model as
concatenating LSTM. The system characteristics do not
undergo any transformation and simply concatenated
using static repeat and static last configurations. FFN-
LSTMI9]: A feed-forward network (FFN) is used to
learn the representation of static variables, and a LSTM
model is used to model time-series input data. FFN
has four dense layers with eight hidden units each.
Both models are combined using static repeat and static
last arrangements and trained together in an end-to-
end manner. IA-LSTM: An Invertible Neural Net-
work (INN) is used to learn the representation of static
variables, and a LSTM model is used to model time-
series input data. In our INN implementation, we in-
corporated three coupling layers with sixty-four hidden
units each. Also, we pad eight zeros to eight static fea-
tures, in total sixteen input features to embed the data.
Consequently, we were able to increase model capacity
without changing the intrinsic dimension of static fea-
tures. Additionally, to counteract the information loss
in the bidirectional process, we incorporated a two di-
mensional Gaussian latent variable z.

We trained all models using mean square error for
a maximum of 300 epochs using Adam optimizers. We
terminated training if the validation loss did not reduce
for 20 continuous epochs. The train, validation, and
test set are kept consistent for all models to remove
bias between different model runs.

5.3 Results

5.3.1 Forward Modeling
Table 1 reports the root mean square error (RMSE)
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for each model when static variables are provided. We
train all our models with 5 different random seeds to
account for uncertainty in network initialization and re-
port mean prediction along with variance. We refer In-
distribution to the test samples which comes from the
200 lakes used in training (years of test samples are dif-
ferent than used in training) and refer out-distribution
to the test samples from the lakes that were not seen
during training (the remaining 250 lakes). The lake
sizes vary, and subsequently, there are a different num-
ber of observations for each lake. Therefore, we report
two metrics, the average RMSE for individual obser-
vation over multiple dates, multiple depths, and lakes
(referred to as Per sample) and the mean of per-lake
RMSE values of multiple lakes (referred to as Mean).
We highlight best-performing methods for each column
and make the following high level observations from
our results: a) All trained models that combined static
and dynamic time-series data had superior performance
compared to LSTM, which was trained using only time-
series data. This confirms the value of static features
for handling heterogeneity and improving the predic-
tion. b) All the models performed much better for in-
distribution samples compared to out-distribution sam-
ples. This reinforces our earlier observation that data is
highly heterogeneous, and it can be challenging to build
a geoscientific global model for all lakes [26]. ¢) Models
that concatenated the learned representation of static
characteristics at the input layer performed better than
the models where concatenation is done at the LSTM
output layer. For example, IA-LSTM and FFN-LSTM
performance improved by roughly 26% when the static
variable representation was concatenated with the cli-
mate drivers before they are fed at every time step (i.e.,
SR vs SL, respectively). Our results differ from existing
literature [9, 11|, where authors report better perfor-
mance using the SL approach.

More importantly, we observe that for static repeat
(SR) and in-distribution data, both FFN-LSTM and
IA-LSTM outperform CT-LSTM by a margin of 23%
and 25%, respectively. This implies that static features
transformation produces meaningful combinations of
static features (e.g., the combination of lake surface area
and lake depth indicating the volume of water) that
can better capture the heterogeneity of different lakes.
In particular, IA-LSTM outperformed plain LSTM by
roughly 100%. Figure 3a show a scatter plot between
the RMSE values of LSTM and IA-LSTM for individual
lakes. We observe that most of the value lies in the
left region of the diagonal line, suggesting that IA-
LSTM did excellent on most of the lakes compared to
LSTM. We also note that the difference of the RMSE is
enormous in some of the lakes, for e.g. if we observe the
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Figure 3: (a) Comparison of root mean square error
(RMSE) on each test lake from Long Short-Term Memory
(LSTM; y-axis) and Invertibility-Aware-Long Short-Term
Memory (IA-LSTM; x axis) predictions, (b) Comparison of
RMSE on each test lake from concatenating LSTM (CT-
LSTM; y-axis) and TA-LSTM (x axis) predictions.

top left region of the scatter plot, LSTM RMSE is 10,
while IA-LSTM RMSE is 2. Likewise, Figure 3b shows a
scatter plot between the RMSE values of SR CT LSTM
and SRIA-LSTM. As with LSTM, we observe that most
of the values lie on the diagonal’s left, although not as
far as they were for LSTM.

We also note that IA-LSTM outperformed FFN-
LSTM with a smaller margin of 4%. Furthermore,
we note that ours is the first attempt to show that
transformation of static features can better capture
heterogeneity of different lakes.

5.3.2 Inverse Modeling

This section studies how to carry forward the gain
made by incorporating predicted static features for lakes
where some or all of these features are missing.

We note that we need some observations (X,Y)
for inverse modeling to determine the correct static
features. To artificially create a case for "unmonitored”
lakes, we hide static features and partition the data into
two contiguous time windows for inference (10%) and
testing (90%) (no temporal auto-correlation). We use
observations from the inference period to recover static
features and subsequently evaluate the performance of
these values in the testing period. We fix the weights
of the best-performing model from forward modeling
and use gradient descent to recover the static input
values for each lake. For CT-LSTM and FFN-LSTM,
we recover the static variables directly. However, for
TA-LSTM, we recover the LSTM input space according
to lines 3-6 in Algorithm 1. After recovery, we run
INN backward and get static variables instead of using
gradient-based techniques. Figure 4 shows the scatter
plot between the true values (x-axis) and reconstructed
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Methods Per Sample Mean
LSTM 3.894+0.22 | 3.80+0.22
SR. CT-LSTM 3.174+0.38 | 3.03+0.39

SR. FFN-LSTM | 4.25£0.63 | 4.16 £0.65
SR. TA-LSTM | 2.80 £0.40 | 2.76 £0.41

Table 2: Test root mean square error (RMSE; in °C') when
static features are missing for the various methods compared
here. Per sample is the average RMSE for individual
observation over multiple dates, multiple depths, and lakes.
Mean is the mean of per-lake RMSE values of multiple lakes.

values (y-axis) for two static features, namely the light
attenuation coefficient (a measure of water clarity) and
maximum lake depth. For both features, the points
on the scatter plot lie reasonably close to the diagonal,
showing the closeness of the reconstructed values to the
actual values. For lake depth, this accuracy of these
reconstructed features is similar to alternative models
where the primary objective was to predict maximum
lake depth [27].

Next, we compare the performance of the models
on test samples in the absence of static features. We
note that gradient descent procedure is highly depen-
dent on the prior (lines 2 in Algorithm 1). To account
for stochasticity in the initialization, we ran the ex-
periment 10 times with different seed values and se-
lected the best run. We repeated the overall process
five times for a total of 50 runs. Due to limitations in
GPU resources, this experiment used 100 unmonitored
lakes, and we reported mean RMSE in Table 2 for each
model when static features were not available. We note
that the LSTM method in Table 2 denote the perfor-
mance without any static inference (just using (X) and
is put for comparison purposes. We observe that when
static characteristics are missing, [A-LSTM achieved
lower RMSEs compared to the other approaches. FFN-
LSTM, whose performance was second-best in forward
modeling, fails badly, and CT-LSTM performs better
than FFN-LSTM. We attribute this breakdown to the
presence of an additional neural network in FFN-LSTM,
i.e., linkage of two networks and the difficulty of gradi-
ent descent in optimizing inputs for deep networks as
studied by Jayaram et al. [20]. We connect the success
of IA-LSTM to an invertible neural network that learns
accurate forward modeling of static characteristics and
enables it to recover static variables using invertible ar-
chitectures that provide the inverse mapping for free.

6 Discussion and Conclusion

In this study, we propose IA-LSTM, a unified for-
ward/inverse framework to predict water temperature
in lakes. This framework integrates static features of
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Figure 4: Features reconstructed from the Invertibility-
Aware-Long Short-Term Memory inverse modeling approach
(y-axis) vs true feature values (x-axis) for light attenuation
coefficient (a, in m ') and maximum lake depth (b, in m)
for the 100 unmonitored lakes.

lake properties with the time series weather input for
effectively capturing the heterogeneity across different
lakes. Our method differs from prior work in combining
static and time series data in that IA-LSTM can be em-
ployed for both forward and backward processes. This
enables IA-LSTM to be used in many lake systems for
which we do not have their measured static variables.
To the best of our knowledge, this is the first attempt to
develop a unified model with the aim to recover static
features in situations where they are missing. Although
we have shown improvements for lake temperature mod-
eling, the method is general and can be applied to many
machine learning tasks. In a clinical setting, it has been
shown [11, 9] that integrating static characteristics (like
patient demographics) greatly helps in the early detec-
tion of disease. Our approach can be used in these ap-
plications when static information is not available and
thus serve as an alternative to approaches discussed in
[10, 28], where the authors have devised methods to
bring static details from other sources.

In some scientific applications, static features may
be partially missing and the available static features
could be different for different systems. Our method
can be further extended to leverage the available static
features from each system to improve the inference of
missing features. Future work will also explore the
development of invertible bijective functions for time-
series data to avoid expensive gradient steps.
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