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This erratum is meant to correct a mistake in the Appendix of our original article, “Stationary
inviscid limit to shear flows”. Specifically, the way in which we have constructed our (high
order in ¢)“boundary layer” terms, [u},, v },], and [uf,, 1)12,] in (65) - (66) of that paper needs to
be modified. The modification, which we shall first explain, then establish rigorously, has no
bearing on the body of the proof since it makes these “boundary layer terms” weaker in fact.

The conclusion is that the main theorem, Theorem 1, holds as stated in the original paper, with
the modification that the expansion/ approximate solution is taken to be (3) - (5) of the present
Erratum, as opposed to the one written in equation (6) of the original manuscript.

Let us start by describing the quantity u }). Recall from (99) of the original paper that we first

construct u},’o’i, then cut it off to form u}]. We focus thus on the quantity u},’o’f, which satisfies

the following equation:

udeuy®~ =0y uy%" =0, (x,Y_) € (0, L) x (0, 00). 1)
Recalling from Y_ was defined in that paper via Y_ = %, and pu(y) = 1/ (0)y + 0(»y?) for

y << 1, this system reads (temporarily omitting the O(y~) terms from w(y), which will be
shown rigorously to be higher order in ¢)

2 OY_0,u > — 83 ul®" =0,  (x,¥_) € (0,L) x (0, ). )
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The estimates stated in (108), (109) of Lemma 12 of the original paper do not, however, apply to

this system, due to the unrecognized scaling factor of €7 in front of the dy term, above. This was
the source of error, which we correct in this erratum.

Let us now explain the reason for this anomaly. One can observe that the leading order of our
approximate solution, (65) - (66), only contains a w(y), (which, in particular, satisfies ;£ (0) = 0)
and does not require a leading order boundary layer. Therefore, we should not expect the strong
boundary layer scaling of (68) (even at higher orders in ¢). Instead, we should expect a much
weaker boundary layer to form at these high orders in & (u',, v!).

To correct this, we make the change: Y := -2 (see below (8) for the precise piecewise defini-
e3

tion), and to accompany this change, we modify the approximate solution to progress at order 831 ,
see below (3) - (5). The consequence of this milder scaling is that the boundary layer equations
become now uniform in . These are shown below in (35a) - (35¢), and are analyzed in Lemma 2.
The outcome of this modified construction is that we can keep estimates of the type claimed
in Lemma 12 of the original paper (stated below in Corollary 4), and the contributed forcing
Fu, Fy defined in (10) - (11) meets the need for estimate (120) in the original paper altogether.

A.l. Formal asymptotic expansion

We define the asymptotic expansions:

My
i—1 - - 3 3
us=M+Z€1+T(u’e+u;)+87+yu=us+87+Vu 3)
i=1
Mo i—1 1 3 3
va:Zel+%(vé+£§v;)+87+yv=vs+85+Vv )]
i=1
Mo i—1 2 ; 3 3
PE =) e T (Pl 4+ (Py+e3 PR+ P =P 4637 P, )
i=1

We will also introduce the notation

My My

E 1+ E 1+i=L

u; ::,u~|—§ et ul, v, :=E et ©)
i=1 i=1

Denote u® = (4%, v®), and Let (u®, P?) solve the Navier-Stokes equations
ué - Vut + VP =¢Auf in Q,

V-u®=0in Q, @)
ul,—0 =0, vy =uy.
Above, M\ generically denotes a large number, which we shall now fix at My = 6 for concrete-
ness.

Here the Eulerian profiles are functions of (x, y), whereas the boundary layer profiles are
functions of (x, Y), where:
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2-y.
Yy = —if1<y=<2,

3

Y= ®)

£
Y_::%ifOSygl.
e3

Due to this, we break up the boundary layer profiles into two components, one supported near
y =0 and one supported near y = 2 in the following manner:

b (x, Y)if0<y <1,

w(x,Y)=1{"! 9

(1) u oY) ifl <y <2. ©)

Notice that due to our scaling, we have 8yui, = i%ayui, when 0 <y <1 and 8yufp = —i%ayu;
when 1 <y < 2. We define the error caused by the approximation:

Fu =us0xug + v0yus + 0y Py — £ Aug (10)

Fo =us0x Vs + 050y V5 + 9y Py — £ Avy. (11

Our construction will ensure the estimates (63).
A.2. Euler equations

We remark that this section, the construction of Euler profiles, remains essentially unchanged
from the original manuscript. We include it here for the sake of completeness. The equations
satisfied by the first Euler layer are obtained by collecting the O(g) order Euler terms from (10)
- (11), and are now shown:

il + vl o Pl =1 ()
1 1
Uoxv, +9,P, =0,
Xl e }1 e (12)
Oxit, +dyv, =0,
1 _yl 1 _yl 1 _ 1 _

ve |X=0 - VO’E(y)ﬂ ve |X=L - VL’E(y)ﬂ ve |y=0 - ve |y=2 - 0
We note that we prescribe data on the sides for these Euler profiles through the functions
Vol’ (), VLI, £(¥). These functions will satisfy standard elliptic compatibility conditions at the

corners of our domain (0, 0), (L, 0), (0,2), (L, 2).
By going to the vorticity formulation, we arrive at the following problem:

X

—phAvy + vy =" (), vply=0=vily=2 =0, u,:= / vy (13)
0

We will make the assumptions that:

MN M/”
—, — vanish at high order at y =0, 2. (14)
7
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According to (14), we divide (13) by u to obtain:

" n
| B o 1
—Av, + 0 v, = P V,ly=0,2 =0. (15)

The system satisfied by the rest Euler layers is shown here (i =2, ...6):

wdyul + vl + 8, Pl =0
Wdyvl 48, PL =0,

. . (16)
dxity + dyv, =0,
, . . . . - . -
U;|x:0 = V(;’E(Y)s Ué|x:L = Vi,E(Y)’ U;|y:2 = _U;; |y:2» vé|y:0 = _U;; |y:0-
Going to vorticity produces the homogeneous system:
— AV 4 "0l =0, (17)

This procedure contributes the error terms to the remainder (analogous to equations (96), (97) in
the original paper)

Cruteru ' =wE — )3yl — ) +vE Wk — p) —eAWE — ), (18)
Cruter,v :=E — 1), vE +vEd0E — eAvE . (19)

We can observe that Ceyier.y, CEuler.v are 0(&?). The following follow from standard elliptic
theory:

Lemma 1. Assume (14), and that Vé’ £ Vi" g» 1 =1,2...6 are prescribed smooth functions sat-
isfying standard elliptic compatibility conditions for arbitrary order. Then there exist unique
solutions, (u’,,v.), i =1,2...6 to (12) and (16) that are regular:

e’ e
n

oo ful, vl S co(5=) x Crp fori = 1,2..6. (20)
"

A.3. Boundary layer equations

Recalling the fact that ;(y) ~ y when y — 0, and the boundary layer profiles are broken into
two components, one supported near y = 0, ui;_, and one supported near y = 2, ui;+. In the
following we will only give the construction of ui,f @if up = 0, the construction of u’};Jr is the
same as uf,;_, while the case if u;, > a > 0 is much simpler, as © does not vanish at y = 2).

Using (12) the leading 0(8%) terms for the boundary layer profiles from (10) are:
1 -1 1 1 7 -1 1 1
R, =¢ S;LBxup+vpu +¢ 3BXP‘,,—Byyup, 21
and the leading terms for (11) are:
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Ry =dyP, =0. (22)

Then to construct u},’f, using (14) and the fact that 1 (y) = 1/ (0)y + O (y%) when y — 0, we
first consider the following system:

1 ) Y_d.up®™ +v},° +87%3XP1£—8y7Yiu},’0’_=O, oy Pl =0,

10‘|x 0=0, ub® Ty o= —ulx,0), up® Iy 0o =0, (23)

_f 10—
Y_

First it is easy to obtain P; =0, and thus

W (O)Y_a w4+ —ay v u};"*‘ =0,
1,0,— 1,0,—
" lx=0=0, up ly_=0=—u, (x 0), up ly_ 500 =0, (24)
10— f 10—
=Jr_
Note that we construct u},o ;,O on (0, L) x (0, 00). We now cut-off these layers and make
a higher order error:
by LS S by
1,— e3r— 10— &7, &1 1,0,— 1,— 31— 1,0—
= T — — vy, v, = v, 25
= x o0 = S (5 [ e (25)
0

here ap > 0 is a fixed constant small enough. u ,,O + v}, 0t u}, + v}, '+ are defined analogously,

and we omit these details. We then define:

1.— .
u, (x,Y_)if0<y<l,

uhoe, vy =1 =Y (26)
up T (x, Y ifl<y<2,

and

1.— .
v, (x,Y_)ifO<y<lI,

U’I’(X’Y):{u[f’*(x Y,)if 1 <y @7
p , Fy 1 _y§2

Note that due to the cut-off in (25), u},, vl are smooth. After cut-off, the contribution to the next

)4
layer are
/ 10— (28)
0

We also obtain another error, due to approximating £73 @ by Y_ in the support of the cut-off

1 1 _ 1 1 _ I 2 _
Clur = —&3Y v 07 +3—e3 X oyu, ™ + 3565, u, 0" +

ow| -

1
function X(%), and by approximating w’ by 1. This is defined by
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_1 y _ 1 - y -
Capprox =73 1(y) — Y)(x(%wxu};o’ e Ul (i - l)x(%)v};o’ (29)
Finally, we have higher order terms that contribute to the error:

S
Cluad =2 (ul 4 u! »)0x u + &%u Bxui—i—e?vjul,y—i—ew}, Ugy +&%v u},y pxx (30)

For the higher order terms in the second equation, we will use our auxiliary pressure to move it
to the top equation. This is achieved by defining the first auxiliary pressure, P;’a to zero out the
terms contributed from

s%( +8u1)v +eul (sv +83v )+€2 11 +<93v1v1 +8%vlv1
H e ex p pY p-ey
3y! 3 ipla—, 31
—&3vyy — ¢ vpxx+8 oy = 31
which therefore motivates our definition of
o)
—e3 Pyt [ (o3 u ot eubvg, +eul(evt, + o)) + +edulo!
= Wt EUIV,, + el (EV,, + €3 v sveva €3V, ,y
Y
T 31 T /
+E30,0,, —€3V,yy — €3V, AV (32)
As aresult, we can define the forcing for the next order Prandtl layer via
2 3 1 1 1 2 1,
FO .= 3(—8?th+8 capp,0x+cquad—ssaxppa). (33)

Computing the higher order forcing terms works in a nearly identical manner, so we do not repeat
those formulas here. We thus derive the general equation that we study for the boundary layer
profiles for 1 <i < My — 1 (that is, all but the last layer):

W OYuh> ™ +vi0 —a2ut0 = FO  (x,¥)e(0,L)x (0,00)  (34a)
" (x,0) = —ul(x,0), ylimoougo’_(x’ =0, (30)

uO o = Ub(Y). (34c)

Let us therefore consider the abstract problem (dropping indices):

W OYdu+v—iu=F,  (x,Y)e(0,L)x(0,00) (35a)
0
- / d.udy’, (35b)
Y
ulx=0 = Uo(Y), uly=0 = g(x), uly o0 =0. (35¢)

For this abstract problem, we obtain the following estimates:
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Lemma 2. Assume standard parabolic compatibility conditions on Uy(Y). Fix a large K >> 1.
Assume also that Uy(Y) decay rapidly at infinity:

le¥ oL Up| S 1for0<l<K. (36)

There exists (u, v) unique solutions to (35a) — (35c) that satisfy the following estimates:

l\)‘| =

[(1 4+ Y)" 3534 {u, v} < co(F, &) X Cpy s for any 2k +1 < (37)

Proof. First, a standard homogenization enables us to consider the Dirichlet problem, g =0, up
to modifying the forcing F. Indeed, fixing a cut-off function x (Y) so that x (0) =1, x(Y) =0,
when Y > 2, and fOOO x(Y")dY’ =0, we can consider the unknowns

Y
i:=u— x(Y)g(x), U:=v+ 0, g(x) / x(Y)Hay’. (38)
0

These will satisfy the system

W (0)Ydii + 0 — d3ii = F, (x,Y) € (0,L) x (0, 00) (39a)
o0

b= / d i dy’, (39b)
Y

iily—0=Uo(Y),  dily=0=0,  iily—o0o=0. (39c)

Above, the modified forcing

Y
Fim F = Yx(V)arg(x) + 0, 5(x) / X +02xg. (40)
0

We now drop the i, v notation, and simply consider the homogenized problem above.
We multiply by —dyv and integrate to get the identity

a [o/0] o0 1 [o/0]
%/u%dY—l—/Y,u’(O)wxmde—i—Ev(x,O)zz—/Fayde. (41)
0 0 0

We estimate the term on the right-hand side by localizing to x (¥ > 1) and x (Y < 1). First, for
x (Y > 1), we simply use Cauchy-Schwartz and absorb the dyv term to the left-hand side as Y
is non-degenerate. For x (Y < 1), we proceed as follows. Integrating now in x € (0, xg), where
xo<L,
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X0 00 X0

l 2 dy / 2 1 2

> / us dy + /M(O)Ylaxm dY+2/v(x,0) (42)
X=XQ 00 0
Xp o0

:/[Faxux(ygl)+%/u§dy. (43)
00 x=0

Integrating the right-hand side by parts in x, we get

Xp 00 Xp 00
//Faxux(Ys1>=—f/axFux<Ysl)+ / Fux(Y <1)
00 0 0 X=X0
- / Fux(¥ < 1), 4d)
x=0

All of the above terms are easily controlled by noticing that |u| < VY |luy || 2> as u(0) =0.
Consequently we have

L 00
/Yuﬁdydx+/v2(x,0)dx+ sup /u%dYﬁC(HFlli]. +1Uol1%,) (45)
x€[0,L]
Q 0 0

Then we differentiate (39a) once in Y to obtain
1 (0)Yuyy — d3uy = Fy. (46)

As uy — 0 when ¥ — oo, we have uxlv—o = [ dyud¥ = [L L(Fy(0,Y) + 83 Up). Simi-
larly, we can obtain 3)15 u|x=0. Then we can clearly repeat the above after commuting 3)16‘ with the
equation (it commutes perfectly) to get that, for any k >0

L 00
f Y (0% uy)2dYdx + /(afv)z(x, 0)dx + sup /(a)’guy)%zy <CUIfI15 + U130
x€[0,L]
0 0

Q
(47)

To get weighted estimates, we can repeat the exact estimates inductively by applying multipliers
of the form —vy (1 + Y)™ and then repeat the above after commuting 8{? with the equation. O

For i = My, we need to slightly modify the abstract problem we are considering. Consider
now:

W OYdu+v—03u=F,  (x,Y)e (0, L)x (0,00) (48a)
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Y
vi= —/axu dy’, (48b)
0
ulx=0 = Up(Y), uly—o = g(x), dyutly—oc =0. (48¢)

Compared to (35a) — (35¢), the key difference is that v(x, 0) = 0 here.
Lemma 3. Assume the data Uy from (48c¢) satisfies, for some K >> 1,
le¥ 8L Up| S 1for0<l<K. (49)

There exist unique solutions, (u, v), to (48a) — (48c), satisfying the following estimates:

K
I(1+ V)" 8%8bu] < co(F, g) x Cops foranym >0,1>1,1 <2k +1< = (0
k v K
|95, S} < co(F, ) x Cy for any 0 <2k < —, (51)

Proof. We cannot proceed as in Lemma 2 due to the lack of decay in v as Y — oo. Instead, we
differentiate once in Y to obtain the simplified system

W (0)Ydy (uy) — dpuy = Fy, (x,Y) e (0, L) x(0,00), (52)
oyuyly—=0o=—F(x,0), uyly oo =0. (53)

This system admits smooth solutions for uy which obey estimates (50). Once uy has been con-
structed, we recover (u, v) via

Y

Y
u:g(x)+/uy, v:—faxu. O (54)
0

0

From here, we can recover the analogue of the estimates of Lemma 12 in the original paper:

Corollary 4. Define Uéi)(Y) = Mfl,|x:0- Assume |8§, Uéi)(Y)eY| Sl jforall0 <l <K for some
K >> 1. Then ui,, v; satisfy the following estimates for any m > 0:

"

(14 Y)"9%9) (ul, v} < co(%) X Coupsfor 1 <i < Mo—1 (55)

|1+ Y)" 90y < co<“7w> X Cp 1 for 1> 1, (56)

|05 {u)o, ”L?H < co<“7m> X Con kol (57)
so long as 2k +1 < %
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Proof. This follows immediately upon applying Lemma (2) to the system (34a) — (34c), and
invoking the formulas (25) to recover u),, v), after cutting them off. O

We now collect the forcing terms which contribute to the remainder equation, namely the
expressions for F,, F,. Indeed, we will have the expressions:

My m, My M
Fui=el T3 000 pelt5cMo 4 oo

approx quad + CEuler,u , (58)

Mo 2, Moy 2, My Mo
Fu =t usaxvgl" +e3t3 vsv%? +e3T3 9, (v — gt vglo)ug’[‘)
Mo Moy Mo
+e 3000y (v — &' 000 — AT 0)0) + Cruter,o (59)
where we have defined the Euler contributions to the error in (18) and (19).

A corollary to our construction is, by taking M sufficiently large (the choice My = 6 will
suffice), we can decompose (as in (114) of the original paper)

Fu=7;82+]: 7, szlﬁ)gl‘i“/—" 7, (60)
’ u,e3 ’ v,e3
where we define
Tu.e2 =2 (uloul +oloyul — Auly =Ty, (61)
To.e2 =l vy + 019y} — Av)) = &Th. (62)
We subsequently obtain for arbitrary order k,
7
IF  2ller +IIF 7ller Se3, l<p=oo, (63)
u,e3 v,e3
T2 M/// M///
171, =2 < co(—), IT1, Toll gx Sk co(—). (64)
y 5 w
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