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Abstract: Detecting small objects (e.g., manhole covers, license plates, and roadside milestones) in urban 

images is a long-standing challenge mainly due to the scale of small object and background clutter. Although 

convolution neural network (CNN)-based methods have made significant progress and achieved impressive 

results in generic object detection, the problem of small object detection remains unsolved. To address this 

challenge, in this study we developed an end-to-end network architecture that has three significant 

characteristics compared to previous works. First, we designed a backbone network module, namely 

Reduced Downsampling Network (RD-Net), to extract informative feature representations with high spatial 

resolutions and preserve local information for small objects. Second, we introduced an Adjustable Sample 

Selection (ADSS) module which frees the Intersection-over-Union (IoU) threshold hyperparameters and 

defines positive and negative training samples based on statistical characteristics between generated 

anchors and ground reference bounding boxes. Third, we incorporated the generalized Intersection-over-

Union (GIoU) loss for bounding box regression, which efficiently bridges the gap between distance-based 

optimization loss and areabased evaluation metrics. We demonstrated the effectiveness of our method by 

performing extensive experiments on the public Urban Element Detection (UED) dataset acquired by Mobile 

Mapping Systems (MMS). The Average Precision (AP) of the proposed method was 81.71%, representing an 

improvement of 1.2% compared with the popular detection framework Faster R-CNN. 

Keywords: mobile mapping; deep learning; convolution neural network (CNN); object detection; small urban 

elements; reduced downsampling network; adjustable sample selection 
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MMS have been used to accurately detect 2D/3D urban elements. Detection of large urban 

structures based on mobile 3D point cloud data has yielded good results, with regard to pole-like 

street furniture recognition [1–3], street trees detection [4], road surface reconstruction [5–7], 

and building footprint extraction [8,9]. Three-dimensional point clouds of urban outdoor scenes 

contain detailed complex information about objects and their backgrounds, and can help build 

 
1 . Introduction 

With the development of remote sensing technology, high-quality, fine spatial resolution optical remote sensing 

data can be obtained readily and provides a promising data source for mapping urban elements. Aerial and satellite 

images have been utilized for land use/land cover classification, building and cadastral identification, and transportation 

infrastructure detection. However, some small urban elements (<0.6 m), such as manhole covers, milestones, and 

license plates, are difficult to detect in aerial or satellite images (with spatial resolutions typically larger than 0.3 m) 

when they often occupy less than 1% of an image. These kinds of small urban elements are important for building 

detailed 3D city models, assisting autonomous driving, and monitoring and maintaining urban facilities. Mobile Mapping 

Systems (MMS), which use multiple sensors (e.g., digital cameras, lidars, and global navigation satellite systems (GNSS)) 

operated on moving vehicles to collect geo-referenced 2D and 3D data, provide a cost-efficient solution to capture small 

objects in complex urban areas. 

remote sensing 
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comprehensive 3D urban models. However, mobile 3D point cloud data, especially in an urban 

scenario, are sparse in nature compared to 2D images, which makes it more challenging to detect 

small objects [10]. Small urban elements in such sparse point cloud data are usually represented 

as a few points and detection depends heavily on surface conditions. For example, manhole covers 

are hardly distinguishable with 3D point cloud data, when the objects are occluded, during rain, 

or when the road is icy. License plates and milestones are visible in only a few points and often 

difficult to detect with mobile 3D point cloud data. Under such circumstances, high spatial 

resolution 2D images acquired by MMS can provide more information-rich data sources, such as 

perspective and bird’s eye view images, to detect small objects in urban environments. 

Recently, research on the detection of small urban elements has gained rapidly growing 

attention in support of urban applications. For instance, detection of manhole covers is critical for 

managing and mapping the drainage system that is hidden in satellite images. Moreover, 

milestones, which are groups of steles built from the start to the end of a road at equal lengths 

per kilometer for accurate positioning, are important geographical landmarks for the 

transportation system and require regular maintenance. Automatically locating and recognizing 

milestones can greatly reduce the need for manual road inspections and maintenance to save 

human and non-human resources. In addition, in order to employ MMS images for further 

applications, such as releasing street views to the public, detection and blurring vehicle license 

plates is an essential task for privacy protection because license plate numbers are considered as 

personally identifiable information in some regions. 

With the rapid evolution of deep learning technologies, convolution neural network (CNN)-

based approaches, such as Faster R-CNN [11], Feature Pyramid Networks (FPN) [12], You Only 

Look Once (YOLO) [13–15], and Single Shot Detector (SSD) [16], have shown significant potential 

in understanding image data, and have thus become the state-of-the-art methods to complete 

object detection tasks. Compared to traditional object detection methods where feature 

extraction requires a cumbersome trial-and-error process and depends on expert experience, 

CNN-based models introduce a solution in an end-to-end fashion—neural networks learn the 

underlying features and automatically extract sematic information. 

Although CNN-based object detection algorithms have yielded promising results for natural 

scenes, existing CNN-based models are challenged by small urban element detection because of 

their unique properties. First, small urban elements occupy only a few pixels or a small proportion 

of the whole image, suggesting that regular feature representation tends to be deficient. Generic 

CNN-based models adopt AlexNet [17], VGGNet [18], GoogLeNet [19], ResNet [20], ResNeXt [21], 

and SENet [22] architecture, which include a series of convolution and downsampling operations 

for feature extraction. Deeper networks tend to have a large downsampling rate with a large 

receptive field, which is practical and useful for classification by extracting robust feature maps, 

but compromises localization capability due to high-resolution information loss in the output layer. 

Furthermore, anchors generated by generic object detection CNN-based models may be too large, 

which may lead to the loss of attention for small objects. Second, small objects such as manhole 

covers are easily obstructed by non-target objects that are located at arbitrary locations in the 

image. It is difficult to distinguish occluded small objects from a noisy urban background. 

In this article, we propose a novel CNN-based framework that not only maintains high spatial 

resolution in deeper networks but also yields efficient training samples to detect small objects in 

urban environments. We designed a Reduced Downsampling Network (RD-Net) backbone to 

extract feature representations. The Region Proposal Networks (RPN) module takes extracted 

features from RD-Net as input and outputs a set of region proposals, which are rectangular 

bounding boxes for possible locations of the objects. In the RPN module, an Adjustable Sample 

Selection (ADSS) module was devised to select high-quality positive and negative training samples 

according to statistical features of objects. By further propagating extracted feature maps and 

region proposals into the Region of Interest (RoI) module, a pooling operation is adopted to crop 

regions of the feature map, and more conspicuous object representations are learned to predict 

object categories and locations. The main contributions of this study are summarized as follows: 

1. We introduce a new backbone network, RD-Net, with low downsampling rate and small 

receptive field which preserves sufficient local information. The proposed RD-Net can 
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extract high spatial resolution feature representations and improve small urban element 

detection performance. 

2. ADSS module is adopted, which defines positive and negative training samples based on 

statistical characteristics between the generated anchors and ground reference bounding 

boxes. With this sample selection strategy, we can assign positive-negative anchors in an 

adaptive and effective manner. 

3. We incorporate generalized Intersection-over-Union (GIoU) loss for bounding box 

regression to increase the convergency rate and training quality. GIoU is calculated to 

measure the extent of alignment between the proposed and ground reference bounding 

boxes. With a unified GIoU loss, we can bridge the gap between distancebased optimization 

loss and area-based evaluation metrics. 

To evaluate the performance of our proposed model, we conducted extensive experiments 

on the public Urban Element Detection (UED) dataset [23] to detect manhole covers, milestones, 

and license plates. Our model achieves a significant improvement for small urban element 

detection compared with state-of-the-art CNN-based object detection methods. The results 

demonstrate that our model can not only detect small urban elements accurately, but also reduce 

false positive detections. In addition, detailed ablation and parameter analyses were performed 

to further explore how the proposed techniques improve the detection model and acquire some 

insights concerning proper parameter settings for a valid detection model. 

The remainder of this article is organized as follows. Section 2 briefly reviews the related 

work. In Section 3, the proposed model for small urban element detection is illustrated in detail. 

Experimental results and discussions are presented in Sections 4 and 5, respectively. Finally, we 

draw our conclusions in Section 5. 

2. Related Work 

2.1. Traditional Urban Element Detection 

Traditionally, hand-crafted features are extracted for accurate identification of the location 

and shape of urban elements. Although some studies have used 3D point cloud data to detect 

urban manhole covers [24,25], most existing studies for manhole cover detection are based on 2D 

images [26–29]. Sultani et al. [26] separated the image into superpixels and adopted a support 

vector machine (SVM) classifier to detect different pavement objects including manhole covers. 

Pasquet et al. [28] combined the Bhattacharyya coefficient and linear SVM classifier to increase 

the detection performance for manhole covers. In Wei et al. [30], high spatial-resolution ground 

images and high-precision laser data were jointly incorporated to detect manhole covers. The 

modified histogram of oriented gradients (HOG) and SVM algorithms were exploited for 

identification and information acquisition of manhole covers. Although some encouraging results 

have been obtained with traditional detectors for manhole covers, these methods are not end-to-

end approaches and are composed of multiple complicated steps. 

Extensive research has been conducted in the field of vehicle license plate recognition. Most 

of these studies extract hand-crafted features based on specific descriptors, such as edge, shape, 

color, and texture [31–36]. In Hongliang and Changping [33], a hybrid license plate extraction 

algorithm was introduced, which was based on edge statistics and morphology. Jia et al. [34] 

utilized a mean shift algorithm to divide the regions of interest, and classified license plates with 

respect to extracted shape and edge density features. Deb and Jo [35] proposed a hue, saturation, 

and intensity (HSI) color model to select candidate regions which were applied with position 

histogram for final license plate detection. In Hsu et al. [36], edge clustering, a texture-based 

approach, was formulated to detect candidate license plates. These traditional methods that work 

in license plate detection heavily rely on expert knowledge for model design. The manually 

designed features take advantage of low-level image information and can lead to poor 

generalization ability in certain scenarios. For road milestones, some studies have explored 

accurate prediction of milestone positioning [37] but, to the best of our knowledge, none have 

investigated extraction routines with traditional methods. 
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2.2. CNN-Based Object Detection 

Deep CNN-based object detection models have achieved substantial improvement in 

accuracy and speed compared with previous hand-crafted feature-based methods. 

Contemporary CNN-based object detection methods can be grouped into one- and two-stage 

detection methods. 

Two-stage detectors first filter out a set of region proposals and then feed the proposals into 

region convolutional neural networks for classification and localization [11,38–45]. In 2014, 

Girshick et al. [38] first introduced a CNN for the object detection task and proposed Regions with 

CNN features (R-CNN), which generates region proposals by Selective Search and propagates each 

proposal to a convolutional network to extract features. To reduce the computation cost of R-CNN 

[38], Spatial Pyramid Pooling Network (SPPnet) [39] and Fast R-CNN [40] compute the whole input 

image through convolutional networks and extract feature vectors with spatial pyramid pooling 

and Region of Interest (RoI) pooling, respectively. Faster R-CNN [11] enables end-to-end object 

detection and further improves the computing efficiency of two-stage detectors. It introduced a 

Region Proposal Network (RPN) [11], which replaces the independent external proposal 

generation modules. Later, various methods based on Faster R-CNN were proposed to improve 

object detection performance, such as Region-based Fully Convolutional Network (R-FCN) [41], 

Light-head R-CNN [42], Deformable convolutional networks (DCN) [43], Mask R-CNN [44], and 

Cascade R-CNN [45]. 

Compared with two-stage object detection methods, one-stage detectors are more 

computationally efficient because they eliminate the proposal generation step, but the detection 

performance tends to be inferior in most cases. For instance, YOLO [13] divides the input images 

into grids. If the center of an object falls in the grid, the grid predicts bounding boxes and 

confidence scores for the boxes. The advantage of YOLO is the high detection speed, but the 

accuracy is not as good as that of two-stage detectors. YOLOv3 [15], the upgraded version of YOLO, 

utilizes a deeper network and multiscale training. SSD [16] incorporates multiple scale feature 

maps in a one-stage detector to predict bounding boxes and category scores. SDD is faster than 

the one stage detector YOLO, and more accurate than the two-stage Faster R-CNN model. 

RetinaNet [46] proposes focal loss to solve the foreground-background class imbalance problem 

of one-stage detectors. 

2.3. CNN-Based Small Object Detection 

Although CNN-based detection models perform well in generic object detection, it remains 

challenging to detect small objects that occupy only a small proportion of an image. Multiscale 

feature learning is one crucial strategy for small object detection [12,47–49]. FPN [12] establishes 

a top-down feature pyramid network with lateral connections to produce multiscale feature maps 

and predictions at different feature pyramids, improving the accuracy of small object detection. 

Trident Network (TridentNet) [48] constructs three scale-aware parallel branches which share the 

same parameters but have different receptive fields to improve small object detections. Different 

receptive fields for objects of different scales have the same motivation as the feature pyramid, 

aiming for multiscale learning. Although multiscale feature learning can benefit small object 

detection, too large a receptive field may lead to information loss for small objects. Recent works 

have shown that integrating contextual information can improve object detection accuracy, 

especially for small objects [49–53]. Inside-Outside Net (ION) [51] integrates contextual 

information outside the RoI and adopts skip pooling for multiscale information extraction, which 

is effective in detecting small objects. Liu et al. [53] presented Structure Inference Network (SIN), 

which makes use of scene contextual information and object relationships to promote object 

detection, especially for small objects. All of the above CNN-based models were evaluated on 

PASCAL VOC [54] and MS COCO [55] datasets, in which most instances occupied more than 1% of 

the whole image area. However, because small urban elements detected in this study are even 

smaller than generic objects in natural scenes, the generic object detection models cannot achieve 

optimal performance when directly used for small urban element detection. 
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2.4. CNN-Based Urban Element Detection 

With the development of CNN in generic object detection, deep CNN-based methods have 

begun to be widely used to detect urban elements. Research on manhole cover detection utilizing 

CNN-based models has emerged in recent years [56–58]. Boller et al. [56] and Hebbalaguppe et 

al. [57] used Faster R-CNN to automatically detect drain inlets and manhole covers and 

demonstrated that the CNN-based model was more powerful than traditional computer vision 

methods. Liu et al. [58] proposed a multiscale feature extraction network and a multilevel 

convolution matching network, such that the precision and recall rate for small and dense 

manhole cover detection was boosted. The success of deep CNN-based methods has also inspired 

automatic license plate recognition, which focuses on identifying numbers and letters on the 

license plates [59–64]. Li et al. [59] proposed a cascade architecture that began with a four-layer 

CNN to generate a saliency map and then used Recurrent Neural Networks (RNNs) to detect and 

recognize characters. Several studies developed and modified the state-of-the-art YOLO detector 

for license plate recognition [60–64]. Hendry and Chen [63] reduced the original YOLO network to 

create a tiny version for each class with 36 models and ran a sliding window for all classes to detect 

small license plates and characters. Kessentini et al. [64] proposed a two-stage deep neural 

network to recognize multinorm and multilingual license plates. The first stage employed the 

YOLO detector to detect license plates, and the second stage combined two modules, a 

segmentation-free module based on RNN and a joint detection/recognition module, to identify 

characters. Compared with the above existing detection methods, our proposed approach focuses 

on three small urban elements which occupy less than 1% of the image area. Our method can 

effectively reserve local information of small objects and generate high-quality training samples 

with a more adjustable sample selection strategy. 

3. Method 

3.1. Overview of Our Method 

We developed and tested a deep learning-based detection framework which includes several 

network modules, namely a Reduced Downsampling Network (RD-Net) backbone, a sample-

balanced RPN module, and RoI-based network heads for classification and localization (Figure 1). 

The convolutional feature extraction network RD-Net utilizes the basic stem and a series of 

residual blocks with convolutional layers, rectified linear unit (ReLu) layers, and pooling layers to 

forward propagate the input remote sensing image. Five sequentially stacked stages compose the 

RD-Net to extract feature maps M from the fourth stage. Considering a single image I ∈RW×H×C 

where W, H, and C denote the spatial width, height, and channel number, respectively, the process 

can be formulated as follows: 

 M = FRD−Net(I), (1) 

where FRD−Net() denotes the RD-Net backbone for feature extraction. 
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Figure 1. Overall framework of the proposed method. 

The feature maps M are fed into the sample-balanced RPN module to generate a set of 

rectangular proposals telling the RoI module where to look. By going through the RPN head, we 

slide a 3 × 3 spatial window over the convolutional feature maps M and then have two parallel 

convolutional layers with a 1 × 1 spatial window for classification and box regression, respectively. 

Instead of employing traditional strategy of hard Intersectionover-Union (IoU) thresholds to select 

training samples [11,45,48], the ADSS module defines positive and negative training samples 

according to the statistical characteristics of similarity measures between generated anchors and 

ground reference objects. The process to generate region proposals P can be formulated as: 

 P = FRPN(M), (2) 

where FRPN() denotes the sample-balanced RPN module. 

Then we adopt a module to combine feature maps M and region proposals P into unified 

network features. The feature maps M are cropped by the RoIAlign operation to obtain fixed-sized 

feature vectors, and then are propagated to a sequence of convolution layers which are the last 

stage of RD-Net. The output features are finally transmitted to fully-connected layers to optimize 

the classifier and bounding box regressor when training, and predict the object category and 

localization when inferencing. The process can be formulated as: 

 O = FRoI(M, R), (3) 

where FRoI() denotes the classification and localization RoI module, and O refers to the 

object detection results. 

3.2. RD-Net 

Recently, object detectors have often adopted large and deep backbones, which stack a small 

number of convolutional-ReLu layers followed by pooling or convolutional layers whose stride is 

greater than 1, and then repeat this pattern to extract outputs of small size and high receptive 

field. A deep convolutional network can abstract semantically meaningful features that are 

beneficial to recognize the category of objects. However, it is unfavorable for small object 

localization because the information from small objects is weakened due to the large stride and 
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coarse spatial resolution of feature maps with respect to the input image [65,66]. A higher input 

resolution may result in better detection results than a lower input resolution image [47], but 

experiments are often limited by the input data, whose spatial resolution is not high enough to 

preserve information for small objects with a large stride and a large receptive field. 

Inspired by [23,66,67], we proposed the Reduced Downsampling Network (RD-Net) 

backbone to address the problem of small object detection. We adopt ResNet-50 [20] as the 

baseline network, which includes five network stages with standard bottleneck blocks as network 

units. There are two types of shortcut connections to transform the plain network to the 

counterpart residual version of bottleneck block. The projection shortcut utilizes a 1 × 1 

convolutional layers to match the input and output dimensions, and the identity shortcut directly 

connects layers of the same dimension. As illustrated in Figure 2, the 7 × 7 convolutions with a 

stride of 2 are applied to the input images in the first stage, followed by 3, 4, 6, and 3 bottleneck 

blocks for the subsequent four stages, respectively. In the second stage, the output feature maps 

from the first stage are fed into 3 × 3 pooling layers for downsampling, and the downsample 

operation is performed directly by convolutional layers that have a stride of 2 in the following 

stages. The strides for the five stages of ResNet-50 are 2, 4, 8, 16, and 32, respectively, with one 

downsampling operation in each stage that can significantly affect small object detection accuracy. 

To overcome the disadvantage of the ResNet-50 backbone and ensure computing efficiency, we 

remove the downsampling operation of the third stage by substituting the convolutions of stride 

2 for the convolutions of stride 1 (Figure 2). Our insight is that such network adaptation is 

necessary to place more attention on detecting high spatial resolution features in a small area, 

which is thus beneficial for the small object localization task. With such information-rich output 

features of high spatial resolution and the consecutive RPN and RoI modules, our proposed 

method is more powerful and robust in locating positions of small objects. 

3.3. Adjustable Sample Selection Module 

In the baseline detector Faster R-CNN, the output feature representations from VGG or 

ResNet backbone are fed to a RPN module, which consists of a neural network RPN head and an 

operation to produce region proposals [11]. Through the proposal generation part of Faster R-

CNN, m × n anchors are generated at each grid point of the feature map with m scales and n aspect 

ratios. All the anchors are paired with each ground reference box to calculate an Intersection-

over-Union (IoU) overlap. The positive/negative anchor assignment is decided by a hard 

thresholding process. Anchors that have an IoU with any ground reference box greater than the 

pre-defined threshold (typically 0.7) or that have the highest IoU are set as positive, and anchors 

that have an IoU smaller than another threshold (typically 0.3) are set as negative. However, this 

hard thresholding method may lead to a highly imbalanced distribution of anchors—there are 

usually significantly more negative anchors than positive anchors. To avoid bias caused by 

dominant negative samples, 256 anchors are selected randomly per image to optimize the loss 

function, half of which are positive. Negative anchors are sampled to pad the mini-batch if the 

corresponding positive anchors are less than 128 [11]. Anchors that are not sampled by the 

assignment process are ignored for training. There are some vulnerabilities of the RPN sample 

selection module for small object detection. The sample selection procedure adopts IoU 

thresholds to determine positive and negative training samples; this process is prone to neglecting 

some outer objects and sensitive to changes in the IoU threshold hyperparameter. Recently, 

Zhang et al. proposed an adaptive scheme for the one-stage anchor-based object detector to 

automatically effectively select positive and negative samples without the IoU threshold 

hyperparameter [68]. 
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Figure 2. Network structure of ResNet-50 and RD-Net. Solid line with arrow presents projection shortcut and 

dash line with arrow presents identity shortcut. 

To tackle weaknesses of the sample selection module and improve discriminative capability 

of small object detection, we proposed the Adjustable Sample Selection (ADSS) module. Algorithm 

1 describes the details of the method. We first use m scales and n aspect ratios to yield m × n 

anchors at each position of the input feature maps. For each ground reference box t, we then 

select the top k candidate positive samples based on the shortest L2 distance between the anchor 

center and ground reference box center. Then, we calculate IoU between the k candidate positive 

samples and ground reference box t as Ut, and compute the adjustable IoU threshold thrt by adding 

the mean of Ut and the standard deviation of Ut. For the ground reference box t, we select final 
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positive anchors from the candidates that are greater than or equal to the threshold IoU thrt. For 

an anchor passing the positive sample selection for multiple ground reference boxes, we assign it 

to the ground reference box with the highest IoU. Negative samples are picked randomly from the 

remaining anchors to fill 256 training samples. Finally, as in Faster R-CNN [11], the selected 

samples and anchors are employed with the RPN head, where feature extractions from the 

backbone go through 2 × 3 convolutional layers and two parallel 1 × 1 convolutional layers for 

object existence and bounding box regression, to train and result in a better region proposal. 

There are two main changes of the ADSS module compared with the original sample 

selection module of Faster R-CNN. First, we exploit distanced-based strategy to select candidate 

positive samples that are closer to the objects and can lead to high-quality detections. Second, an 

adjustable value, namely, is the sum of the mean and standard deviation of the IoU of positive 

samples, is used to free the sensitive fixed IoU threshold hyperparameter. It is more functional 

and practical to integrate our ADSS module and RPN head to generate region proposals. 

 

Algorithm 1 Adjustable Sample Selection (ADSS) 

 

Input: 

M: feature maps from RD-Net backbone T: a 

set of ground reference boxes 

v: hyperparameter of anchor sizes in absolute pixels with default of [82, 162, 322, 642, 1282] r: 

hyperparameter of anchor aspect ratios with default of [0.5, 1.0, 2.0] k: hyperparameter to select 

anchors with default of 15 

n: hyperparameter of number of anchors per image to sample for training with default of 256 Output: 

Pt: a set of positive samples for ground reference t ∈ T 

Nt: a set of negative samples for ground reference t ∈ T 

1: A ← Generate a set of anchor boxes A from M with each cell creating |v| × |r| anchors 2: for each 

ground reference t ∈ T do 

3: St ← Initialize a set of candidate positive samples St by selecting top k anchors whose center are closest to the center of ground reference 

t based on L2 distance 

 4: Calculate IoU between St and ground reference t: Ut = IoU(St, t) 

 5: Calculate mean of Ut: µt = mean(Ut) 

 6: Calculate standard deviation of Ut: σt = std(U) 

 7: Set adjustable IoU threshold to select positive sample: thrt = µt +σt 

 8: for each positive candidate sample s ∈ St do 

 9: if IoU(s, t) ≥ thrt 

10: Pt = Pt ∪ s 

11: end if 

 12: end for 

 13: Calculate the number of negative samples for training nneg: nneg = n − npos where npos is number of elements in Pt 

14: Nt ← Select nneg anchors from A − Pt randomly 15: end for 

16: return Pt, Nt 

in the first convolutional layer, and then transferred to fully convolutional layers to enable 

localization and bounding box labeling. 

 
2 .4. RoI Module 

The RoI module incorporates feature representations from RD-Net and region proposals 

from RPN into unified network features. Previous object detectors adopt the RoIPool [11,40] or 

RoIAlign [44] operations to crop and resize specific convolutional maps using proposals. In this 

study, we utilize RoIAlign, which introduces bilinear interpolation to calculate exact values of 

extracted feature maps from the RD-Net at four sampled locations in each RoI bin, avoiding round-

off errors of RoIPool. After RoIAlign, the specified size feature vectors are fed into three bottleneck 

blocks with one downsampling operation 
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3.5. Loss Function 

We denote pi as the probability of an anchor i belonging to a positive class. For the ground 

reference class, based on the ADSS sampling result, we define pi∗ as a binary indicator that is 1 if 

the anchor is positive, and 0 for negative. By implementing binary cross-entropy loss, the 

classification loss for RPN can be formulated as: 

 LclsRPN Ncls i

 , (4) 

where Ncls is a normalization term. 

We define Bi bi,tl, bi,br
 as the predicted anchor bounding box i, where bi,tl and bi,br are the 

top-left and bottom-right points of the bounding box, respectively. The ground reference anchor 

bounding box is defined as Bi∗  in the same fashion. We propose applying a 

generalized Intersection-over-Union (GIoU) loss [69] to measure the extent of alignment between 

the anchors and ground reference bounding boxes. Compared to a standard IoU, which cannot be 

optimized when there is no overlap between bounding boxes, we calculate the GIoU of two boxes, 

which overcomes the weakness and preserves major characteristics of IoU (Figure 3). For the 

predicted anchor Bi and ground reference bounding box Bi∗, we first find the minimum bounding 

box Ci that encloses Bi and Bi∗. Then we compute the ratio of the area of Ci excluding Bi and Bi∗ to 

the total area of Ci. Finally, GIoU between Bi and Bi∗ is calculated to be the IoU value minus the 

ratio. We can use the GIoU as a loss term for bounding box detection, which can be formulated 

as: 

 LlocRPN(Bi, Bi∗) = N1loc ∑i pi∗(1 − GIoU(Bi, Bi∗)), (5) 

where Nloc denotes a normalization term, and GIoU() the calculation of GIoU between bounding 

boxes. 

 

Figure 3. Examples of calculation for IoU and GIoU. When there is no overlap between the predicted and 

ground reference bounding boxes, the IoU value is zero and cannot reflect the distance between two 

boxes, whereas GIoU can reveal how far one box is from anther and has a non-zero gradient. 

With these definitions, we formulate the loss function for RPN as follows: 
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 LRPN (pi, p (Bi, Bi∗), (6) 

where λ1 and λ2 are balancing weights that are both equal to 1. 

For classification and detection heads, the loss function can be formulated as follows: 

 (Biu, Biu∗), (7) 

 Lclshead Kcls i

 i , (8) 

 Llochead(Biu, Biu∗) Kloc i GIoU(Biu, Biu∗)),

 (9) 

where i is the index of a RoI instance, ci is the probability distribution for the predicted classes, ci∗ 

is the ground reference class, Bi
u and Bi

u∗ are the predicted and ground reference bounding boxes, 

respectively, and λ3 and λ4 are balancing weights which are both set to 1. Lcls
head is implemented 

by cross-entropy loss for multiple classes, and Lreg
head by GIoU loss, with normalization factors Kcls 

and Kreg, respectively. 

By adding the loss functions defined above, we can calculate the total loss as: 

 L = LRPN + Lhead. (10) 

In two-stage object detection models, smooth-L1 loss is widely used for the localization task, 

which assumes that coordinates of four points are independent from each other; however, in 

reality, there is a certain correlation of the four locations. Performance evaluation of object 

detection relies on IoU metrics which focus on areas and are invariant to the scale. Theoretically, 

optimization of smooth-L1 loss does not ensure equally optimized detection measured by IoU-

related metrics. Therefore, we adopt GIoU loss rather than smooth-L1 loss for localization to 

improve detection results. 

4. Experiments 

4.1. Dataset, Implementation Details, and Evaluation Metrics 

4.1.1. Dataset 

To evaluate the effectiveness of our proposed method for small urban element detection, 

we conducted experiments on the publicly available Urban Element Detection (UED) dataset [23]. 

The UED dataset is a three-class object detection dataset, acquired by mobile mapping 

systems (MMS), and includes high spatial resolution images of road surface and panoramic images. 

The dataset contains a total of 19,693 images, of which 3695 have targets and 15,998 are 

background images without targets. We conducted experiments on the positive dataset with 

target objects and divided it into 70% for training, 15% for validation, and 15% for testing. The 

dataset include three classes: manhole cover (“manhole”), milestone (“lcz”), and license plate 

(“numplate”) (Figure 4). The statistics of the UED dataset are shown in Table 1. The image sizes 

range from 492 × 756 to 1024 × 2048 pixels. It is noteworthy that most objects occupy small 

portions of images (Figure 5). About 73.21% of instances are small objects which occupy less than 

1% of image area, and 19.41% of instances occupy 1~2% of the total area of image. 
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Figure 4. Examples of UED dataset. (a) Manhole covers; (b) license plates; (c) milestones. 

Table 1. Statistics of the UED dataset. 

 
Class Image Size 

(Pixel) 

Object Size 
(Pixel) # of Object 

# of Small 
Objects 
(P% < 1) 

# of Object (1% 

< P% < 2%) Mean (P%) Median (P%) Std (P%) Min 
(P%) 

Max 
(P%) 

Trainval data 

manhole 

lcz 
1024  
492 × 756 to 

642 × 756 

92 to 
175 198 
14 × 25 to 
90 × 239 

840 

934 

694 

582 

146 

205 

0.78 

1.16 

0.77 

0.78 

0.25 

1.10 

0.14 

0.08 

1.68 

8.48 

 numplate 492 × 756 to 592 

× 756 
8 × 25 to 

115 × 136 
1599 1192 302 0.74 0.48 0.65 0.05 4.34 

Test data 

manhole 

lcz 
1024  
492 × 756 to 

642 × 756 

99 to 
126 178 
16 × 27 to 
143 × 214 

145 

174 

122 

104 

23 

43 

0.74 

1.17 

0.71 

0.81 

0.26 

1.04 

0.06 

0.10 

1.51 

6.31 

 numplate 492 × 756 to 592 

× 756 
13 × 36 to 122 

× 137 
280 214 52 0.77 0.54 0.71 0.08 5.15 

Total data 

manhole 

lcz 
1024  
492 × 756 to 

642 × 756 

99 to 
175 198 
14 × 25 to 
143 × 214 

985 

1108 

816 

686 

169 

248 

0.77 

1.17 

0.76 

0.78 

0.25 

1.09 

0.06 

0.08 

1.68 

8.48 

 numplate 492 × 756 to 592 

× 756 
8 × 25 to 

122 × 137 
1879 1406 354 0.75 0.49 0.66 0.05 5.15 

manhole: manhole covers; lcz: milestone; numplate: number plate; P%: percentage of object size in image (P% = Object size/Image size × 100%). 

When testing effectiveness of our proposed model, we use trainval data which are training and validation data together for training and test data for 

testing. 
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Figure 5. Histogram showing percentage of object size in image for UED dataset. 

4.1.2. Implementation Details 

Using training augmentation, we randomly sampled the shorter edge of the input image from 

at least 640 and at most 800 pixels, and limited the longer side of the input image less than or 

equal to 1333 pixels [70]. If the limit of the longer side is surpassed, the image is downscaled so 

that the longer edge does not exceed 1333 pixels. All experiments were initialized with ImageNet 

[71] pre-trained weights. We froze parameters of stage 1 for our RD-Net backbone and the first 

two stages for other backbones of comparison methods. Batch normalization was fixed for all 

experiments during training. The model was optimized by stochastic gradient descent (SGD) with 

a weight decay of 0.0001 and momentum of 0.9 [70]. We trained 90,000 iterations with a batch 

size of 2 on a single GTX1080ti GPU, with a learning rate beginning at 0.005 and decreased by a 

factor of 0.1 after 60,000 and 80,000 iterations. 

4.1.3. Evaluation Metrics 

The evaluation protocol followed the MS COCO benchmark [55], adopting Average 

Precision (AP) as the primary metric. For a specific class and threshold IoU, the PrecisionRecall 

Curve (PRC) was utilized to calculate APclass,iou, which is the average of precision values based on 

different recalls. Note that PRC was performed with 101 interpolations. Taking TP, FP, and FN as 

the number of true positives, false positives and false negatives, the precision and recall are 

formulated as: 

TP 

Precision = , TP 

+ FP 

(11) 

TP 

Recall = , 

TP + FN 

(12) 

where predicted results whose IoU over ground reference is greater than the IoU threshold are 

considered as true positives. When APclass,iou was computed, the average precision for one class 

over different IoU thresholds (ranging from 0.5 to 0.95 with a step size of 0.05) can be calculated 

as follows: 

 APclass  ∑ APclass,iou, thresholds ∈ [0.5 : 0.05 : 0.95], (13) 
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iou∈thresholds 

where APclass denotes AP for one class. The Average Precision (AP) was obtained by averaging 

APclass over different classes: 

1 

 AP = ∑ APclass, (14) 

# of classes class 

The evaluation metric AP of the MS COCO benchmark is defined to be the average of 

multiple IoU values. This metric can avoid bias introduced by a fixed IoU threshold; such a bias 

indicates that different predictions of IoU would have equal weight. 

In the following experimental results, AP is the primary metric, and it was averaged over all 

categories and multiple thresholds. AP50 and AP75 represent AP when thresholds are set at 0.5 

and 0.75, respectively, and APclass presents AP for one class. 

4.2. Ablation Study 

We performed an ablation study to verify the contribution of the proposed RD-Net, ADSS 

Module, and GIoU loss over the UED dataset. The baseline method was evaluated on the Faster 

R-CNN with the ResNet-50 backbone, and we proceeded to incorporate the three components 

gradually. The quantitative comparison results are shown in Table 2. 

Table 2. Ablation study of the proposed method on the UED dataset. 

 
 ADSS GIoU AP AP50 AP75 APmanhole APlcz APnumplate ms/ 
Backbone Method RD-Net 1 
 Module Loss (%) (%) (%) (%) (%) (%) Image 

 81.71 97.40 95.78 81.55 82.94 80.64 322.89 
GIoU_loss 

 
1 ms/image: average inference time per image (ms/image). Bold indicates the best performance. 

We show in Table 2 that our proposed model (Baseline + RD-Net + ADSS + GIou_loss) 

outperforms methods with all other combinations of the components. When applying RD-Net, 

ADSS module, and GIoU loss together, AP, AP50, and AP75 achieve 81.71%, 97.40%, and 75.78% 

with an improvement of 1.20%, 0.81%, and 1.37% compared with the Baseline, respectively. To 

be more specific, most of the improvements are from AP for higher IoU thresholds such as 0.75. 

This indicates that the proposed method can predict higher quality object boxes compared with 

the Baseline, which is significant for subsequent urban application tasks, such as precision 

positioning and 3D city modeling. Figure 6 demonstrates the comparison of detection results 

between our proposed method and the baseline. We can see that the Baseline misses some 

hidden or unobvious objects and incorrectly detects some objects, whereas our method can more 

accurately detect the cropped and occluded objects, suggesting that our method can detect more 

concealed small objects and avoid false positive detection more effectively than the baseline. 
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Figure 6. Performance of the baseline Faster R-CNN and our proposed model on the UED dataset. (a,c) are performance of the 

baseline Faster R-CNN. (b,d) are performance of our proposed model. Red is the predicted bounding box and yellow is the ground 

reference bounding box. 

4.2.1. Effect of RD-Net 

We first investigated the effectiveness of RD-Net by replacing the ResNet-50 backbone of 

the Baseline. The results in Table 2 show that AP for the Baseline + RD-Net raises to 81.28% from 

80.51%, with an improvement of 0.77% compared with the Baseline. For the Baseline with the 

ResNet-50 backbone, integrating the ADSS module (Baseline + ADSS) or GIoU loss (Baseline + 

GIoU_loss) decreases AP, whereas for the model with the RD-Net backbone (Baseline + RD-Net), 

AP is increased when exploiting the ADSS module (Baseline + RD-Net + ADSS) or GIoU loss 

(Baseline + RD-Net + GIoU_loss). The findings indicate that including RD-Net can not only boost 

the performance of small urban element detection, but also change the effectiveness of the ADSS 

module and GIoU loss. Our RD-Net has smaller receptive fields than the ResNet-50 backbone after 

removing the downsampling operation of the third stage, which reserves important information 

of small objects that may be lost with larger receptive fields. It is helpful to promote the capability 

of RPN and head to identify small objects with input feature maps of high spatial resolution from 

RD-Net. 

4.2.2. Effect of ADSS Module 

As shown in Table 2, the Baseline + RD-Net + ADSS and Baseline + RD-Net + ADSS + 

GIoU_loss increases AP from 81.28% and 81.38% to 81.31% and 81.71%, compared with the 

Baseline + RD-Net and Baseline + RD-Net + GIoU_loss, respectively. Different from our 

expectation, the Baseline + ADSS has lower AP than the Baselines. Our conjecture is that some 

small anchors whose centers are closest to the object centers have very small or zero IoU values 

with the ground reference and are ignored during training in the Baseline + ADSS model. 

However, in the Baseline + RD-Net + ADSS, with feature maps of higher spatial resolution from 

RD-Net, small anchors that are important for small object detection may be included for training. 
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4.2.3. Effect of GIoU Loss 

As shown in Table 2, the Baseline + RD-Net + GIoU_loss achieves an improvement of 0.1% 

compared with the Baseline + RD-Net. Among these, AP for manhole covers increases 1.46% from 

79.73% to 81.19%. In addition, AP for the Baseline + RD-Net + ADSS + GIoU_loss (81.71%) is also 

higher than that for the Baseline + RD-Net + ADSS (81.31%), with an improvement of 0.40%. By 

incorporating GIoU loss on the models with the RD-Net backbone, we can boost the small urban 

element detection results. Figure 7 demonstrates RPN localization loss, classification and 

detection head localization loss, and total loss for the models of Table 2 that adopt RD-Net 

backbone. It shows that the localization loss and total loss for the models 

with GIoU loss (Baseline + RD-Net + GIou_loss and Baseline + RD-Net + ADSS + GIou_loss) 

decrease more quickly and the values are lower than the models with the original Smooth L1 

loss (Baseline + RD-Net and Baseline + RD-Net + ADSS). 

  

Figure 7. (a) RPN box regression loss; (b) classification and detection head box regression loss; (c) total loss for the models with RD-Net 

backbone. 

4.2.4. Computational Time 

The average inference time per image under our experimental environment is listed in the 

last column of Table 2. The time cost of the proposed method (Baseline + RD-Net + ADSS + 

GIoU_loss) is greater compared with that of the Baseline. The average inference time for the 

Baseline is 274.20 ms/image, whereas it is 322.89 ms/image for our proposed method (Baseline + 

RD-Net + ADSS + GIoU_loss). The increased computational cost is mainly due to the downsampling 

operation removal to obtain high spatial resolution feature representations. The most efficient 

model is Baseline + ADSS + GIoU_loss, for which the inference time is 270.90 ms/image. When the 

ADSS module or GIoU loss is integrated in the model, the inference time decreases compared with 

corresponding model without ADSS module or GIoU loss, suggesting that incorporating ADSS 

module or GIoU loss can save computational cost and increase inference speed. In the future, we 

will consider adjusting the backbone network to reduce computational complexity and ensure 

high-resolution output feature maps at the same time. 

4.3. Backbone Network Analysis 

We explored how the downsampling operation of a network can affect small object 

detection by conducting experiments with the Baseline and applying different redesigned 

backbone networks on the UED dataset. We first compared the Baseline with the Resnet-50 and 

Resnet-101 backbone. The results show that the Baseline with the ResNet-50 backbone yields 

higher accuracies than the Baseline with the ResNet-101 backbone (Table 3), which is contrary to 

the general conclusion that deep networks usually work better than shallow 



Remote Sens. 2021, 13, 3608 17 of 26 

ones [72]. The reason for this may be that ResNet-101 has more blocks than ResNet-50 in stage 4 

whose stride is 16 with a high receptive field, and the information for small objects is lost in the 

deeper network. In addition, deep networks of ReNet-101 tend to overfit as the volume of the 

UED dataset is not big enough. Thus, we redesigned and compared different backbones from 

ResNet-50 instead of ResNet-101. 

Table 3. Architectures of different backbones and detection results on the UED dataset. 

 ResNet-101 ResNet-50 
ResNet-50-S3 (DR-

Net) 
ResNet-50-S4 ResNet-50-S5 

# of Block Stride # of Block Stride # of Block Stride # of Block Stride # of Block Stride 

Stage 1 0 2 0 2 0 2 0 2 0 2 
Stage 2 3 4 3 4 3 4 3 4 3 4 
Stage 3 4 8 4 8 4 4 4 8 4 8 
Stage 4 23 16 6 16 6 8 6 8 6 16 
Stage 5 3 32 3 32 3 16 3 16 3 16 
AP (%)  80.49 80.51 81.28 80.66 79.97 

Bold indicates the best performance. 

We removed the downsampling operation of ResNet-50 for stage 3, stage 4, and stage 5, 

respectively, to generate backbone ResNet-50-S3 (i.e., RD-Net), ResNet-50-S4, and ResNet-50-S5, 

to examine the efficiency of downsampling reduction at different stages. 

The comparison results are shown in Table 3. ResNet-50-S3 and ResNet-50-S4 have higher 

AP than ResNet-50, whereas AP for ResNet-50-S5 is lower than AP for ResNet-50, which suggests 

that removing downsampling operations in different stages has distinct effects on small urban 

element detection performance. When removing the downsampling operation of stage 3, AP is 

81.28%, which is 0.62% higher than the modification of stage 4 (80.66%). These results 

demonstrate that removing the downsampling operation in the earlier stage 

(stage 3) has more positive impacts on small object detection than doing so in the later stage 

(stages 4 and 5). We expect that removing downsampling in the first or second stage will lead to 

better results; however, the computational cost is considerably higher. Downsampling can reduce 

data dimensions to save computation time but leads to losing some significant information and 

affects model capability, mainly for small objects. 

4.4. Parameter Analysis 

Integrating the ADSS module in the two-stage object detection model involves an 

additional hyperparameter k. In addition, anchor sizes and aspect ratios may affect detection 

performance, especially for small objects [73,74]. In this subsection, we compare different 

network settings for the ADSS module on the UED dataset. 

4.4.1. Hyperparameter k 

The top k candidate positive anchors are selected based on the distance between the anchor 

and ground reference bounding box center in the ADSS module. We conducted experiments with 

different k in [3, 6, 9, 12, 15 × 1, 15 × 3, 15 × 5, 15 × 7, 15 × 9] to study how hyperparameter k 

influences detection results. As shown in Table 4, the best detection result is achieved when k = 

15, and either higher or lower k values reduce AP. Each grid of the feature map generates 15 

anchors with fixed anchor sizes [82, 162, 322, 642, 1282] and aspect ratios [0.5, 1, 2]. When k = 15, 

anchors engendered by the same cell whose center is closest to the ground reference bounding 

box are chosen as candidate positive samples. Smaller anchors generated by the same cell are 

selected when k < 15, whereas all anchors generated by n cells that are closest to the ground 

reference are selected when k = 15n, where n is an integer. Anchors of one grid are sufficiently 

valid for the positive candidates, whereas a too large k will result in many inferior candidates and 

a too small k will not include enough candidates. 
Table 4. Analysis of different values of k on the UED dataset. 
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k AP (%) AP50 (%) AP75 (%) 

3 80.28 96.77 94.53 

6 79.30 96.28 93.69 

9 81.17 97.39 95.47 

12 81.32 97.43 95.03 

15 × 1 81.71 97.40 95.78 

15 × 3 81.22 97.35 94.55 

15 × 5 81.17 97.09 94.71 

15 × 7 81.06 97.44 94.93 

15 × 9 81.03 96.86 95.62 

Anchor sizes: [82, 162, 322, 642, 1282]; aspect ratios: [0.5, 1, 2]. Bold indicates the best performance. 

4.4.2. Anchor Sizes 

Some experiments were conducted with anchor aspect ratios of [0.5, 1, 2] and k = 15, to 

explore appropriate anchor sizes that can benefit detection performance. From results of Table 5, 

we can observe that the predicted results can be improved with smaller anchor sizes. However, 

when the anchor sizes are reduced to [42, 82, 162, 322, 642], AP declines compared with anchor 

sizes of [82, 162, 322, 642, 1282]. Anchor sizes that are too large are unfavorable for small object 

detection, whereas anchor sizes that are too small will not contribute to positive samples due to 

the lack of overlap with the ground reference or small IoU values. 

Table 5. Analysis of different anchor sizes on the UED dataset. 

Anchor Sizes AP (%) AP50 (%) AP75 (%) 

[322, 642, 1282, 2562, 5122] 80.55 97.02 94.94 

[162, 322, 642, 1282, 2562] 81.32 96.78 95.52 

[82, 162, 322, 642, 1282] 81.71 97.40 95.78 

[42, 82, 162, 322, 642] 80.73 97.09 94.74 

k: 15; aspect ratios: [0.5, 1, 2]. Bold indicates the best performance. 

4.4.3. Anchor Aspect Ratios 

As shown in Table 6, experiments with various aspect ratios were performed. We set 

anchor sizes as [82, 162, 322, 642, 1282] and k, according to the aspect ratios from previous results 

(Table 6), and AP is the best when k equals the number of anchors engendered by one grid. The 

results demonstrate that the aspect ratios of [0.5, 1, 2] with k = 15 achieve the best accuracies, 

which suggests that including more anchors of different shapes into the positive candidates does 

not boost the performance. 

Table 6. Analysis of different anchor aspect ratios on the UED dataset. 

Aspect Ratio k AP (%) AP50 (%) AP75 (%) 

[0.5, 1, 2] 15 81.71 97.40 95.78 

[0.5, 1, 1.5, 2] 20 81.20 97.35 94.57 

[0.5,0.75,1, 2] 20 80.69 96.74 94.47 

[0.5,0.75,1, 1.5, 2] 25 81.48 97.10 95.74 

Anchor sizes: [82, 162, 322, 642, 1282]. Bold indicates the best performance. 

4.5. Comparisons with State-of-the-Art Methods 

We compared our proposed model with several state-of-the-art methods: ResNext [21], 

Feature Pyramid Networks (FPN) [12], Deformable Convolutional Networks (DCN) [43], 

Trident Networks Fast Approximation (TridentNet-Fast) [48], Cascade R-CNN [45], Mask R-CNN 

[44], Cascade Mask R-CNN [44,45], and RetinaNet [46]. It is worth noting that for the Mask R-
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CNN and Cascade Mask R-CNN methods, we used the bounding box mask as the ground 

reference of segmentation for the mask branch. The performance results are shown in Table 7. 

Our proposed method achieves an AP of 81.71%, which outperforms the other detectors. In 

addition, AP75 of our model is also enhanced to a high level, which means that we can predict 

high-quality bounding boxes. 

Table 7. Performance comparison between the proposed method and state-of-the-art methods on the UED dataset. 

Method Backbone 
AP 
(%) 

AP50 (%) AP75 (%) APmanhole (%) APlcz (%) APnumplate 

(%) 

ResNeXt ResNext-50-32x4d 73.58 94.31 90.22 67.78 78.44 74.53 

FPN ResNet-50 80.53 96.51 95.43 78.10 82.60 80.88 

DCN ResNet-50-Deformable 80.42 96.76 94.81 78.99 82.64 79.62 

TridentNet-Fast ResNet-50 80.62 96.23 94.46 79.17 81.97 80.71 

Cascade R-CNN ResNet-50 80.51 96.10 94.51 78.40 81.87 81.27 

Mask R-CNN ResNet-50 80.48 95.52 94.43 79.05 82.11 80.28 

Cascade Mask R-CNN ResNet-50 81.23 97.20 95.62 80.65 81.45 81.60 

RetinaNet ResNet-50 79.91 96.97 94.88 79.13 80.30 80.31 

Ours RD-Net 81.71 97.40 95.78 81.55 82.94 80.64 

Bold indicates the best performance. 

By analyzing results of different algorithms, the accuracy of ResNeXt (73.58%) is relatively 

low; specifically, the AP is lower than the Faster R-CNN baseline (80.51%). ResNeXt with the 

ResNeXt-50-32x4d backbone has better detection results than Faster R-CNN with the ResNet-50 

backbone on the large-scale COCO dataset in previous research [21], whereas 

we obtain opposite results on the UED dataset, and our proposed method has an improvement of 

8.13% compared to the ResNeXt method. Dealing with feature scale issues is a significant 

challenge for small object detection; FPN leverages a multiscale pyramidal convolutional network 

to produce a series of feature maps where the shallow features with rich spatial information are 

enhanced by the deep features with semantic information [12] to improve object detection 

accuracy, especially for small objects. AP for FPN (80.53%) is higher than the baseline Faster R-

CNN (80.51%), but lower than our proposed method (81.71%), suggesting that FPN is more 

accurate than Faster R-CNN but less practical compared with our proposed method for small 

urban element detection. Trident Networks prove to be able to detect small objects effectively, 

and Trident-Fast, building three parallel branches 

with different receptive fields, is a fast approximation version of Trident Networks [48]. Our 

proposed method is more effective in detecting small objects than Trident-Fast, with an 

improvement of 1.09%. The second-best result is Cascade Mask R-CNN with an AP of 81.23% 

which is better than Cascade R-CNN or Mask R-CNN. We should indicate that Cascade Mask R-

CNN combines Cascade R-CNN and Mask R-CNN directly, adding a mask branch following the Mask 

R-CNN architecture to each stage of Cascade R-CNN. We expect to obtain better results by 

applying the mask branch to our proposed method with high-quality annotation for instance 

segmentation. Performance of RetinaNet, which is a one-stage object detector, is worse than 

most two-stage object detection methods, including our proposed method. Compared with these 

advanced detection methods, we verified that our proposed model outperforms state-of-the-art 

methods. 

Some examples of results for different methods are presented in Figure 8. In the first column 

of Figure 8, we can see that although all methods can detect the two obvious manhole covers on 

the right side of the image, our proposed method can detect the smallest and occluded manhole 

cover in the lower right of the image effectively and avoid false positive detection. The second 

and third columns further demonstrate that our proposed method can detect hidden and cropped 

small objects more accurately compared with other methods, and the fourth and fifth columns 

show that our proposed method can efficiently preclude false positives. In the last column of 
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Figure 8, the other methods predict less accurate bounding boxes or fail to detect the target 

milestone. Our proposed method has better performance for small urban element detection 

compared with other state-of-the-art methods. 

 

Figure 8. Comparison of small urban element detection on UED dataset for different methods. 

(a) ResNeXt; (b) FPN; (c) DCN; (d) TridentNet-Fast; (e) Cascade R-CNN; (f) Mask R-CNN; (g) Cascade Mask R-

CNN; (h) RetinaNet; (i) ours. Red is the predicted bounding box and yellow is the ground reference bounding 

box. 

5. Discussion 

5.1. Effect of Proposed Modules 

As demonstrated in Table 2, each of the proposed modules helps to improve the 

performance of small urban element detection, and RD-Net has a positive influence on the 

effectiveness of the ADSS module and GIoU loss. To justify the generalization capability of the 

designed modules and verify our speculation that feature outputs of high spatial resolutions are 

beneficial to small object detection, we gradually incorporated ResNet-50S4, the ADSS module, 

and GIoU loss from the Baseline Faster R-CNN. The experimental results are shown in Table 8. The 

AP values for models conducted with ResNet-50-S4 have a similar pattern with that performed 

with RD-Net (Tables 2 and 8): AP increases when the ADSS module and GIoU loss are integrated 

separately or together with ResNet-50-S4. The Baseline + ResNet-50-S4 + ADSS + GIoU_loss 

achieves an AP improvement of 0.93% compared with the Baseline (80.51%), increasing the AP to 

81.44%. The results (Table 8) align well with our previous ablation study (Table 2), indicating that 

our proposed modules are effective for detecting small urban elements. It further suggests that 
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the increase in the AP may result from high spatial resolution feature representations when the 

ADSS module and GIoU loss are combined with the reduced downsampling networks. 

5.2. Sensitivity Analysis to Illumination and Occlusion 

In urban settings, 2D image object detection often suffers from changes in lighting conditions 

and degrees of clutter. We analyzed how sensitive our proposed method is when facing variations 

of illumination and occlusion. As illustrated in Figure 9, our proposed method performs well when 

the light is sufficient (Figure 9a). Target objects can be detected accurately although they are 

totally or partially occluded by shades (Figure 9b). Even when the environment is dark, the 

proposed method can successfully detect small objects in most cases (Figure 9b,c). However, 

when the objects in images are not easily visible to the human eye, the proposed method tends 

to miss the objects (Figure 9c). To conclude, our proposed method is not sensitive to lighting 

conditions, with the exception of very dark conditions. 

Table 8. Performance of the ADSS module and GIoU loss with the ResNet-50-S4 on the UED dataset. 

Method S4 
ADSS 

Module GIoU Loss 
AP 
(%) 

APmanhole (%) APlcz (%) APnumplate 

(%) 

Baseline 
Baseline + S4 

Baseline + S4 + ADSS 
Baseline + S4 + GIoU_loss 

√ 
√ 
√ 

√ 

√ 

80.51 
80.66 
80.83 
80.81 

79.21 
78.30 
80.37 
79.50 

82.22 
83.44 
82.13 
81.90 

80.10 
80.24 
79.98 
81.03 

Baseline + S4 + ADSS + GIoU_loss √ √ √ 
81.44 79.87 82.74 81.71 

S4 is abbreviation for ResNet-50-S4. Bold indicates the best performance. 

  
Figure 9. Performance under different lighting conditions: (a) objects in light condition; (b) objects under shade; (c) objects in dark 

condition. Red is the predicted bounding box and dashed yellow is the ground reference bounding box. 

Figure 10 shows cases where objects are occluded to varying degrees. Although the manhole 

covers are occluded by cars or dark shades or partially cropped, our proposed method can 

precisely predict the locations (Figure 10a,b). There are only few cases with occluded milestones 

and license plates in the UED dataset. The occluded milestones can be detected correctly, but 

cropped license plates are prone to be neglected (Figure 10c). In general, the proposed method is 

insensitive to occlusion for manhole covers and milestones, whereas it tends to miss cropped 

license plates. 
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5.3. Analysis of Failure Cases 

As illustrated in Figures 9 and 10, our proposed method may encounter some failure cases 

under several typical scenarios, although it is able to more accurately detect small urban elements 

under various adverse scenarios compared with the Baseline model (Figure 6). We primarily 

explore the reason and propose potential solutions in this subsection. First, the first two samples 

in Figure 11 shows that the proposed method fails to detect objects when the environment is very 

dark. This is mainly due to the lack of relevant training samples in dark conditions. Second, 

cropped and occluded license plates are prone to be missed in the detection results as presented 

in the last two samples in Figure 11. However, manhole covers can be effectively detected in 

similar situations. The reason might be that there are few training samples of occluded license 

plates, or the images are annotated inaccurately. The detection of small urban elements in the 

dark and occluded license plates are two main challenges for our proposed method. One potential 

solution for the problem is to add data augmentation to help the model to generalize. We included 

scaling augmentation when training the model, and flipping, rotating, and color jitter 

augmentation may further contribute to generating training samples and improving the model 

performance for the failure cases. 

  
Figure 10. Performance with varying degrees of occlusion. (a,b) are for manhole covers; (c) is for milestones (top) and license plates 

(bottom). Red is the predicted bounding box and dashed yellow is the ground reference bounding box. 

  

Figure 11. Typical failure cases. Red is the predicted bounding box and dashed yellow is the ground reference bounding box. 

6. Conclusions 

Small urban element detection is more challenging compared with generic object detection 

due to a typically low coverage rate of small objects within a complex background in an image. In 

this paper, an accurate and robust CNN-based model is proposed to detect small objects in urban 

settings. We analyzed the effect of downsampling at different stages of networks and designed a 

RD-Net backbone network with a low downsampling rate and small receptive field to preserve 

local information and improve small object detection accuracy. Moreover, we introduced an ADSS 

module that defines positive and negative training samples based on the statistical features of 

objects rather than IoU thresholds. In contrast to the widely used distance-based bounding box 

regression loss, our method integrates GIoU loss, which bridges the gap between distance-based 
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optimization loss and area-based evaluation metrics. Experiments on the public UED dataset verify 

the effectiveness of our proposed method to detect small objects in an urban environment and 

illustrate that our method outperforms the baseline by a large margin. Our research can be 

applied in small urban element maintenance and management, and save human and non-human 

resources. It can also assist autonomous driving by extracting small objects and providing details 

to build comprehensive 3D city models. 

In the future, we plan to conduct the following research. First, we will further verify the 

robustness and generalization ability of our proposed method for small urban element detection 

by creating a new benchmark or extending the UED dataset with more categories and complex 

scenes of urban environments. Second, we will add data augmentation to produce additional 

training samples. Third, we will incorporate a backbone network with dilated convolutional layers 

and feature fusion strategy to investigate the effects of different receptive fields and multi-scale 

features for small object detection. Finally, the loss function will be further modified to consider 

foreground–background imbalance issue. These future directions will further increase the 

efficiency and widen the useability of small object detection in urban applications. 
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