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Abstract

Explainable visual question answering (VQA) models

have been developed with neural modules and query-based

knowledge incorporation to answer knowledge-requiring

questions. Yet, most reasoning methods cannot effectively

generate queries or incorporate external knowledge during

the reasoning process, which may lead to suboptimal re-

sults. To bridge this research gap, we present Query and

Attention Augmentation, a general approach that augments

neural module networks to jointly reason about visual and

external knowledge. To take both knowledge sources into

account during reasoning, it parses the input question into a

functional program with queries augmented through a novel

reinforcement learning method, and jointly directs aug-

mented attention to visual and external knowledge based

on intermediate reasoning results. With extensive experi-

ments on multiple VQA datasets, our method demonstrates

significant performance, explainability, and generalizabil-

ity over state-of-the-art models in answering questions re-

quiring different extents of knowledge. Our source code is

available at https://github.com/SuperJohnZhang/QAA.

1. Introduction

Reasoning about knowledge is essential for general in-
telligent behavior [32]. Humans have the innate ability to
acquire and incorporate concepts from multiple knowledge
sources, yet to simulate this mechanism with machine in-
telligence is nontrivial. Visual question answering (VQA)
is a typical task that requires both knowledge acquisition
and knowledge reasoning abilities. A desirable VQA sys-
tem should understand both inputs (i.e., image and question)
and perform cross-modal reasoning by seeking supporting
logic and evidence that lead to a reasonable answer.

Most VQA methods learn to answer questions based on
the statistical correlations between the multi-modal inputs
and the answer [5, 10, 11]. Studies have shown that such
implicit data-driven methods tend to exploit language pri-
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Figure 1. Based on neural module networks and explicit knowl-
edge representation, we develop knowledge-augmented queries
and memory-augmented attention to jointly reason about both the
visual [V] and external [E] knowledge. These query and atten-
tion augmentation methods generalize explainable visual reason-
ing models to better answer knowledge-requiring questions.

ors to achieve high performance, instead of reasoning based
on logic and evidence [33]. To perform multimodal reason-
ing, recent studies have leveraged neural modules networks
(NMNs) [1] that explicitly model the multi-step reasoning
process [15, 17, 43]. They parse the input question into a
functional program and dynamically assemble a network of
explainable neural modules to execute the program. They
not only achieve remarkable performances in VQA but also
provide step-by-step explanations to help understand the
reasoning process behind the predicted answer [17, 33].

NMNs are commonly developed on datasets of syn-
thetic and structured questions, such as CLEVR [19] and
GQA [16], which are limited in generalization. To answer
more general VQA questions while maintaining explain-
ability, several studies have incorporated external knowl-
edge based on explicit scene graph modeling [7, 45] or im-
plicit feature enrichment [22, 26, 42]. They query external
concepts from knowledge bases, integrate the acquired ex-
ternal knowledge with the observed visual knowledge, and
finally conduct the reasoning on the integrated knowledge
space [7, 41, 45]. Such approaches result in a loose integra-
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tion between knowledge and reasoning, which may be sub-
optimal when dealing with complex reasoning problems.
In this work, we propose Query and Attention Augmenta-
tion, an NMN-based explainable visual reasoning method
that answers knowledge-requiring questions by jointly rea-
soning about both visual knowledge (i.e., the visual fea-
tures) and external knowledge (i.e., the semantic embed-
dings of external concepts). Different from previous meth-
ods that incorporate knowledge prior to the reasoning pro-
cess, it tightly couples knowledge incorporation with rea-
soning, which addresses two major research gaps:

First, previous methods generate functional program
based only on the input question, without considering the
visual or external information. As shown in Fig. 1, to an-
swer the question “What can this place in the image be used
for?”, they may generate a program of two functions: 1)
recognizing the place and 2) finding its usage. Two input
tokens (e.g., place and used) can be extracted from the ques-
tion and used as queries to guide the model’s attention and
reasoning. Since they are extracted from the question only,
the queries may be less relevant to the context and result
in a wrong answer (e.g., Parking). In this work, we pro-
pose to augment these question-based queries with visual
and external knowledge, so that they can be more specific
and relevant. For example, as shown in Fig. 1, after the
augmentation, two sets of queries are generated to guide
the reasoning of visual knowledge (e.g., bus and drive) and
external knowledge (e.g., road and transport), respectively.
Compared with the original queries, they guide the attention
of NMNs more directly to find the answer.

Second, previous methods typically acquire and incor-
porate external knowledge as supporting features prior to
reasoning [7, 41, 45]. However, during multi-step visual
reasoning, the reasoning context is dynamically updated
throughout the process, where additional knowledge may
need to be acquired and understood along the way. To
enable this ability, we propose to jointly reason about the
visual and external knowledge and use a novel memory-
augmented attention method to integrate their intermediate
results for reasoning, so the knowledge is integrated during
the reasoning process instead of only at the beginning of
it. As shown in Fig. 1, jointly directing attention to impor-
tant visual knowledge (e.g., Bus) and external knowledge
(e.g., Road, Transport) throughout the reasoning process
can help NMNs make better use of both knowledge sources
to find the correct answer (e.g., Transport).

In sum, by addressing these challenges, our proposed
method allows NMNs to accurately direct attention to im-
portant features in both visual and external knowledge and
answer knowledge-requiring questions. The contributions
of this work are summarized as follows:

1. To the best of our knowledge, this work is the first at-
tempt to jointly reason about visual knowledge and external

knowledge based on neural module networks.
2. With reinforcement learning, we generate knowledge-

augmented queries to incorporate visual and external
knowledge into the functional program.

3. By sharing intermediate results between the two
knowledge sources with memory-augmented attention, we
enable external knowledge incorporation throughout the
reasoning process.

4. Our extensive experiments on multiple VQA datasets
demonstrate the effectiveness, generalizability, and explain-
ability of the proposed method.

2. Background: neural module networks

In general, NMNs perform explainable visual reasoning
in two steps: they generate a program from the input ques-
tion by composing a sequence of predefined functions and
execute the program by implementing each function using
small neural networks (i.e., neural modules). They are typ-
ically designed with the following components:
Knowledge representation. Preprocessing the visual and
semantic inputs into high-level knowledge representation
allows visual reasoning models to focus on learning to rea-
son about knowledge rather than the direct correlation be-
tween the input features and answers. NMNs typically
encode the visual input into pixel-based [14, 15], region-
based [7,34], or graph-based [17,33] features. In this work,
we extract the high-level semantics and relationships from
the visual input and external knowledge bases, and explic-
itly organize such knowledge as structured representations
(i.e., scene graphs and knowledge graphs). We generate
scene graphs with VC-Tree [36] to represent objects and
their relationships. The external knowledge graph is con-
structed from the ConceptNet [23], Visual Genome [21] and
WordNet [9] following the KI-Net method [45].
Program generation. Learning to map the free-form natu-
ral language input into the structured functional program is
a challenging task, due to the variability of real-world ques-
tions and the absence of explicit program supervision. Most
NMNs design a program generator following the encoder-
decoder architecture, to convert a sequence of word embed-
dings into a sequence of parameterized functions. For ex-
ample, the StackNMN [14] uses a bidirectional LSTM [12]
to predict specific modules and their textual parameters, and
NSM [17] generates more general queries. These simplified
approaches may work well when the question has a regular
grammatical structure and it only considers the in-domain
knowledge from the training data. For free-from questions
involving out-of-domain knowledge, the conventional end-
to-end data-driven approach may not correctly understand
the question, which leads to the degradation in the visual
reasoning performance. To address this challenge, instead
of relying on the question itself, we generate knowledge-
augmented queries by taking the visual and external knowl-
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Figure 2. The overview of our method. First, it represents the visual input as a scene graph and the external information as a knowledge
graph. Second, a program generator parses the question to predict the functional program and its corresponding queries q. Next, two rein-
forcement learning agents augment q with the visual and external knowledge, resulting in the augmented queries q̂v and q̂e, respectively.
Further, they are used as parameters for the program executor to allocate attention (i.e., ↵v and ↵e). Based on the memorized intermediate
results Mv and Me, it computes the augmented attention vectors ↵̂v

t and ↵̂e
t , which jointly consider both knowledge sources to better

allocate attention. Finally, it predicts the answer based on the attended features.

edge into account (see Sec. 3.1).
Program execution. NMNs dynamically assemble the neu-
ral modules into a complete network, to execute the gener-
ated program and output an answer to the input question.
These modules play different roles during the program ex-
ecution: querying the relevant knowledge by allocating or
re-allocating attention to the input features (e.g., attend, re-

late), recognizing the attended features (e.g., describe), or
performing numeric (e.g., exist, count, compare) or logical
(e.g., and, or, not) operations, etc. Though previous studies
have explored the incorporation of external knowledge in
VQA tasks, they typically encode knowledge as supporting
features to enrich the visual features before the reasoning
process [7, 41, 45]. Different from existing NMNs that do
not explicitly query external knowledge during the program
execution, we enable NMNs to concurrently query, memo-
rize, and share information across both knowledge sources
with memory-augmented attention (see Sec. 3.2).

3. Methodology

The goal of this work is to develop an explainable NMN
method that answers questions based on the supporting ev-
idence acquired from visual and external knowledge. The
key differentiating factor of our method is its ability to in-
teract with the two knowledge sources during the generation
and execution of the program. The novelty lies in two ma-
jor components: 1. it augments the generated queries with
knowledge from the visual input and the external knowl-
edge base and 2. jointly allocates attention to both the visual
and external knowledge and augments the attention based
on information sharing supported by memorized intermedi-
ate results. Fig. 2 summarizes how this is achieved. In this
section, we describe the main components of our method:
knowledge-based query augmentation and memory-based
attention augmentation. For further details, please refer to
the Supplementary Materials.

3.1. Knowledge-based query augmentation

NMN-based methods typically adopt an encoder-
decoder network to generate a sequence of reasoning func-
tions and their corresponding queries (i.e., parameters) from
the input question. Based on the queries generated by an
existing method (e.g., NSM [17]), we propose a reinforce-
ment learning method that generates knowledge-augmented
queries for each knowledge source (i.e., visual or exter-
nal knowledge). Specifically, at each reasoning step, we
learn query augmentation agents to select the most plau-
sible queries from a vocabulary of relevant semantic con-
cepts. Different from conventional query expansion meth-
ods [13,31,40], we adopt reinforcement learning [27,30] to
learn the agents, which allows us to efficiently choose the
optimal queries from the large amount (⇡100K) of seman-
tic concepts and to optimize the network parameters in the
end-to-end VQA training.
Query vocabularies. NMNs typically select queries from
a vocabulary of semantic concepts and use their seman-
tic embeddings for explainable reasoning. For example,
NSM [17] builds a vocabulary using three categories of se-
mantics in the training dataset: object identities, attributes,
and relationships. In our method, to include out-of-domain
knowledge from external databases (e.g., ConceptNet [23],
Visual Genome [21], WordNet [9]), we select queries from
a sample-specific vocabulary of relevant concepts extracted
from the external knowledge graph.

Specifically, we represent the functional program as a
sequence of T executable neural modules with queries qt
(t = 1, . . . , T ), which is generated by an existing NMN
method [33]. For each step t, we create a vocabulary Ct

with its items semantically relevant to the query qt:

8cit 2 Ct, d(c
i
t, qt)  Ld, (1)

where cit is a semantic concept obtained from the external
knowledge graph, and d(·, ·) measures the graph distance
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(i.e., length of the shortest path) between the input concepts
in the knowledge graph. We represent the vocabulary as
an ordered list sorted by each item’s distance to qt. The
maximal distance Ld controls the size of the vocabulary.
Query augmentation agents. Instead of greedily seeking
the most relevant queries from the vocabularies, we formu-
late the query selection as a decision-making process and
design reinforcement learning agents to optimize the selec-
tion. In particular, we design a visual-knowledge agent and
an external-knowledge agent and reward them for selecting
complementary queries that guide the reasoning about the
visual and external knowledge, respectively.

Specifically, our goal is to find the optimal queries q̂ =
[q̂1, . . . , q̂T ] that are relevant to not only the question but
also the visual and external knowledge. At each step t, each
agent predicts the next query by selecting a query from the
vocabulary, i.e., q̂t+1 2 Ct+1. It observes the current state
st = [q̂1, . . . , q̂t�1] consisting of the predicted queries so
far. The environment Et includes the visual features V , the
vocabulary Ct, the input queries [q1, . . . , qt].

The policy network p⇡ predicts the probability for the
agent to select a query as the next output, p⇡(q̂t|st, Et). As
shown in Fig. 3, following a basic encoder-decoder frame-
work [24], we use a CNN-based encoder to extract visual
features hv and an LSTM-based language encoder to em-
bed the vocabulary Ct into a semantic vector hc

t . The fea-
tures hv and hc

t are concatenated and fed into another LSTM
encoder, while an LSTM-based decoder integrates the en-
coded features u with the input queries q1, . . . , qt to predict
the policy at time t. Based on the policy, the query with the
highest probability is selected as the output q̂t and are fed
back to the decoder in the next step as qt+1.

The value network v✓ approximates a value function vp
that predicts the total reward r from the observed state st,
assuming that the decision making process is following a
policy p. It serves as an evaluation of the state st. As shown
in Fig. 3, it encodes the augmented queries [q̂1, . . . , q̂t] with
a LSTM model, and predicts the total reward r based on the
LSTM output hs, the visual features hv , and the semantic
features hc

t , using a multi-layer perceptron (MLP).
Reward definition. A well-defined reward for the opti-
mization of query augmentation is important. With a goal of
making the augmented queries (i.e., q̂v = [qv1 , . . . , q

v
T and

q̂e = [qe1, . . . , q
e
T ) relevant to the question and their cor-

responding knowledge (i.e., visual knowledge and external
knowledge), we define a specific reward function for each
of the two agents. These functions compute rewards based
on the queries (i.e., q̂v or q̂e), visual features hv , semantic
features hc = [hc

1, . . . h
c
T ], and the ground-truth answer y.

First, we use a pre-trained visual-semantic embedding
model [30] to project these features into a joint embedding
space. Let �(·, ·) indicate the cosine similarity measure and
gqv , gqe, gv , gc, gy indicate the embeddings of q̂v , q̂e, hv ,
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Figure 3. Each query augmentation agent consists of a policy net-
work and a value network. The policy network predicts the aug-
mented queries q̂ from the visual feature hv , the semantic vector
hc, and the base queries q. The value network evaluates the policy
and predicts the total reward r.

hc, y, respectively. We define the reward rv of the visual-
knowledge agent and reward re of the external-knowledge
agent to enforce the generated queries to focus on comple-
mentary yet relevant aspects of the knowledge:

rv = �(gqv, gy) + ⌘v�(gqv, gv), (2)
re = �(gqe, gy) + ⌘e�(gqe, gc), (3)

where ⌘v and ⌘e balance the weights of the corresponding
terms. Higher values of these hyperparameters encourage
the two agents to generate more distinct queries. These
rewards allow the two agents to generate complementary
queries based on different knowledge sources. For each
agent, the policy network and the value network are jointly
optimized to approximate the total reward.
Training. We use deep reinforcement learning with our
proposed reward to learn the policy and value network. Fol-
lowing [30], we train the networks in two steps:

First, following the common practice [28,35,38], we pre-
train the policy network and the value network using super-
vised learning to initialize them with plausible parameters.
We supervise the policy network with the base queries q and
the cross-entropy loss Lp = �

PT
t=1 log p⇡(q̂t|st, Et). We

supervise the value network with corresponding total final
reward r and the mean squared loss Lv = ||v✓(st)� r||2.

After pretraining, we jointly train the policy network and
the value network with reinforcement learning. The train-
ing follows an actor-critic approach [20]. Note that both
agents are trained with different rewards for maximizing
their embedding relevance to the visual (r = rv) and ex-
ternal knowledge (r = re), respectively. With Monte Carlo
tree search (MCTS) [6], the two agents can output aug-
mented queries q̂v , q̂e that will be used to execute the pro-
gram. The augmented queries allow neural modules to con-
currently reason about the visual and external knowledge.

3.2. Memory-based attention augmentation

NMNs adopt attention mechanisms to highlight impor-
tant knowledge for reasoning. Despite that different NMNs
(e.g., NSM [17] and XNM [33]) implement their neural
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Figure 4. The proposed attention augmentation method processes
the visual and external knowledge features Kv and Ke with
the original attention vectors ↵v

t and ↵e
t to predict the memory-

augmented attention vectors ↵̂v
t and ↵̂e

t .

modules in different ways, their intermediate attention out-
puts can be similarly represented as a sequence of normal-
ized weight vectors. We adapt existing NMN methods so
that each module processes two queries and produces two
attention vectors. Each attention vector is guided by the cor-
responding queries and further augmented with memorized
intermediate results, which enables NMNs to accurately at-
tend to both visual knowledge and external knowledge in
the reasoning process.
Independent attention allocation. To jointly reason about
the visual and external knowledge, each neural module is
adapted to process a pair of input queries qt = [qvt , q

e
t ] con-

currently, and computes the corresponding attention vectors
↵t = [↵v

t ,↵
e
t ] to obtain the attended features from the vi-

sual scene graph and the external knowledge graph, denoted
with superscripts v and e, respectively.
Memory update. We apply the attention mechanism to the
features Kv , Ke, and obtain the attended features mv

t =
↵v
tK

v , me
t = ↵e

tK
e for each neural module. As the at-

tended features from each source can serve as a piece of
evidence to support the reasoning of its counterpart (see
Fig. 1), enabling information sharing across the two knowl-
edge sources will potentially improve the model’s reason-
ing performance. Therefore, inspired by Memory Net-
works [39] and related studies [18], we develop two sepa-
rate memories Mt = [Mv

t , Me
t ] to store and retrieve the in-

termediate features. Specifically, to memorize the features
for future queries, we append them to the end of the mem-
ories, and further encode the memories with a linear layer:

Mv
t = tanh(W v

m[Mv
t�1,m

v
t ]), (4)

Me
t = tanh(W e

m[Me
t�1,m

e
t ]), (5)

where W v
m and W e

m are trainable parameters.
Attention augmentation. Given the memories Mt, we
augment the attention vectors with the memorized features:

↵̂v
t = softmax (W vMt), (6)

↵̂e
t = softmax (W eMt), (7)

where ↵̂v
t , ↵̂

e
t are the augmented attention vectors, and W v ,

W e are trainable parameters. By augmenting the atten-
tion with both memories, our method jointly considers both
knowledge sources when allocating attention, to better lo-
calize the relevant features during the reasoning process.

4. Experiments and results

We demonstrate our method with experiments on OK-
VQA [26], FVQA [37], GQA [16] and VQA v2 [3] datasets.
It outperforms the state-of-the-art visual reasoning mod-
els, demonstrating its ability to answer both knowledge-
requiring questions and general questions with explainable
reasoning. Ablation studies display how the two augmen-
tation methods independently and jointly contribute to the
improvements of the reasoning performance. Quantitative
and qualitative results show that the incorporation of exter-
nal knowledge during the program generation and execution
stages significantly improves visual reasoning performance.

4.1. Experimental settings

Datasets. We conduct extensive experiments to evaluate
the proposed method on four different VQA datasets. The
OK-VQA [26] and FVQA [37] are general VQA datasets
specifically designed for questions requiring commonsense
and factual knowledge to answer. In particular, FVQA of-
fers ground-truth factual knowledge that can be used to sup-
port the training and evaluation of knowledge-based VQA
models. The GQA [16] dataset focuses on compositional
reasoning with 1.7M structured questions. The VQA v2 [3]
dataset is a general VQA dataset that contains 1.1M ques-
tions, each annotated with 10 ground-truth answers. With
these complementary datasets, we comprehensively evalu-
ate the effectiveness and generalizability of our method.
Training and evaluation. We train NMNs on the train-
ing set of datasets and evaluate them on the corresponding
validation set. The training of our method consists of three
stages: first, we pretrain a baseline model (e.g., NSM [17] or
XNM [33]) under the conventional VQA setting. Next, we
generate the functional program with the pretrained model
and independently train the two query augmentation agents
by optimizing their total rewards. Finally, we augment the
program queries with these agents, execute the augmented
program with memory-augmented attention, and fine-tune
the entire network. For a fair comparison, we adapt XNM’s
Find module so that its inputs are similar to NSM’s queries.
Since few comparable NMNs perform knowledge-based
reasoning, we focus our evaluation on the comparisons with
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Method OK-VQA FVQA GQA VQA v2

FVQA [37] – 64.65 – –
OutOfBox [29] – 65.80 – –
KVQA [46] 29.03 – – –
KAN [44] – 66.39 – 67.42

XNM [33] 25.61 63.74 62.04 64.72
+ AN [26] 25.98 64.11 62.14 65.54
+ KI-Net [45] 26.47 64.42 62.38 64.78
+ Ours 26.52 65.46 63.07 65.92

NSM [17] 26.79 64.08 63.17 65.77
+ AN [26] 27.14 64.73 63.39 66.83
+ KI-Net [45] 28.45 65.12 63.48 65.93
+ Ours 29.24 68.74 63.82 67.69

Table 1. Quantitative comparison with state-of-the-art models.

the baseline method AN [26] and the state-of-the-art KI-
Net [45]: the former enriches the visual features with the
language embedding of external concepts and the latter ex-
plicitly incorporates knowledge by adding external nodes to
the scene graph. We demonstrate the generalizability of our
method by applying it to two NMN-based reasoning mod-
els: XNM [33] and NSM [17]. For a fair comparison,
all compared models are trained and evaluated under the
same single-model setting, without ensemble or language
pretraining.
Implementation details. In our experiments, each query
is represented as a semantic embedding with dimensional-
ity dp = 300. The dimensionality of visual features hv ,
semantic features hc

t , hidden state of the value network as
well as memories Mv , Me are also set to 300. Based on
ablation studies (see Supplementary Materials), we set the
hyperparameters ⌘v = 0.6, ⌘e = 0.8, and Ld = 3.

4.2. Performance evaluation

We present the quantitative results of our method com-
pared with state-of-the-art knowledge-based visual reason-
ing methods, including non-NMN methods [29, 37, 44, 46]
and different knowledge incorporation approaches [26, 45]
applied to the XNM [33] and NSM [17] models.
Comparison with non-NMN methods. The first panel of
Tab. 1 presents the performance (i.e., answer accuracy in
percentage) of several non-NMN methods [29, 37, 44, 46].
The FVQA [37] generalizes VQA models with feature-
based external knowledge enrichment. OutOfBox [29]
leverages graph convolution networks to encode the high-
level factual semantics and achieves higher performance on
the FVQA dataset. KVQA [46] and KAN [44] leverage
multi-modal attention to better attend to the necessary vi-
sual or factual features. Regardless of their attention mech-
anisms or feature integration methods, they all focus on the
learning of statistical correlations and incorporate external
knowledge in a single feature enrichment step. Differently,

Method OK-VQA FVQA GQA VQA v2

XNM [33] 25.61 63.74 62.04 64.72
+ MA 26.24 64.78 62.27 65.37
+ KQ (V-Only) 26.10 64.33 62.32 65.21
+ KQ (E-Only) 25.87 64.29 62.48 65.07
+ KQ 26.38 65.09 62.74 65.53
+ QE 25.81 65.18 62.89 65.52
+ Ours 26.52 65.46 63.07 65.92

NSM [17] 26.79 64.08 63.17 65.77
+ MA 27.91 64.92 63.28 65.74
+ KQ (V-Only) 28.23 65.47 63.24 65.97
+ KQ (E-Only) 27.86 65.24 63.23 65.89
+ KQ 28.42 66.39 63.31 66.45
+ QE 28.37 65.94 63.04 66.28
+ Ours 29.24 68.74 63.82 67.69

Table 2. Results of different components (i.e., KQ and MA).

our method leverages external knowledge throughout the
entire process of multi-step structured reasoning. It not only
achieves higher performances, but also offers better explain-
ability because of the nature of NMN methods.
Comparison with other knowledge incorporation meth-

ods based on NMNs. In the second and third panels,
Tab. 1 also shows that our method outperforms the com-
pared AN [26] and KI-Net [45] methods on the two base-
line models (i.e., XNM [33] and NSM [17]). Based on
NSM, it achieves the highest accuracy on all datasets, es-
pecially for questions that can only be answered with exter-
nal knowledge (e.g., OK-VQA and FVQA), which suggests
that our method can better query relevant knowledge from
external knowledge and use the external knowledge for rea-
soning. Though questions in GQA and VQA v2 do not re-
quire as much external knowledge, our method still outper-
forms AN [26] and KI-Net [45]. On the GQA dataset, our
improvements over the XNM are more significant, because
the XNM’s baseline performance is limited by its more ex-
plainable but restricted semantic definition of neural mod-
ules. The performance improvements on the GQA dataset
show our effective utilization of external knowledge.
Contributions of query and attention augmentation.
Tab. 2 compares the contributions of knowledge-augmented
queries (KQ) and memory-augmented attention (MA). On
top of each baseline, we independently apply KQ or MA,
and compare their results with the full model. Specifically,
the “+ MA” models use the base queries to allocate attention
in both the scene graph and the knowledge graph, with the
help of MA. Differently, the “+ KQ” models generate two
sets of knowledge-aware queries to independently reason
about each source without MA. The results in Tab. 2 sug-
gest that the KQ and MA can independently contribute to
the VQA performance. They also help NMNs better exploit
external knowledge in visual reasoning with a positive joint
effect. An interesting observation is that MA contributes
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Method VT BCP OMC SR CF GHLC PEL PA ST WC Other

KVQA [46] 27.53 24.17 21.56 35.72 28.20 25.44 25.38 30.97 24.35 42.76 25.76

XNM [33] 26.84 21.86 18.22 33.02 23.93 23.83 20.79 24.81 21.43 42.64 24.39
+ AN [26] 25.41 21.39 20.24 33.52 24.68 23.15 20.59 25.09 22.79 43.58 24.72
+ KI-Net [45] 25.74 21.93 20.72 33.69 24.80 23.61 19.83 25.06 22.54 43.08 24.12
+ Ours 25.31 22.04 19.67 33.45 25.37 25.16 21.42 25.29 23.73 44.89 24.98

NSM [17] 27.12 22.54 19.07 33.22 26.78 23.47 20.54 26.73 21.55 37.92 23.13
+ AN [26] 27.17 22.69 20.06 33.76 27.25 24.36 21.63 28.91 21.98 38.96 24.06
+ KI-Net [45] 27.36 22.98 20.51 34.37 27.94 24.85 22.69 30.74 22.79 40.82 24.78
+ Ours 27.49 24.84 21.78 35.50 28.39 25.87 25.11 31.06 24.51 44.86 25.36

Table 3. Evaluation results of methods with external knowledge on specific question topics in the OK-VQA validation set.

Method OK-VQA

NMN [2] 24.63
NS-VQA [43] 25.79
NSM [17] 27.91
NS-CL [25] 27.42
NSM + KQ (Ours) 29.24

Table 4. Comparison between KQ and state-of-the-art program
generators. MA is applied to all the compared methods.

Dataset Visual Genome ConceptNet WordNet All

OK-VQA 28.73 28.59 28.26 29.24

Table 5. Results of NSM + Ours with different knowledge bases.

significantly to the performance of the XNM model, which
suggests that our MA method can effectively improve the
XNM’s original attention mechanism that may fail to select
important knowledge.
Effectiveness of query augmentation. To demonstrate
the effectiveness of our reinforcement learning approach
for query augmentation, we compare it with a standard
query expansion (“+ QE”) method based on the cosine
similarity of semantic embedding [4]. Tab. 2 shows that
our method outperforms query expansion significantly on
the NSM baselines, especially for less structured questions
(e.g., OK-VQA and VQA v2). For the XNM baselines, the
augmented queries of KQ are less effective in directing the
attention shift of more specific modules. To evaluate the
effectiveness of each agent in KQ, we reason about both
knowledge sources with only one set of queries (i.e., ei-
ther V-Only or E-Only). Comparing the two knowledge
sources, we observe that visual knowledge is more effec-
tive than external knowledge during query augmentation,
and the combination of both further improves the perfor-
mance. It suggests that both agents can augment queries
with complementary knowledge to jointly improve the rea-
soning performance.
Topic-specific results. Tab. 3 presents experimental re-
sults regarding the 11 question topics of the OK-VQA
dataset that requires external knowledge. Compared with

KVQA [46] and state-of-the-art NMN-based methods, our
method demonstrates its advantages on most of the topics. It
significantly improves the performance of XNM and NSM
on topics requiring a broader search through the knowledge
graph, such as Science and Technology (ST), Plants and An-
imal (PA), Weather and Climate (WC). Its performance gain
is less significant on Vehicle and Transportation (VT), Ob-
jects Material and Clothing (OMC), and Sports and Recre-
ation (SR) and People and Everyday Life (PEL) because the
knowledge area of these topics is relatively narrow.
Comparison between KQ and common program gener-

ators. We further evaluate the performance of KQ against
the program generators of several common NMN to vali-
date the necessity of query augmentation with visual and
external knowledge. Since existing generators all generate
a single sequence of queries, we duplicate the sequence and
pass it to the neural modules to reason about both knowl-
edge sources with MA. Tab. 4 compares the performance of
these methods on the OK-VQA dataset. NSM [17] and NS-
VQA [43] leverage LSTM-based models and rely on sig-
nals from answers to weakly supervise the program genera-
tion, while NMN [2] applies Standford Parser [8] to retrieve
and convert sentence dependency to program layouts and
queries. Differently, NS-CL [25] leverages a reinforcement
learning method to train the generator, but still only consid-
ers the question information. Our knowledge-augmented
queries outperform all the compared program generators.
Comparison of knowledge bases. Tab. 5 compares the ef-
fects of different knowledge bases. Our method achieves a
significant performance improvement when combining Vi-
sual Genome, ConceptNet, and WordNet, suggesting the
complementary nature of the three knowledge bases.

4.3. Qualitative results

Fig. 5 further demonstrates our method with qualitative
results on the NSM model [17] and FVQA dataset [37]. It
presents the images, questions, answers, base queries and
augmented queries, and the attended visual/external knowl-
edge (i.e., relation triplets with their attention values above
average). It shows that our method replaces the base queries
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Figure 5. Qualitative results on the FVQA dataset. Each example shows the input image, question, ground-truth (GT) answer and model
predictions, base queries (B-Q) and the queries augmented with visual knowledge (V-Q) and external knowledge (E-Q), followed by the
attended visual and external knowledge. Highlighted knowledge indicates the FVQA supporting fact of the question.

with more specific objects in the visual scenes (e.g., oven vs.

object, furniture vs. thing) and complements with exter-
nal knowledge that helps the neural modules to answer cor-
rectly. For example, in Fig. 5a, both stove and oven are
capable of heating, but only stove can heat a pot. Since
KI-Net and AN mainly depend on the visual semantics to
choose relevant external knowledge and pot is absent from
the scene, they fail to incorporate important external knowl-
edge to help distinguish the two similar objects (oven and
stove). Our method augments queries to include the exter-
nal knowledge boil that is related to heat and pot and the
answer stove. It allows neural modules to allocate memory-
augmented attention to relationships of stove: pot-topOf-

stove, stove-capableOf-heat, and stove-capableOf-boil, to
answer correctly. Similarly, in Fig. 5b-d, our method incor-
porates the answers (e.g., lamp, flute, and transport) and
their relevant external knowledge (e.g., light, music, and
road). The augmented queries precisely correspond to the
supporting facts (i.e., the FVQA ground-truth knowledge)
and other important external relationships. These examples
show the improved performance and explainability of our
method resulted from more specific queries and more accu-
rate attention allocation.

5. Conclusion

We proposed a novel query and attention augmentation
approach to explainable visual reasoning with knowledge.
It leverages knowledge-augmented queries and memory-
augmented attention to explicitly incorporate visual and ex-
ternal knowledge during the reasoning process. It allows
neural module networks to concurrently interact with vi-

sual and external knowledge, bridging the research gap of
explicit and explainable knowledge incorporation in visual
reasoning. Our method demonstrates state-of-the-art per-
formance in answering knowledge-requiring questions and
general questions. The transparency of NMN models al-
lows researchers to identify limitations and diagnose errors
more effectively. We hope that with the proposed query and
attention augmentation methods, our work will benefit the
future development of more general and explainable reason-
ing models.
Broader impact. Most deep learning methods make de-
cisions based on black-box models trained on large-scale
datasets, which has greatly limited their interpretability or
generalizability. By leveraging external knowledge bases,
this work develops visual reasoning models that are less de-
pendent on training data and thus releases the heavy work-
load of data annotation that requires domain knowledge. It
also leverages neural module networks that explicitly de-
fine and execute reasoning operations, which improves the
transparency of decision-making processes and the trust-
worthiness of deep learning models. This work may bene-
fit future applications in many domains where both domain
knowledge and system transparency are priorities, such as
healthcare, finance, and legislation. It will encourage the
development of more interpretable and generalizable AI
systems and will also address concerns about ethics and
fairness arising from today’s data-driven systems.
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