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Scientific Significance Statement

Measured or estimated water temperatures are necessary to understand basic aquatic functions and to assess habitat suitability
for numerous species. However, the vast majority of lakes in the United States do not have observed temperatures on most
days. A nationally consistent dataset of long-term daily retrospective surface water temperatures is needed to support broad-
scale limnological synthesis and to quantify local to regional ecosystem change. Deep learning can provide more accurate
temperature estimates at greater scale than existing process-based and statistical models; this dataset provides deep learning-
estimated daily surface temperature from 1980 to 2020 and spans over 185,549 lakes in the conterminous United States.

Abstract
The dataset described here includes estimates of historical (1980–2020) daily surface water temperature, lake
metadata, and daily weather conditions for lakes bigger than 4 ha in the conterminous United States
(n = 185,549), and also in situ temperature observations for a subset of lakes (n = 12,227). Estimates were gener-
ated using a long short-term memory deep learning model and compared to existing process-based and linear
regression models. Model training was optimized for prediction on unmonitored lakes through cross-validation
that held out lakes to assess generalizability and estimate error. On the held-out lakes with in situ observations,
median lake-specific error was 1.24�C, and the overall root mean squared error was 1.61�C. This dataset
increases the number of lakes with daily temperature predictions when compared to existing datasets, as well as
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substantially improves predictive accuracy compared to a prior empirical model and a debiased process-based
approach (2.01�C and 1.79�C median error, respectively).

Measured or estimated water temperatures are necessary
to understand basic aquatic functions (such as microbial
decomposition rates and gas exchange; Raymond et al. 2013)
and to assess habitat suitability for numerous species (Fang
et al. 2004). Diversity in lake temperatures results from
unique combinations of weather, climate, and lake-specific
properties that modulate responses to meteorological inputs
(Livingstone 2008; Rose et al. 2016). Observing lake water
temperatures at a temporal resolution sufficient to resolve
short-term dynamics (such as temperature drops resulting
from cold fronts) and of temporal duration sufficient to mea-
sure long-term trends is challenging and often prohibitively
expensive, especially when attempting to capture diverse ther-
mal regimes across many lakes. Despite these challenges, water
temperature is the most common variable in the United States’
Water Quality Portal (WQP; Read et al. 2017), and numerous
satellite data products include a measure of surface water tem-
perature (Schaeffer et al. 2018; Vanhellemont 2020). This seem-
ingly high abundance of temperature measurements has been
aided by the low cost and simplicity of thermistor sensors for in
situ measurements as well as advances in atmospheric correc-
tion and emissivity algorithms in remote sensing. However, of
the over 270,000 U.S. lakes in the National Hydrography
Dataset PlusV2, fewer than 5% have in situ temperature obser-
vations and only 62% are resolvable by satellite (Schaeffer
et al. 2018). These numbers are significantly lower when
accounting for the millions of smaller waterbodies in the
United States not included in NHDPlusV2, ultimately meaning
that temperature of the vast majority of U.S. lakes is unobserved
on most days.

New environmental modeling methods that are equipped
to leverage existing data are improving prediction accuracy
and being used to create useful data products. Machine learn-
ing algorithms are increasingly viable prediction methods for
water resources applications due to surging availability of
observational data and computational power (Sun and Scan-
lon 2019). In particular, deep learning algorithms composed
of large, multilayer artificial neural networks (ANNs) can
extract hierarchical features from raw data and have increased
accuracy without the need for feature construction by experts
(Shen 2018; Sit et al. 2020). The entity-aware long short-term
memory (EA-LSTM) network is one deep learning architecture
specifically developed for environmental time series predic-
tion using a mix of static and dynamic input drivers (Kratzert
et al. 2019). These modeling and data advances provide pow-
erful tools to support the need to create broad-coverage foun-
dational datasets (such as water temperature). We have used
the EA-LSTM approach to reconstruct the daily historical sur-
face temperature record for 185,549 lakes in the conterminous

United States from 1980 to 2020. Here, we describe the
dataset, methods used to create it, provide an overview of the
evaluation of the predictions, and compare this data resource
to other existing methods or datasets.

Data description
This dataset, summarized in Fig. 1, includes predicted daily

surface water temperatures for 185,549 lakes and reservoirs
(hereafter referred to simply as lakes) in the conterminous
United States (the lower 48 states and the District of

Fig. 1. Overview of the data and modeling flow used to create the con-
tinuous surface temperature predictions. The EA-LSTM neural network, a
deep learning approach designed for time series and other sequential
data, is built using the seven input drivers shown below as well as
observed surface temperatures. EA-LSTM outputs are compared against
the ERA5 reanalysis-simulated epilimnetic lake temperature outputs and a
LM described in Bachmann et al. (2019). Each data component shown is
available as part of the data release (https://doi.org/10.5066/
P9CEMS0M). Inset map displays summer predictions for a single date and
the spatial division used to break up the largest files (prediction and
weather data) into three NetCDF files.
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Columbia) from 1980 to 2020. Lake surface temperatures were
predicted using an advanced deep learning model that is
described in the Methods section; this model was compared
to two published models for predicting lake surface tempera-
tures: the ERA5 climate reanalysis aggregation of the process-
based Fresh-water Lake (FLake) model (Mironov et al. 2010;
Sabater 2019) and the empirical linear regression model
(LM) developed by Bachmann et al. (2019). The dataset also
includes data used to develop and evaluate the deep learning
model, including observed water temperatures, historical
downscaled weather conditions, lake-specific properties, and
model evaluation metrics. Temperature observations, weather
data, and lake properties were compiled from publicly avail-
able data portals and existing data publications. All data are
referenced to the national hydrography dataset (NHD; Moore
et al. 2019) high-resolution waterbodies using the NHD’s
PermID field (this dataset prefixes the value of this field with
“nhdhr_”), with the exception of gridded weather data.
Weather data are referenced by the longitude and latitude
index of the source dataset grid cells because more than one
lake can be contained within a single grid cell.

Lake surface temperature predictions are accessible from
three NetCDF (Rew and Davis 1990) files covering sections of
the conterminous United States as broken up by longitude
and latitude boxes. Each file contains data for all lakes with
surface area larger than 4 ha within each file’s spatial bound-
ary. These data include dimensions for time and NHD lake
identifier and variables for surface temperature in degrees Cel-
sius, the elevation of the lake, and the latitude and longitude
of the lake centroid. Meteorological data used to drive daily
temperature models are included in three additional NetCDF
files that share the same spatial extents of the temperature
prediction files. Meteorological data include downward
longwave radiation flux, downward shortwave radiation flux,
air temperature 2 m above the surface, and zonal and meridio-
nal wind speeds at 10 m above the surface. All lake surface
temperature observations are included in a single comma-
delimited file, with a column for lake identifier, time, observed
water temperature in degrees Celsius, and estimated tempera-
tures from each of the three temperature models. All lake-
specific static values that were used to quantify lake properties
were inputs to the predictive model, describe model error, or
are used to connect to the appropriate NetCDF file names or
indices, and are included in a single metadata file. Model
accuracy was calculated using a cross validation technique (see
the Methods section for additional details), and the root mean
square error (RMSE;�C) of predicted vs. observed temperatures
for lakes in each validation fold is included in the metadata
file. Additionally, as mentioned above, the matchups for daily
predicted and observed temperatures for each fold are avail-
able in a data file and can be used for analyzing additional
dimensions of model performance not presented in this paper
(e.g., estimated accuracy of predictions in a certain time of
year for a particular subset of lakes).

All data files are available for download directly from
https://doi.org/10.5066/P9CEMS0M using the web interface,
or programmatically with the sbtools R package (Winslow
et al. 2016). Example workflows for extracting surface temper-
atures for a single lake or all lakes for a single date are shared
in the data release code repository (see “readme.md”).

Methods
Our objective was to produce the most accurate and com-

prehensive predictions of daily surface water temperatures for
lakes in the conterminous United States and to expose all
underlying data that were used to build, drive, and evaluate
these predictions to enable future expansion and comparison.
Based on prior information from existing datasets and model-
ing efforts (Sharma et al. 2008; Read et al. 2017; Soranno
et al. 2017; Bachmann et al. 2019), we excluded predictors
that may be useful in temperature models but were be avail-
able broadly due to data limitations (e.g., lake depth and water
clarity). We also treat our predictions as daily mean water
temperatures even though observed values may be at specific
times throughout the day for simplicity. Here, we describe the
methods used to select models and assemble the various data
included in this dataset. The code to reproduce these results is
available at (https://doi.org/10.5281/zenodo.6210917).

Model descriptions
We compared three different approaches to broad-scale

lake surface temperature modeling, the EA-LSTM neural net-
work (Kratzert et al. 2019), the process-based FLake model
(Spacio et al. 2008; Dutra et al. 2010; Mironov et al. 2010)
used in the European Centre global reanalysis ERA5 at 0.1� lat-
itude and longitude grid resolution (Muñoz-Sabater
et al. 2021) at 17:00 UTC (Coordinated Universal Time;
approximately noon local time for much of the U.S. domain),
and the LM for summer temperature prediction described in
Bachmann et al. (2019). This choice of methods represents
state-of-the-art deep learning in the EA-LSTM, the only
process-based simulation model with comprehensive global
coverage via FLake and ERA5, and a simpler data-driven model
in the LM. EA-LSTM is an adaptation of the standard deep
learning LSTM architecture (Hochreiter and
Schmidhuber 1997) for time series modeling that includes
additional architectural distinction between static (e.g., lake
surface area) and dynamic (e.g., air temperature) input fea-
tures. Many temporal processes in environmental and engi-
neering systems that involve complex temporal dependencies
cannot be captured by a simple feed-forward ANN. LSTM
models have been shown to outperform ANN models for lake
temperature prediction in Jia et al. (2018), and Daw and
Karpatne (2019) showed ANNs to have superior performance
compared to support vector regression and boosted regression
trees. However, providing time awareness to simpler machine
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learning models via additional inputs (such as lagged meteo-
rological conditions and day-of-year time vectors) can sub-
stantially boost performance (Kreakie et al. 2021), but these
inputs must be selected a priori or learned from independent
data to avoid overfitting to the training data. The EA-LSTM in
particular has previously been applied in continental-scale
rainfall-runoff modeling where it substantially outperformed
all calibrated process-based hydrological models, and also
showed learned similarities between different catchments that
matched prior expert hydrological understanding (Kratzert
et al. 2019). ERA5 makes use of the one-dimensional FLake
model, a two-layer parametric representation of the dynamic
water temperature profile and the integral energy budgets of
these layers (for further FLake details, see Mironov et al. 2010).
The FLake model is forced at the surface by reanalysis-derived
data of wind, temperature, precipitation, humidity, and short-
wave and longwave radiation. ERA5 cells for some near-coastal
lakes did not have temperature estimates, and were not
included in model evaluation.

Input: Meteorological conditions and lake-specific
properties

Both EA-LSTM and LM models predicted surface water tem-
perature from lake-specific properties that were static over
time (log-transformed surface area, latitude, longitude, and
elevation) and daily meteorological drivers that changed over
time for each lake (air temperature, longwave radiation, short-
wave radiation, and components of wind speed). EA-LSTM
used all of these inputs, while LM only used air temperature
(8 d lag-averaged), latitude, longitude, elevation, and month
of the year. The choice of these dynamic features comes from
the well-established understanding of connections between
meteorological conditions and water temperature change
(Edinger et al. 1968; Piccolroaz et al. 2018; Schmid and
Read 2021). Latitude, longitude, and elevation features allow
the model to learn spatial coherence in temperature, and sur-
face area has a known role mediating lake responses to meteo-
rological drivers (Woolway et al. 2016). Because neural
networks benefit from input normalization (Sola and
Sevilla 1997), an additional z-score normalized version of the
inputs was created for the EA-LSTM based on the mean and
standard deviation for each input calculated across the 12,227
observed lakes in the dataset.

The NHD (Moore et al. 2019) high-resolution polygons
(based on 1 : 24,000 scale data) were downloaded as geod-
atabase files for each of 48 states in the conterminous
United States, as well as the District of Columbia. Lakes and
reservoirs were extracted using the “NHDWaterbody” layer
from the geodatabase and filtered to values in the “FType”
attribute that corresponded to 390, 436, and 361 (lake/pond,
reservoir, and playa, respectively). The Great Lakes, several
improperly labeled coastal lagoons, and lakes less than 4 ha
(based on the value in the “AreaSqKm” NHD attribute) were

removed from the dataset, and the remaining 185,549 lakes
defined the complete lake coverage used in this data release.

Hourly meteorological data for the five variables described
above were downloaded from the North American Land Data
Assimilation System (NLDAS; Mitchell et al. 2004); we used a
NASA earthdata login to access NetCDF files through https://
hydro1.gesdisc.eosdis.nasa.gov/dods/NLDAS_FORA0125_H.
002, and daily datasets were created by applying a U.S. central
time zone offset for the entire spatial range and calculating
the daily mean for each variable. The 0.125� NLDAS latitude
and longitude grid was then used to assign NLDAS grid IDs to
each lake’s centroid using the “st_centroid” and “st_intersects”
functions from the “sf” R package (Pebesma 2018). All grid
cells that did not contain a lake were excluded and the
remaining daily dataset was transformed from a spatial grid
(latitude, longitude, and time) into a flatter and smaller dis-
crete sampling geometry NetCDF format (Blodgett and Wins-
low 2019) indexed to grid ID and time.

Approximate lake surface area and elevations were calcu-
lated based on the vector polygon data (“st_area”;
Pebesma 2018) and lake centroid, respectively. Lake surface ele-
vation was estimated for each lake using the “get_aws_points”
function from the “elevatr” package (Hollister 2021) at the
zoom level of nine, providing a centroid-based value in meters
for each lake from an elevation raster from the Shuttle Radar
Topography Mission data (Farr et al. 2007).

In situ lake temperature data
Lake temperature data were compiled from two main

sources: digitized or spreadsheet-based historical records
shared directly with researchers (Read et al. 2021) and through
programmatic access to discrete monitoring data in the joint
Environmental Protection Agency and U.S. Geological Survey
WQP (Read et al. 2017). High-frequency buoy data and
remote sensing data were not used in this dataset due to
extreme differences in temporal coverage that would favor a
small number of lakes (as in the case of buoy data) and the large
drop in measurement accuracy in satellite-based estimates of sur-
face water temperatures when compared to in situ observations
(e.g., mean absolute error (MAE) ranging from 1.34�C to 4.89�C
depending on distance to lake shore with the Landsat analysis
ready surface temperature product; Schaeffer et al. 2018). Prior
compiled data from Read et al. (2021) included temperatures
from lakes in U.S. midwestern states and were combined with
updated national pulls of water temperature data from the WQP
from 1980 to 2020. Unique WQP lake monitoring sites with
temperature data were captured by breaking the spatial extent of
the conterminous United States into 2.5� by 2.5� latitude/
longitude cells and calling “whatWQPdata” function from the
“dataRetrieval” R package (Hirsch and De Cicco 2015) for “Lake,
Reservoir, Impoundment” siteTypes and “Temperature,” “Tem-
perature, sample,” “Temperature, water,” and “Temperature,
water, deg F” characteristicNames on each cell’s bounding box.
Monitoring sites were then ranked according to expected
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number of observations (the “resultCount” value from the
“whatWQPdata” result) and broken up into site groups con-
taining no more than 500,000 total results or less than
200 unique sites, and each site group was queried for all avail-
able temperature data using the same characteristicNames as
listed above. Resulting data were converted into standard depth
as measured in meters and temperature as measured in degrees
Celsius and then all observations deeper than 1 m were removed
and basic quality control measures were applied (see the Techni-
cal validation methods section). Monitoring site locations,
which are defined by a single spatial location, were joined to
lakes by using point-in-polygon analysis and sites falling outside
of the 185,549 lakes in this data release were excluded. The
above process resulted in 306,553 in situ temperature observa-
tions from 12,227 lakes for model development. Geographic
coverage density of the observed lakes is shown in Fig. 2a, and
the temporal coverage is shown in Fig. 2b.

Oversampling
Only 955 temperature observations (0.3% of total) were

greater or equal to 33�C. To compensate for a lack of very
high temperatures leading to an observation distribution
imbalance, we used a simple random oversampling method.

Oversampling duplicates samples from a minority class, or in
this case a minority temperature range, to address data imbal-
ances for statistical or machine learning models (Japkowicz
and Stephen 2002; Estabrooks et al. 2004). First, we defined a
histogram with forty 1�C bins covering the range of tempera-
tures from 0�C to 40�C. Then, a normal distribution curve was
fit to the histogram (mean μ = 20.32, standard deviation
σ = 6.89). The normal curve is a common distribution to use
for oversampling (Pan et al. 2020) that includes a smooth
decline with an asymptote at 0�C. For each temperature bin
between 33�C and 40�C with sample counts below the normal
curve, we randomly oversampled with small added noise
(0.0125/0.125 variance Gaussian noise on normalized fea-
tures/unnormalized observations, respectively) until the bin
height matched the mean of normal curve points at both
sides of the bin. This added an additional 20,377 (6.6%) obser-
vations ranging from 33�C to 40�C to the final training
dataset. For the cross-validation setup used for hyper-
parameter tuning and error estimation described in the fol-
lowing subsections, oversampling was specifically done on
only the training data and no observations from the test data
were duplicated.

Hyperparameter tuning
As with most deep learning models, EA-LSTM requires tun-

ing of hyperparameters for optimal performance. In machine
learning, a hyperparameter is a parameter used to control the
learning process and/or the network architecture. By contrast,
the values of other parameters (typically network weights) are
tuned during training. Here, we tuned the hyperparameter
that defined the number of epochs used to train the model
and also recorded the training MSE at the optimal number of
epochs as another stopping condition. The number of epochs
was tuned within the inner loop of the fivefold nested cross-
validation (Tibshirani et al. 2009) shown visually in Fig. 3. To
ensure lake diversity representation across folds, the lakes
were first divided into 16 clusters using k-means clustering
(Lloyd 1982) on latitude, longitude, and the natural log of the
surface area values that had been z-score normalized to a
mean of 0 and standard deviation of 1. Each cluster was then
equally divided among the five folds to create the final fold
groupings. The oversampling method previously described
was used in each training dataset. The number of epochs was
found for each of the five test folds by calculating where the
mean validation MSE across the remaining four training folds
was the lowest. The optimal values of epochs for each of the
folds 1–5 were 250, 160, 210, 280, and 280, respectively. We
also computed the mean training MSE across the four folds at
the optimal epoch of each instance as another measure of
model fitting which were 1.98, 2.01, 1.98, and 2.02 (taken
from previous studies on lake temperature prediction using
LSTM; Jia et al. 2019; Read et al. 2019), and 2.10�C, respec-
tively. Other EA-LSTM hyperparameters set were a sequence
length of 350 d, 256 hidden unit size, learning rate of 0.005,

Fig. 2. Geographic and temporal coverage of in situ surface temperature
data. Panel (a) shows geographic coverage of the 12,227 observed lakes
across single degree latitude and longitude cells in the conterminous
United States. Panel (b) shows observations by season and by year
between 1980 and 2020.
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use of the Adam optimizer (Kingma and Ba 2017) and an MSE
loss function, gradient clipping set to 1.0 of the 2-norm of the
network weights, and a batch size of 3000 sequences. All final
values are also captured in the modeling code release (https://
doi.org/10.5281/zenodo.6210917).

Error estimation
To estimate model performance for the two data-driven

approaches, we used the outer loop of the fivefold cross-
validation shown in Fig. 3 and compared the mean out-of-fold
test error across folds for each model. Each set of test data was
held out of any model training or hyperparameter tuning,
and also the 70 lakes not covered by ERA5 were included in
training but excluded from test error calculation. Hyper-
parameters for each of the five models were found through
the inner cross-validation loop described previously, and
training data consisted of observations from the remaining
� 80% of lakes that were not included in the test fold. The
previously described oversampling method was also used to
augment each training dataset with more high temperature
observations, and the data splits for EA-LSTM and LM were
identical. Compared to the following LM fit published in
Bachmann et al. (2019),

bT ¼16:14þ0:673Air�0:0846Latþ0:0172Long�0:00131Elev
�0:147Mon

where the average over the folds of CV for each of the coeffi-
cients (air temperature [Air], latitude [Lat], longitude [Long],
elevation [Elev], and month [Mon]) became the following
equation:

bT ¼20:368þ0:580Air�0:159Latþ0:0347Long�0:0015Elev
þ0:177Mon

For the ERA5 process-based model used for comparison, we
also bias-corrected the output by adding 3.31�C to all predic-
tions (referred to as ERA5*). This bias correction addressed a
clear cold bias that currently exists in ERA5 in U.S. lakes
(e.g., Betts et al. 2020 found a 4�C cold bias of ERA5 on Lake
Champlain in late spring; Muñoz-Sabater et al. 2021 reported a
general cold bias across many lakes). The amount of bias correc-
tion was decided based on the intercept of a linear regression
with slope 1 fit to observed vs. ERA5-predicted temperatures.

Training EA-LSTM and prediction of 185,549 lakes
The final model used to generate predictions for 185,549

lakes was trained on all available surface temperature observa-
tion data from 12,227 lakes. Hyperparameter values that mini-
mized validation error across all inner loops in the nested
cross-validation were selected for the final aggregate data
model (220 for the number of training epochs and 2.03 for
the training MSE stopping condition). The remainder of the
hyperparameters and model architecture were kept the same
as during the error estimation phase, and oversampling was
also applied. Using the trained model, predictions were gener-
ated for all 185,549 lakes.

Technical validation methods
We used the test data from the error estimation phase to

estimate overall prediction accuracy, in addition to analyses
of accuracy across geographical regions in the United States,
different water temperature ranges, different years and

Fig. 3. Nested cross-validation process. Performance is aggregated over the fivefold outer loop where each instance of training folds also contains an
inner fourfold loop for hyperparameter tuning on validation data. Hyperparameters are selected to minimize error across validation folds.
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seasons, and different lakes. We also sought to identify poten-
tial data concerns or limitations that may affect future users
of this data. All technical validation described here is transpar-
ent and reproducible using the code repositories linked at the
beginning of the paper. Technical validation performed
includes the error estimation for modeled temperature, assess-
ment of model bias in various conditions, and the quality
assurance and quality control (QAQC) procedures for building
the in situ dataset.

The previously described error estimation method was the
primary validation of overall accuracy, where all prediction
errors were calculated on lakes not used for model training or
hyperparameter tuning to mirror the situation of predicting
on unmonitored lakes. The folds and clusters used to divide
the lakes for training and validation are representative of the
broader population of lakes due to (1) the k-means clustering
grouping lakes with respect to geographical location and lake
size, and (2) the even split among each cluster distributed
evenly among the testing folds.

Observed temperature data were screened and unrealistic
values were removed using a variety of techniques, including
visual inspection, comparison to published models, and evalu-
ating based on date or season to find likely errant data sources.
While some of these steps were manual (e.g., visual inspection
and contacting monitoring organizations to confirm and fix
errant data entry), all alterations to the data, including unit
conversions and data screening, were captured in code (see
“lake-surface-temperature-prep” code at https://doi.org/10.
5281/zenodo.6210917 for data processing). In the WQP data,
numerous sites had data that were entered incorrectly for some
or all measurements (see Sprague et al. 2017 for an overview of
similar issues with nutrient metadata). Any observations that
likely represented conditions from environments other than
the lake water were removed, including by examining metadata
fields or contacting data contributors directly. Patterns in tem-
perature time series that suggested the data were flawed were
also used to remove values and sites; sites were removed based
on various visual or statistical cues (e.g., single measured values
that repeated without any deviation) that suggested all site data
were suspect. Additionally, the lower resolution (0.25� lat/lon)
aggregated version of the ERA5 temperature estimates were
used to determine extreme outliers based on exceeding 10�C
above or below a bias-corrected temperature estimate (ERA5
+ 3.47�C) (Hersbach and Dee 2016) and the resulting outliers
were removed from the dataset. If more than one observation
was reported on the same day at the same depth on the same
lake, we applied the following strategy: we selected the
shallower observation followed by the warmer measurement
(in the case of identical depths).

Results of technical validation
After outlier removal and the selection of single values to

represent a unique lake on a given date, the final dataset of

observed temperatures included 306,553 near-surface
(between 0 and 1 m deep, inclusive) observations from 12,227
lakes. Outliers removed include the following: (1) 7056 values
were removed because “Temperature at lab” was mentioned in
the “ResultCommentText” even if the other metadata indi-
cated the measurement was made from the lake, (2) 7464
additional values were removed that included “Lab” in the
“ResultAnalyticalMethod/MethodIdentifier” field as this meta-
data value indicated these observations of temperature were
related to a laboratory measurement or extraction of another
variable, (3) 3746 values from all monitoring sites prefixed
with “IL_EPA” and a “CharacteristicName” of “Temperature,
sample” were removed after confirmation that these tempera-
tures were not measured directly from the lake, (4) 961 values
were discarded when several monitoring sites from various
agencies were removed after discovering the data were unreal-
istic (these sites were removed based on visual comparison to
neighboring sites, because values were repeated constantly
throughout the season without changing, or because reported
depths were likely referenced from the bottom of the lake
instead of the surface), and (5) 981 additional values were
removed because they exceeded 10�C above or below the bias-
corrected aggregated ERA5 temperature estimate. Despite this
effort to remove errant data, it is very likely that observation
errors beyond the expected range of sensor accuracy still exist
in the final dataset, but we expect these issues are rare by
comparison.

For the 12,227 lakes with observed temperature, 70 did not
overlap ERA5 grid cells (these lakes were near coastlines), and
were not included in model evaluation. The remaining 12,157
lakes and 303,579 observations had a median lake-specific
RMSE (1st to 3rd quartile) for all test folds of 1.24�C (0.86–
1.73�C) for EA-LSTM and 3.95�C (3.12–4.84�C) for ERA5
(Table 1). After addressing the cold bias of ERA5 by sub-
tracting 3.31�C (denoted ERA5*), the median lake-specific
RMSE of ERA5* was 1.79�C (1.25–2.57�C). The original
Bachmann et al. (2019) model was constrained to periods
between 01 June and 30 September, which was followed by
retraining and evaluating that model only using observations
from those months. The associated data released with that
study was also limited to those months and was on a smaller
scale than is shown here (Bachmann et al. 2019 used 1905
lakes). Here, LM predictions had a lake-specific median RMSE
of 2.01�C (1.32–2.57�C), compared to 1.17�C (0.78–1.68�C)
for EA-LSTM and 1.70�C (1.12–2.43�C) for ERA5* during the
same months. Overall RMSE for the summer months was
1.55�C for EA-LSTM, 2.27�C for ERA5*, and 2.35�C for LM. All
other presentations of LM predictions hereafter (in figures and
text) are restricted to this time period as well. Five hundred
thirty-four lakes had observations only outside the summer
period and were excluded from the LM error calculations.

The global accuracy of each model (assessed by calculating
the RMSE of all data across all test folds at once) was 1.61�C
for EA-LSTM, 2.34�C for ERA5*, 4.06�C for ERA5, and 2.35�C
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for LM (Table 1; Fig. 4b,e,h). The cold bias in ERA5 is greatly
reduced by applying a simple offset of +3.31�C to all ERA5
predictions (RMSE of 4.06–2.34�C; Table 1; Fig. 5e). Spatial
patterns in prediction accuracy (estimated by calculating
RMSE from test fold data in 1� latitude/longitude cells)
showed no clear latitudinal differences for EA-LSTM and
ERA5* but temperature predictions from the LM were more
accurate in the southern state of Florida compared to the simi-
larly data-rich states of Minnesota and Wisconsin (Fig. 4a,d,g).
Predictive accuracy varied over time. Year-specific RMSE for
EA-LSTM decreased through time; the maximum single year
RMSE was 2.30�C in 1980 and minimum was 1.41�C in 2019,
with a clear negative trend (Fig. 4c). Yearly ERA5* and LM
RMSEs did not have a clear temporal trend (Fig. 4f,i) and
ranged from 2.13�C to 2.89�C and 2.09�C to 2.76�C,
respectively.

Predictions from all three models were biased for some or
all data subsets (Fig. 5). Temperature predictions from the
ERA5 had the greatest overall bias (specifically, the model was
biased cold for all data subsets). The median bias across 10�

temperature bins ranged from �0.08�C to 0.38�C for the EA-
LSTM and �0.51�C to 2.29�C for LM (Table 1). Bias was
greatest for all models for the coldest and warmest tempera-
tures when finer temperature bins were used (Fig. 5b,e,h). The
EA-LSTM model had a consistent warm bias across all years
(Fig. 5a). When evaluated across temperature bins and sea-
sons, predictions from EA-LSTM were most frequently warm
biased, although cold biases existed for both cold/winter con-
ditions and for extremely warm temperatures, which were
substantially underpredicted by the model (Fig. 5b,c). The
warmest temperatures were underpredicted by both LM and

ERA5 models as well (Fig. 5e,f,h,i). The LM overpredicted tem-
peratures at the lower end of the temperature distribution
(5 h), but these temperature conditions were rare in the trun-
cated June to September datasets that the LM model was
trained and evaluated on (e.g., the 4.86�C median LM warm
bias in the 10–12�C observed temperature range is based on
0.3% of test observations). Similarly, the extremely warm
observations that all models struggled to reproduce were com-
paratively rare, as the �1.90�C, �4.03�C, �1.01�C LM, ERA5,
and EA-LSTM median biases in the 32–34�C range included
only 0.8% of test observations and only 0.1% of data were in
the 34–36�C temperature range.

The complete set of 306,553 observations were validated
against the final EA-LSTM model trained using all of the same
data to see if the model was overfitting and verify prediction
performance. The median lake-specific RMSE (1st to 3rd quar-
tile) was 1.17�C (0.82–1.63�C) indicating a small decrease in
error and suggesting overfitting of this model is unlikely.

Data use and recommendations for reuse
Surface water temperature estimates are useful for improv-

ing scientific outcomes in fisheries biology, limnology, and
climate science. Specifically, these data (1) facilitate improved
understanding of lake temperature dynamics in under-
monitored and unmonitored locations, (2) enable investiga-
tors to scale up from traditional single or multisite field sci-
ence to science at broad spatial scales, and (3) extend a
foundational limnological data resource (LAGOS-US; Che-
ruvelil et al. 2021) by linking these weather and temperature
predictions to numerous lake properties through common

Table 1. Performance comparison of the three modeling approaches across the five test folds in cross-validation. Here, ERA5* is the
bias-corrected version of ERA5 (an offset of +3.31�C was applied to the ERA5 data), and LM is only tested on data from June to
September. From left to right, median lake-specific RMSE and overall RMSE assess overall performance, then median RMSE is shown for
lakes within different size ranges, and lastly median bias of all observations in different temperature ranges is shown (all values are in�C
units). Bias for bias-corrected ERA5* is not shown because observations were used in the bias correction itself, and bias in the lowest
temperature range is not shown for LM due to lack of data. Numbers in parentheses represent the number of lakes (lake size) and
observations (temperature group) in each data partition with the exception of the LM observations, which are lower due to their
restriction to the summer months, and the ERA5 comparisons, which have 2974 fewer observations from 70 coastal lakes that are not
resolved in the dataset.

Median RMSE by lake size (ha)
Median bias by observation

temperature (�C)

Median lake-
specific RMSE

Overall
RMSE

< 10
(1946)

10–
100

(6707)

100–
1000
(2949)

> 1000
(685)

0–10
(28,196)

10–20
(98,298)

20–30
(170,114)

30+
(15,451)

EA-LSTM 1.24 1.61 1.24 1.18 1.27 1.61 0.38 0.29 0.10 �0.08
ERA5* 1.77 2.24 1.75 1.73 1.80 2.03 NA NA NA NA
ERA5 4.04 4.11 3.78 4.07 4.01 3.70 �2.37 �3.35 �3.49 �3.18
LM 2.00 2.34 1.70 1.98 2.10 2.13 NA 2.21 �0.38 �0.53

Best in column shown in bold.
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lake identifiers. Across applications, this dataset provides the
best available surface temperature accuracy at the scale of the
conterminous United States. Additionally, example data
access scripts for both Python and R are included in the
“lakesurf-data-release” code at https://doi.org/10.5281/zenodo.
6210917 to facilitate future users.

At the local to regional scale, this dataset provides essential
data to parameterize models that use surface water temperature
as an input (e.g., harmful algal bloom prediction [Wynne
et al. 2013], gas solubility estimates [Tromans 1998], and fish
bioenergetics models [Deslauriers et al. 2017]). This dataset has
the potential to similarly inform improvements to other limno-
logical data products by refining ancillary temperature esti-
mates, including satellite derived surface temperatures (Hulley
et al. 2011; Dörnhöfer et al. 2016; Schaeffer et al. 2018). When
combined with additional observational data, the historical
reconstruction of temperature provided here can further our
understanding of how temperature correlates with overall water
quality dynamics, nutrient loading (Oleksy et al. 2021), and
algal bloom frequency (Larkin and Adams 2013).

This landscape-scale dataset could support a more system-
atic understanding of the extent of lake synchrony in
response to multi-scale forcings like climate and land use
change (Lottig et al. 2017). Lake temperature as a major eco-
logical control is also important for quantifying other macro-
scale ecosystem properties, such as the contribution of aquatic
ecosystems to continental and global carbon cycles (Raymond
et al. 2013; Mendonça et al. 2017; Bartosiewicz et al. 2019).
Existing approaches for quantifying lake contributions to car-
bon budgets rely on spatiotemporally inconsistent data
(including temperature) and can be substantially improved by
using comprehensive landscape-scale datasets (McDonald
et al. 2013).

Across scales, surface temperature estimates can be used to
estimate changes in thermal parameters related to fish
spawning, growth, and abundance. Previous work has shown
that population dynamics of cool- and warmwater fishes are
well-predicted by surface temperature metrics (Hansen
et al. 2015; Massie et al. 2021), even in stratified lakes with
diverse thermal habitats. However, changes in surface water
temperatures alone may be a poor proxy for estimating
changes to the thermal environment of coldwater fishes or
other organisms occupying the bottom waters of stratified
lakes (Kraemer et al. 2015; Winslow et al. 2015). Understand-
ing these shifts in thermal regimes will become increasingly
important as climate velocities (the pace of warming com-
pared to a species’ ability to migrate to cooler habitats)
increase throughout the next century (Woolway et al. 2020;
Woolway and Maberly 2020). This dataset provides an essen-
tial baseline of historical temperatures upon which to com-
pare these future changes.

These data may be suitable for evaluating the effects of cli-
mate change on lake temperatures, but caution should be
applied when calculating warming trends and other metrics of

change. This unprecedented collection of accurate daily sur-
face temperature predictions, supporting in situ measure-
ments, and prevailing weather for 1980–2020 covers a period
of lake warming that has already altered the structure and
function of many aquatic ecosystems (O’Reilly et al. 2015;
Woolway et al. 2020). Gray et al. (2018) provide careful
instruction and caution for calculating trends from the in situ
data in this release. If using the EA-LSTM predictions to calcu-
late temperature change metrics, the model’s limitations (such
as the absence of ice-cover) would need to be explored and
found to be robust for the interpretation of the chosen met-
rics. Additionally, model accuracy is higher during more
recent time periods (such as 2005–2020; Fig. 4c) and the

Fig. 4. RMSE for predicted compared to observed water temperatures
within a single degree latitude and longitude cell for each of the three
methods is shown in panels (a), (d), and (g). Only cells with at least
100 observations are shown. Panels (c), (f), and (i) show year-specific
RMSE per method. Panels (d) and (f) specifically shows the bias-corrected
ERA5 errors (ERA5* in Table 1). The distributions of all 306,553 observa-
tions along with a 1 : 1 line are shown in panels (b) and (e) for EA-LSTM
and ERA5 respectively, and panel (h) shows the 188,886 summer obser-
vations predicted by LM. An additional 1 : 1 dotted line is shown in panel
(e) with a y-intercept of �3.31 to represent the bias-corrected version
of ERA5.

Willard et al. Deep Learning Lake Surface Temperature Estimates

295

https://doi.org/10.5281/zenodo.6210917
https://doi.org/10.5281/zenodo.6210917


model shows bias in different directions across the range of
predicted temperatures (Fig. 5b). These patterns in accuracy
and bias warrant consideration when estimating warming
trends from predictions.

While the oversampling technique used in this study
increased the model’s exposure to warm extremes
(e.g., temperatures above 33�C), we were unable to validate
the performance of predicting the timing and value of a yearly
maximum water temperature. This shortcoming is because
observations in this dataset are discrete and therefore missing
many events that would be captured in continuous measure-
ments. Likewise, the weather data included here offer power-
ful context for understanding limnological change, but are
also generated by a combination of modeling and data collec-
tion (Mitchell et al. 2004), and are therefore subject to similar
caution. Despite these limitations, this new dataset is the best

available (in terms of accuracy and coverage) for macroscale
aquatic research that can be informed by changes in lake
temperatures.

Comparison with existing datasets
Daily surface water temperature predictions for lakes in the

conterminous United States using the EA-LSTM are more
accurate and less biased when compared to currently available
models with similar or greater temporal and spatial coverage
(Figs. 4, 5). The EA-LSTM outperformed ERA5 and LM temper-
ature predictions based on the RMSE of all data subsets
assessed, including global RMSE and RMSE for binned lake
size classes (all observations; Table 1). Spatially, the EA-LSTM
was best for 74% (63% accounting for ERA5*) of the 12,157
lakes used for model evaluation, as well as across 82% (80%
including ERA5*) of the 220 1� latitude/longitude cells that

Fig. 5. Bias of predicted compared to observed water temperatures for all three approaches. Panels (a), (d), and (g) show median bias per year ranging
from 1980 to 2020. Panels (b), (e), and (h) show bias per 2�C temperature bins ranging from 0�C to 36�C. Day of year median bias is shown in panels
(c), (f), and (i) with seasonal divisions. The dotted line in panels (d) and (e) represents the �3.31�C shift for bias corrected ERA5 predictions (ERA5* in
Table 1).
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had at least 100 observations (Fig. 4). The EA-LSTM
maintained the lowest RMSE across all 41 study years regard-
less of ERA5 debiasing.

We found a significant cold bias in ERA5 predictions that
was similar for all years (Fig. 5d), but varied seasonally and
across the range of temperatures (Fig. 5e,f) which is consistent
with Betts et al. (2020). Bias correction may be needed for
most uses of the current ERA5 mixed layer temperature pre-
dictions. The EA-LSTM outputs included in this dataset have a
small warm bias that is mostly consistent seasonally and
across years (Fig. 5a,c), but predictions are cold compared to
the warmest observations and warm compared to the coldest
observations (Fig. 5b). The Bachmann LM model had no bias
across years (Fig. 5g), but was substantially biased across the
range of temperatures, overpredicting colder temperatures and
underpredicting warmer temperatures (5 h), and this pattern
also appeared as strong seasonal model biases (Fig. 5i).

The accuracy of the EA-LSTM predictions compare favor-
ably to other efforts on smaller numbers of lakes, including
the global analysis of 235 lakes by O’Reilly et al. (2015); RMSE
1.68–2.15�C from linear regression), and regional process-
based predictions of temperatures by Winslow et al. (2017);
epilimnetic temperature RMSE of 1.91�C; n = 72,232). Recent
summer surface temperature predictions for 2186 U.S. lakes by
Kreakie et al. (2021) had similar accuracy to the EA-LSTM
(1.48�C vs. 1.50�C RSME when comparing summer errors in
2007 and 2012, the 2 yr of their model) but the performance
of their random forest model was not evaluated on unseen
lakes and conditions (e.g., the additional 39 yr and 10,041
lakes included in this study). Satellite-based remote sensing
sources of estimated surface temperature are promising, and
can approach the accuracy of the EA-LSTM model presented
here in certain cases (e.g., Schaeffer et al. 2018 found MAE of
Landsat water pixels > 180 m from shore was 1.34�C; the EA-
LSTM presented here has an MAE of 1.16�C).

The in situ measurements shared in this dataset have two
orders of magnitude more observations compared to those
made available in Bachmann et al. (2019); 306,553 and 2655
observations, respectively) and an unprecedented number of
U.S. lakes (12,227 lakes). While the in situ data in this dataset
can be accessed elsewhere, the significant effort to query,
download, and screen data, in addition to the process to
match temperature monitoring sites to individual lakes has
resulted in a dataset that can be rapidly leveraged for future
studies. Specifically, the QAQC of data from the WQP (Read
et al. 2017) and site linking to lakes adds substantial value to
those existing resources. A similar global compilation effort by
Sharma et al. (2015) produced summer temperatures and
metadata for 291 lakes that has been used extensively to
quantify the effect of climate change on lake temperatures
(O’Reilly et al. 2015; Kraemer et al. 2017), and we expect these
in situ data to also support new aquatic science efforts. The
dataset described in this article does not include data collected
using automated sensors nor remotely sensed data, but either

could be combined with these observations to extend the
dataset.

The predicted surface temperatures for 185,549 lakes
includes full coverage of lakes with surface area larger than
4 ha in the conterminous United States, which is a substantial
expansion in scale or resolution compared to other available
modeled temperature data products. The ERA5-simulated epi-
limnetic lake temperatures provide coverage of the great
majority of lakes globally, but the gridded cells overlapping
the lake centroids of this conterminous United States dataset
have far fewer unique time series (42,354 for ERA5
vs. 185,549 here). Many of the ERA5 0.1� latitude and longi-
tude grid cells aggregate multiple lakes into the lake tiles that
are available in the ERA5 dataset. However, the ERA5 dataset
does include hourly temperatures that could be useful for
comparing minimum and maximum temperature ranges; our
model generates a single prediction for each lake-day. Other
existing process-based lake temperature predictions from
Winslow et al. (2017) and Read et al. (2021) cover a smaller
spatial extent, and within those regions, represent a smaller
number of lakes due to a requirement parameterizing lake
depth for the individual models. Semi-process-based
approaches have been applied at a larger scales with good
results in Gillis et al. (2021) and also with the air2water model
(Piccolroaz et al. 2013; Toffolon et al. 2014; Piccolroaz 2016;
Piccolroaz et al. 2018; Heddam et al. 2020). However, these
approaches are also limited by the requirement of lake depth
which is readily available only for a small subset (n = 17,675)
of all lakes in the conterminous United States for lakes with
surface area bigger than 1 ha (3.7% of 479,950) that are avail-
able in LAGOS-US (Stachelek et al. 2021). The ERA5 predic-
tions overcome this limitation by using an estimated lake
depth product that is available globally (Kourzeneva 2010).
Our modeled temperatures have a similar coverage to the pos-
sible extents of the data-driven approach of Bachmann
et al. (2019), but those models were not released with predic-
tions or inputs beyond the observed lakes used for training
and testing the models and are additionally limited to the
summer months.

We used NHD HR permanent identifiers to enable synergis-
tic interactions with existing datasets including LAGOS-US
(Cheruvelil et al. 2021), the National Anthropogenic Barriers
Dataset (Ostroff et al. 2013; Cooper et al. 2017), and the
National Lakes Assessment (Pollard et al. 2018). Using GIS,
the data provided can be linked to additional lake and catch-
ment properties within the WQP (Read et al. 2017),
HydroLakes (Messager et al. 2016), and the Global Lake Area,
Climate, and Population dataset (Meyer et al. 2020). In combi-
nation, these macroscale datasets provide a suite of lake and
catchment properties and multitemporal measurements of
water quality, anthropogenic stressors, land use, and meteoro-
logical variables. This wealth of information creates novel
opportunities for modeling lake systems and examining syn-
optic patterns in freshwater resources at the landscape scale.
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While the contribution of estimated and observed water tem-
peratures provided here is highly valuable as a stand-alone
resource, the inclusion of lake-level climate and meteorologi-
cal data at the daily timescale provides additional benefits not
currently captured in the datasets discussed above.

Leveraging the above interconnected datasets and/or future
datasets of lake properties could likely lead to modeling efforts
that outperform the EA-LSTM model presented here. With
future development in mind, and to maximize the utility of
the provided dataset, all modeling inputs, data partitioning,
training data, modeling code, and EA-LSTM predictions are
accessible through this dataset. By providing this end-to-end
pipeline, we aim to create continued opportunities for com-
parison and modeling improvements. Data such as upstream
inflow, reservoir release information, and land use may allow
a future model to better capture abrupt changes in tempera-
ture or to predict more accurate temperature extremes.
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