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This erratum is meant to correct a mistake in the Appendix of our original article, “Stationary 
inviscid limit to shear flows”. Specifically, the way in which we have constructed our (high 
order in ε)“boundary layer” terms, [u1

p, v1
p], and [u2

p, v2
p] in (65) - (66) of that paper needs to 

be modified. The modification, which we shall first explain, then establish rigorously, has no 
bearing on the body of the proof since it makes these “boundary layer terms” weaker in fact.

The conclusion is that the main theorem, Theorem 1, holds as stated in the original paper, with 
the modification that the expansion/ approximate solution is taken to be (3) - (5) of the present 
Erratum, as opposed to the one written in equation (6) of the original manuscript.

Let us start by describing the quantity u1
p. Recall from (99) of the original paper that we first 

construct u1,0,±
p , then cut it off to form u1

p . We focus thus on the quantity u1,0,−
p , which satisfies 

the following equation:

μ∂xu
1,0,−
p − ∂2

Y−u1,0,−
p = 0, (x,Y−) ∈ (0,L) × (0,∞). (1)

Recalling from Y− was defined in that paper via Y− = y√
ε
, and μ(y) = μ′(0)y + O(y2) for 

y << 1, this system reads (temporarily omitting the O(y2) terms from μ(y), which will be 
shown rigorously to be higher order in ε)

ε
1
2 μ′(0)Y−∂xu

1,0,−
p − ∂2

Y−u1,0,−
p = 0, (x,Y−) ∈ (0,L) × (0,∞). (2)
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The estimates stated in (108), (109) of Lemma 12 of the original paper do not, however, apply to 
this system, due to the unrecognized scaling factor of ε

1
2 in front of the ∂x term, above. This was 

the source of error, which we correct in this erratum.
Let us now explain the reason for this anomaly. One can observe that the leading order of our 

approximate solution, (65) - (66), only contains a μ(y), (which, in particular, satisfies μ(0) = 0) 
and does not require a leading order boundary layer. Therefore, we should not expect the strong
boundary layer scaling of (68) (even at higher orders in ε). Instead, we should expect a much 
weaker boundary layer to form at these high orders in ε (ui

p, vi
p).

To correct this, we make the change: Y := y

ε
1
3

(see below (8) for the precise piecewise defini-

tion), and to accompany this change, we modify the approximate solution to progress at order ε
1
3 , 

see below (3) - (5). The consequence of this milder scaling is that the boundary layer equations 
become now uniform in ε. These are shown below in (35a) - (35c), and are analyzed in Lemma 2.

The outcome of this modified construction is that we can keep estimates of the type claimed 
in Lemma 12 of the original paper (stated below in Corollary 4), and the contributed forcing 
Fu, Fv defined in (10) - (11) meets the need for estimate (120) in the original paper altogether.

A.1. Formal asymptotic expansion

We define the asymptotic expansions:

uε = μ +
M0∑
i=1

ε1+ i−1
3 (ui

e + ui
p) + ε

3
2 +γ u = us + ε

3
2 +γ u (3)

vε =
M0∑
i=1

ε1+ i−1
3 (vi

e + ε
1
3 vi

p) + ε
3
2 +γ v = vs + ε

3
2 +γ v (4)

P ε =
M0∑
i=1

ε1+ i−1
3 (P i

e + (P i
p + ε

2
3 P

i,a
P )) + ε

3
2 +γ P = Ps + ε

3
2 +γ P . (5)

We will also introduce the notation

uE
s := μ +

M0∑
i=1

ε1+ i−1
3 ui

e, vE
s :=

M0∑
i=1

ε1+ i−1
3 vi

e (6)

Denote uε = (uε, vε), and Let (uε, P ε) solve the Navier-Stokes equations

⎧⎪⎨
⎪⎩

uε · ∇uε + ∇P ε = ε�uε in �,

∇ · uε = 0 in �,

uε|y=0 = 0, uε|y=2 = ub.

(7)

Above, M0 generically denotes a large number, which we shall now fix at M0 = 6 for concrete-
ness.

Here the Eulerian profiles are functions of (x, y), whereas the boundary layer profiles are 
functions of (x, Y), where:
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Y =

⎧⎪⎪⎨
⎪⎪⎩

Y+ := 2 − y

ε
1
3

if 1 ≤ y ≤ 2,

Y− := y

ε
1
3

if 0 ≤ y ≤ 1.

(8)

Due to this, we break up the boundary layer profiles into two components, one supported near 
y = 0 and one supported near y = 2 in the following manner:

ui
p(x,Y ) =

{
ui,−

p (x,Y−) if 0 ≤ y ≤ 1,

ui,+
p (x,Y+) if 1 ≤ y ≤ 2.

(9)

Notice that due to our scaling, we have ∂yu
i
p = 1

ε
1
3
∂Y ui

p when 0 ≤ y ≤ 1 and ∂yu
i
p = − 1

ε
1
3
∂Y ui

p

when 1 ≤ y ≤ 2. We define the error caused by the approximation:

Fu = us∂xus + vs∂yus + ∂xPs − ε�us (10)

Fv = us∂xvs + vs∂yvs + ∂yPs − ε�vs. (11)

Our construction will ensure the estimates (63).

A.2. Euler equations

We remark that this section, the construction of Euler profiles, remains essentially unchanged 
from the original manuscript. We include it here for the sake of completeness. The equations 
satisfied by the first Euler layer are obtained by collecting the O(ε) order Euler terms from (10)
- (11), and are now shown:

μ∂xu
1
e + μ′v1

e + ∂xP
1
e = μ′′(y)

μ∂xv
1
e + ∂yP

1
e = 0,

∂xu
1
e + ∂yv

1
e = 0,

v1
e |x=0 = V 1

0,E(y), v1
e |x=L = V 1

L,E(y), v1
e |y=0 = v1

e |y=2 = 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(12)

We note that we prescribe data on the sides for these Euler profiles through the functions 
V 1

0,E(y), V 1
L,E(y). These functions will satisfy standard elliptic compatibility conditions at the 

corners of our domain (0, 0), (L, 0), (0, 2), (L, 2).
By going to the vorticity formulation, we arrive at the following problem:

−μ�v1
e + μ′′v1

e = μ′′′(y), v1
e |y=0 = v1

e |y=2 = 0, u1
e :=

x∫
0

v1
ey. (13)

We will make the assumptions that:

μ′′

μ
,
μ′′′

μ
vanish at high order at y = 0,2. (14)
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According to (14), we divide (13) by μ to obtain:

−�v1
e + μ′′

μ
v1
e = μ′′′

μ
, v1

e |y=0,2 = 0. (15)

The system satisfied by the rest Euler layers is shown here (i = 2, ...6):

μ∂xu
i
e + μ′vi

e + ∂xP
i
e = 0

μ∂xv
i
e + ∂yP

i
e = 0,

∂xu
i
e + ∂yv

i
e = 0,

vi
e|x=0 = V i

0,E(Y ), vi
e|x=L = V i

L,E(Y ), vi
e|y=2 = −vi−1

p |y=2, vi
e|y=0 = −vi−1

p |y=0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(16)

Going to vorticity produces the homogeneous system:

−μ�vi
e + μ′′vi

e = 0. (17)

This procedure contributes the error terms to the remainder (analogous to equations (96), (97) in 
the original paper)

CEuler,u :=(uE
s − μ)∂x(u

E
s − μ) + vE

s ∂y(u
E
s − μ) − ε�(uE

s − μ), (18)

CEuler,v :=(uE
s − μ)∂xv

E
s + vE

s ∂yv
E
s − ε�vE

s . (19)

We can observe that CEuler,u, CEuler,v are O(ε2). The following follow from standard elliptic 
theory:

Lemma 1. Assume (14), and that V i
0,E, V i

L,E, i = 1, 2...6 are prescribed smooth functions sat-
isfying standard elliptic compatibility conditions for arbitrary order. Then there exist unique 
solutions, (ui

e, v
i
e), i = 1, 2...6 to (12) and (16) that are regular:

|∂l
x∂

m
y {ui

e, v
i
e}| � c0(

μ′′′

μ
) × Cl,k for i = 1,2...6. (20)

A.3. Boundary layer equations

Recalling the fact that μ(y) ∼ y when y → 0, and the boundary layer profiles are broken into 
two components, one supported near y = 0, ui,−

p , and one supported near y = 2, ui,+
p . In the 

following we will only give the construction of ui,−
p (if ub = 0, the construction of ui,+

p is the 
same as ui,−

p , while the case if ub > a > 0 is much simpler, as μ does not vanish at y = 2).

Using (12) the leading O(ε
4
3 ) terms for the boundary layer profiles from (10) are:

R1
u = ε− 1

3 μ∂xu
1
p + v1

pμ′ + ε− 1
3 ∂xP

1
p − ∂YY u1

p, (21)

and the leading terms for (11) are:
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R1
v = ∂Y P 1

p = 0. (22)

Then to construct u1,−
p , using (14) and the fact that μ(y) = μ′(0)y + O(y2) when y → 0, we 

first consider the following system:

⎧⎪⎨
⎪⎩

μ′(0)Y−∂xu
1,0,−
p + v

1,0,−
p + ε− 1

3 ∂xP
1
p − ∂Y−Y−u

1,0,−
p = 0, ∂Y P 1

p = 0,

u
1,0,−
p |x=0 = 0, u

1,0,−
p |Y−=0 = −u1

e(x,0), u
1,0,−
p |Y−→∞ = 0,

v
1,0,−
p = ∫ ∞

Y− ∂xu
1,0,−
p

(23)

First it is easy to obtain P 1
p ≡ 0, and thus

⎧⎪⎨
⎪⎩

μ′(0)Y−∂xu
1,0,−
p + v

1,0,−
p − ∂Y−Y−u

1,0,−
p = 0,

u
1,0,−
p |x=0 = 0, u

1,0,−
p |Y−=0 = −u1

e(x,0), u
1,0,−
p |Y−→∞ = 0,

v
1,0,−
p = ∫ ∞

Y− ∂xu
1,0,−
p

(24)

Note that we construct u1,0,−
p , v1,0,−

p on (0, L) × (0, ∞). We now cut-off these layers and make 
a higher order error:

u1,−
p = χ(

ε
1
3 Y−
a0

)u1,0,−
p − ε

1
3

a0
χ ′(ε

1
3 Y−
a0

)

x∫
0

v1,0,−
p , v1,−

p := χ(
ε

1
3 Y−
a0

)v1,0,−
p (25)

here a0 > 0 is a fixed constant small enough. u1,0,+
p , v1,0,+

p , u1,+
p , v1,+

p are defined analogously, 
and we omit these details. We then define:

u1
p(x,Y ) =

{
u

1,−
p (x,Y−) if 0 ≤ y ≤ 1,

u
1,+
p (x,Y+) if 1 ≤ y ≤ 2,

(26)

and

v1
p(x,Y ) =

{
v

1,−
p (x,Y−) if 0 ≤ y ≤ 1,

v
1,+
p (x,Y+) if 1 ≤ y ≤ 2.

(27)

Note that due to the cut-off in (25), u1
p, v1

p are smooth. After cut-off, the contribution to the next 
layer are

C1
cut = 1

a0
ε

1
3 Yχ ′v1,0,−

p + 3
1

a0
ε

1
3 χ ′∂Y u1,0,−

p + 3
1

a2
0

ε
2
3 χ ′′u1,0,−

p + 1

a3
0

εχ ′′′
x∫

0

v1,0,−
p . (28)

We also obtain another error, due to approximating ε− 1
3 μ by Y− in the support of the cut-off 

function χ(ε
1
3 Y ), and by approximating μ′ by 1. This is defined by

a0
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C1
approx :=(ε− 1

3 μ(y) − Y)(χ(
y

a0
)∂xu

1,0,−
p + 1

a0
ε

1
3 χ ′u1,0,−

p ) + (μ′ − 1)χ(
y

a0
)v1,0,−

p (29)

Finally, we have higher order terms that contribute to the error:

C1
quad := ε2(u1

e + u1
p)∂xu

1
p + ε2u1

p∂xu
1
e + ε

5
3 v1

eu
1
pY + ε

7
3 v1

pu1
ey + ε2v1

pu1
pY − ε2u1

pxx. (30)

For the higher order terms in the second equation, we will use our auxiliary pressure to move it 
to the top equation. This is achieved by defining the first auxiliary pressure, P 1,a

p to zero out the 
terms contributed from

ε
4
3 (μ + εu1

e)v
1
px + εu1

p(εv1
ex + ε

4
3 v1

px) + ε2v1
e v

1
pY + ε

7
3 v1

pv1
pY + ε

7
3 v1

pv1
ey

− ε
5
3 v1

pYY − ε
7
3 v1

pxx + ε
4
3 P

1,a
pY = 0, (31)

which therefore motivates our definition of

−ε
4
3 P

1,a
P :=

∞∫
Y

(
ε

4
3 (μ + εu1

e)v
1
px + εu1

p(εv1
ex + ε

4
3 v1

px) + εv1
e v

1
pY + ε

7
3 v1

pv1
pY

+ ε
7
3 v1

pv1
ey − ε

5
3 v1

pYY − ε
7
3 v1

pxx

)
dY ′. (32)

As a result, we can define the forcing for the next order Prandtl layer via

F (2) := ε− 5
3

(
− ε

4
3 C1

cut + ε
4
3 C1

approx + C1
quad − ε

5
3 ∂xP

1,a
P

)
. (33)

Computing the higher order forcing terms works in a nearly identical manner, so we do not repeat 
those formulas here. We thus derive the general equation that we study for the boundary layer 
profiles for 1 ≤ i ≤ M0 − 1 (that is, all but the last layer):

μ′(0)Y ∂xu
i,0,−
p + vi,0,−

p − ∂2
Y ui,0,−

p = F (i), (x,Y ) ∈ (0,L) × (0,∞) (34a)

ui,0,−
p (x,0) = −ui

e(x,0), lim
Y→∞ui,0,−

p (x,Y ) = 0, (34b)

ui,0,−|x=0 = Ui
0(Y ). (34c)

Let us therefore consider the abstract problem (dropping indices):

μ′(0)Y ∂xu + v − ∂2
Y u = F, (x,Y ) ∈ (0,L) × (0,∞) (35a)

v :=
∞∫

Y

∂xudY ′, (35b)

u|x=0 = U0(Y ), u|Y=0 = g(x), u|Y→∞ = 0. (35c)

For this abstract problem, we obtain the following estimates:
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Lemma 2. Assume standard parabolic compatibility conditions on U0(Y ). Fix a large K >> 1. 
Assume also that U0(Y ) decay rapidly at infinity:

|eY ∂l
Y U0| � 1 for 0 ≤ l ≤ K. (36)

There exists (u, v) unique solutions to (35a) – (35c) that satisfy the following estimates:

|(1 + Y)m∂k
x ∂l

Y {u,v}| ≤ c0(F,g) × Cm,k,l for any 2k + l ≤ K

2
. (37)

Proof. First, a standard homogenization enables us to consider the Dirichlet problem, g = 0, up 
to modifying the forcing F . Indeed, fixing a cut-off function χ(Y ) so that χ(0) = 1, χ(Y ) = 0, 
when Y ≥ 2, and 

∫ ∞
0 χ(Y ′) dY ′ = 0, we can consider the unknowns

ũ := u − χ(Y )g(x), ṽ := v + ∂xg(x)

Y∫
0

χ(Y ′)dY ′. (38)

These will satisfy the system

μ′(0)Y ∂xũ + ṽ − ∂2
Y ũ = F̃ , (x,Y ) ∈ (0,L) × (0,∞) (39a)

ṽ :=
∞∫

Y

∂xũdY ′, (39b)

ũ|x=0 = Ũ0(Y ), ũ|Y=0 = 0, ũ|Y→∞ = 0. (39c)

Above, the modified forcing

F̃ := F − Yχ(Y )∂xg(x) + ∂xg(x)

Y∫
0

χ + ∂2
Y χg. (40)

We now drop the ũ, ṽ notation, and simply consider the homogenized problem above.
We multiply by −∂Y v and integrate to get the identity

∂x

2

∞∫
0

u2
Y dY +

∞∫
0

Yμ′(0)|∂xu|2 dY + 1

2
v(x,0)2 = −

∞∫
0

F∂Y v dY. (41)

We estimate the term on the right-hand side by localizing to χ(Y > 1) and χ(Y ≤ 1). First, for 
χ(Y > 1), we simply use Cauchy-Schwartz and absorb the ∂Y v term to the left-hand side as Y
is non-degenerate. For χ(Y ≤ 1), we proceed as follows. Integrating now in x ∈ (0, x0), where 
x0 ≤ L,
285
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1

2

∫
x=x0

u2
Y dY +

x0∫
0

∞∫
0

μ′(0)Y |∂xu|2 dY + 1

2

x0∫
0

v(x,0)2 (42)

=
x0∫

0

∞∫
0

F∂xuχ(Y ≤ 1) + 1

2

∫
x=0

u2
Y dY. (43)

Integrating the right-hand side by parts in x, we get

x0∫
0

∞∫
0

F∂xuχ(Y ≤ 1) = −
x0∫

0

∞∫
0

∂xFuχ(Y ≤ 1) +
∫

x=x0

Fuχ(Y ≤ 1)

−
∫

x=0

Fuχ(Y ≤ 1). (44)

All of the above terms are easily controlled by noticing that |u| � √
Y‖uY ‖L2

Y
, as u(0) = 0. 

Consequently we have

∫
�

Yu2
xdYdx +

L∫
0

v2(x,0)dx + sup
x∈[0,L]

∞∫
0

u2
Y dY ≤ C(‖F‖2

H 1 + ‖U0‖2
L2) (45)

Then we differentiate (39a) once in Y to obtain

μ′(0)YuxY − ∂2
Y uY = FY . (46)

As ux → 0 when Y → ∞, we have ux |x=0 = ∫ Y

∞ ∂Y uxdY = ∫ Y

∞
1
Y
(FY (0, Y) + ∂3

Y U0). Simi-
larly, we can obtain ∂k

xu|x=0. Then we can clearly repeat the above after commuting ∂k
x with the 

equation (it commutes perfectly) to get that, for any k ≥ 0

∫
�

Y(∂k
xux)

2dYdx +
L∫

0

(∂k
x v)2(x,0)dx + sup

x∈[0,L]

∞∫
0

(∂k
xuY )2dY ≤ C(‖f ‖2

Hk + ‖U0‖2
Hk )

(47)

To get weighted estimates, we can repeat the exact estimates inductively by applying multipliers 
of the form −vY (1 + Y)m and then repeat the above after commuting ∂k

Y with the equation. �
For i = M0, we need to slightly modify the abstract problem we are considering. Consider 

now:

μ′(0)Y ∂xu + v − ∂2u = F, (x,Y ) ∈ (0,L) × (0,∞) (48a)
Y
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v := −
Y∫

0

∂xudY ′, (48b)

u|x=0 = U0(Y ), u|Y=0 = g(x), ∂Y u|Y→∞ = 0. (48c)

Compared to (35a) – (35c), the key difference is that v(x, 0) = 0 here.

Lemma 3. Assume the data U0 from (48c) satisfies, for some K >> 1,

|eY ∂l
Y U0| � 1 for 0 ≤ l ≤ K. (49)

There exist unique solutions, (u, v), to (48a) – (48c), satisfying the following estimates:

|(1 + Y)m∂k
x ∂l

Y u| ≤ c0(F,g) × Cm,k,l for any m ≥ 0, l ≥ 1,1 ≤ 2k + l ≤ K

2
, (50)

|∂k
x {u,

v

Y
}| ≤ c0(F,g) × Ck for any 0 ≤ 2k ≤ K

2
, (51)

Proof. We cannot proceed as in Lemma 2 due to the lack of decay in v as Y → ∞. Instead, we 
differentiate once in Y to obtain the simplified system

μ′(0)Y ∂x(uY ) − ∂2
Y uY = FY , (x,Y ) ∈ (0,L) × (0,∞), (52)

∂Y uY |Y=0 = −F(x,0), uY |Y→∞ = 0. (53)

This system admits smooth solutions for uY which obey estimates (50). Once uY has been con-
structed, we recover (u, v) via

u = g(x) +
Y∫

0

uY , v = −
Y∫

0

∂xu. � (54)

From here, we can recover the analogue of the estimates of Lemma 12 in the original paper:

Corollary 4. Define U(i)
0 (Y ) := ui

p|x=0. Assume |∂l
Y U

(i)
0 (Y )eY | � 1 for all 0 ≤ l ≤ K for some 

K >> 1. Then ui
p, vi

p satisfy the following estimates for any m ≥ 0:

|(1 + Y)m∂k
x ∂l

Y {ui
p, vi

p}| ≤ c0(
μ′′′

μ
) × Cm,k,l for 1 ≤ i ≤ M0 − 1 (55)

|(1 + Y)m∂k
x ∂l

Y uM0
p | ≤ c0(

μ′′′

μ
) × Cm,k,l for l ≥ 1, (56)

|∂k
x {uM0

p ,
v

M0
p

Y
}| ≤ c0(

μ′′′

μ
) × Cm,k,l, (57)

so long as 2k + l ≤ K .
2
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Proof. This follows immediately upon applying Lemma (2) to the system (34a) – (34c), and 
invoking the formulas (25) to recover ui

p, vi
p after cutting them off. �

We now collect the forcing terms which contribute to the remainder equation, namely the 
expressions for Fu, Fv . Indeed, we will have the expressions:

Fu :=ε1+ M0
3 CM0

cut + ε1+ M0
3 CM0

approx + CM0
quad + CEuler,u, (58)

Fv :=ε1+ M0
3 us∂xv

M0
p + ε

2
3 + M0

3 vsv
M0
pY + ε

2
3 + M0

3 ∂x(vs − ε1+ M0
3 vM0

p )uM0
p

+ ε1+ M0
3 vM0

p ∂Y (vs − ε1+ M0
3 vM0

p ) − ε�(ε1+ M0
3 vM0

p ) + CEuler,v (59)

where we have defined the Euler contributions to the error in (18) and (19).
A corollary to our construction is, by taking M0 sufficiently large (the choice M0 = 6 will 

suffice), we can decompose (as in (114) of the original paper)

Fu = Tu,ε2 +F
u,ε

7
3
, Fv = Tv,ε2 +F

v,ε
7
3
, (60)

where we define

Tu,ε2 :=ε2(u1
e∂xu

1
e + v1

e ∂yu
1
e − �u1

e) = ε2T1, (61)

Tv,ε2 :=ε2(u1
e∂xv

1
e + v1

e ∂yv
1
e − �v1

e ) = ε2T2. (62)

We subsequently obtain for arbitrary order k,

‖F
u,ε

7
3
‖Lp + ‖F

v,ε
7
3
‖Lp � ε

7
3 , 1 ≤ p ≤ ∞, (63)

‖T1,
T2

ỹ
‖2 ≤ c0(

μ′′′

μ
), ‖T1, T2‖Hk �k c0(

μ′′′

μ
). (64)
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