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Abstract: Detecting small objects (e.g., manhole covers, license plates, and roadside milestones) in urban
images is a long-standing challenge mainly due to the scale of small object and background clutter. Although
convolution neural network (CNN)-based methods have made significant progress and achieved impressive
results in generic object detection, the problem of small object detection remains unsolved. To address this
challenge, in this study we developed an end-to-end network architecture that has three significant
characteristics compared to previous works. First, we designed a backbone network module, namely
Reduced Downsampling Network (RD-Net), to extract informative feature representations with high spatial
resolutions and preserve local information for small objects. Second, we introduced an Adjustable Sample
Selection (ADSS) module which frees the Intersection-over-Union (loU) threshold hyperparameters and
defines positive and negative training samples based on statistical characteristics between generated
anchors and ground reference bounding boxes. Third, we incorporated the generalized Intersection-over-
Union (GloU) loss for bounding box regression, which efficiently bridges the gap between distance-based
optimization loss and areabased evaluation metrics. We demonstrated the effectiveness of our method by
performing extensive experiments on the public Urban Element Detection (UED) dataset acquired by Mobile
Mapping Systems (MMS). The Average Precision (AP) of the proposed method was 81.71%, representing an
improvement of 1.2% compared with the popular detection framework Faster R-CNN.

Keywords: mobile mapping; deep learning; convolution neural network (CNN); object detection; small urban
elements; reduced downsampling network; adjustable sample selection
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1. Introduction

MMS have been used to accurately detect 2D/3D urban elements. Detection of large urban
structures based on mobile 3D point cloud data has yielded good results, with regard to pole-like
street furniture recognition [1-3], street trees detection [4], road surface reconstruction [5-7],
and building footprint extraction [8,9]. Three-dimensional point clouds of urban outdoor scenes
contain detailed complex information about objects and their backgrounds, and can help build

With the development of remote sensing technology, high-quality, fine spatial resolution optical remote sensing
data can be obtained readily and provides a promising data source for mapping urban elements. Aerial and satellite
images have been utilized for land use/land cover classification, building and cadastral identification, and transportation
infrastructure detection. However, some small urban elements (<0.6 m), such as manhole covers, milestones, and
license plates, are difficult to detect in aerial or satellite images (with spatial resolutions typically larger than 0.3 m)
when they often occupy less than 1% of an image. These kinds of small urban elements are important for building
detailed 3D city models, assisting autonomous driving, and monitoring and maintaining urban facilities. Mobile Mapping
Systems (MMS), which use multiple sensors (e.g., digital cameras, lidars, and global navigation satellite systems (GNSS))
operated on moving vehicles to collect geo-referenced 2D and 3D data, provide a cost-efficient solution to capture small

objects in complex urban areas.
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comprehensive 3D urban models. However, mobile 3D point cloud data, especially in an urban
scenario, are sparse in nature compared to 2D images, which makes it more challenging to detect
small objects [10]. Small urban elements in such sparse point cloud data are usually represented
as a few points and detection depends heavily on surface conditions. For example, manhole covers
are hardly distinguishable with 3D point cloud data, when the objects are occluded, during rain,
or when the road is icy. License plates and milestones are visible in only a few points and often
difficult to detect with mobile 3D point cloud data. Under such circumstances, high spatial
resolution 2D images acquired by MMS can provide more information-rich data sources, such as
perspective and bird’s eye view images, to detect small objects in urban environments.

Recently, research on the detection of small urban elements has gained rapidly growing
attention in support of urban applications. For instance, detection of manhole covers is critical for
managing and mapping the drainage system that is hidden in satellite images. Moreover,
milestones, which are groups of steles built from the start to the end of a road at equal lengths
per kilometer for accurate positioning, are important geographical landmarks for the
transportation system and require regular maintenance. Automatically locating and recognizing
milestones can greatly reduce the need for manual road inspections and maintenance to save
human and non-human resources. In addition, in order to employ MMS images for further
applications, such as releasing street views to the public, detection and blurring vehicle license
plates is an essential task for privacy protection because license plate numbers are considered as
personally identifiable information in some regions.

With the rapid evolution of deep learning technologies, convolution neural network (CNN)-
based approaches, such as Faster R-CNN [11], Feature Pyramid Networks (FPN) [12], You Only
Look Once (YOLO) [13—15], and Single Shot Detector (SSD) [16], have shown significant potential
in understanding image data, and have thus become the state-of-the-art methods to complete
object detection tasks. Compared to traditional object detection methods where feature
extraction requires a cumbersome trial-and-error process and depends on expert experience,
CNN-based models introduce a solution in an end-to-end fashion—neural networks learn the
underlying features and automatically extract sematic information.

Although CNN-based object detection algorithms have yielded promising results for natural
scenes, existing CNN-based models are challenged by small urban element detection because of
their unique properties. First, small urban elements occupy only a few pixels or a small proportion
of the whole image, suggesting that regular feature representation tends to be deficient. Generic
CNN-based models adopt AlexNet [17], VGGNet [18], GooglLeNet [19], ResNet [20], ResNeXt [21],
and SENet [22] architecture, which include a series of convolution and downsampling operations
for feature extraction. Deeper networks tend to have a large downsampling rate with a large
receptive field, which is practical and useful for classification by extracting robust feature maps,
but compromises localization capability due to high-resolution information loss in the output layer.
Furthermore, anchors generated by generic object detection CNN-based models may be too large,
which may lead to the loss of attention for small objects. Second, small objects such as manhole
covers are easily obstructed by non-target objects that are located at arbitrary locations in the
image. It is difficult to distinguish occluded small objects from a noisy urban background.

In this article, we propose a novel CNN-based framework that not only maintains high spatial
resolution in deeper networks but also yields efficient training samples to detect small objects in
urban environments. We designed a Reduced Downsampling Network (RD-Net) backbone to
extract feature representations. The Region Proposal Networks (RPN) module takes extracted
features from RD-Net as input and outputs a set of region proposals, which are rectangular
bounding boxes for possible locations of the objects. In the RPN module, an Adjustable Sample
Selection (ADSS) module was devised to select high-quality positive and negative training samples
according to statistical features of objects. By further propagating extracted feature maps and
region proposals into the Region of Interest (Rol) module, a pooling operation is adopted to crop
regions of the feature map, and more conspicuous object representations are learned to predict
object categories and locations. The main contributions of this study are summarized as follows:

1. We introduce a new backbone network, RD-Net, with low downsampling rate and small
receptive field which preserves sufficient local information. The proposed RD-Net can
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extract high spatial resolution feature representations and improve small urban element
detection performance.

2. ADSS module is adopted, which defines positive and negative training samples based on
statistical characteristics between the generated anchors and ground reference bounding
boxes. With this sample selection strategy, we can assign positive-negative anchors in an
adaptive and effective manner.

3.  We incorporate generalized Intersection-over-Union (GloU) loss for bounding box
regression to increase the convergency rate and training quality. GloU is calculated to
measure the extent of alignment between the proposed and ground reference bounding
boxes. With a unified GloU loss, we can bridge the gap between distancebased optimization
loss and area-based evaluation metrics.

To evaluate the performance of our proposed model, we conducted extensive experiments
on the public Urban Element Detection (UED) dataset [23] to detect manhole covers, milestones,
and license plates. Our model achieves a significant improvement for small urban element
detection compared with state-of-the-art CNN-based object detection methods. The results
demonstrate that our model can not only detect small urban elements accurately, but also reduce
false positive detections. In addition, detailed ablation and parameter analyses were performed
to further explore how the proposed techniques improve the detection model and acquire some
insights concerning proper parameter settings for a valid detection model.

The remainder of this article is organized as follows. Section 2 briefly reviews the related
work. In Section 3, the proposed model for small urban element detection is illustrated in detail.
Experimental results and discussions are presented in Sections 4 and 5, respectively. Finally, we
draw our conclusions in Section 5.

2. Related Work
2.1. Traditional Urban Element Detection

Traditionally, hand-crafted features are extracted for accurate identification of the location
and shape of urban elements. Although some studies have used 3D point cloud data to detect
urban manhole covers [24,25], most existing studies for manhole cover detection are based on 2D
images [26—29]. Sultani et al. [26] separated the image into superpixels and adopted a support
vector machine (SVM) classifier to detect different pavement objects including manhole covers.
Pasquet et al. [28] combined the Bhattacharyya coefficient and linear SVM classifier to increase
the detection performance for manhole covers. In Wei et al. [30], high spatial-resolution ground
images and high-precision laser data were jointly incorporated to detect manhole covers. The
modified histogram of oriented gradients (HOG) and SVM algorithms were exploited for
identification and information acquisition of manhole covers. Although some encouraging results
have been obtained with traditional detectors for manhole covers, these methods are not end-to-
end approaches and are composed of multiple complicated steps.

Extensive research has been conducted in the field of vehicle license plate recognition. Most
of these studies extract hand-crafted features based on specific descriptors, such as edge, shape,
color, and texture [31-36]. In Hongliang and Changping [33], a hybrid license plate extraction
algorithm was introduced, which was based on edge statistics and morphology. Jia et al. [34]
utilized a mean shift algorithm to divide the regions of interest, and classified license plates with
respect to extracted shape and edge density features. Deb and Jo [35] proposed a hue, saturation,
and intensity (HSI) color model to select candidate regions which were applied with position
histogram for final license plate detection. In Hsu et al. [36], edge clustering, a texture-based
approach, was formulated to detect candidate license plates. These traditional methods that work
in license plate detection heavily rely on expert knowledge for model design. The manually
designed features take advantage of low-level image information and can lead to poor
generalization ability in certain scenarios. For road milestones, some studies have explored
accurate prediction of milestone positioning [37] but, to the best of our knowledge, none have
investigated extraction routines with traditional methods.
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2.2. CNN-Based Object Detection

Deep CNN-based object detection models have achieved substantial improvement in
accuracy and speed compared with previous hand-crafted feature-based methods.
Contemporary CNN-based object detection methods can be grouped into one- and two-stage
detection methods.

Two-stage detectors first filter out a set of region proposals and then feed the proposals into
region convolutional neural networks for classification and localization [11,38-45]. In 2014,
Girshick et al. [38] first introduced a CNN for the object detection task and proposed Regions with
CNN features (R-CNN), which generates region proposals by Selective Search and propagates each
proposal to a convolutional network to extract features. To reduce the computation cost of R-CNN
[38], Spatial Pyramid Pooling Network (SPPnet) [39] and Fast R-CNN [40] compute the whole input
image through convolutional networks and extract feature vectors with spatial pyramid pooling
and Region of Interest (Rol) pooling, respectively. Faster R-CNN [11] enables end-to-end object
detection and further improves the computing efficiency of two-stage detectors. It introduced a
Region Proposal Network (RPN) [11], which replaces the independent external proposal
generation modules. Later, various methods based on Faster R-CNN were proposed to improve
object detection performance, such as Region-based Fully Convolutional Network (R-FCN) [41],
Light-head R-CNN [42], Deformable convolutional networks (DCN) [43], Mask R-CNN [44], and
Cascade R-CNN [45].

Compared with two-stage object detection methods, one-stage detectors are more
computationally efficient because they eliminate the proposal generation step, but the detection
performance tends to be inferior in most cases. For instance, YOLO [13] divides the input images
into grids. If the center of an object falls in the grid, the grid predicts bounding boxes and
confidence scores for the boxes. The advantage of YOLO is the high detection speed, but the
accuracy is not as good as that of two-stage detectors. YOLOv3 [15], the upgraded version of YOLO,
utilizes a deeper network and multiscale training. SSD [16] incorporates multiple scale feature
maps in a one-stage detector to predict bounding boxes and category scores. SDD is faster than
the one stage detector YOLO, and more accurate than the two-stage Faster R-CNN model.
RetinaNet [46] proposes focal loss to solve the foreground-background class imbalance problem
of one-stage detectors.

2.3. CNN-Based Small Object Detection

Although CNN-based detection models perform well in generic object detection, it remains
challenging to detect small objects that occupy only a small proportion of an image. Multiscale
feature learning is one crucial strategy for small object detection [12,47—-49]. FPN [12] establishes
a top-down feature pyramid network with lateral connections to produce multiscale feature maps
and predictions at different feature pyramids, improving the accuracy of small object detection.
Trident Network (TridentNet) [48] constructs three scale-aware parallel branches which share the
same parameters but have different receptive fields to improve small object detections. Different
receptive fields for objects of different scales have the same motivation as the feature pyramid,
aiming for multiscale learning. Although multiscale feature learning can benefit small object
detection, too large a receptive field may lead to information loss for small objects. Recent works
have shown that integrating contextual information can improve object detection accuracy,
especially for small objects [49-53]. Inside-Outside Net (ION) [51] integrates contextual
information outside the Rol and adopts skip pooling for multiscale information extraction, which
is effective in detecting small objects. Liu et al. [53] presented Structure Inference Network (SIN),
which makes use of scene contextual information and object relationships to promote object
detection, especially for small objects. All of the above CNN-based models were evaluated on
PASCAL VOC [54] and MS COCO [55] datasets, in which most instances occupied more than 1% of
the whole image area. However, because small urban elements detected in this study are even
smaller than generic objects in natural scenes, the generic object detection models cannot achieve
optimal performance when directly used for small urban element detection.
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2.4. CNN-Based Urban Element Detection

With the development of CNN in generic object detection, deep CNN-based methods have
begun to be widely used to detect urban elements. Research on manhole cover detection utilizing
CNN-based models has emerged in recent years [56—58]. Boller et al. [56] and Hebbalaguppe et
al. [57] used Faster R-CNN to automatically detect drain inlets and manhole covers and
demonstrated that the CNN-based model was more powerful than traditional computer vision
methods. Liu et al. [58] proposed a multiscale feature extraction network and a multilevel
convolution matching network, such that the precision and recall rate for small and dense
manhole cover detection was boosted. The success of deep CNN-based methods has also inspired
automatic license plate recognition, which focuses on identifying numbers and letters on the
license plates [59-64]. Li et al. [59] proposed a cascade architecture that began with a four-layer
CNN to generate a saliency map and then used Recurrent Neural Networks (RNNs) to detect and
recognize characters. Several studies developed and modified the state-of-the-art YOLO detector
for license plate recognition [60—64]. Hendry and Chen [63] reduced the original YOLO network to
create a tiny version for each class with 36 models and ran a sliding window for all classes to detect
small license plates and characters. Kessentini et al. [64] proposed a two-stage deep neural
network to recognize multinorm and multilingual license plates. The first stage employed the
YOLO detector to detect license plates, and the second stage combined two modules, a
segmentation-free module based on RNN and a joint detection/recognition module, to identify
characters. Compared with the above existing detection methods, our proposed approach focuses
on three small urban elements which occupy less than 1% of the image area. Our method can
effectively reserve local information of small objects and generate high-quality training samples
with a more adjustable sample selection strategy.

3. Method
3.1. Overview of Our Method

We developed and tested a deep learning-based detection framework which includes several
network modules, namely a Reduced Downsampling Network (RD-Net) backbone, a sample-
balanced RPN module, and Rol-based network heads for classification and localization (Figure 1).
The convolutional feature extraction network RD-Net utilizes the basic stem and a series of
residual blocks with convolutional layers, rectified linear unit (ReLu) layers, and pooling layers to
forward propagate the input remote sensing image. Five sequentially stacked stages compose the

RD-Net to extract feature maps M from the fourth stage. Considering a single image / ERWitxC
where W, H, and C denote the spatial width, height, and channel number, respectively, the process
can be formulated as follows:

M= FRD—Net(I), (1)

where Fro-net() denotes the RD-Net backbone for feature extraction.
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Figure 1. Overall framework of the proposed method.

The feature maps M are fed into the sample-balanced RPN module to generate a set of
rectangular proposals telling the Rol module where to look. By going through the RPN head, we
slide a 3 x 3 spatial window over the convolutional feature maps M and then have two parallel
convolutional layers with a 1 x 1 spatial window for classification and box regression, respectively.
Instead of employing traditional strategy of hard Intersectionover-Union (loU) thresholds to select
training samples [11,45,48], the ADSS module defines positive and negative training samples
according to the statistical characteristics of similarity measures between generated anchors and
ground reference objects. The process to generate region proposals P can be formulated as:

P = Fren(M), (2)

where Fren() denotes the sample-balanced RPN module.

Then we adopt a module to combine feature maps M and region proposals P into unified
network features. The feature maps M are cropped by the RolAlign operation to obtain fixed-sized
feature vectors, and then are propagated to a sequence of convolution layers which are the last
stage of RD-Net. The output features are finally transmitted to fully-connected layers to optimize
the classifier and bounding box regressor when training, and predict the object category and
localization when inferencing. The process can be formulated as:

0 = Froi(M, R), (3)

where Fro/() denotes the classification and localization Rol module, and O refers to the
object detection results.

3.2. RD-Net

Recently, object detectors have often adopted large and deep backbones, which stack a small
number of convolutional-RelLu layers followed by pooling or convolutional layers whose stride is
greater than 1, and then repeat this pattern to extract outputs of small size and high receptive
field. A deep convolutional network can abstract semantically meaningful features that are
beneficial to recognize the category of objects. However, it is unfavorable for small object
localization because the information from small objects is weakened due to the large stride and
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coarse spatial resolution of feature maps with respect to the input image [65,66]. A higher input
resolution may result in better detection results than a lower input resolution image [47], but
experiments are often limited by the input data, whose spatial resolution is not high enough to
preserve information for small objects with a large stride and a large receptive field.

Inspired by [23,66,67], we proposed the Reduced Downsampling Network (RD-Net)
backbone to address the problem of small object detection. We adopt ResNet-50 [20] as the
baseline network, which includes five network stages with standard bottleneck blocks as network
units. There are two types of shortcut connections to transform the plain network to the
counterpart residual version of bottleneck block. The projection shortcut utilizes a 1 x 1
convolutional layers to match the input and output dimensions, and the identity shortcut directly
connects layers of the same dimension. As illustrated in Figure 2, the 7 x 7 convolutions with a
stride of 2 are applied to the input images in the first stage, followed by 3, 4, 6, and 3 bottleneck
blocks for the subsequent four stages, respectively. In the second stage, the output feature maps
from the first stage are fed into 3 x 3 pooling layers for downsampling, and the downsample
operation is performed directly by convolutional layers that have a stride of 2 in the following
stages. The strides for the five stages of ResNet-50 are 2, 4, 8, 16, and 32, respectively, with one
downsampling operation in each stage that can significantly affect small object detection accuracy.
To overcome the disadvantage of the ResNet-50 backbone and ensure computing efficiency, we
remove the downsampling operation of the third stage by substituting the convolutions of stride
2 for the convolutions of stride 1 (Figure 2). Our insight is that such network adaptation is
necessary to place more attention on detecting high spatial resolution features in a small area,
which is thus beneficial for the small object localization task. With such information-rich output
features of high spatial resolution and the consecutive RPN and Rol modules, our proposed
method is more powerful and robust in locating positions of small objects.

3.3. Adjustable Sample Selection Module

In the baseline detector Faster R-CNN, the output feature representations from VGG or
ResNet backbone are fed to a RPN module, which consists of a neural network RPN head and an
operation to produce region proposals [11]. Through the proposal generation part of Faster R-
CNN, m x n anchors are generated at each grid point of the feature map with m scales and n aspect
ratios. All the anchors are paired with each ground reference box to calculate an Intersection-
over-Union (loU) overlap. The positive/negative anchor assignment is decided by a hard
thresholding process. Anchors that have an loU with any ground reference box greater than the
pre-defined threshold (typically 0.7) or that have the highest loU are set as positive, and anchors
that have an loU smaller than another threshold (typically 0.3) are set as negative. However, this
hard thresholding method may lead to a highly imbalanced distribution of anchors—there are
usually significantly more negative anchors than positive anchors. To avoid bias caused by
dominant negative samples, 256 anchors are selected randomly per image to optimize the loss
function, half of which are positive. Negative anchors are sampled to pad the mini-batch if the
corresponding positive anchors are less than 128 [11]. Anchors that are not sampled by the
assignment process are ignored for training. There are some vulnerabilities of the RPN sample
selection module for small object detection. The sample selection procedure adopts loU
thresholds to determine positive and negative training samples; this process is prone to neglecting
some outer objects and sensitive to changes in the loU threshold hyperparameter. Recently,
Zhang et al. proposed an adaptive scheme for the one-stage anchor-based object detector to
automatically effectively select positive and negative samples without the loU threshold
hyperparameter [68].
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Figure 2. Network structure of ResNet-50 and RD-Net. Solid line with arrow presents projection shortcut and
dash line with arrow presents identity shortcut.

To tackle weaknesses of the sample selection module and improve discriminative capability
of small object detection, we proposed the Adjustable Sample Selection (ADSS) module. Algorithm
1 describes the details of the method. We first use m scales and n aspect ratios to yield m x n
anchors at each position of the input feature maps. For each ground reference box t, we then
select the top k candidate positive samples based on the shortest L2 distance between the anchor
center and ground reference box center. Then, we calculate loU between the k candidate positive
samples and ground reference box t as U, and compute the adjustable loU threshold thr:by adding
the mean of U:and the standard deviation of U:. For the ground reference box t, we select final
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positive anchors from the candidates that are greater than or equal to the threshold loU thr:. For
an anchor passing the positive sample selection for multiple ground reference boxes, we assign it
to the ground reference box with the highest loU. Negative samples are picked randomly from the
remaining anchors to fill 256 training samples. Finally, as in Faster R-CNN [11], the selected
samples and anchors are employed with the RPN head, where feature extractions from the
backbone go through 2 x 3 convolutional layers and two parallel 1 x 1 convolutional layers for
object existence and bounding box regression, to train and result in a better region proposal.

There are two main changes of the ADSS module compared with the original sample
selection module of Faster R-CNN. First, we exploit distanced-based strategy to select candidate
positive samples that are closer to the objects and can lead to high-quality detections. Second, an
adjustable value, namely, is the sum of the mean and standard deviation of the loU of positive
samples, is used to free the sensitive fixed loU threshold hyperparameter. It is more functional
and practical to integrate our ADSS module and RPN head to generate region proposals.

Algorithm 1 Adjustable Sample Selection (ADSS)

Input:

M: feature maps from RD-Net backbone T: a

set of ground reference boxes

v: hyperparameter of anchor sizes in absolute pixels with default of [82, 162, 322, 642, 1282] r:
hyperparameter of anchor aspect ratios with default of [0.5, 1.0, 2.0] k: hyperparameter to select

anchors with default of 15

n: hyperparameter of number of anchors per image to sample for training with default of 256 Output:
P:: a set of positive samples for ground referencet € T

N¢: a set of negative samples for ground reference t € T

1: A < Generate a set of anchor boxes A from M with each cell creating |v| x |r| anchors 2: for each

ground reference t € T do

3:  S;« Initialize a set of candidate positive samples S; by selecting top k anchors whose center are closest to the center of ground reference

t based on L2 distance

4: Calculate loU between S;and ground reference t: U;= loU(Ss, t)

5 Calculate mean of U pr= mean(U;)

6 Calculate standard deviation of Us: g = std(U)

7: Set adjustable loU threshold to select positive sample: thry= p;+0o;

8 for each positive candidate sample s € S;do

9 if loU(s, t) 2 thr;

10: Pt=P:Us

11: end if

12: end for

13: Calculate the number of negative samples for training Nneg: Nneg = N — Npos Where nposis number of elements in P;

14: N« Select npeganchors from A - Prrandomly 15: end for

16: return Py, N;

in the first convolutional layer, and then transferred to fully convolutional layers to enable
localization and bounding box labeling.

2.4. Rol Module

The Rol module incorporates feature representations from RD-Net and region proposals
from RPN into unified network features. Previous object detectors adopt the RolPool [11,40] or
RolAlign [44] operations to crop and resize specific convolutional maps using proposals. In this
study, we utilize RolAlign, which introduces bilinear interpolation to calculate exact values of
extracted feature maps from the RD-Net at four sampled locations in each Rol bin, avoiding round-
off errors of RolPool. After RolAlign, the specified size feature vectors are fed into three bottleneck
blocks with one downsampling operation
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3.5. Loss Function

We denote p;as the probability of an anchor i belonging to a positive class. For the ground
reference class, based on the ADSS sampling result, we define pi* as a binary indicator that is 1 if
the anchor is positive, and 0 for negative. By implementing binary cross-entropy loss, the
classification loss for RPN can be formulated as:

1 . .
LclsRPN(p*" P;@) = T E[pt [”(Pz) + (1 — Pi )fﬂ(l - pi)}Ncls i
, (4)

where Nsis a normalization term.

We define Bi— {bi,tl, bipras the predicted anchor bounding box i, where bizand bjsrare the
top-left and bottom-right points of the bounding box, respectively. The ground reference anchor

_ * *

bounding box is defined as B {b,‘,w bffh”} in the same fashion. We propose applying a
generalized Intersection-over-Union (GloU) loss [69] to measure the extent of alignment between
the anchors and ground reference bounding boxes. Compared to a standard loU, which cannot be
optimized when there is no overlap between bounding boxes, we calculate the GloU of two boxes,
which overcomes the weakness and preserves major characteristics of loU (Figure 3). For the
predicted anchor Biand ground reference bounding box Bi*, we first find the minimum bounding
box Cithat encloses Biand Bi*. Then we compute the ratio of the area of Ciexcluding Biand B to
the total area of C. Finally, GloU between Bjand B is calculated to be the loU value minus the
ratio. We can use the GloU as a loss term for bounding box detection, which can be formulated
as:

Liocren(Bi, Bix) = ___Nlioc Y i pix(1 - GloU(B, Bix)), (5)

where Nioc denotes a normalization term, and GloU() the calculation of GloU between bounding
boxes.

W -]

loU=1 loU=0.14 loU=0
GloU=1 GloU =-0.08 GloU=-0.5 loU=0
GloU =-0.78
B ‘ l B ‘ l B : B

loU=1 IoU=0.33 loU=0 loU=0

GloU =1 GloU =0.33 GloU =0 GloU=-10.33
BnB* . . 4 s

loU = |n — m| B Ground truth bounding box Predicted bounding box
I Ub|

GlolU = loU — IC=(BnEY Minimum bounding box enclosing B and B*

ICl

Figure 3. Examples of calculation for loU and GloU. When there is no overlap between the predicted and
ground reference bounding boxes, the loU value is zero and cannot reflect the distance between two
boxes, whereas GloU can reveal how far one box is from anther and has a non-zero gradient.

With these definitions, we formulate the loss function for RPN as follows:
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RPN RPN
Lren = Al[’ds (pi, pr*) + )‘Zﬁloc (8i, B*), (6)

where A1and Az2are balancing weights that are both equal to 1.
For classification and detection heads, the loss function can be formulated as follows:

head head
Lhead = ALy (¢ir ¢} ) + A4 Lyl (Biu, Biun), (7)
(ci,cf) = — i E In (Cic* )
Lecishead ! Kcls
i , (8)
_ ! =101
Liochead(Biu, Biux)— ~— Z[Cf = 1J( ~ Kioc i GloU(Biu, Biux)),

(9)

where i is the index of a Rol instance, ciis the probability distribution for the predicted classes, c¢*

is the ground reference class, B* and B* are the predicted and ground reference bounding boxes,

head ;

respectively, and A3 and As are balancing weights which are both set to 1. L@ is implemented

by cross-entropy loss for multiple classes, and Lreg"? by GloU loss, with normalization factors Kcis
and Kreg, respectively.

By adding the loss functions defined above, we can calculate the total loss as:

L = Lren + Lhead. (10)

In two-stage object detection models, smooth-L1 loss is widely used for the localization task,
which assumes that coordinates of four points are independent from each other; however, in
reality, there is a certain correlation of the four locations. Performance evaluation of object
detection relies on loU metrics which focus on areas and are invariant to the scale. Theoretically,
optimization of smooth-L1 loss does not ensure equally optimized detection measured by loU-
related metrics. Therefore, we adopt GloU loss rather than smooth-L1 loss for localization to
improve detection results.

4. Experiments
4.1. Dataset, Implementation Details, and Evaluation Metrics
4.1.1. Dataset

To evaluate the effectiveness of our proposed method for small urban element detection,
we conducted experiments on the publicly available Urban Element Detection (UED) dataset [23].

The UED dataset is a three-class object detection dataset, acquired by mobile mapping
systems (MMS), and includes high spatial resolution images of road surface and panoramic images.
The dataset contains a total of 19,693 images, of which 3695 have targets and 15,998 are
background images without targets. We conducted experiments on the positive dataset with
target objects and divided it into 70% for training, 15% for validation, and 15% for testing. The
dataset include three classes: manhole cover (“manhole”), milestone (“Icz”), and license plate
(“numplate”) (Figure 4). The statistics of the UED dataset are shown in Table 1. The image sizes
range from 492 x 756 to 1024 x 2048 pixels. It is noteworthy that most objects occupy small
portions of images (Figure 5). About 73.21% of instances are small objects which occupy less than
1% of image area, and 19.41% of instances occupy 1~2% of the total area of image.
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Figure 4. Examples of UED dataset. (a) Manhole covers; (b) license plates; (c) milestones.

Table 1. Statistics of the UED dataset.

Image Size Object Size # of Small # of Object (1% Min Max
T o . 0 .
Class (Pixel) (Pixel) # of Object (OP:{:iCtls) <P%<2%) Mean (P%) Median (P%) Std (P%) (P%) (P%)
manhole wo0a 4 92to 840 694 146 0.78 0.77 0.25 0.14 1.68
1024 175 198
Iz 492 x 756 to 14 % 25 to 934 582 205 1.16 0.78 1.10 0.08 8.48
Trainval data 642 x 756 90 x 239
numplate 492 x 756 t0 592 8 x 25 to 1599 1192 302 0.74 0.48 0.65 0.05 434
x 756 115 x 136
manhole 2 99 to 145 122 23 0.74 0.71 0.26 0.06 1.51
1024 248 Toe T 17g
Test data Iz 492 x 756 to 16 x 27 to 174 104 43 1.17 0.81 1.04 0.10 6.31
642 x 756 143 x 214
numplate 492 x 75610 592 13 x 36t0 122 280 214 52 0.77 0.54 0.71 0.08 5.15
x 756 x 137
manhole <2048 2 99 to 985 816 169 0.77 0.76 0.25 0.06 1.68
1024 175 198
Total data Icz 492 x 756t0 14 x 25 to 1108 686 248 117 0.78 1.09 0.08 8.48
642 x 756 143 x 214
numplate 492 x 756 10 592 8 x 25 to 1879 1406 354 0.75 0.49 0.66 0.05 5.15
x 756 122 x 137

manhole: manhole covers; Icz: milestone; numplate: number plate; P%: percentage of object size in image (P% = Object size/Image size x 100%).
When testing effectiveness of our proposed model, we use trainval data which are training and validation data together for training and test data for

testing.
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Figure 5. Histogram showing percentage of object size in image for UED dataset.

4.1.2. Implementation Details

Using training augmentation, we randomly sampled the shorter edge of the input image from
at least 640 and at most 800 pixels, and limited the longer side of the input image less than or
equal to 1333 pixels [70]. If the limit of the longer side is surpassed, the image is downscaled so
that the longer edge does not exceed 1333 pixels. All experiments were initialized with ImageNet
[71] pre-trained weights. We froze parameters of stage 1 for our RD-Net backbone and the first
two stages for other backbones of comparison methods. Batch normalization was fixed for all
experiments during training. The model was optimized by stochastic gradient descent (SGD) with
a weight decay of 0.0001 and momentum of 0.9 [70]. We trained 90,000 iterations with a batch
size of 2 on a single GTX1080ti GPU, with a learning rate beginning at 0.005 and decreased by a
factor of 0.1 after 60,000 and 80,000 iterations.

4.1.3. Evaluation Metrics

The evaluation protocol followed the MS COCO benchmark [55], adopting Average
Precision (AP) as the primary metric. For a specific class and threshold loU, the PrecisionRecall
Curve (PRC) was utilized to calculate APcass,iou, Which is the average of precision values based on
different recalls. Note that PRC was performed with 101 interpolations. Taking TP, FP, and FN as
the number of true positives, false positives and false negatives, the precision and recall are
formulated as:

TP
Precision= TP (11)
+ FP
TP
Recall= (12)
TP + FN

where predicted results whose loU over ground reference is greater than the loU threshold are
considered as true positives. When APcuass,iou Was computed, the average precision for one class
over different loU thresholds (ranging from 0.5 to 0.95 with a step size of 0.05) can be calculated
as follows:

1
APcioss 10> APctassou, thresholds € [0.5 : 0.05 : 0.95], (13)
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iou€thresholds

where AP.qss denotes AP for one class. The Average Precision (AP) was obtained by averaging
APcass over different classes:

AP

Z APclass, (14)
# of classes ciass

The evaluation metric AP of the MS COCO benchmark is defined to be the average of
multiple loU values. This metric can avoid bias introduced by a fixed loU threshold; such a bias
indicates that different predictions of loU would have equal weight.

In the following experimental results, AP is the primary metric, and it was averaged over all
categories and multiple thresholds. AP50 and AP75 represent AP when thresholds are set at 0.5
and 0.75, respectively, and APcuss presents AP for one class.

4.2. Ablation Study

We performed an ablation study to verify the contribution of the proposed RD-Net, ADSS
Module, and GloU loss over the UED dataset. The baseline method was evaluated on the Faster
R-CNN with the ResNet-50 backbone, and we proceeded to incorporate the three components
gradually. The quantitative comparison results are shown in Table 2.

Table 2. Ablation study of the proposed method on the UED dataset.

ADSS GloU AP AP50 AP75 APmanhole APicz APnumplate ms/
Backbone Method RD-Net 1

Module Loss (%) (%) (%) (%) (%) (%) Image
Baseline 80.51 96.58 94.42 79.21 82,22 80.10 274.20
R 50 Baseline + ADSS 4 80.28 96.09 95.05 77.82 81.96 81.04 271.07
esnet-- Baseline + GloU_loss v 78.35 96.58 9445 77.06 79.55 78.45 274.12
Baseline + ADSS + GloU _loss v Vv 79.62 97.01 95.14 78.61 80.55 79.71 270.90
Baseline + RD-Net N4 81.28 96.88 9491 79.73 82.67 §1.42 342.47
Baseline + RD-Net + ADSS Vv Vv 81.31 97.04 94.89 80.38 82.44 81.10 323.53

RD-Net Baseline + RD-Net + GloU_loss v v 81.38 97.27 95.23 81.19 82.05 80.90 339.81

Baseline + RD-Net + ADSS +
v v v
81.71 97.40 95.78 81.55 82.94 80.64 322.89
GloU_loss
I ms/image: average inference time per image (ms/image). Bold indicates the best performance.

We show in Table 2 that our proposed model (Baseline + RD-Net + ADSS + Glou_loss)
outperforms methods with all other combinations of the components. When applying RD-Net,
ADSS module, and GloU loss together, AP, AP50, and AP75 achieve 81.71%, 97.40%, and 75.78%
with an improvement of 1.20%, 0.81%, and 1.37% compared with the Baseline, respectively. To
be more specific, most of the improvements are from AP for higher loU thresholds such as 0.75.
This indicates that the proposed method can predict higher quality object boxes compared with
the Baseline, which is significant for subsequent urban application tasks, such as precision
positioning and 3D city modeling. Figure 6 demonstrates the comparison of detection results
between our proposed method and the baseline. We can see that the Baseline misses some
hidden or unobvious objects and incorrectly detects some objects, whereas our method can more
accurately detect the cropped and occluded objects, suggesting that our method can detect more
concealed small objects and avoid false positive detection more effectively than the baseline.
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Figure 6. Performance of the baseline Faster R-CNN and our proposed model on the UED dataset. (a,c) are performance of the
baseline Faster R-CNN. (b,d) are performance of our proposed model. Red is the predicted bounding box and yellow is the ground

reference bounding box.

4.2.1. Effect of RD-Net

We first investigated the effectiveness of RD-Net by replacing the ResNet-50 backbone of
the Baseline. The results in Table 2 show that AP for the Baseline + RD-Net raises to 81.28% from
80.51%, with an improvement of 0.77% compared with the Baseline. For the Baseline with the
ResNet-50 backbone, integrating the ADSS module (Baseline + ADSS) or GloU loss (Baseline +
GloU_loss) decreases AP, whereas for the model with the RD-Net backbone (Baseline + RD-Net),
AP is increased when exploiting the ADSS module (Baseline + RD-Net + ADSS) or GloU loss
(Baseline + RD-Net + GloU_loss). The findings indicate that including RD-Net can not only boost
the performance of small urban element detection, but also change the effectiveness of the ADSS
module and GloU loss. Our RD-Net has smaller receptive fields than the ResNet-50 backbone after
removing the downsampling operation of the third stage, which reserves important information
of small objects that may be lost with larger receptive fields. It is helpful to promote the capability
of RPN and head to identify small objects with input feature maps of high spatial resolution from
RD-Net.

4.2.2. Effect of ADSS Module

As shown in Table 2, the Baseline + RD-Net + ADSS and Baseline + RD-Net + ADSS +
GloU_loss increases AP from 81.28% and 81.38% to 81.31% and 81.71%, compared with the
Baseline + RD-Net and Baseline + RD-Net + GloU_loss, respectively. Different from our
expectation, the Baseline + ADSS has lower AP than the Baselines. Our conjecture is that some
small anchors whose centers are closest to the object centers have very small or zero loU values
with the ground reference and are ignored during training in the Baseline + ADSS model.
However, in the Baseline + RD-Net + ADSS, with feature maps of higher spatial resolution from
RD-Net, small anchors that are important for small object detection may be included for training.
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4.2.3. Effect of GloU Loss

As shown in Table 2, the Baseline + RD-Net + GloU_loss achieves an improvement of 0.1%
compared with the Baseline + RD-Net. Among these, AP for manhole covers increases 1.46% from
79.73% to 81.19%. In addition, AP for the Baseline + RD-Net + ADSS + GloU_loss (81.71%) is also
higher than that for the Baseline + RD-Net + ADSS (81.31%), with an improvement of 0.40%. By
incorporating GloU loss on the models with the RD-Net backbone, we can boost the small urban
element detection results. Figure 7 demonstrates RPN localization loss, classification and
detection head localization loss, and total loss for the models of Table 2 that adopt RD-Net
backbone. It shows that the localization loss and total loss for the models
with GloU loss (Baseline + RD-Net + Glou_loss and Baseline + RD-Net + ADSS + Glou_loss)
decrease more quickly and the values are lower than the models with the original Smooth L1
loss (Baseline + RD-Net and Baseline + RD-Net + ADSS).
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Figure 7. (a) RPN box regression loss; (b) classification and detection head box regression loss; (c) total loss for the models with RD-Net

backbone.

4.2.4. Computational Time

The average inference time per image under our experimental environment is listed in the
last column of Table 2. The time cost of the proposed method (Baseline + RD-Net + ADSS +
GloU_loss) is greater compared with that of the Baseline. The average inference time for the
Baseline is 274.20 ms/image, whereas it is 322.89 ms/image for our proposed method (Baseline +
RD-Net + ADSS + GloU_loss). The increased computational cost is mainly due to the downsampling
operation removal to obtain high spatial resolution feature representations. The most efficient
model is Baseline + ADSS + GloU_loss, for which the inference time is 270.90 ms/image. When the
ADSS module or GloU loss is integrated in the model, the inference time decreases compared with
corresponding model without ADSS module or GloU loss, suggesting that incorporating ADSS
module or GloU loss can save computational cost and increase inference speed. In the future, we
will consider adjusting the backbone network to reduce computational complexity and ensure
high-resolution output feature maps at the same time.

4.3. Backbone Network Analysis

We explored how the downsampling operation of a network can affect small object
detection by conducting experiments with the Baseline and applying different redesigned
backbone networks on the UED dataset. We first compared the Baseline with the Resnet-50 and
Resnet-101 backbone. The results show that the Baseline with the ResNet-50 backbone yields
higher accuracies than the Baseline with the ResNet-101 backbone (Table 3), which is contrary to
the general conclusion that deep networks usually work better than shallow
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ones [72]. The reason for this may be that ResNet-101 has more blocks than ResNet-50 in stage 4
whose stride is 16 with a high receptive field, and the information for small objects is lost in the
deeper network. In addition, deep networks of ReNet-101 tend to overfit as the volume of the
UED dataset is not big enough. Thus, we redesigned and compared different backbones from
ResNet-50 instead of ResNet-101.

Table 3. Architectures of different backbones and detection results on the UED dataset.

ResNet-50-S3 (DR-

ResNet-101 ResNet-50 Net) ResNet-50-S4 ResNet-50-S5

# of Block Stride # of Block Stride # of Block Stride # of Block Stride # of Block Stride
Stage 1 0 2 0 2 0 2 0 2 0 2
Stage 2 3 4 3 4 3 4 3 4 3 4
Stage 3 4 8 4 8 4 4 4 8 4 8
Stage 4 23 16 6 16 6 8 6 8 6 16
Stage 5 3 32 3 32 3 16 3 16 3 16
AP (%) 80.49 80.51 81.28 80.66 79.97

Bold indicates the best performance.

We removed the downsampling operation of ResNet-50 for stage 3, stage 4, and stage 5,
respectively, to generate backbone ResNet-50-S3 (i.e., RD-Net), ResNet-50-S4, and ResNet-50-S5,
to examine the efficiency of downsampling reduction at different stages.

The comparison results are shown in Table 3. ResNet-50-S3 and ResNet-50-S4 have higher

AP than ResNet-50, whereas AP for ResNet-50-S5 is lower than AP for ResNet-50, which suggests
that removing downsampling operations in different stages has distinct effects on small urban
element detection performance. When removing the downsampling operation of stage 3, AP is

81.28%, which is 0.62% higher than the modification of stage 4 (80.66%). These results

demonstrate that removing the downsampling operation in the earlier stage
(stage 3) has more positive impacts on small object detection than doing so in the later stage
(stages 4 and 5). We expect that removing downsampling in the first or second stage will lead to
better results; however, the computational cost is considerably higher. Downsampling can reduce
data dimensions to save computation time but leads to losing some significant information and
affects model capability, mainly for small objects.

4.4. Parameter Analysis

Integrating the ADSS module in the two-stage object detection model involves an
additional hyperparameter k. In addition, anchor sizes and aspect ratios may affect detection
performance, especially for small objects [73,74]. In this subsection, we compare different
network settings for the ADSS module on the UED dataset.

4.4.1. Hyperparameter k

The top k candidate positive anchors are selected based on the distance between the anchor
and ground reference bounding box center in the ADSS module. We conducted experiments with
different kin [3,6,9,12,15 x 1,15 x 3,15 x 5, 15 x 7, 15 x 9] to study how hyperparameter k
influences detection results. As shown in Table 4, the best detection result is achieved when k =
15, and either higher or lower k values reduce AP. Each grid of the feature map generates 15
anchors with fixed anchor sizes [82, 162, 322, 642, 128?] and aspect ratios [0.5, 1, 2]. When k = 15,
anchors engendered by the same cell whose center is closest to the ground reference bounding
box are chosen as candidate positive samples. Smaller anchors generated by the same cell are
selected when k < 15, whereas all anchors generated by n cells that are closest to the ground
reference are selected when k = 15n, where n is an integer. Anchors of one grid are sufficiently
valid for the positive candidates, whereas a too large k will result in many inferior candidates and
a too small k will not include enough candidates.

Table 4. Analysis of different values of k on the UED dataset.



Remote Sens. 2021, 13, 3608 18 of 26

k AP (%) AP50 (%) AP75 (%)
3 80.28 96.77 94.53
79.30 96.28 93.69
81.17 97.39 95.47
12 81.32 97.43 95.03
15x1 81.71 97.40 95.78
15 x 3 81.22 97.35 94.55
15x5 81.17 97.09 94.71
15x7 81.06 97.44 94.93
15x9 81.03 96.86 95.62

Anchor sizes: [82, 162, 322, 642, 128?]; aspect ratios: [0.5, 1, 2]. Bold indicates the best performance.

4.4.2. Anchor Sizes

Some experiments were conducted with anchor aspect ratios of [0.5, 1, 2] and k = 15, to
explore appropriate anchor sizes that can benefit detection performance. From results of Table 5,
we can observe that the predicted results can be improved with smaller anchor sizes. However,
when the anchor sizes are reduced to [42, 82, 162, 322, 64?], AP declines compared with anchor
sizes of [82, 162, 322, 642, 1282]. Anchor sizes that are too large are unfavorable for small object
detection, whereas anchor sizes that are too small will not contribute to positive samples due to
the lack of overlap with the ground reference or small loU values.

Table 5. Analysis of different anchor sizes on the UED dataset.

Anchor Sizes AP (%) AP50 (%) AP75 (%)
[322, 642, 1282, 2562, 5122] 80.55 97.02 94.94
[162, 322, 642, 1282, 2562] 81.32 96.78 95.52
[82, 162, 322, 642, 1287] 81.71 97.40 95.78
[42, 82, 162, 322, 642 80.73 97.09 94.74

k: 15; aspect ratios: [0.5, 1, 2]. Bold indicates the best performance.

4.4.3. Anchor Aspect Ratios

As shown in Table 6, experiments with various aspect ratios were performed. We set
anchor sizes as [8?, 162, 322, 642, 128%] and k, according to the aspect ratios from previous results
(Table 6), and AP is the best when k equals the number of anchors engendered by one grid. The
results demonstrate that the aspect ratios of [0.5, 1, 2] with k = 15 achieve the best accuracies,
which suggests that including more anchors of different shapes into the positive candidates does
not boost the performance.

Table 6. Analysis of different anchor aspect ratios on the UED dataset.

Aspect Ratio k AP (%) AP50 (%) AP75 (%)
[0.5,1, 2] 15 81.71 97.40 95.78
[0.5,1,15,2] 20 81.20 97.35 94.57
[0.5,0.75,1, 2] 20 80.69 96.74 94.47
[0.5,0.75,1, 1.5, 2] 25 81.48 97.10 95.74

Anchor sizes: [82, 162, 322, 642, 1282). Bold indicates the best performance.

4.5. Comparisons with State-of-the-Art Methods

We compared our proposed model with several state-of-the-art methods: ResNext [21],
Feature Pyramid Networks (FPN) [12], Deformable Convolutional Networks (DCN) [43],
Trident Networks Fast Approximation (TridentNet-Fast) [48], Cascade R-CNN [45], Mask R-CNN
[44], Cascade Mask R-CNN [44,45], and RetinaNet [46]. It is worth noting that for the Mask R-
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CNN and Cascade Mask R-CNN methods, we used the bounding box mask as the ground
reference of segmentation for the mask branch. The performance results are shown in Table 7.
Our proposed method achieves an AP of 81.71%, which outperforms the other detectors. In
addition, AP75 of our model is also enhanced to a high level, which means that we can predict
high-quality bounding boxes.

Table 7. Performance comparison between the proposed method and state-of-the-art methods on the UED dataset.

AP AP50 (%) AP75(%) APmanhole (%)  APi;(%)  APnumplate
Method Backbone (%) (%)

ResNeXt ResNext-50-32x4d 73.58 94.31 90.22 67.78 78.44 74.53
FPN ResNet-50 80.53 96.51 95.43 78.10 82.60 80.88
DCN ResNet-50-Deformable 80.42 96.76 94.81 78.99 82.64 79.62
TridentNet-Fast ResNet-50 80.62 96.23 94.46 79.17 81.97 80.71
Cascade R-CNN ResNet-50 80.51 96.10 94.51 78.40 81.87 81.27
Mask R-CNN ResNet-50 80.48 95.52 94.43 79.05 82.11 80.28
Cascade Mask R-CNN ResNet-50 81.23 97.20 95.62 80.65 81.45 81.60
RetinaNet ResNet-50 79.91 96.97 94.88 79.13 80.30 80.31
Ours RD-Net 81.71 97.40 95.78 81.55 82.94 80.64

Bold indicates the best performance.

By analyzing results of different algorithms, the accuracy of ResNeXt (73.58%) is relatively
low; specifically, the AP is lower than the Faster R-CNN baseline (80.51%). ResNeXt with the
ResNeXt-50-32x4d backbone has better detection results than Faster R-CNN with the ResNet-50
backbone on the large-scale COCO dataset in previous research [21], whereas
we obtain opposite results on the UED dataset, and our proposed method has an improvement of
8.13% compared to the ResNeXt method. Dealing with feature scale issues is a significant
challenge for small object detection; FPN leverages a multiscale pyramidal convolutional network
to produce a series of feature maps where the shallow features with rich spatial information are
enhanced by the deep features with semantic information [12] to improve object detection
accuracy, especially for small objects. AP for FPN (80.53%) is higher than the baseline Faster R-
CNN (80.51%), but lower than our proposed method (81.71%), suggesting that FPN is more
accurate than Faster R-CNN but less practical compared with our proposed method for small
urban element detection. Trident Networks prove to be able to detect small objects effectively,
and Trident-Fast, building three parallel branches
with different receptive fields, is a fast approximation version of Trident Networks [48]. Our
proposed method is more effective in detecting small objects than Trident-Fast, with an
improvement of 1.09%. The second-best result is Cascade Mask R-CNN with an AP of 81.23%
which is better than Cascade R-CNN or Mask R-CNN. We should indicate that Cascade Mask R-
CNN combines Cascade R-CNN and Mask R-CNN directly, adding a mask branch following the Mask
R-CNN architecture to each stage of Cascade R-CNN. We expect to obtain better results by
applying the mask branch to our proposed method with high-quality annotation for instance
segmentation. Performance of RetinaNet, which is a one-stage object detector, is worse than
most two-stage object detection methods, including our proposed method. Compared with these
advanced detection methods, we verified that our proposed model outperforms state-of-the-art
methods.

Some examples of results for different methods are presented in Figure 8. In the first column
of Figure 8, we can see that although all methods can detect the two obvious manhole covers on
the right side of the image, our proposed method can detect the smallest and occluded manhole
cover in the lower right of the image effectively and avoid false positive detection. The second
and third columns further demonstrate that our proposed method can detect hidden and cropped
small objects more accurately compared with other methods, and the fourth and fifth columns
show that our proposed method can efficiently preclude false positives. In the last column of
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Figure 8, the other methods predict less accurate bounding boxes or fail to detect the target
milestone. Our proposed method has better performance for small urban element detection
compared with other state-of-the-art methods.

Figure 8. Comparison of small urban element detection on UED dataset for different methods.

(a) ResNeXt; (b) FPN; (c) DCN; (d) TridentNet-Fast; (e) Cascade R-CNN; (f) Mask R-CNN; (g) Cascade Mask R-
CNN; (h) RetinaNet; (i) ours. Red is the predicted bounding box and yellow is the ground reference bounding
box.

5. Discussion
5.1. Effect of Proposed Modules

As demonstrated in Table 2, each of the proposed modules helps to improve the
performance of small urban element detection, and RD-Net has a positive influence on the
effectiveness of the ADSS module and GloU loss. To justify the generalization capability of the
designed modules and verify our speculation that feature outputs of high spatial resolutions are
beneficial to small object detection, we gradually incorporated ResNet-5054, the ADSS module,
and GloU loss from the Baseline Faster R-CNN. The experimental results are shown in Table 8. The
AP values for models conducted with ResNet-50-S4 have a similar pattern with that performed
with RD-Net (Tables 2 and 8): AP increases when the ADSS module and GloU loss are integrated
separately or together with ResNet-50-S4. The Baseline + ResNet-50-S4 + ADSS + GloU_loss
achieves an AP improvement of 0.93% compared with the Baseline (80.51%), increasing the AP to
81.44%. The results (Table 8) align well with our previous ablation study (Table 2), indicating that
our proposed modules are effective for detecting small urban elements. It further suggests that
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the increase in the AP may result from high spatial resolution feature representations when the
ADSS module and GloU loss are combined with the reduced downsampling networks.
5.2. Sensitivity Analysis to lllumination and Occlusion

In urban settings, 2D image object detection often suffers from changes in lighting conditions
and degrees of clutter. We analyzed how sensitive our proposed method is when facing variations
of illumination and occlusion. As illustrated in Figure 9, our proposed method performs well when
the light is sufficient (Figure 9a). Target objects can be detected accurately although they are
totally or partially occluded by shades (Figure 9b). Even when the environment is dark, the
proposed method can successfully detect small objects in most cases (Figure 9b,c). However,
when the objects in images are not easily visible to the human eye, the proposed method tends
to miss the objects (Figure 9c). To conclude, our proposed method is not sensitive to lighting
conditions, with the exception of very dark conditions.

Table 8. Performance of the ADSS module and GloU loss with the ResNet-50-54 on the UED dataset.

ADSS AP APmanhole (%)  APi;(%)  APnumplate
Method S4 Module GloU Loss (%) (%)
Baseline J 80.51 79.21 82.22 80.10
Baseline + S4 J J 80.66 78.30 83.44 80.24
Baseline + S4 + ADSS \/ 80.83 80.37 82.13 79.98
Baseline + S4 + GloU_loss v 80.81 79.50 81.90 81.03
Baseline + S4 + ADSS + GloU_loss v v v 81.44 29.87 82.74 8171

S4 is abbreviation for ResNet-50-S4. Bold indicates the best performance.

manhole

manhole
manhole

manhole

[
‘manhole

(b) (c)

Figure 9. Performance under different lighting conditions: (a) objects in light condition; (b) objects under shade; (c) objects in dark
condition. Red is the predicted bounding box and dashed yellow is the ground reference bounding box.

Figure 10 shows cases where objects are occluded to varying degrees. Although the manhole
covers are occluded by cars or dark shades or partially cropped, our proposed method can
precisely predict the locations (Figure 10a,b). There are only few cases with occluded milestones
and license plates in the UED dataset. The occluded milestones can be detected correctly, but
cropped license plates are prone to be neglected (Figure 10c). In general, the proposed method is
insensitive to occlusion for manhole covers and milestones, whereas it tends to miss cropped
license plates.



Remote Sens. 2021, 13, 3608

22 0f 26

5.3. Analysis of Failure Cases

As illustrated in Figures 9 and 10, our proposed method may encounter some failure cases
under several typical scenarios, although it is able to more accurately detect small urban elements
under various adverse scenarios compared with the Baseline model (Figure 6). We primarily
explore the reason and propose potential solutions in this subsection. First, the first two samples
in Figure 11 shows that the proposed method fails to detect objects when the environment is very
dark. This is mainly due to the lack of relevant training samples in dark conditions. Second,
cropped and occluded license plates are prone to be missed in the detection results as presented
in the last two samples in Figure 11. However, manhole covers can be effectively detected in
similar situations. The reason might be that there are few training samples of occluded license
plates, or the images are annotated inaccurately. The detection of small urban elements in the
dark and occluded license plates are two main challenges for our proposed method. One potential
solution for the problem is to add data augmentation to help the model to generalize. We included
scaling augmentation when training the model, and flipping, rotating, and color jitter
augmentation may further contribute to generating training samples and improving the model

performance for the failure cases.

Figure 10. Performance with varying degrees of occlusion. (a,b) are for manhole covers; (c) is for milestones (top) and license plates
(bottom). Red is the predicted bounding box and dashed yellow is the ground reference bounding box.

_manhole
manhole

manhole

Figure 11. Typical failure cases. Red is the predicted bounding box and dashed yellow is the ground reference bounding box.

6. Conclusions

Small urban element detection is more challenging compared with generic object detection
due to a typically low coverage rate of small objects within a complex background in an image. In
this paper, an accurate and robust CNN-based model is proposed to detect small objects in urban
settings. We analyzed the effect of downsampling at different stages of networks and designed a
RD-Net backbone network with a low downsampling rate and small receptive field to preserve
local information and improve small object detection accuracy. Moreover, we introduced an ADSS
module that defines positive and negative training samples based on the statistical features of
objects rather than loU thresholds. In contrast to the widely used distance-based bounding box
regression loss, our method integrates GloU loss, which bridges the gap between distance-based
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optimization loss and area-based evaluation metrics. Experiments on the public UED dataset verify
the effectiveness of our proposed method to detect small objects in an urban environment and
illustrate that our method outperforms the baseline by a large margin. Our research can be
applied in small urban element maintenance and management, and save human and non-human
resources. It can also assist autonomous driving by extracting small objects and providing details
to build comprehensive 3D city models.

In the future, we plan to conduct the following research. First, we will further verify the
robustness and generalization ability of our proposed method for small urban element detection
by creating a new benchmark or extending the UED dataset with more categories and complex
scenes of urban environments. Second, we will add data augmentation to produce additional
training samples. Third, we will incorporate a backbone network with dilated convolutional layers
and feature fusion strategy to investigate the effects of different receptive fields and multi-scale
features for small object detection. Finally, the loss function will be further modified to consider
foreground—-background imbalance issue. These future directions will further increase the
efficiency and widen the useability of small object detection in urban applications.
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