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Abstract: The spatial distribution of forest stands is one of the fundamental properties of forests. Timely and 

accurately obtained stand distribution can help people better understand, manage, and utilize forests. The 

development of remote sensing technology has made it possible to map the distribution of tree species in a 

timely and accurate manner. At present, a large amount of remote sensing data have been accumulated, 

including high-spatial-resolution images, time-series images, light detection and ranging (LiDAR) data, etc. 

However, these data have not been fully utilized. To accurately identify the tree species of forest stands, 

various and complementary data need to be synthesized for classification. A curve matching based method 

called the fusion of spectral image and point data (FSP) algorithm was developed to fuse high-spatial-

resolution images, time-series images, and LiDAR data for forest stand classification. In this method, the 

multispectral Sentinel-2 image and high-spatial-resolution aerial images were first fused. Then, the fused 

images were segmented to derive forest stands, which are the basic unit for classification. To extract features 

from forest stands, the gray histogram of each band was extracted from the aerial images. The average 

reflectance in each stand was calculated and stacked for the time-series images. The profile curve of forest 

structure was generated from the LiDAR data. Finally, the features of forest stands were compared with 

training samples using curve matching methods to derive the tree species. The developed method was tested 

in a forest farm to classify 11 tree species. The average accuracy of the FSP method for ten performances 

was between 0.900 and 0.913, and the maximum accuracy was 0.945. The experiments demonstrate that 

the FSP method is more accurate and stable than traditional machine learning classification methods. 

Keywords: forest stands classification; curve matching; data fusion; multisource remote sensing data; 

segmentation; tree species mapping 
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Classification of tree species, one of the main tasks of forest science, is important to forest 

management [10]. Tree species information obtained from classification can be served as 

fundamental dataset. For example, the productivity of forest biomass can be improved based on 

some tree species-specific models [7]. Timely and accurate identification of forest stand types and 

tree species can help people better understand, manage, and protect forests. Therefore, effective 

 
1 . Introduction 

Forests, an important type of land cover and a key part of ecosystems, have a decisive influence on maintaining carbon 

dioxide balance, biodiversity, and ecological balance. Forests play a vital role in the survival and development of human 

civilization. According to the report by the Food and Agriculture Organization (FAO) of the United Nations, forest ecosystems 

cover approximately one-third of the earth’s land surface [1]. The composition and spatial distribution of forest tree species 

have a great impact on the forest ecological environment, biodiversity, resource utilization efficiency, production and carbon 

storage capacity, and nutrition cycle [2–8]. The basic unit for the forest inventory is the forest stands, which is a large forested 

area of homogeneous tree species composition [9]. 

remote sensing 
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and efficient techniques for delineating forest stands and classifying tree species are highly 

demanded [11,12]. 

In traditional forest surveys, forest stand distributions were obtained through field 

investigation, which is a time-consuming and laborious process [13,14]. Remote sensing 

technology can easily obtain forest information over large areas [15], even in dense and 

inaccessible forests. Spectral images obtained from remote sensing systems offer a practical and 

economical method to draw the distribution of tree species [13,16], thus reducing the field 

workload [17,18]. According to the assumption that different tree species have different spectral 

feature characteristics [19], the distribution of forest species can be extracted from spectral 

images. 

Spectral images include multispectral and hyperspectral images. Multispectral images 

generally contain mid to low-spatial-resolution images, such as GaoFen-1/4, Sentinel-2, Landsat-

7/8, and SPOT 1/2/3/4 and high-spatial-resolution images, such as GaoFen- 

2, IKONOS-2, QuickBird, RapidEye, and Airborne [20]. In the early stage, a Landsat Multispectral 

Scanner System (MSS) image was applied to forest cover mapping, but the classification results 

were limited due to the coarse spatial and spectral resolution of the image [21–23]. With the 

improvement in multispectral sensors, high-spatial-resolution multispectral images with wider 

band ranges have become available; thus, more details of forest stands can be obtained from 

images [3,24–26]. A high-spatial-resolution multispectral image provides rich spectral and textural 

information [27–29], which can improve the accuracy of tree species classification [24,25]. Object-

based image analysis (OBIA) is usually first applied to high-spatial-resolution images, partitioning 

the image into segments (i.e., objects) according to the textural and spectral information [26]. 

Each segment can be seen as a forest stand. Classification is applied to each forest stand to obtain 

the tree species. Qian et al. (2006) showed that the classification accuracy can be improved by 

10–15% after introducing textural information compared with using only spectral information [30]. 

However, traditional OBIA uses only statistical features, such as the mean and standard deviation 

of the pixels in the objects [27,28,31], so the rich information in the objects is not fully used. 

Additionally, for the features of objects represented by those statistical features, it assumes that 

the pixel values in the objects follow a Gaussian distribution [32]. When the spatial resolution is 

high, the heterogeneity in the objects is large, such as in the forest stand unit, and the traditional 

OBIA is no longer applicable [33]. In addition to the improvements in spatial and spectral 

resolutions, the increase in time resolution also benefits forest stand classification. Distinctive 

spectral-temporal features of tree species can be extracted from time-series images. Karlson et al. 

(2016) used two seasonal WorldView-2 images for mapping five tree species in West Africa [27]. 

Madonsela et al. (2017) concluded that two seasonal WorldView-2 images can improve the 

accuracy of tree species [34]. Pu et al. (2018) evaluated the potential of five seasonal images for 

classifying tree species in an urban area [35]. These studies have shown that information on the 

phenology changes in forest stands over the growing season can improve classification accuracy 

[26]. 

High-spatial-resolution images usually contain a few bands with a wide bandwidth, thus 

providing poor spectral information. More importantly, similar spectral information may exist 

among different tree species in high-spatial-resolution images. Hyperspectral images contain 

nanometer-level spectral resolutions and the rich spectral information of ground objects. 

Hyperspectral images have also been used for forest stand classification [36,37]. However, 

hyperspectral images usually have low spatial resolution. Due to the large number of 

hyperspectral bands and strong correlation between bands, the increase of feature dimension 

may cause the performance of the classifier to deteriorate when the feature dimension reaches 

to a certain critical point. This is the so-called Hughes phenomenon, occurring in traditional 

machine learning classification methods that rely on spectral features and sample size [38,39]. 

Additionally, the variance of the spectra within the same class is usually large for hyperspectral 

images, leading a poor separability of hyperspectral features [39–41]. These problems might 

greatly affect the accuracy of forest stand classification [42–44], and the classification result is not 

robust to noise when using hyperspectral images [36]. In addition, multispectral and hyperspectral 

images do not contain three-dimensional structural information, such as canopy height and 

vertical structures. 
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To describe the three-dimensional structure of trees, light detection and ranging 

(LiDAR) data were introduced to forest stand classification. LiDAR data, a collection of points, are 

a three-dimensional representation of an object. The LiDAR system became mature in 

approximately 2000 [45]. Numerous works have pointed out the effectiveness of LiDAR data in 

tree species classification [42,43,46], and some researchers used LiDAR data to classify forest in a 

large area [47]. LiDAR data can be used alone for classification, but the accuracy is lower than that 

using spectral images. More frequently, LiDAR points are regarded as ancillary data to classify 

forest stands with remotely sensed images. At present, LiDAR has become an important tool in 

forestry applications. Valuable forest geometric information is obtained from LiDAR data, such as 

tree height [44], canopy diameter [48], leaf area index [49], and canopy volume profiles [43]. For 

example, Blomley et al. (2017) analyzed multi-scale geometrical features, revealing that 

representative features extracted from LiDAR data can improve the accuracy of tree species 

identification. Rami et al. (2018) and Pu et al. (2018) concluded that the height information 

extracted from LiDAR data is helpful for mapping urban tree species [50,51]. Shi et al. (2018) 

evaluated some frequently used LiDAR features for discriminating forest tree species, and these 

features are useful in a mixed temperate forest [52]. However, the use of LiDAR data has some 

shortcomings. For example, the features extracted from LiDAR can vary among tree species, which 

may reduce the classification accuracy [53]. Additionally, it is difficult to fuse LiDAR data with 

remotely sensed images. 

As mentioned above, high-spatial-resolution images include spectral and textural 

information, making it possible to extract forest stands. Time-series images provide phonological 

features, and LiDAR data contain information about the geometric structure of tree species. The 

information provided by the three types of data is complementary [43]. Consequently, combining 

these three types of data may hold great promise for improving forest inventories, particularly at 

stand-level discrimination [54–57]. However, different spectral images have different spatial, 

spectral, and time resolutions, making the fusion of multisource images difficult. Additionally, 

LiDAR data are in point cloud format, which is different from spectral images. Therefore, the 

traditional classification methods that fuse spectral images and LiDAR data often sacrifice rich 

forest information. To fuse with images, LiDAR data are usually transformed to raster formats, 

such as canopy height modules (CHM) [56,58–61] and canopy volume profiles (CVP) [43]. These 

characteristics only can describe one aspect of trees. Fassnacht et al. (2016) pointed out that few 

studies have combined spectral images and LiDAR data in a more complicated way for forest 

classifications [53]. 

Consequently, a comprehensive fusion method was expected to utilize the characteristics of 

various types of data. Curve matching methods have shown promising outlooks for object-based 

classification [62]. In previous studies, a histogram curve was generated for each object across 

multispectral bands. Classification was performed based on a comparison of the histogram curves 

of the object to be classified and the sample objects. The curve matching method includes richer 

information than traditional classification methods based on statistical measures (e.g., mean value 

of objects). For LiDAR data, a frequency distribution map that describes the structure of trees can 

be generated [63]. This profile curve is called the profile curve because it mainly reflects 

information about the profile of the tree. Compared with feature maps extracted from LiDAR data, 

such as CHM and CVP, the profile curve can reflect more forest characteristics, and can be applied 

to estimate the leaf area index and biomass [63–67]. Some researchers have fused the profile 

curve of LiDAR data with WorldView-2 to classify land cover types [32]. However, these cover 

types are typical land cover classes, such as buildings, grass, water, trees, and pavement. Although 

curve matching methods have achieved good results in classifications, there are no related studies 

focusing on complex forest stand classification. Additionally, using curve matching methods to 

fuse various types of data has not been explored. 

Although a large amount of remote sensing data is available, they have not been fully utilized. 

Comprehensive utilization of multiple data is expected to more accurately classify forest stands. 

Currently, there are few studies on fusing time-series images with high-spatial-resolution images 

to synergize spectral and phenology information for forest stand classification. Additionally, there 

is a lack of multisource heterogeneous data fusion methods to integrate images and point cloud 

data (i.e., LiDAR). Therefore, to solve these problems and further improve the classification 
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accuracy of forest stands, a forest stands classification method that fuses high-spatial-resolution 

images, time-series multispectral images and LiDAR data is developed. We define this method as 

the Fusion of Spectral image and point data (FSP) method. 

This paper is organized as follows: the study areas and experimental data are introduced in 

Sections 2.1 and 2.2; the method we propose is described in Section 2.3; experimental results and 

analysis are demonstrated in Section 3; the applicability of this method is discussed in Section 4; 

the conclusion is provided in Section 5. 

2. Materials and Methods 

2.1. Study Area 

The study area is in the Gaofeng forest farm (22◦58020.5400 N, 108◦23016.2600 E) in Nanning, 

Guangxi Zhuang Autonomous Region, China (Figure 1). The area, which is in a subtropical monsoon 

climate zone, is composed of a hilly landform with an elevation varying from 100 to 300 m and a 

falling gradient of 6◦ to 35◦. The average annual temperature is 21.6 ◦C, and the annual sunshine 

time is between 1450 h and 1650 h. Additionally, the annual rainfall, which is mainly concentrated 

in summer, is 1304.2 mm. The average humidity is above 80%, and the annual evaporation is 

slightly higher than the rainfall. 

This area, with typical characteristics of forests in southern China, is suitable for the growth 

of a variety of timber trees, especially tropical and subtropical tree species. The forest farm is rich 

in forest resources, with a forest coverage rate of 87.5%. The number of tree species in the forest 

mainly includes Eucalyptus robusta Smith, Illicium verum Hook. 

f., Mytilaria laosensis Lec, Cunninghamia lanceolata, Pinus massoniana Lamb, Pinus elliottii, and 

other broad-leaved tree species. 

2.2. Experimental Data 

2.2.1. Sentinel-2 Data 

Sentinel-2 images are widely available. The multispectral bands of Sentinel-2 images include 

13 bands, with bands 2, 3, 4, and 8 having a 10 m spatial resolution; bands 5, 6, 7, 8a, 11, and 12 

having a 20 m spatial resolution; and bands 1, 9, and 10 having a 60 m spatial resolution. Due to 

cloud coverage, only four images which were come from 2015 to 2017 were selected. The four 

images were acquired on 2 September 2016, 2 June 2016, 1 April 2017, and 30 July 2017, as shown 

in Figure 2. April and June are the flowering periods of many tree species. In the midsummer in 

July, the growth of trees is vigorous and leafy. September is the mature period of most trees in 

the study area. The selected periods are typical time nodes of tree growth, and the spectra of 

these periods are of equal importance. Time-series multispectral images were stacked in a 

monthly wise chronological order to provide rich phonological information and spectral–temporal 

features. 
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Figure 1. The study site in Gaofeng forest farm, Nanning, Guangxi Zhuang Autonomous Region, China. 

  
 (a)  (b)  

  
 (c)  (d)  

Figure 2. Time-series Sentinel-2 images: (a) 1 April 2017; (b) 2 June 2016; (c) 30 July 2017; (d) 2 September 2016. 

2.2.2. Aerial Image and LiDAR Data 
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High-resolution aerial images and LiDAR data were acquired by the CAF (The Chinese 

Academy of Forestry)-LiCHy(LiDAR, Charge-Coupled Device (CCD) and Hyperspectral) airborne 

remote sensing system platform in June 2016. The LiCHy system, developed by the Chinese 

Academy of Forestry, includes one full-waveform airborne LiDAR (RIEGL LMS-Q680i) and one high-

resolution charge-coupled device camera. The CCD sensor is a DigiCAM-60, and the heading and 

lateral overlap rates are 60% and 30%, respectively. All sensors share the same position and 

altitude system [68]. The parameters are shown in Table 1. 

Table 1. The parameters of LiCHy airborne remote sensing system platform. 

 

 CCD: DigiCAM-60 LiDAR: Riegl LMS-Q680i 

 

Frame size 8956 × 6708 Wavelength 1550 nm Pixel size 6 µm Laser beam divergence 0.5 mrad 

 Imaging sensor size 40.30 mm 53.78 mm Laser pulse length 3 ns 

 Feld of view (FOV) 56.2 Cross-track FOV ±30◦ 

Ground resolution @1000 m altitude 0.12 m Vertical resolution 0.15 m Focal length 50 mm Point density @1000 m altitude

 3.6 pts/m2 

 —— —— Waveform Sampling interval 1 ns 

—— —— Maximum scanning speed 200 lines/s —— —— Maximum laser pulse repetition rate 400 kHz 
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, 

 

Figure 3. Distribution of sample points. 

 

2.2.3. Field Data Collection 

In this study, two types of ground reference data are included: (i) field sampling points and 

(ii) points interpreted from images. The field sampling plot is a square with a side length of 30 m. 

The three-dimensional coordinates of the four corner points of the sample 

plot were measured using dual-frequency differential global positioning system (GPS). The 

surroundings of forest stands were observed when each plot was sampled. If the forest stands 

within 30 m around the sampling center were the same tree species, the center was sampled. 

Otherwise, the center was moved to a suitable place where the sampling plot contained only one 

tree species. If the sample plot could not contain only one tree species by moving to other places, 

two tree species can be included. Finally, the coordinates of the four corner points of each sample 

point, dominant tree species, average breast diameter, and average tree height were recorded. 

The field samples were collected in August 2016. The samples include 11s tree species 

(Illicium verum Hook. f., Eucalyptus urophylla, Eucalyptus grandis, Cunninghamia lanceolata, 

Linden Pinus elliottii, Michelia macclurei, Manglietia glauca, Mytilaria laosensis, 

Tsoongiodendrom odorum Pinus massoniana) and a total of 30 sampling areas. Figure 3 shows 

the spatial distribution of all samples, and the range of the sample plot was determined by the 

diagonal point and its adjacent point. For convenience, all tree species in the following text are 

abbreviated as shown in Table 2. The ratio of training samples to test samples is 1:4 in this study. 

Table 2. Abbreviations of tree species. 

Species Illicium verum Tilia tuan Eucalyptus urophylla Michelia odora 

Abbreviation I. verum T. tuan E. urophylla M. odora 

Species Eucalyptus grandis Pinus massoniana Mytilaria laosensis Cunninghamia lanceolata 

Abbreviation E. grandis P. massoniana M. laosensis C. lanceolata 

Species Manglietia glauca Michelia macclurei Pinus elliottii —— 

Abbreviation M. glauca M. macclurei P. elliottii —— 
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2.3. Methods 

The flowchart of the FSP method is shown in Figure 4. First, a high-resolution aerial image 

was fused with a single-time Sentinel-2 image, and the forest stand was obtained by the fractal 

net evolution approach (FNEA) segmentation. The features of the three types of data were 

extracted for each forest stand. The histogram was generated using all pixel values in a forest 

stand (i.e., one segment) for the aerial image across all multispectral bands. The average 

reflectance of each band was calculated in a forest stand for the timeseries images, and the 

reflectance curve was generated by stacking all the bands of the time-series images. The profile 

curve of height was generated from the LiDAR data for each forest stand. Finally, the curve 

matching classifier was applied to classify the forest stands based on the extracted feature curves. 

The details of the FSP method are described in the following subsections, including data 

preprocessing, multisource image fusion, forest stand segmentation, feature extraction, and 

classification. 

2.3.1. Data Preprocessing 

Atmospheric correction and resampling were applied to the Sentinel-2 image. The Level1C 

products of Sentinel-2 images were used. The Sen2Cor plug-in (v255) was used to manually correct 

the atmosphere on all bands through the Sentinel application platform (SNAP, v6.0.4, available 

online: http://step.esa.int/main/third-party-plugins-2/sen2cor/). The water vapor band was 

removed because it mainly reflects the water vapor in the atmosphere. Since multispectral bands 

of the Sentinel-2 image have different spatial resolutions, a third-party plug-in super-resolution 

tool Sen2Res was used for resampling. This tool can synthesize all bands 

with different resolutions to 10 m through super-resolution technology [69]. 

The LiDAR data were registered with images, and non-signal points were removed. Therefore, 

the preprocess for the LiDAR data is to classify ground points and forest points. The improved 

progressive triangulated irregular network (TIN) densification filtering algorithm was applied to 

classify point clouds [70]. 

 

Figure 4. The flowchart of the fusion of spectral image and point data (FSP) method. 

In this algorithm, an appropriate grid size was selected to split the LiDAR data, and the initial 

grid size was 20 m. The lowest point in each grid was selected as the initial seed point. The seed 

http://step.esa.int/main/third-party-plugins-2/sen2cor/
http://step.esa.int/main/third-party-plugins-2/sen2cor/
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points were used to construct an initial TIN. To iteratively densify the TIN, all points to be classified 

were traversed, and the triangles into which the horizontal projection of each point fell were 

queried. The distance k from the point to the triangle was calculated, and the maximum value of 

the angle was formed by the point and plane of the triangle. The calculated distance and the angle 

were compared with the iteration distance (the threshold of the distance was 1.5 m) and iteration 

angle (the threshold of the value was 8◦), respectively. If the distance and angle were less than 

the thresholds, the point was classified as a ground point and added to the TIN. Thus, the ground 

points and the points returned from the forest were separated. Finally, the values for these forest 

points were normalized to 0–1. The final height was obtained by subtracting the digital elevation 

model (DEM) to remove the influence of terrain. 

2.3.2. Multisource Image Fusion 

As mentioned before, aerial images have rich textural information, and time-series images 

contain rich spectral information. The color (spectral) is as important because the texture when 

using segmentation. Therefore, the Sentinel-2 image obtained on 2 June 2016, was fused with the 

aerial image since both images were acquired in June. The twelve bands of the Sentinel-2 image 

were used to fuse with the aerial image. The fusion can make the best use of the spectral and 

textural information for an accurate segmentation. The fusion method adopted in the 

experiments was a nonlinear transform and multivariate analysis algorithm (NMV) [71]. The NMV 

method could minimize the spectral distortion in the fusion image. The steps of the NMV 

algorithm are described as follows. 

(1) The spatial details were obtained by the difference between the band and its degraded 

version: 

Mi,h = Mi + Mi,L 

where Mi is the ith band, and Mi,L is an upsampled image using the bicubical method to match 

the pixel size of the reflective band. The spatial details of the multiple reflective bands can 

be expressed as follows: 

Mi,h,t = (Mi)t + (Mi,L)t 

where t is the coefficient. 

(2) A multivariate regression of a low-resolution image and multiple reflective bands was 

established. 
n 

Mlow  aiMi + b + e] 
i=1 

where ci, ai and b are coefficients; e is the residual; and Mlow is the low-spatialresolution 

image. Given value t, the coefficients can be estimated using the least squares approach. 

(3) The low-spatial-resolution image was fused to the final image with a high spatial resolution 

by the following equation: 

n 

Mlow,f = Mlow + ∑[ciMi,h,t + aiMi] 

i=1 

2.3.3. Forest Stand Segmentation 

The FNEA [72] was applied to segment the forest stand. This algorithm grows from bottom 

to top, following the principle of minimum heterogeneity and adjacent heterogeneity. Pixels with 

similar spectral information are merged into a homogenous object, during which the textural, 

spectral, and shape features of the image object are simultaneously considered. The scale 

parameter was selected using the automated Estimation of Scale Parameter (ESP2) tool. The scale 

factor was set to 80. The shape factor was 0.3 and the compactness was 0.1. 

2.3.4. Feature Extraction 
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By generating the histograms from the aerial image, the brightness of each multispectral 

band was projected on the x-axis, and the histogram frequency was projected on the y-axis. One 

hundred histogram bins were set between 0 and 1, and the number of pixels was counted in each 

bin. Finally, the total number of pixels was used to normalize the generated histogram, so that the 

effect of different sizes of objects can be eliminated. Figure 5 shows the histograms of a forest 

stand for three multispectral bands of the aerial image. 

  
 (a)  (b)  

Figure 5. Grayscale histogram generated from aerial image of a forest stand. (a) A forest stand. (b) The histogram of the forest stand in 

bands R, G, and B. 

The average reflectance of each band for each forest stand was calculated. Figure 6 shows a 

forest stand for the time-series Sentinel-2 images and the stacked timeseries reflectance curve. 

 

Figure 6. The reflectance curve of time-series image of a forest stand. (a) A forest stand. (b) The average reflectance of a forest stand for 

each band. (c) The reflectance curve across the stacked time-series bands. 

For the LiDAR data, the profile curve for each stand was generated to extract the structural 

features of forest stands. The profile curve was generated from the vertical frequency distribution 

of the LiDAR data. The profile curve is essentially a histogram of height. Since this curve can 

characterize the vertical structure of trees, we use the term profile curve. The same tree species 

have similar structural features, and different tree species have different structural characteristics, 

as illustrated in Figure 7. Figure 8 shows the profile curve extracted in a forest stand. The steps for 

generating the profile curve are described as follows. First, the elevation was uniformly discretized, 

and the value of each elevation interval was calculated. In this study, N was set to 100. The number 

of point clouds contained in each discrete height interval of each forest stand was calculated, and 

the vertical profile curve of the point cloud was generated. Finally, after being divided by the total 

number of point clouds in this forest stand, the profile curve was obtained. The x-axis in Figure 8 

is the height bin, and the y-axis is the frequency distribution of the point cloud. The average point 

number in a stand is 2687, thus the generated curves are rather smooth. 
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Figure 7. The profile curve in the vertical direction with different characteristics of a tree’s spatial structure. 

 

Figure 8. Frequency distribution map generated from light detection and ranging (LiDAR) data of a forest stand. (a) A forest stand and the 

LiDAR data. (b) The profile curve of the forest stand. 

2.3.5. Classification 

Five feature curves (three for aerial images, one for time-series images, and one for LiDAR) 

were extracted for each forest stand. To identify the species that the curves belong to, a fusion 

method was developed to fuse all features using three curve matching classifiers: The Kullback–

Leibler divergence (KL), root sum squared differential area (RSSDA), and curve angle mapper 

(CAM). In the curve matching classifier, the similarity between the known sample and the sample 

to be classified was measured. In this study, P1 represents the feature curves of the reference 

forest stand, and P2 refers to the feature curves of the forest stand to be classified. The three 

curve matching classifiers are described below. 

KL divergence, also known as cross entropy, is a method used to describe the difference 

between two probability distributions. This method measures the distance between two random 

distributions. If two random distributions are the same, their relative entropy is zero. As the 

difference between two random distributions increases, their relative entropy also increases. 

dKL P1(i) 
i 
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CAM calculates the similarity between two discrete curves. The calculation result 

represents the angle between the curve to be classified and the sample curve in n-dimensional 

space. The smaller the difference between the two curves, the smaller the angle. 

dCAM 

 

RSSDA calculates the difference between the area integrals of two curves. This classifier uses 

discrete intervals as the differential unit to approximate the area. The RSSDA classifier was 

originally applied to match spectral curves [73], and was improved by Douglas [74]. 

dRSSDA  

In Formulas (5)–(7), i is a discrete interval of the curves, and n is the number of intervals. 

For the histogram of the aerial image, i refers to the ith gray interval of a spectral histogram, n is 

the number of intervals of this histogram. For the time-series reflectance curve, i refers to the ith 

band, n is the total number of the stacked bands. For the profile curve, i refers to the ith height 

bin, n is number of total bins. Moreover, dKL, dCAM, dRSSDA are the similarities of two curves 

measured using the KL, CAM, RSSDA curve matching methods. 

Five feature curves were obtained for each forest stand. For a forest stand to be classified 

(i.e., a testing sample), its feature curves were compared with the feature curves of all training 

samples, using one of the above curve matching classifiers. The FSP method is defined as follows: 

dFSP = f1dR + f2dG + f3dB + f4dTS + f5dLD 

where f 1, f 2, f 3, f 4, and f 5 are proportional weights for different features. These weights were 

determined by the controlled variable method. In this study, the weights from f 1 to f 5 were set to 

0.2, 0.23, 0.23, 0.1, and 0.24, respectively. Moreover, dR, dG, and dB are the similarities of R, G and 

B bands of the aerial image, respectively; dTS is the similarity of time-series image; and dLD is the 

similarity of the LiDAR data. 

Finally, the maximum value of fusion for each stand to be classified was found, and the 

category of the training sample corresponding to the maximum value was assigned to the stand 

to be classified. 

3. Results 

3.1. The Results of Fusion and Segmentation 

Figure 9 shows the fusion results and detailed parts of the aerial image and Sentinel2 image. 

These detailed images (Figure 9d) show that textures in the fused image are very clear. The fused 

image has a high resolution (0.2 m) and richer spectra than the aerial images. The segmentation 

results and some representative details are shown in Figure 10. As seen in the detailed images, 

the segmentation results divide the forest stands with different textures, and each forest stand 

can largely maintain its internal consistency. 
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Figure 9. The relative image of fusion. (a) Aerial image. (b) Sentinel-2 image. (c) The results of Sentinel-2 

image fused with aerial image. (d) The details of fusion results. The left part is the Sentinel-2 image; the right 

part shows the image after fusion. 

  
Figure 10. The results of segmentation and the enlarged details. 
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3.2. Feature Extraction Results 

Figure 11 shows the histograms of 11 tree species in the R, G, and B bands. 

Figure 12 shows the histograms generated by a single sample for each class in the R, G, and B 

bands. The histograms in the R and G bands are similar. However, the peak of the R band appears 

more quickly than the peak of the G band, and the gray value of the B band is more concentrated 

than the values of the R and G bands. Therefore, the maximum value of the histogram in the B 

band is larger than that in the R and G bands, and the wave crest appears more quickly in the B 

band. This similarity can be regarded as the vegetation commonality. In addition to the 

commonalities, the histogram shapes for different tree species show diversity for different bands. 

In general, the histograms generated by each category show similarity in the overall distribution. 

Different categories of tree species have certain differences in each waveband, and some tree 

species in some wavebands have high degrees of similarity. 

Figure 13a–k shows the curves of the time series of eleven tree species. Figure 13l shows the 

time-series curve generated by a single sample of 11 tree species. In the timeseries curves, 

distinguishability is greatest in the red-edged band (bands 4, 5, 6, and 7), and the spectra show 

distinctive differences in different seasons. 

  
Figure 11. The histograms of 11 tree species in the R, G, B bands. 
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Figure 12. The histograms generated in the R, G, B, bands of 11 types of tree species. (a) The histograms in 

the R band. (b) The histograms in the G band. (c) The histograms in the B band. 
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Figure 13. (a–k) The spectral curve of time-series image of 11 tree species, and (l) a comparison chart of the curves for 11 tree species, 

shows the curves of the time series of eleven tree species. 

Figure 14a–k shows the profile curve generated by the LiDAR data for different tree species. 

The profile curves of the same tree species are similar. This similarity demonstrates that the 

features extracted from the LiDAR data are effective for distinguishing different tree species. 

Among the profile curves of 11 tree species, nine have one peak, and two have double peaks. In 

the curve with two peaks, the first peak is caused by the vegetation under the trees, such as small 

shrubs. The second peak is caused by the characteristics of trees. When the forest stands are of 

the same species, the structure below the canopy might be different, which may cause the 

deviation of the profile curve, such as for M. glauca and I. verum. In addition, the tree species in 

a forest stand may not be all the same, causing the waveform to deviate. Generally, the amount 

of deviation in the profile curve is only a small part of the total forest stand. 



Remote Sens. 2021, 13, 144 17 of 25 

 
  

Figure 14. (a–k) The profile curve generated by the LiDAR data of 11 tree species and (l) a comparison chart of the curves for 11 tree 

species. 

To clearly show the difference in profile curves among the different tree species, Figure 14l 

presents the results that integrate the profile curve of different tree species. Generally, different 

tree species have different waveforms, including the locations of wave peaks and the shape of the 

waveform. Sometimes, the profile curves of certain tree species are nearly identical, such as P. 

elliottii and P. massoniana (Figure 14b,e). Therefore, the utilization of the profile curve alone 

cannot distinguish between P. elliottii and P. massoniana Fortunately, the histograms of P. elliottii 

and P. massoniana in the R, G, and B bands are distinctive. M. laosensis and C. lanceolata (Figure 

14h,j) can be easily distinguished using profile curves even though they have similar histogram 

and time-series curves. 
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3.3. Classification Results of FSP 

Figure 15a shows the classification result obtained using the FSP method KL classifier. The 

white areas are non-forest areas. C. lanceolata, P. elliottii, I. verum and E. grandis have the widest 

distributions. Table 3 shows the classification results using the FSP method based on three curve 

matching classifiers. The overall accuracy of the KL matching result is 0.937, and the kappa 

coefficient is 0.926. The overall accuracy of the CAM matching result is 0.902, with a kappa 

coefficient of 0.884, and the overall accuracy of the RSSDA matching result is 0.925, with a kappa 

coefficient 0.911. The overall classification results of the FSP methods based on the three curve 

matching classifiers reach 0.900, and the RSSDA and KL classifiers are better than the CAM. Among 

all species, E. urophylla and P. elliottii have the worst classification results. The KL and CAM 

classifiers classify a large part of these two tree species into E. grandis because the two species 

have greater similarities in the histograms for the R, G and B bands. The product accuracy of P. 

elliottii is fairly high (0.900), but the user accuracy is poor (0.562) because the number of samples 

for P. elliottii is small, and the number of samples for P. massoniana is five times more than that 

of P. elliottii This imbalance of samples caused a part of the P. massoniana to be incorrectly 

classified as 

P. elliottii The indices of the FSP method based on three curve matching classifiers indicate that 

all classifications are well classified except for P. elliottii and E. urophylla However, the F1-score 

for these two tree species achieves 0.75 and 0.83 in the RSSDA classifier. This test indicates that 

the FSP method is suited to classify the tree species of forest stands and that the classification 

accuracy is rather high. 

 

Figure 15. The classification results of three methods. (a) The FSP result based on KL. (b) The results using 

aerial and time-series image based on KL. (c) The results of using aerial image alone based on KL. 

Table 3. Classification accuracies of the FSP method based on the Kullback–Leibler divergence (KL), curve angle mapper (CAM), and root 

sum squared differential area (RSSDA) curve matching classifiers. 

FSP Method  KL-Based   CAM-Based  RSSDA-Based 

Class UA PA F1-Score UA PA F1-Score UA PA F1-Score 

I. verum 1 0.933 0.966 1 0.867 0.929 0.938 1 0.968 
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T. tuan 1 1 1 1 0.941 0.970 1 0.824 0.903 

E. urophylla 0.818 0.692 0.750 0.800 0.615 0.696 0.909 0.769 0.833 

M. odora 1 1 1 1 0.800 0.889 1.000 1 1 

M. glauca 1 0.933 0.966 1 0.933 0.966 0.875 0.933 0.903 

M. macclurei 1 1 1 0.889 0.889 0.889 1 1 1 

E. grandis 0.885 0.920 0.902 0.800 0.960 0.873 0.958 0.920 0.939 

P. massoniana 0.980 0.877 0.926 0.942 0.860 0.899 0.943 0.877 0.909 

M. laosensis 0.905 1 0.950 0.900 0.947 0.923 1 0.947 0.973 

C. lanceolata 0.86 1 0.993 0.932 0.971 0.951 0.920 0.986 0.952 

P. elliottii 0.562 0.900 0.692 0.571 0.800 0.667 0.643 0.900 0.750 

 Overall accuracy: 0.937 Kappa 

coefficient: 0.926 
Overall accuracy: 0.902 Kappa 

coefficient: 0.884 
Overall accuracy: 0.925 Kappa 

coefficient: 0.911 

 UA: user accuracy; PA: product accuracy  

3.4. Comparison between Fusion Results of Different Types of Data 

To determine whether the fusion can effectively improve the classification accuracy, we 

further compared the proposed FSP method with the method based on aerial images alone and 

the method based on the fusion of aerial images and time-series images. The same curve matching 

classifiers (KL, CAM, and RSSDA) were used. To reduce the effects of sampling, ten performances 

were applied with different random samples. The ratio of training samples to test samples is 1:4. 

Table 4 shows the accuracy of the assessment results. When only the aerial image was used, 

the average classification accuracies (AVG) of ten performances were 0.795, 0.788, and 0.794 based on KL, CAM, and 

RSSDA, respectively, and the highest accuracy (MAX) reached 0.835. The fusion of time-series images and aerial 

images slightly improved the classification accuracy. The classification accuracies of FSP were 0.911, 0.900, and 0.913 

based on the KL, CAM, and RSSDA classifiers, respectively. The accuracy of FSP was higher than that of the method 

that uses only aerial images. The SD column shows the standard deviation of the accuracies for the ten performances. 

The standard deviation decreased as more data were fused. The standard deviation of FSP was significantly lower 

than the other two methods, suggesting that the FSP method is more robust and less affected by sampling. Table 4. 

The average of overall accuracy for ten performances using the KL, CAM, and RSSDA classifiers. 

  
Aerial Alone 

 Fusion of Aerial Image and Time-

Series Images 
Fusion of Aerial Image, Time-Series 

Images, and LiDAR Data 

 AVG SD MAX AVG SD MAX AVG SD MAX 

KL 0.795 0.023 0.835 0.805 0.021 0.839 0.911 0.017 0.937 

CAM 0.788 0.016 0.808 0.788 0.017 0.812 0.900 0.014 0.925 

RSSDA 0.794 0.019 0.820 0.797 0.017 0.824 0.913 0.017 0.945 

From the results of fusing different types of data in Table 4, it can be seen that the most 

helpful information for classification mainly comes from the aerial image and LiDAR data. The 

improvement contributed by the time-series images is limited. Nevertheless, the standard 

deviation of ten classification results is reduced when introducing time-series images, indicating a 

more robust result can be obtained. 

Figure 15b,c shows the classification results using the KL classifier based on the fusion of the 

aerial image and time-series images and the aerial image alone. After fusing the time-series 

images, the details are improved. By comparing these two results, the classification result of FSP 

provides a more accurate description of the distribution of tree species. 

3.5. Comparison with Traditional Methods 

The FSP method was also compared with other traditional object-level classifiers, including 

the random forest (RF) [27], support vector machine (SVM) [75], and eXtreme Gradient Boosting 

(XGBoost) algorithms [51]. These three classifiers are commonly used. For traditional OBIA 

methods, the spectral and textural information for each forest stand were used for all bands of 

the aerial image and time-series images, whereas only the mean and standard deviation of the 

heights were used for the LiDAR data [7]. The spectral feature includes the mean and standard 

deviation, and the textural information includes contrast, entropy, homogeneity, angular second 

moment, dissimilarity, and correlation based on the gray-level co-occurrence matrix (GLCM) [28]. 
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Therefore, the multi-dimensional summarized characteristics of forest stands are obtained. For a 

fair comparison, all the classifications were performed on the same ten samplings as previously 

mentioned. 

The FSP and the benchmark classifications were coded in Python 3.7. The main package 

includes scikit-learn and gdal. The results of traditional classification methods are shown in Table 

5. The worst classification result was SVM (0.814), and the best result was RF (0.824). RF also had 

the highest classification accuracy in ten performances (0.875); regardless RF has the largest 

standard deviation of 0.034. The overall accuracy of the FSP was 0.900, which was 0.09 higher 

than that of the traditional method. The highest classification accuracy of the FSP was 0.06 higher 

than that of the traditional method. Additionally, the standard deviation of the ten performances 

shows that the FSP was more stable than traditional methods. In general, the FSP method we 

proposed has a higher accuracy than the RF, SVM, XGBoost classifiers based on traditional 

summarized features (i.e. mean, standard deviation, etc.). 

Table 5. The accuracy assessment of ten performances of support vector machine (SVM), random forest (RF), 

eXtreme Gradient Boosting (XGBoost). 

 Algorithm AVG SD MAX 

Traditional methods 

SVM 0.814 0.025 0.855 

RF 0.824 0.034 0.875 

XGBoost 0.817 0.025 0.855 

FSP 

KL 0.911 0.017 0.937 

CAM 0.900 0.014 0.925 

RSSDA 0.913 0.017 0.945 

To compare the separability of the summarized features used in the traditional 

classifications and comprehensive features (i.e., feature curves) used in the FSP method, a 

projection of these two types of features was performed to visualize their separability. The 

summarized features (120 dimension) include spectral and textual features of images and two 

height features of LiDAR data. The comprehensive features (448 dimension) consist of all the 

points on three types of feature curves in the FSP method. The t-SNE tool [76] was used to 

downscale the extracted features to two dimensions at the best visual aspect. The final 

visualization results are shown in Figure 16. The red circles mark some points with poor 

separability. In general, the points characterized by the comprehensive features in the FSP 

method are more concentrated, even those in the red circle remain aggregated (Figure 16b). In 

contrast, the summarized features show a confusion of many tree species (Figure 16a). 

Therefore, the comprehensive features using the FSP method have better separability than the 

summarized features based on the traditional classification methods. 
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Figure 16. Separability of features: (a) the separability of summarized features used in traditional methods. (b) The separability of 

comprehensive features used in the FSP method. 

4. Discussion 

The study area is a managed forest, and there are not many mixed forests in this area. 

Therefore, the classification accuracy can reach over 90% for 11 tree species. If in a mixed forest, 

the accuracy may be compromised. Some improvements can be made from the following aspects. 

First, the histogram curves from high-spatial-resolution image reflect spectral variability of 

forest stand. However, the histogram is essentially a disorder expression of the pixels, the spatial 

relationship lies in the forest stand is ignored. Sometimes forest stands belonging to different tree 

species may have similar spectral histograms but different textural information. Therefore, the 

rich textural information contained in the high-spatial-resolution image is not fully utilized. 

Therefore, in the follow-up research, a more sophisticated feature extraction method is expected 

to extract and incorporate textural information. 

Second, the time-series Sentinel-2 images reflect the phenology features. When introducing 

phenology features, the classification accuracy is improved 1% and the standard deviation of 

accuracy is reduced comparing with that used the high-spatial-resolution image alone. It is known 

that the wavelength beyond 2000 nm is distinctive for many tree species [53]. Sentinel-2 images, 

however, do not cover such a wide wavelength range. If hyperspectral images are available, the 

FSP method can be applied similarly and probably derive a better result. 

Third, the profile curve from LiDAR data is generated by counting the number of point clouds 

in forest stands, which means that the profile curves greatly rely on the density of point clouds. 

The shape of the profile curves is also affected by the shape of the tree and the size of the stand 

area. If in a mixed forest, the density of the point clouds is required to be high to characterize 

different structures of different tree species in the profile curve. 

Finally, if the tree species are mixed seriously, it would be difficult to classify tree species at 

the forest stand level. Instead, classification can be performed at the individual tree level. In such 

case, the current FNEA segmentation algorithm is not suited, and the individual tree delineation 

algorithm is required. The FSP method can be extended to the delineation result, but higher 

requirements for the spatial resolution of images and the density of the LiDAR data are required 

to extract distinct features of individual trees. 

5. Conclusions 

This paper proposed an FSP method to synthesize high-spatial-resolution multispectral 

images, time-series images, and LiDAR data. The developed FSP method first extracts rich 

information in the form of curves from three types of data. The histogram for the multispectral 
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band is generated in a stand for the high-spatial-resolution image, the average reflectance is 

calculated in each stand for a single band of time-series images, and a reflectance curve is 

generated by stacking time-series bands, and the profile curve from the point cloud LiDAR data is 

generated for each stand. Then, the fusion method is used based on curve matching classifiers for 

forest mapping. The performance of the three curve matching classifiers is evaluated, including 

KL, CAM, and RSSDA. 

The features provided by different types of data contain a large amount of key information. 

The histograms extracted from the aerial image have richer spectral information than those of 

traditional OBIA methods based on some statistical measures, such as the mean and standard 

deviation. The phenology information is contained in time-series images and, thus, distinctive 

features can be reflected for some tree species from the reflectance curves. The profile curve 

generated from LiDAR data includes rich forest structure information and is effective in 

distinguishing tree species. Additionally, the features in the form of the curves facilitate the fusion 

of disparate data on the stand unit by introducing curve matching classifiers. The results show that 

the FSP method fused with three types of data can achieve higher accuracy and is more stable 

than the methods fused with less data or using only aerial images. The FSP method also shows a 

great advantage over traditional OBIA classification methods. 
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