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1 | INTRODUCTION

Water quality refers to physical, chemical, and biological characteris-

tics of water bodies. Water quality is an important aspect of our
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Abstract

The global decline of water quality in rivers and streams has resulted in a pressing need
to design new watershed management strategies. Water quality can be affected by mul-
tiple stressors including population growth, land use change, global warming, and
extreme events, with repercussions on human and ecosystem health. A scientific under-
standing of factors affecting riverine water quality and predictions at local to regional
scales, and at sub-daily to decadal timescales are needed for optimal management of
watersheds and river basins. Here, we discuss how machine learning (ML) can enable
development of more accurate, computationally tractable, and scalable models for analy-
sis and predictions of river water quality. We review relevant state-of-the art applications
of ML for water quality models and discuss opportunities to improve the use of ML with
emerging computational and mathematical methods for model selection, hyperparameter
optimization, incorporating process knowledge into ML models, improving explainablity,
uncertainty quantification, and model-data integration. We then present considerations
for using ML to address water quality problems given their scale and complexity, avail-
able data and computational resources, and stakeholder needs. When combined with
decades of process understanding, interdisciplinary advances in knowledge-guided ML,
information theory, data integration, and analytics can help address fundamental science

questions and enable decision-relevant predictions of riverine water quality.

KEYWORDS
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ability to use rivers and streams for drinking water, healthy aquatic
ecosystems, farmland irrigation, and other beneficial purposes. River
water quality has been declining globally over the past century due to

population growth and increasing urbanization, industrialization, and
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agriculture (Abbott et al., 2019). These stressors have led to saliniza-
tion and alkalinization of rivers (Kaushal et al., 2013, 2021), nutrient
runoff causing algal blooms and eutrophication (Hartmann
et al.,, 2014; McDowell et al., 2020), and river contamination from per-
sistent organic compounds, pesticides, and toxic metals
(Schwarzenbach et al., 2010). Climate change and extreme events
such as floods, droughts, and wildfires are projected to exacerbate
problems of water quality by decreasing flows, changing biogeochemi-
cal cycles, and increasing contaminant concentrations (Lyubimova
et al, 2016; Murdoch et al, 2000; Nilsson & Renofalt, 2008;
Whitehead et al., 2009). The deterioration of river water quality has
direct consequences for aquatic and human health. The costs of
watershed management to comply with water quality regulatory
criteria are significant, even when the benefits are uncertain (Keiser
et al., 2019). Thus, water resource managers rely on monitoring and
simulations of hydrological processes to make optimal decisions, and
are helped by models that account for complex biogeochemical pro-
cesses and their climactic, hydrological and human drivers.

Different classes of water quality models can be used for predic-
tions depending on the relevant water quality variables, spatial scales
(e.g., reach, watershed, regional), and complexity (Rode et al., 2010),
some of which are described in recent reviews (Burigato Costa
et al,, 2019; Fu et al., 2020). High-fidelity mechanistic models can
incorporate the tight coupling of physical and biogeochemical pro-
cesses such as climatic variations, hydrologic fluxes, weathering, and
biological interactions on solute transport and mixing at pore to sub-
catchment scales. For example, integrated surface-subsurface hydro-
logic models (e.g., Amanzi/ATS) coupled with reactive transport
models (RTMs) can attain spatially explicit representations of critical
zone components, and provide accurate estimates of geochemical
exports to rivers at reach to hillslope scales (Arora, Spycher,
et al., 2016; Dwivedi et al., 2018; Steefel et al., 2015; Xu et al., 2021).
Despite the demonstrated success of these models, they face impor-
tant challenges at larger spatial domains in part due to the computa-
tional expense from having highly resolved spatial grids and complex
biogeochemical processes needed to represent heterogeneous water-
shed characteristics influencing water quality (Steefel, 2019). Capabili-
ties for upscaling current RTMs and representation of geochemistry in
larger scales are in their early stages of development (Arora
et al.,, 2015; Jan et al., 2021; Li et al., 2021).

At watershed- to basin-scales, models such as the semi-empirical
soil and water assessment tool (SWAT; Arnold et al., 1998) and hydro-
logic simulation program Fortran (e.g., HSPF; Bicknell et al., 1996)
have been widely used for surface water quality modelling (Fu
et al., 2019). The models contain elements called hydrologic response
units (HRUs) that are non-continuous areas within a sub-basin
grouped by similar properties such as land use, soil, or topography
based on user-defined thresholds (Chen, Xu, et al, 2019; Her
et al., 2015). This discretization approach makes the models computa-
tionally efficient but introduces limitations such as the lack of hydro-
logic connectivity between the HRUs and sensitivity of the models to
the HRU definitions, although some of these limitations are addressed

in newer versions of the code (e.g., SWAT+; Bieger et al., 2017; Her

et al., 2015; Paul et al., 2019). The models also require watershed-
specific calibration and validation, and the parameters can have sub-
stantial uncertainties due to equifinal solutions (Van Liew et al., 2003;
White & Chaubey, 2007; Xie & Lian, 2013).

Most regional- to continental- scale process-based models that do
capture geochemistry (e.g., WITCH; Roelandt et al., 2010) are zero-
dimensional box-models, which are not adequate for representing com-
plex flow and chemical transport dynamics (Li et al., 2017). Process-
based models have been used to predict physical variables such as
stream temperature (e.g., MOSART-heat, PRMS-SNTemp, VIC-RBM; Li
et al., 2015; Sanders et al., 2017; van Vliet et al., 2012) at these spatial
scales by incorporating thermodynamics and energy balance into terres-
trial hydrology models. Alternatively, statistical models are also used for
regional- to continental-scale predictions of water quality, although
these have other significant limitations. For example, the SPARROW
model (Schwarz et al., 2006) has been widely used for spatial water
quality predictions at regional scales in the United States (U.S.) but
assumes long-term steady-state behaviour, and efforts to incorporate
temporal dynamics are nascent (Chanat & Yang, 2018). Multi-linear
regression and auto-regressive integrated moving averages (ARIMA) are
commonly used methods for temporal predictions of water quality vari-
ables but have limited applicability in complex systems with non-linear
and non-stationary processes (Chen et al., 2020).

Apart from predictions, numerous studies have used statistical
regression to analyse water quality trends and attribute drivers at local
to continental scales (e.g., Guo et al, 2019; Kaushal et al., 2018;
Monteith et al., 2007; Murphy, 2020; Murphy & Sprague, 2019). Gen-
eralized additive models that extend linear models are another statisti-
cal approach used to determine water quality trends (e.g., Morton &
Henderson, 2008; Yang & Moyer, 2020) and can be adapted to large
datasets (Wood et al., 2015). Another common statistical technique is
correlation analysis between riverine chemical concentrations and dis-
charge (typically referred to as C-Q relationships), which has been used
for a variety of purposes such as examining constituent dynamics at
short and long time-scales (e.g, Arora et al., 2020; Evans &
Davies, 1998; Godsey et al., 2009; Moatar et al, 2017; Musolff
et al., 2021), identifying sources and pathways of different solutes (see
Musolff et al., 2021 and references therein), and analysing water qual-
ity monitoring data for watershed management (Bieroza et al., 2018;
Pohle et al., 2021; Westphal et al., 2020). However, complex C-Q pat-
terns, such as those resulting from variable lags between the hydro-
graph and chemograph, are difficult to interpret and attempts to link
insights gained from C-Q analysis to models have been limited (Liu,
Birgand, et al., 2021). Other statistical approaches such as Bayesian
hierarchical models (Guo et al, 2019; Rode et al., 2010), wavelets
(Arora, Dwivedi, et al., 2016; Parmar & Bhardwaj, 2013), and principal
component analysis and non-negative matrix factorization (Liu, Zhang,
et al,, 2021; Shaughnessy et al., 2021) are used to identify key catch-
ment attributes, sources, and ecosystem control points (Bernhardt
et al., 2017) that influence stream water chemistry.

Despite the variety of statistical and modelling approaches avail-
able, it is still challenging to make accurate and timely water quality

predictions, particularly at large spatial scales, due to the variability of
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water quality with space, time, and disturbance (natural or human),
and the effect of local characteristics and complex processes on solute
transport. There is consensus that water quality modelling has plat-
eaued, with recent studies focusing on incremental improvements to
existing models and case study demonstrations for individual basins
rather than transformational advances that address the challenges
involved (Fu et al., 2020). The field is fragmented, with the choice of
model varying substantially depending on the spatial scale and param-
eters being modelled, as well as access to computation and modelling
expertise (Fu et al, 2020), limiting our ability to make decision-
relevant predictions.

Recent advances in machine learning (ML) and artificial intelli-
gence (Al) spurred by the increasing availability of public datasets,
development of software frameworks, and cloud computing resources
have the potential to stimulate a new class of water quality models
that can be run at decision-relevant scales, resolutions, and lead times.
Artificial intelligence encompasses technologies that can understand
inputs from the environment, reason and take actions to meet a per-
formance objective, while ML (the focus of this paper) is a subset of
Al that focuses on learning patterns from complex data (Russell &
Norvig, 2020). Thus ML is useful for problems that require predic-
tions, deriving insights from data, and decision making (Jordan &
Mitchell, 2015). ML applications for geosciences broadly span model-
ling, automation tasks and data-driven discovery, and include
approaches such as classification, spatial or temporal regression, and
anomaly detection (Bergen et al., 2019; Reichstein et al., 2019). ML
methods include supervised learning, wherein known observations are
used to train a model to learn patterns or make predictions on a target
variable; unsupervised learning, wherein the algorithm learns patterns
or structures in the data heuristically without apriori knowledge of the
target; and reinforcement learning, wherein the model learns to make
decisions under uncertainty through trial and error interactions with
its environment to maximize a reward (see Shen, 2018; Bergen
et al.,, 2019; Xu & Liang, 2021 and references therein for an overview
of ML in hydrology and geosciences). Traditional ML methods (also
referred to as classical or conventional ML) include support vector
machines (SVM), decision trees such as random forests (RF) and gradi-
ent boosted trees, and simple artificial neural networks (ANN;
e.g., feed forward ANN, extreme learning machines, multi-layer per-
ceptron). Deep learning (DL) models are neural networks (NN) with
multiple processing layers that make it possible to learn complex pat-
terns from large datasets and have high predictive skill. Common DL
architectures include the convolutional neural network (CNN), recur-
rent neural networks (RNN) of which the long short term memory
(LSTM) network is a popular choice, deep belief networks (DBN) that
are composed of restricted Boltzmann machines (RBM), and sparse
autoencoders (LeCun et al, 2015; Shen, 2018; Shrestha &
Mahmood, 2019). In this paper, we use the term “machine learning”
to refer to both traditional ML and DL models.

Over the past decade, there has been a large increase in the use of
ML for hydrological predictions (Xu & Liang, 2021) to the point where its
adoption in future physical hydrology models seems inevitable (Nearing,

Kratzert, et al, 2021). A wide variety of ML approaches have been

explored for water quality modelling in rivers across the world, and col-
lectively indicate their potential to extract scientific knowledge and
enable optimal management of water quality (Section 2). Yet the rapidly
increasing use of ML raises several questions. First, given the diversity of
modelling approaches, what are the situations where ML can add value
and what are its limitations? What are the primary considerations for
model and feature selection? How do we compare performance and
evaluate whether models have been constructed and parameterized
appropriately? How can ML approaches complement process-based
models to improve our prediction capabilities? And most importantly,
how can we trust and use models that make predictions based on
machine-derived information that is beyond human comprehension?

In this paper, we discuss the potential for using ML in water quality
modelling for decision-relevant predictions. We first provide a brief
review of ML methods used for several water quality applications that
demonstrate its value for modelling and knowledge discovery
(Section 2). We then present opportunities for advancement of ML
model architectures, transferability, and interpretability, which includes
the integration of process knowledge into model design (Section 3). We
finally present considerations for the choice of model based on the
scale and complexity of the problem being addressed, and availability of
data and computational power (Section 4). We posit that the time is
ripe for judiciously incorporating ML into riverine water quality models
for the purposes of improving predictive capabilities and deciphering
the complex, diverse human-natural processes that affect water quality.
Throughout, we use the term “models” to refer to codes that both gen-

erate predictions and analyse data to extract information.

2 | STATE-OF-THE-ART MACHINE
LEARNING IN RIVER WATER QUALITY
MODELS

Machine learning models have been used for predictions of many
water quality variables using various approaches from simple models
to hybrid methods combining ML with process-based models
(Table 1). Stream temperature is a widely measured physical water
quality variable and has been successfully predicted using different
ML methods. For example, classical ML methods have been used for
monthly to daily predictions of stream temperatures in catchments
with different characteristics, and include support vector regression
(SVR; Rehana, 2019; Weierbach et al., 2022); decision tree-based
regression models such as RF, XGBoost, and their variations (Feigl
et al., 2021; Lu & Ma, 2020; Weierbach et al., 2022); and simple ANNs
(Feigl et al., 2021; Zhu & Piotrowski, 2020). Among DL models, the
LSTM deep neural network has become an increasingly popular choice
for regional-scale hydrological predictions due to its ability to encode
prior system states in the cell memory (e.g., Kratzert et al., 2018). For
example, Rahmani, Lawson, et al. (2021) originally used an LSTM net-
work to predict daily stream temperatures for 118 pristine catchments
in the continental U.S. and in a subsequent study extended the LSTM
approach to make predictions in data-sparse, unmonitored and

dammed catchments (Rahmani, Shen, et al., 2021). Approaches that
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TABLE 1

Application

Time-series predictions

Predictions in ungaged
basins

Short-term predictions,
surrogates for
monitoring and
detection

Event dynamics and
classification

Process understanding
and knowledge
discovery

Remote sensing
estimates

Decision support and
management
scenarios

VARADHARAJAN ET AL.

Stream water quality
variables

Temperature, DO,
conductivity,
nutrients, pH,
turbidity, cations,
anions, dissolved
organic matter,
BOD, COD,
chlorophyll-a

Temperature

Temperature, DO,
pH, conductivity,
turbidity, nutrients,
water quality
indices

Suspended sediments

Temperature, pH,
TDS, conductivity
cations, anions,
nutrients,
Escherichia coli

Suspended and other
sediments,
turbidity, DO,
metals, nutrients,
chlorophyll-a,
organic matter,
blue-green algae

Conductivity, pH,
DO, nutrients,
suspended
sediments, anions,
chlorophyll

Classical ML (single
or ensemble)

SVR; decision trees,
ANN, GP, fuzzy
logic, ensembles
(Chen et al., 2020;
Feigl et al., 2021;
Khullar &

Singh, 2020;
Rajaee et al., 2020;
Rehana, 2019;
Weierbach

etal., 2022; Zhu &
Piotrowski, 2020)

XGBoost, SVR
(Weierbach
et al., 2022)

SVM, RF, ANN,
ensembles (Bui
et al., 2020; Green
etal, 2021,
Harrison
etal, 2021; Lu &
Ma, 2020; Paepae
etal,, 2021)

Restricted Boltzman
machines, Bayesian
belief networks
(Hamshaw
etal, 2018, 2019;
Murray et al., 2012)

Decision trees, NN
(Alvarez-Cabria
etal., 2016;
Mirzaei
et al., 2020; Povak
et al., 2014; Wang
etal,, 2021)

ANN, SVM, GP,
decision trees
(Topp et al., 2020)

Bayesian networks/
probabilistic graph
models (Forio
et al., 2015; Mount
& Stott, 2008;
Phan et al., 2019)

Examples of water quality applications where machine learning has been applied

Deep learning

LSTM (Rahmani,
Lawson,
et al., 2021; Zhi
et al., 2021);
LSTM+CNN (Baek
et al., 2020), DBN
(Solanki
et al,, 2015; Yan
et al., 2020)

LSTM (Rahmani,
Shen, et al., 2021)

LSTM (Liu
et al,, 2019)

CNN (Hamshaw
etal., 2019)

Progressively deep
NN (Peterson
et al., 2020)

Note: See references for further details on techniques used for specific water quality variables.

Hybrid process + ML
LSTM and graph RNN

combined with
stream
temperature
process model (Jia,
Zwart, et al., 2021);
ANN + salinity
process model
(Hunter

etal., 2018)

Unsupervised
learning

Dynamic time
warping
clustering (Lee
et al., 2020)

Multivariate event
time series
clustering (Javed
et al., 2021)

combine process-based models with DL have also been used for
basin-scale stream temperature predictions, particularly in regions
with sparse data (e.g., Jia, Zwart et al., 2021, Section 3.2). In all cases,
the ML approaches were able to improve prediction accuracies com-

pared to base statistical and process-based models.

ML models have also been used for predictions of other water
quality variables and indices such as dissolved oxygen (DO), electrical
conductivity, total dissolved solids (TDS), pH, nutrients, suspended
sediments and turbidity, cations, anions, biological oxygen demand

(BOD), chemical oxygen demand (COD), and chlorophyll. Recent
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reviews identify popular classical ML methods for time-series predic-
tions including ANN, decision trees, SVM, genetic programming (GP),
fuzzy logic, and hybrid approaches such as genetic algorithm-NN,
adaptive neuro-fuzzy inference systems, and wavelet-NN (Chen
et al., 2020; Khullar & Singh, 2020; Rajaee et al., 2020). Hybrid models
with ensembles of standalone ML models using methods such as bag-
ging and random subspace (Melesse et al., 2020) or combining ML
with process-based models (Hunter et al., 2018) have been used to
predict salinity at river basin- to reach-scales in Iran and Australia.
Examples of recent efforts to incorporate DL approaches for these
predictions include the use of an LSTM to predict DO concentrations
in 506 pristine U.S. catchments achieving moderate accuracy (Zhi
et al, 2021), and an LSTM paired with a CNN (that generated
streamflow estimates) to predict total nitrogen, phosphorus, and
organic carbon in a major Korean river basin (Baek et al., 2020). LSTM,
RF, and hybrid ML models have also been used for short-term predic-
tions of a suite of water quality variables (e.g., DO, pH, conductivity,
turbidity, nutrients, water quality indices) with high-frequency moni-
toring; in some cases classical ML surrogate models are used as soft
sensors to make predictions of variables that are difficult or laborious
to measure directly such as those that require laboratory sample anal-
ysis (Bui et al., 2020; Green et al., 2021; Harrison et al., 2021; Liu
et al., 2019; Lu & Ma, 2020; Paepae et al., 2021).

In addition to predictions, ML approaches are used to discover
understanding about the dynamics of water quality and underlying
sources, drivers, and mechanisms. A common use of ML is to detect
events of interest from high-frequency data obtained from sensor
networks. For example, insights into episodic sediment dynamics from
hundreds of storm events were derived using RBMs and CNNs to
automate analysis of C-Q plots (Hamshaw et al., 2018, 2019). Classifi-
cation and clustering pattern recognition techniques have been used
to identify similarities between monitoring stations (Lee et al., 2020),
hydrological events (Javed et al, 2021), and contaminant sources
(Vesselinov et al., 2018). Classical ML methods such as decision tress,
NN, and self-organizing maps have been used to identify landscape
attributes and human factors that affect stream water quality
(Alvarez-Cabria et al., 2016; Mirzaei et al., 2020; Wang et al., 2021),
and characterize relevant processes such as cation weathering rates
(Povak et al., 2014).

Another application area is the use of ML for analysis and estima-
tion of inland water quality parameters obtained from remote sensing
imagery. The estimates are most commonly derived using classical ML
approaches, but are limited to larger rivers and a few variables due to
the spatial resolution of land surface sensors (~10-30 m), and broad
spectral bands (Hassan & Woo, 2021; Hestir et al, 2015; Topp
et al., 2020). Peterson et al. (2020) demonstrated that a progressively
deep NN model outperformed SVR, extreme learning machine, and
multi-linear regression in estimating water quality parameters such as
blue-green algae, chlorophyll-a, fluorescent dissolved organic matter
(FDOM), DO, conductance, and turbidity in the Upper Mississippi
River using data from Landsat-8 and Sentinel-2. A harmful algal bloom
(HAB) detection system HABNet (Hill et al., 2020) for coastal waters
used a CNN combined with an LSTM, SVM, or RF applied on data

from moderate resolution imaging spectroradiometer (MODIS) data.
Remote sensing datasets relevant to river water quality are likely to
grow in the future with newer high-resolution satellites, instruments
with hyperspectral bands, and increasing use of unmanned autono-
mous vehicles (UAV) to acquire water quality data (Sibanda
et al,, 2021; Topp et al., 2020), and can potentially address data gaps
for water quality ML (Section 4.4).

Finally, probabilistic graph models such as Bayesian networks
have been used extensively for decision support in water manage-
ment (Phan et al., 2019). Bayesian networks can integrate both quan-
titative data (e.g., time-series of measured concentrations and
discharge), and qualitative data (e.g., expert knowledge and stake-
holder beliefs), and can generate probabilistic predictions for different
management and climate scenarios. For example, Bayesian networks
were used to design rules for trading transferable pollutant discharge
permits in rivers (Mesbah et al., 2009), for real-time monitoring and
contaminant warning systems (Murray et al., 2012), and to predict
water quality in different types of catchments (Forio et al., 2015;
Mount & Stott, 2008).

These examples illustrate the value of using ML for a variety of
global river water quality modelling and monitoring applications. The
use of DL and hybrid models combining ML and process-based codes
is still nascent and is expected to grow in the near future. In the next
two sections, we describe how the appropriate use of ML for different
water quality applications can best incorporate recent computational
and mathematical developments due to the large number of variables
of interest, heterogeneity of human and natural processes that influ-

ence water quality, and scarcity of available data.

3 | OPPORTUNITIES FOR ADVANCEMENT
OF WATER QUALITY ML

ML methods have advanced rapidly over the past decade, and diverse
approaches can be used to improve model performance, efficiency,
and robustness. Here we highlight particularly promising techniques,
many of which have been used in hydrological applications, to address
questions raised in Section 1 related to the use of ML for water qual-

ity modelling (also see Varadharajan et al., 2021).

3.1 | How do we select and design optimal model
architectures?

ML model selection and architectures (e.g., number of layers, batch
size, nodes for neural networks) can affect model performance and
computational costs. The choice of the best performing model (ML,
statistical, or process-based) will depend on the metrics considered
including model accuracy, variance, robustness, bias, and computa-
tional speed (Belitz & Stackelberg, 2021; Kratzert, Klotz, Shalev,
et al., 2019). A common approach for model selection in many of the
studies cited above (Section 2) is to train different model types, and

choose the model with the greatest predictive skill. Another approach
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to model selection is to not choose, i.e., to create model ensembles
that exploit the diversity of predictive skill from different models.
Model ensemble approaches are common in hydrology (Fleming
et al., 2021). Specifically, ML ensembles have shown promise in
improving predictions (e.g., flood forecasting), quantifying uncertainty
(Fleming et al., 2015; Jiang et al., 2014; Zounemat-Kermani et al.,
2021), and are now being incorporated into operational models
(Fleming et al., 2015, 2021). Ensembles can be formulated in many
ways, from traditional methods such as bagging, boosting, dagging,
model averaging, and stacking to more sophisticated combinations
such as running simulations on different classes of models or pre-
training ML models on different process models (e.g., Section 4.2).
Ensemble combinations of multiple models can be even more benefi-
cial when the errors of individuals models are not correlated
(Hsieh, 2009).

Besides model selection, other important choices in the applica-
tion of ML are selection of optimal input features, model training, and
architecture design. In regression and classification, a best practice is
to use k-fold cross-validation that partitions available data into k-sets
and iteratively trains the model using data from each set for testing,
which leads to better model generalizability (Bergmeir &
Benitez, 2012). Common pitfalls in model design are including excess
irrelevant or redundant variables as inputs, variable selection bias
(i.e., using the same data for training and inputs), resubstitution valida-
tion (i.e., testing the model with training data), use of inconsistent
cross-validation and resampling procedures across model architec-
tures being implemented, and data leakage (e.g., using testing data for
model training or hyperparameter optimization, or pre-processing the
entire dataset prior to splitting the data into cross-validation folds),
which can lead to overfitting (Gharib & Davies, 2021; Zhang, 2007).
These pitfalls can be avoided by understanding the details and limita-
tions of the models being implemented, following best practices, and
using robust ML workflows (Gharib & Davies, 2021; Zhang, 2007).

Different hyperparameter optimization (HPO) methods have been
developed to find the best-performing ML model architectures (Yu &
Zhu, 2020). In many applications such as those cited above, the hyper-
parameters are either not chosen (i.e., default hyperparameters
selected), hand-tuned (trial and error of different architectures), or
selected using a grid or random search approach (Bergstra
et al,, 2011). In a few models (e.g., RF), default hyperparameters can
work well (Probst et al., 2019); however, in general HPO is expected
to improve model performance. Although random search has been
shown to outperform grid search (Bergstra & Bengio, 2012), both
approaches require a time-consuming approach of training each archi-
tecture, which can be computationally expensive, result in inferior
performance, and limit the number of architectures that can realisti-
cally be explored. Instead, efficient solution methods using Bayesian
optimization methods such as the Tree-of-Parzen-Estimators in the
Python package Hyperopt can be applied (Bergstra et al., 2013).
Miuiller et al. (2020) demonstrate another derivative-free Bayesian
optimization method using surrogate models, such as Gaussian pro-
cess or radial basis functions, to map the architecture search space to

its performance and allows efficient exploration of the space by

adaptive sampling approaches. Near-optimal hyperparameters for dif-
ferent NN including DL architectures can be found with relatively few
evaluations using this approach (e.g., Figure 1).

Automated machine learning (AutoML) frameworks that use con-
cepts of ensembles and automatic HPO are emerging as a promising
approach for reducing the barrier to adoption of ML, and have shown
improvements in the efficiency and robustness of ML algorithms
(Feurer et al., 2015; Hutter et al., 2019). A forward-looking automated
ML approach for model design is “neural architecture search” (Ren
et al., 2021) where algorithms automatically design model architec-
ture. This approach has been successfully applied to algal classification
using CNNs (Park et al., 2019) and spatiotemporal predictions (Li
et al., 2020), and is even being considered for physics-based learning
models (Ba et al., 2019).

3.2 | How do we incorporate scientific knowledge
into ML models?

Traditional ML models can produce physically inconsistent results
(Karpatne et al., 2017; Kashinath et al., 2021) as they only look for
statistical relationships in the training data and are unable to extrapo-
late outside of the training dataset used for building the ML model.
The sparseness of water quality and related environmental datasets,
and projected changes in climate and land use make it challenging to
use ML models per se for predictions in unmonitored regions or for
long-term projections because they can only be trained, validated, and
evaluated on past data (Duan et al, 2020; Kratzert, Klotz,
Brandstetter, et al., 2019; Xu & Liang, 2021).

The scientific community has been converging on the use of
knowledge-guided ML (KGML; see Figure 2 as an example) to make
physically consistent and generalizable predictions (including out-of-
(Kashinath

et al., 2021). KGML approaches have been used to incorporate scien-

bounds estimates) and decrease training times
tific knowledge into ML model training and predictions in several
ways (Willard et al., 2022) that include (i) modification of loss func-
tions to penalize the model when violating known physical laws and
relationships (Jia et al., 2019; Karpatne et al., 2018), (ii) training or
pre-training ML models on process-based model output (Konapala
et al., 2020; Read et al., 2017), (iii) incorporating differential equations
in ML models (Chen, Rubanova, et al, 2019; He et al., 2020;
Rackauckas et al., 2020), (iv) multi-task learning for multi-objective
optimization (Sadler et al., 2022), (v) modifying ML model architecture
to impose symmetry or better represent the system being modelled
(Daw et al., 2020; Khandelwal et al., 2020; Kunin et al., 2021; Ling
et al, 2016), and (vi) most commonly surrogate (or reduced-order)
models that emulate process model behaviour with considerably less
computational expense (Xu & Liang, 2021). Hybrid KGML methods
have also been used for hypothesis generation and establishing causal
relationships  between responses (Tsai
et al.,, 2020).

Numerous combinations of LSTM models and their variants with

system drivers and

different process models have been shown to improve predictive
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FIGURE 1 Bayesian optimization approaches using surrogate models such as Gaussian process and radial basis functions enable faster
convergence to the optimal set of hyperparameters for deep learning models used to predict groundwater levels (figure modified from Miiller
et al., 2020)
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FIGURE 2 Overview of knowledge-guided machine learning (ML) approaches incorporating physical constraints into the loss function of a
long-short term memory (LSTM) network used to model stream temperatures. The loss function penalizes the ML model for errors in predicting
stream temperature (yPRED = model-predicted stream temperature; yTRUE = observed stream temperature) and stream thermal energy (U), the
latter of which cannot be created or destroyed from one time step to the next according to thermodynamics. Energy fluxes can be transformed or
transported into (fin) or out of (Fout) the stream system according to equations in the process-based model. R(W) represents a standard
complexity regularization on the model parameters weighted by 4, and Losspny aims to ensure consistency with physics by balancing the energy
fluxes and is weighted by y. Figure modified from Willard et al. (2022) and https://www.usgs.gov/media/images/diagram-channel-cross-section-
subsections

performance for streamflow and river and lake water quality including et al.,, 2021; Konapala et al., 2020; Read et al., 2017). For example, Jia
out-of-bounds predictions in comparison to base process or LSTM et al. (2021) used a modified graph-based LSTM that included repre-
models (Frame et al, 2021; Hanson et al., 2020; Jia, Zwart, sentations of the river network hydrography, pre-trained with output
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from a process-based model PRMS-SNTemp (Sanders et al., 2017) to
predict daily stream temperatures across the Delaware River Basin.
This study demonstrated that the hybrid model was able to out-
perform base LSTM models in terms of prediction accuracies and the
ability to extrapolate when data were sparse (Figure 3).

Other KGML approaches include variations of GP, a supervised
ML technique that mimics biological evolution. The advantages of GP
include its ability to produce explicit mathematical relationships
between input and output variables, add constraints based on physical
realistic possibilities, and generate interpretable results. Genetic pro-
gramming has been used extensively in hydrology to build interpret-
able rainfall-runoff, groundwater, and water quality models; estimate
evapotranspiration; and extract information about reservoir opera-
(Danandeh Mehr et al., 2018; Fallah-Mehdipour &
Haddad, 2015; Herath et al., 2021). KGML versions of GP models

include a tree-adjoining grammer (TAG) formalism for representing

tions

dynamic processes that has been demonstrated for predictions of
phytoplankton biomass in rivers (Park et al., 2021).
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3.3 | How can ML be used to make generalizable
predictions with sparse data?

Water quality data tend to be sparse (Section 4.4), and there is a need
to transfer models from data-rich, small-scale monitored sites to other
regions in a manner that accounts for the spatial heterogeneity of
watershed characteristics. Recent studies have demonstrated the use
of LSTM and ensemble XGBoost models for predictions of streamflow
and stream temperature in unmonitored basins (Kratzert, Klotz,
Herrnegger, et al., 2019; Rahmani, Shen, et al., 2021). Another ML
approach to generalize models is Transfer Learning (Weiss et al., 2016),
which translates models built on highly observed locations to other
sites that are data-sparse or unmonitored, although the challenge lies in
choosing which models to transfer to a given site. Recently, meta trans-
fer learning (MTL) has been proposed as a means to address this prob-
lem, wherein multiple base models (ML or site-specific process model)
can be trained or calibrated for different tasks such as prediction at a
given location, and then a meta-learning model (de Oliviera, 2019;

FIGURE 3 (a) Comparison of pure
machine learning (ML) approaches using
artificial neural networks (ANN) to various
process inclusions (time and space
awareness, pre-training with a process
model) for predicting stream temperature

in the Delaware River basin (data from Jia
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et al., 2021). The error bars in panel a
represent the standard deviation of test
root mean squared error (RMSE) across
five model runs. Panel (b) shows model
performance comparison between a
neural network with time awareness
(i.e., long short-term memory network;
long short term memory (LSTM); left) and
a hybrid graph neural network (recurrent
graph convolutional network; RGCN;
right) with time and space awareness in
addition to being pre-trained with a
process model. Models shown in panel
(b) were trained using 0.1% of available
data during the training period and only
segments with more than five
observations during the test period are
shown (data from Jia et al., 2021)
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Vanschoren, 2019) predicts which base model to transfer based on past
performance metrics and location-specific attributes (Willard, Read,
et al., 2020). For example, Willard, Read et al. (2020) used MTL for pre-
dictions of lake temperature in 305 artificially defined “unmonitored”
lakes (targets) by transferring process-based and hybrid KGML models
calibrated for 145 data-rich lakes (sources) using past performance
metrics of the source models along with features such as lake attributes
(e.g., surface area, maximum depth), meteorological statistics, and
source lake temperature statistics. MTL flexibly allows the use of any
type of model built on well-observed locations making it a noteworthy
candidate for increased regional scaling.

3.4 | Can ML methods be adapted to predict
extreme values?

Typical ML methods have inbuilt assumptions (e.g., the random vari-
ables follow a Gaussian distribution), which can lead to poor estimates
when they do not apply for some datasets. In particular, the choice of
a loss functions can directly affect the results (Bishop, 2006). For
example, a squared loss (L2 norm) is more sensitive to outliers than
absolute value loss (L1 norm; Breiman & Friedman, 1985; Hastie
et al., 2009; Zhang, 2007). When outliers are equally important as in
the case of extreme events, it is not uncommon to utilize the probabil-
ity distribution within the loss function (Cawley et al., 2007;
Hsieh, 2009) or choose alternate loss functions such as the relative
entropy loss that computes the distance between two distributions
(Qi & Majda, 2020).

Many studies in hydrology have attempted to improve predic-
tions of extremes such as floods (Mosavi et al., 2018) using multiple
techniques that include using different criteria for model selection
(Coulibaly et al., 2001), conditional density estimation networks
(Cannon, 2012), training exclusively on extreme events such as histor-
ical high-flow data (Fleming et al., 2015), adjustment of ML prediction
bias to improve performance on the tails of the distribution (Belitz &
Stackelberg, 2021), and using KGML models, for example by training
an ML model on simulation data containing extremes that might not
exist in the observation data (Read et al., 2017; Xie et al., 2021). How-
ever, in some cases KGML models may perform worse than traditional
DL models; for example, Frame et al. (2021) found that an LSTM con-
strained to conserve mass was not able to predict peak flows as well
as the base LSTM, although both models had lower errors than the
process-based model used for comparison. Although these examples
show the potential for using ML for predictions of extreme values,
data scarcity for rare events warrants consideration in model choice
and design, and alternate ML methods may need to be used
(or modified) to handle extreme values (Cannon, 2010).

3.5 | How do we represent complex, hierarchical
data in ML models?

The heterogeneity and multi-scale nature of water quality processes
and their drivers requires representation of high-dimensional complex

data in ML models, but this can be challenging to do in a computation-
ally tractable manner. One approach that has been used is to modify
ML models to embed complex spatial information for time-series pre-
dictions. For example, Kratzert et al.,, (2019) developed an entity
aware-LSTM to include information on static catchment attributes
into the input gate of an LSTM to improve streamflow predictions
across 531 pristine basins. Jia et al. (2021) used a recurrent graph con-
volution network to include spatial information on river segments into
the predictions, and in a subsequent study developed a real-time
active learning approach that used spatial and temporal information to
select representative samples for optimizing model training (Jia, Lin,
et al,, 2021). Creating advanced multi-scale graph-based data repre-
sentations that represent river network structure and carry a diverse
set of node and edge attributes can enable embedding multimodal,
multi-scale, and multi-temporal information, and correlate structures
across different scales and time-steps.

Probabilistic graph models (PGMs), which are data structures for
encoding probability distributions, can also be used to include such
structural information (Koller & Friedman, 2009). In a PGM, the nodes
of the graph represent random variables, and the edges represent
dependencies between variables. An optimization process using a
PGM involves defining an energy function, which can embed contex-
tual information about the data, i.e., relationships among data points
at different resolutions, scales, or time steps (prior knowledge). PGMs
can be optimized by targeting the maximization of the joint probability
(or the minimization of the energy function) of the graph (Laude
et al., 2018), which would result in specific river network predictions.
Although classes of PGMs (e.g., Bayesian network models) have been
used for water quality applications (Section 2), newer models that
integrate PGM with DL such as DBN have been used for water quality
predictions (Solanki et al., 2015; Yan et al., 2020).

3.6 | How do we build trustworthy and
interpretable ML models?

Domain experts often are hesitant to replace process-based models
with ML on the grounds that the explainability, interpretability, and
trustworthiness of ML frameworks are questionable even if predic-
tions are more accurate (Rudin, 2019). Model transparency and inter-
pretability is especially important for water management decisions
that have important societal implications and that have to consider
future unknown scenarios.

Recent advances in explainable Al such as local interpretable
model-agnostic explanation (LIME; Ribeiro et al., 2016) or Shapley
additive explanations based on occlusion analysis (SHAP; Lundberg &
Lee, 2017) can explain individual predictions by many ML models
(Samek et al, 2021). Both methods have been successfully
implemented for explaining predictions in rainfall-runoff modelling
(Althoff et al., 2021; Yang & Chui, 2021), and are applicable for water
quality applications as well (Wang et al., 2021). Also in the rainfall-
runoff domain, Kratzert et al. (2019) used integrated gradients
(Sundararajan et al., 2017) to confirm a theory-consistent influence of
precipitation and air temperature on a NN state that correlated with
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FIGURE 4 Graphicalillustration of the use of causal inference methods (highlighted in boxes) for hydrological applications: (a) conceptual
understanding of a physical system (i.e., rainfall-runoff process; hydrologic bucket model), (b) observational time series of the four system
variables in panel a, (c) a broad class of causal inference algorithms are based on conditional independence constraints such as Granger

(Granger, 1969), transfer entropy (Schreiber, 2000), PC algorithm (Spirtes & Glymour, 1991), fast causal inference; FCI (Spirtes & Glymour, 2000),
and PCMCI (Runge et al., 2019). Conditional independence is performed using a statistical inference engine (e.g., partial correlation or information
theory), (d) an alternative paradigm of causal inference are methods based on time-delay embedding whereby pairwise-bivariate timeseries (e.g., R
and S) are used to construct attractors from which causal relations can be assessed (Sugihara et al., 2012), (e) the causal network obtained from
causal inference algorithms where nodes represent variables and edges represent causal relations. The obtained causal inference network can be
compared and contrasted to the conceptual a priori understanding of the system shown in panel a

snow water equivalent, building trust in the ability of such models to
capture known physical processes. More recent work on the same
subject used probes (e.g., linear regression models or stacked multi-
layer perceptrons) to connect LSTM cell states to the output for track-
ing the evolution of the LSTM during the training process and verify-
ing whether the LSTM learned physically realistic mappings from
inputs to outputs (Lees et al., 2021).

Causal inference is another approach to extract information on
complex water quality processes and infer the effect of one variable
on other system responses (Pearl, 2009; Sugihara et al., 2012). Causal
inference methods can be grouped into three categories: (1) algorithms
based on conditional independence constraints such as Granger cau-
sality (Granger, 1969), transfer entropy (Schreiber, 2000), PC algo-
rithm (Spirtes & Glymour, 1991), fast causal inference (FCI; Spirtes
et al, 2001), PC mutual condition information (PCMCI; Runge
et al., 2019), (2) methods based on time-delay embedding and chaos
theories such as convergent cross mapping (CCM) (Hannart
et al,, 2016; Sugihara et al., 2012), and (3) approaches based on coun-
terfactual causal theory and structural causal models (Hoyer
et al., 2009; Pearl, 2009; Peters et al., 2017). These methods have
been adopted in climate and hydrologic sciences (Arora et al., 2019;
Hannart et al, 2016; Ombadi et al., 2020; Runge et al., 2019) to

extract relationships among system variables and disentangle
governing parameters to inform process-based or ML models

(e.g., Figure 4).

3.7 | How do we quantify the uncertainties in
model predictions?

An important aspect of modelling is uncertainty quantification (UQ),
which in ML models includes uncertainties in the data, selection of
input features, and model design (Abdar et al, 2021). A common
approach to test the robustness of models to inputs is to perform vari-
able feature selection and calculate model errors resulting from
choosing different combinations of inputs. Other UQ approaches
include Bayesian methods such as Markov chain Monte Carlo, Bayes-
ian active learning, and variational auto encoders and ensemble
methods, which can be computationally expensive (Abdar
et al, 2021).

Additional UQ challenges to be addressed are the variability of
model performance from tuning hyperparameters due to stochastic
optimizers used for training (model uncertainty) and use of noisy mea-

surement data (measurement uncertainty). An approach to address
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model uncertainty is to use Monte Carlo dropout in model training,
wherein each node has a certain probability of being dropped out
(dropout rate) and not contributing to the model (Gal &
Ghahramani, 2016). Measurement noise should ideally be propagated
through the model, but computing required probability densities ana-
Iytically is possible only for specific types of activation functions
(Gast & Roth, 2018; Loquercio et al., 2020). Uncertainty quantification
methods that exploit and extend such approaches to obtain confi-

dence intervals for predictions are needed (Dumont et al., 2021).

3.8 | How do we integrate and assimilate relevant
datasets into ML models?

Water quality models rely on having access to high-quality, publicly
accessible data, and on software tools that enable data integration
and assimilation. Many ML studies use readily available off-the-shelf
products such as the catchment attributes and meteorology for large-
sample studies (CAMELS; Addor et al., 2017), which may impair their
extensibility to practical, realistic applications where such data may
not be available. Assimilation of new data into models using methods
such as ensemble Kalman filters and autoregression (Brajard
et al., 2020; Nearing, Klotz, et al., 2021; Zwart et al., 2021), and the
use of integrated datasets tailored for the problem can improve pre-
diction outcomes. Software that synthesize data for on-demand
queries such as brokering-based tools (Horsburgh et al, 2016;
Varadharajan et al., 2022), and methods to streamline quality control
and outlier detection, gap-fill, downscale observations, and determine
parameters for process models (Bennett & Nijssen, 2021; Campbell
et al, 2013; Hill & Minsker, 2010; Leigh et al, 2019; Mital
et al., 2020; Russo et al., 2020) would ideally be integrated into ML

workflows in parallel with advances in modelling approaches.

4 | CONSIDERATIONS FOR THE USE OF
ML IN WATER QUALITY MODELS

Water quality modelling poses several challenges regardless of
whether the approach involves ML, statistical, or process-based
codes. While each approach has its strengths and limitations, the ulti-
mate model choice, structure, inputs, and parameters would need to
take into account the following considerations.

4.1 | Process complexity

River water quality involves a wide range of physical
(e.g., temperature, turbidity, conductance), chemical (inorganic and
organic), and biological (e.g., bacteria, phytoplankton) parameters.
Each parameter can be affected by many natural and anthropogenic
factors including solute transport through runoff, groundwater
exchange, instream biogeochemical processes, and land use (Lintern,

Webb, Ryu, Liu, Bende-Michl, et al., 2018). For example, water

temperature is strongly driven by climate but can also be influenced
by snowmelt, groundwater influx, and reservoir and power plant oper-
ations (Caissie, 2006). Biogeochemical transformations such as redox
reactions, uptake of nitrogen, or respiration of dissolved organic car-
bon add process complexity for non-conservative constituents. Even
relatively conserved species such as salts can be affected by processes
such as road salt runoff, surface-groundwater interactions, and tidal
influence in coastal zones (Kaushal et al., 2018). Disturbances can
modify the extent to which different drivers control water quality -
e.g., drought increases groundwater influences on salinity and in-
stream biotic influences on nutrient transformation rates
(Mosley, 2015). The need for explicit representation of different pro-
cesses and their feedbacks in mechanistic models has resulted in
increasingly complex model structures, and larger parameter spaces
that are more difficult to constrain (Rode et al., 2010). ML approaches
present an alternative to process models for complex systems where
the dynamics are not fully understood, if sufficient data are available
through direct or proxy measurements. However, ML and especially
DL models with large sets of hyperparameters can also be complex
depending on many factors such as model design, optimization pro-
cess, and data dimensionality (Hu et al., 2021). An important aspect of
choosing a model is determining the right level of model complexity
required for the decisions to be made. Adding model complexity does
not necessarily improve performance, and will increase computational
and data requirements (Orth et al., 2015; Rode et al., 2010). Ideally,
the choice of a more complex model (e.g., a DL-based architecture) is
justified by comparing performance against some baseline lower-
complexity ML, statistical, or process models (e.g., multi-linear regres-

sion or persistence models).

4.2 | Scale, heterogeneity, and generalizability

The factors influencing riverine water quality can differ in space and
time ranging from local-scale surface groundwater fluxes and hypo-
rheic exchange (Sear et al., 1999), reach-scale habitat and riparian veg-
etation (Newcomer et al., 2021), watershed-scale geomorphology and
geology (Burns et al., 2020; Varanka et al., 2015), to regional-scale cli-
mate and land use patterns (Guo et al., 2019; Lintern, Webb, Ryu, Liu,
Waters, et al., 2018). Building models that translate across spatiotem-
poral scales and incorporate process understanding of heterogeneous
drivers is a significant challenge. Typically models have tried to cap-
ture catchment heterogeneity using characterizations of representa-
tive field sites from intense, multidisciplinary field investigations
(Brantley et al., 2017) or other (e.g., remote sensing) datasets. How-
ever, upscaling mechanistic understanding from data-rich small-scale
testbeds to other regions has been challenging, in part due to the spa-
tial heterogeneity of watershed characteristics and the need to have
computationally tractable models (Tang et al., 2019). Although param-
eter regionalization and classification of process-based models by
catchment have attempted regional scaling with mixed results
(Archfield et al., 2015), new approaches to bridge scales for key water
quality variables using ML are needed. Although ML models are
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typically scale-invariant, their implementation for predictions of a par-
ticular spatial and temporal scale may require different model archi-
tectures and inputs depending on the processes involved at each
scale. Recent hydrological studies explored the use of ML across spa-
tial scales (Gauch et al, 2021; Kratzert, Klotz, Herrnegger,
et al., 2019), and approaches such as transfer learning (Section 3.3)
can also be used to address this challenge. Finally, the effects of
human activity or natural disturbances can persist over long time-
scales (sometimes decades) requiring some models to include the
lagged effects of drivers. For systems where memory effects are sig-
nificant, ML models that use lagged variables or architectures that
support prior states (e.g., LSTM or other sequence models) are
warranted.

4.3 | Desired accuracy and computational
complexity

A key consideration for model choice is the extent of accuracy and
robustness needed to meet the stakeholder objectives (Section 4.5).
For example, daily reservoir operations have a much lower tolerance
for errors in streamflow and temperature predictions in comparison to
longer-term planning for climate change (Culhane et al., 1987). There
are tradeoffs to be made between model accuracy, complexity, and
computational costs. For example, classical ML models can be trained
with substantially lower computational expense and smaller datasets
(Hu et al., 2021), and are more interpretable (Rudin, 2019). Deep NN
can have lower prediction errors, but have many more parameters
than classical ML models thus requiring larger datasets and more com-
putational resources to train, and are more difficult to interpret (Hu
et al,, 2021; Reichstein et al., 2019).

44 | Data availability, integration, processing and
representation in models

Riverine water quality modelling typically requires the use of highly
diverse multi-scale, multimodal data (e.g., time-series data of flow and
solute concentrations, geospatial data such as soil layers and hydrog-
raphy, remote sensing data, or products of land cover and land use)
for parameterization and validation. Model data requirements depend
on the complexity, desired scale and resolution, and can be specific to
the management question at hand. The amount of data available
needs to be considered in choosing the ML model, with classical ML
approaches needing less data than DL models. Hybrid KGML models
(Section 3.2) and MTL (Section 3.3) can also be better suited for situa-
tions with sparse data.

A challenge for water quality modelling is that data are typically
sparse because many relevant parameters are measured infrequently
using laboratory characterization of manually collected samples, and
can be biased due to sampling network design, flow conditions, and
time of day when the samples were collected (Smith et al., 1997;

Zhang et al., 2019). In-situ sensor technologies that collect high-

resolution data only span a limited range of physical and chemical var-
iables (Kruse, 2018), although soft sensor surrogate modelling
approaches can be used to generate estimates of variables that are
not measured (Section 2). While spatially dense remote sensing obser-
vations can be difficult to obtain at sufficiently fine resolutions, there
are opportunities to bridge spatial scales by integrating limited point
measurements from monitoring networks with remote sensing esti-
mates of water quality (Ross et al., 2019; Topp et al., 2020). Autono-
mous observations from instruments such as aquatic drones guided
by ML (Castellini et al., 2019, 2020) is a future direction that could
enable data collection at larger scales.

Discovering, integrating, and processing data for models is also
challenging. Typically data of interest are spread across a myriad of
sources in different formats, and do not have sufficient metadata,
quality, or provenance information to support integration (Larsen
et al, 2016). Often co-located datasets on water quality and its
drivers are either not available or not easily discoverable. Data also
may need to be gap-filled and quality checked prior to use in a model.
In particular, water bodies with strong human influence are extremely
difficult to model and upscale because predictor datasets on activities
such as point source discharge, water withdrawals, and reservoir
releases are limited or not easily reusable. Thus many observations
are underutilized for ML despite large-scale consolidation efforts such
as the Water Quality Portal and GLORICH databases (Hartmann
et al., 2014; Read et al., 2017), because it is labor-intensive to harmo-
nize and process data (Shaughnessy et al., 2019; Sprague et al., 2017).
Recent efforts to make water data more broadly available and usable
such as the U.S. Open Water Data Initiative and the California open
water data system are essential for effective management and deci-
sion making (Blodgett et al., 2015; Cantor et al, 2021; Larsen
et al., 2016). Because data preparation is one of the most time-
consuming aspects of model development, the development of bench-
mark datasets following FAIR (Findable, Accessible, Reusable, Interop-
erable) principles (Wilkinson et al., 2016), and the use of automated
tools that make it easier to discover, synthesize, and assimilate data
(e.g., Section 3.8) can accelerate adoption of ML approaches.

4.5 | Data-driven decisions considering
stakeholder objectives

Data-driven decision making refers to the concept of making deci-
sions based on data analysis or modelling, and the use of ML for mak-
ing optimal decisions has been proposed for numerous applications
such as business intelligence, healthcare, network optimization, and
precision agriculture (Chen, Liu, & Peng, 2019; Liakos et al., 2018; Ma
et al., 2020; Provost & Fawcett, 2013). Water management is a com-
plex endeavour, and managers are tasked with making decisions at
local (e.g., temperature and salinity control in a reach) to regional
(e.g., integrated river basin management) spatial scales. The lead times
needed for different decisions can be very different (DeFlorio
et al., 2021; Sene, 2016) ranging from months to years for long-term

planning (e.g., capital investments, climate adaptation), weeks to
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months for seasonal water supply management (e.g., drought and
snowmelt forecasting), and hours to weeks for tactical operations and
emergency response (e.g., daily reservoir operations, spill mitigation).
Water quality management can be especially challenging given the
range of variables that are typically regulated (e.g., temperature, salts,
oxygen, nutrients, metals, organics) and the diffuse nature of their
sources and sinks. Models used for water quality management serve
exploratory, planning, or regulatory purposes, which have different
requirements for acceptable accuracies, uncertainties, and biases
(Harmel et al., 2014).

Ultimately, it is important to consider stakeholder needs and
available resources in deciding the appropriate complexity, scale, and
resolution of the models. For example, many ML models have been
developed for operational decisions that have short lead times
(e.g., near-term forecasting), and are typically focused on predictions
of a single variable although multitask learning approaches are being
explored (e.g., Sadler et al., 2022; Zhu & Piotrowski, 2020; Zwart
et al.,, 2021). ML models can also be run with substantially less compu-
tational expense than process models, and thus can be used to
explore different scenarios for decision-making. Early stakeholder
engagement can help determine desired objectives, accuracies, and
lead times (Castilla-Rho, 2017; White, 2017), which could be enabled
through collaborations between hydrological/water quality experts
and data scientists with stakeholders such as watershed managers,
regulators, and the public (Sun & Scanlon, 2019). Additionally, incor-
porating explainable Al approaches into decision frameworks will be
important to increase transparency and build stakeholder trust in
model projections. Finally, there are ethical considerations regarding
the use of ML for decision-making, which include examining algorith-
mic assumptions, data bias and quality, and human-derived decision
rules (Lo Piano, 2020).

In summary, ML paired with other emerging technologies such as
cloud and exascale computing, 5G networks, and big data tools has
the potential to significantly advance data-driven decisions and
knowledge discovery for watershed and water quality management
(Hubbard et al., 2020; Sun & Scanlon, 2019). The field of ML, and
more broadly Al, has had a long history of developing other relevant
technologies that are not discussed here including intelligent agents,
decision theory, and reinforcement learning, which warrant further
consideration in data-driven decision support systems for watershed
management (Russell & Norvig, 2020). The potential for improving
water quality models using ML can be realized by making deliberate
choices for model selection, design, and evaluation based on the
above considerations and incorporating the latest computational and

mathematical advances.

5 | CONCLUSIONS

Improving water quality models for timely, decision-relevant predic-
tions would be beneficial in the face of climate and land use change,
growing populations, and a greater likelihood of extreme events.
Water quality modelling poses many challenges due to the diversity of
parameters and processes involved, the need for scaling, and data

availability. The rapid growth in use of the state-of-the-art ML and DL
models in hydrology, and recent computational and mathematical
advances have demonstrated the potential for using ML for water
quality modelling. Models can be improved using new approaches for
model selection, hyperparameter optimization, knowledge-guided ML,
transfer learning, new representations for complex data, explicit treat-
ment for extremes, UQ, and explainable Al methods. At the same
time, development of tools to integrate and process observational
datasets, and methods for data assimilation would enhance the use of
ML for water quality modelling. For decision-relevant predictions,
consideration of stakeholder needs in model selection and evaluation
of trade-offs between desired accuracy, complexity, timeliness, and
available data and computational resources are important. With
thoughtful implementation, ML models have the potential to acceler-
ate decision-relevant predictions and process understanding of river

water quality.
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