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Abstract—Drones are receiving popularity with time due to
their advanced mobility. Although they were initially deployed
for military purposes, they now have a wide array of applications
in various public and private sectors. Further deployment of
drones can promote the global economic recovery from the
COVID-19 pandemic. Even though drones offer a number of
advantages, they have limited flying time and weight carrying
capacity. Effective drone schedules may assist with overcoming
such limitations. Drone scheduling is associated with optimization
of drone flight paths and may include other features, such
as determination of arrival time at each node, utilization of
drones, battery capacity considerations, and battery recharging
considerations. A number of studies on drone scheduling have
been published over the past years. However, there is a lack of a
systematic literature survey that provides a holistic overview of
the drone scheduling problem, existing tendencies, main research
limitations, and future research needs. Therefore, this study
conducts an extensive survey of the scientific literature that
assessed drone scheduling. The collected studies are grouped into
different categories, including general drone scheduling, drone
scheduling for delivery of goods, drone scheduling for monitoring,
and drone scheduling with recharge considerations. A detailed
review of the collected studies is presented for each of the
categories. Representative mathematical models are provided for
each category of studies, accompanied by a summary of findings,
existing gaps in the state-of-the-art, and future research needs.
The outcomes of this research are expected to assist the relevant
stakeholders with an effective drone schedule design.

Index Terms—Drone delivery, drone recharge, drone schedul-
ing, flight path, monitoring, UAV.

1. BACKGROUND

IRCRAFTS that have the ability to fly with no pilot
Aon board are referred to as “drones”. Several terms
are commonly used for drones, such as “unmanned aerial
vehicle (UAV),” “unmanned aircraft system (UAS),” “remotely
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piloted aircraft (RPA),” “remotely piloted vehicle (RPV),”
etc. However, the term “drone” will be used in this study
due to its popularity in the scientific community and in
public [1], [2]. Drones are becoming more and more popular
with time due to their mobility and flexibility, accompanied
by rapid developments in the field of information technology,
machine learning, and artificial intelligence. Although drones
were initially developed for defense operations (e.g., bombing,
combat, surveillance, spying), they have a wide range of appli-
cations in numerous civilian and environmental fields, includ-
ing transportation, infrastructure, disaster management, air
quality monitoring, agriculture, media, healthcare, and others
[2]-[9] — see Fig. 1. Various challenges in ground transporta-
tion (e.g., congestion, restrictions in lead time, infrastructure
vulnerability, extensive labor cost) have led to increasing uses
of drones, especially in freight transportation and logistics.
A growing number of companies, including Amazon, Google,
UPS, FedEx, and DHL, have started deploying drones, espe-
cially for last-mile delivery [10], [11]. For instance, Amazon
has launched “Prime Air’, where drones deliver packages
directly to customers within 30 minutes [12], [13]. Google
has an autonomous, eco-friendly delivery drone service named
“Wing” [11], [14]. In addition, a recovery of the global
economy is expected after the COVID-19 pandemic, which can
be bolstered with innovative solutions (e.g., Internet of Things,
drones). Hence, drones may be utilized at a significantly
greater extent in the near future.

Drones are typically smaller than traditional aerial vehicles.
There are different classifications of drones based on their size.
In particular, the size of drones may range from a minuscule
class of drones named ‘“‘smart dust’, which is minimum
1 mm long and weighs 0.005 gm (consisting of micro-electro-
mechanical systems, e.g., robots, sensors), to vast fixed-wing
drones, which may have a wingspan of up to 61 m and
weigh 15,000 kg [3], [15]. Between smart dust and vast fixed-
wing drones, there are micro-unmanned air vehicles, micro-
air vehicles, nano-air vehicles, and pico-air vehicles [3], [15].
A detailed classification of drones based on weight and range
is shown in Table I [15], [16]. Drones may have a wide
array of propulsion systems, such as battery-based systems,
electric motor-based systems, gas turbine engines, reciprocat-
ing piston engines, propeller-based systems, Wankel rotary
engines, rocket propulsion, proton exchange membrane fuel
cells, ultracapacitors, photovoltaics, etc. [17]. Among these
systems, battery-based systems, electric motor-based systems,
and gas turbine engines are the most widely used [3], [15].
Moreover, the types of drone wings vary between fixed-wing,
rotary-wing, flapping-wing, and hybrid-wing [15], [18].
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Fig. 1. Drone applications in various domains.

TABLE I
CLASSIFICATION OF DRONES BASED ON WEIGHT AND RANGE

Characteristics
Type Maximum Maximum .
® Weight (kg) Range (km) Wing Type
Fixed win,
Nano 0.20 3 multiroto%
Micro 2 25 Fixed wing,
multirotor
.. Fixed wing,
Mini 20 40 .
multirotor
Light 50 70 Fixed. wing,
multirotor
Small 150 150 Fixed wing
Tactical 600 150 Fixed wing
MALE 1,000 200 Fixed wing
HALE 1,000 250 Fixed wing
Heavy 2,000 1,000 Fixed wing
Super heavy 2,500 1,500 Fixed wing

Drone technology has experienced a number of advance-
ments over time. Innovative patents, such as autonomous
recharge, hydrogen power, advanced computer vision, etc.,
may further facilitate the development of future drones. Newer
models with improved features are being added to fleets
of drones. Nonetheless, drones have a fairly restricted use
because of current limitations in battery, flying range, size, etc.
Specifically, drone batteries greatly curb the flying ranges and
weight carrying capacities of drones. If the weight carrying
capacities or flying ranges are exceeded, drones may be subject
to failures and accidents. Hence, substantial research efforts
have been made to optimize the efficiency of drones under
battery constraints. Such efforts are evidenced by a significant
number of operations research studies published in the 215
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century, which have focused on various problems revolving
around drones, such as planning, routing, and scheduling.

Drone scheduling is one of the key problems that have
received increasing attention over the last decade. Drone
scheduling is associated with several features, such as launch
points, customer visits, delivery of goods, monitoring, and
battery capacities. Under this problem, a given number of
drones are deployed from a launch point or a ground vehicle
(e.g., truck) to serve some customer nodes. Due to limited
battery capacity, the drones can fly for only a limited amount
of time. They are expected to serve the designated customers
and return to the launch point (or the ground vehicle) within
this limited amount of time. Flying from one node to another
reduces battery levels and may hinder the drones from com-
pleting their service. Hence, the flight paths of the drones are
optimized, so that the drones can safely return to the launch
point after serving all or most of the customers. In addition
to optimization of flight paths, drone scheduling may be
associated with several other features (e.g., time windows,
delivery deadlines, prioritization of service requests). Each
customer node could be assigned an arrival time window.
Then, the arrival and departure times at different nodes are
also determined. Based on the nature of the problem, various
operational constraints may be enforced.

A number of studies have been dedicated towards drone
scheduling, which have created a need for literature surveys
on drone scheduling. Several literature surveys can be found on
drone operations, drone routing, and other decision problems
associated with the deployment of drones [2], [3], [19]-[23].
A summary of the most relevant survey studies on the deploy-
ment of drones is presented in Table II with an empha-
sis on the following aspects: (i) specific drone scheduling
focus; (ii) review of application areas; (iii) presentation of the
relevant mathematical formulations; (iv) analysis of solution
approaches; (v) task assignments; and (vi) categorical future
research needs for different variations of the drone scheduling
problem. It can be observed that there is still a lack of a
systematic literature survey that provides a holistic overview
of the drone scheduling problem, existing tendencies, main
research limitations, and future research needs (see Table II).
To address this gap in the state-of-the-art, this study presents a
comprehensive survey of the research efforts, which assessed
different aspects of drone scheduling. The contributions of this
study can be summarized as follows:

v/ A recent and detailed survey of the studies on drone
scheduling is conducted. Specifically, this survey provides
a comprehensive review of 145 studies that assessed
drone scheduling and various factors, which could affect
drone scheduling decisions.

v Representative mathematical formulations for different
variants of the drone scheduling problem are provided,
which could serve as foundations for future research.

vV A special focus is given to the model formulations,
model objectives, time windows, drone characteristics,
number of ground vehicles, solution approaches, and
major considerations of the collected studies on drone
scheduling.
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TABLE 11
SUMMARY OF THE RELEVANT SURVEY STUDIES ON THE DEPLOYMENT OF DRONES

Survey Study Focus on Drone Application | Mathematical | Analysis of Solution Task Categorical Future
Scheduling Areas Formulations Approaches Assignments Research Needs

Otto et al. (2018) [19] - N — N N -

Khoufi et al. (2019) [20] — N - N v —

Chung et al. (2020) [2] Partial N - N \ -

Macrina et al. (2020) [3] — N — N N —

Thibbotuwawa et al. .

(2020) [21] Partial \/ \/ - - -

Moshref-Javadi and _ N B N B B

Winkenbach (2021) [22]

Rojas Viloria et al.

(2021) [23] B v B v v B

Current study Full N N 3 N \

\
|
|
|
\
\

N\

LP

Launch point

Fig. 2. Typical flight paths of drones.

v/ The latest trends in drone scheduling are discerned,
while limitations of the prior and recent studies on
drone scheduling are identified. Based on these limi-
tations, future research needs in drone scheduling are
outlined.

The remainder of this manuscript is structured as follows.
A detailed description of the generic drone scheduling prob-
lem is presented in the following section. The third section
describes the literature search methodology that was used to
gather and select drone scheduling studies, while the fourth
section provides a detailed review of the selected studies. This
research is concluded in the fifth section.

II. DESCRIPTION OF THE DRONE SCHEDULING PROBLEM

A description of the generic drone scheduling problem
is provided in this section of the manuscript. Drones may
be deployed from launch points, depots, trucks, and other
locations to perform the requested type of service. Their
flight time depends on their battery capacity [24]-[27].

JINNY ¢
Y/
L

Typically, a commercial drone battery requires for the drone
to return to its launch point within one hour after initiating
its flight [26], [28]. Therefore, drone flights can be scheduled
on an hourly basis. Let C = {1, ..., Nc} denote the set of
launch points. A set of available drones K = {1,..., Nx}
will be deployed from the launch points. They will serve the
set of customer nodes I = {1, ..., N;} and then return to the
respective launch points. Some typical flight paths of drones
are illustrated in Fig. 2.

When a drone is launched, an operating cost pi,k € K
is incurred, which is associated with maintenance, person-
nel, operation of control center, depreciation cost, among
others [26]. The operating cost is assumed to be fixed and
not dependent on the flight duration/distance between nodes
dij,i € IUC, j € IUC. Generally, a drone has a fully charged
battery upon launch. However, it must return to its initial
launch point within its maximum allowable flight duration
Dy, k € K, as its battery level declines along the path. Drone
scheduling aims to optimize the flight paths of drones. Hence,
a binary decision variable x;jx,i € IUC,j e IUC,k € K
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Fig. 3. Distribution of the selected studies by the year of publication.

is used. The value of x;j is 1 if drone k travels from node i
to node j, and O otherwise. Let a binary auxiliary variable
hi,k € K be 1 if drone k is launched, and O otherwise.
Moreover, the arrival time of a drone at each node is recorded
through a positive auxiliary variable ¢;x,i € 1 UC,k € K.
Several objective functions can be associated with the drone
scheduling decision problem, such as minimization of the
total operating cost, minimization of the total travel duration,
minimization of the maximum completion time, and others
(more details will be provided in the following sections of the
manuscript).

III. LITERATURE SEARCH

The content analysis method was used in the study to per-
form a systematic review of the literature on drone scheduling.
The content analysis method is viewed as a well-established
methodology that has been widely used over the years to
conduct systematic reviews of the scientific literature and
draw the key insights [29]. This study accessed the major
scientific publishers (e.g., IEEE, Springer, Elsevier, Wiley,
Sage) to conduct a literature search for the drone scheduling
problem. The following keywords were used to guide the
search process: drone scheduling, UAV scheduling, unmanned
aerial vehicle scheduling, UAS scheduling, RPA scheduling,
RPV scheduling, drone task scheduling, UAV task scheduling,
unmanned delivery, and remote surveillance. After performing
the structured keyword search, the identified studies were
evaluated, and a total of 145 studies were found to be the
most closely aligned to the theme of this literature survey.
The present survey specifically captured the studies written in
English and published in peer-reviewed journals, conference
proceedings, and book chapters. The studies written in other
languages were not considered.

A distribution of the selected studies by the year of publi-
cation is illustrated in Fig. 3, which indicates that the drone
scheduling problem has been garnering growing attention from
the scientific community. Especially, a substantial number
of studies have been published over the last three years.
Such a tendency can be elucidated by rapid improvements
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Journal
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IEEE Transactions on
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Others
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Fig. 4. Distribution of the selected studies by journal.

in information technology, congestion, increase in delivery
demand, vehicle cost, labor cost, along with other reasons.
A distribution of the selected studies by journal is shown in
Fig. 4, which reveals that a significant number of the drone
scheduling studies were published in reputed journals, includ-
ing IEEE Access, IEEE Transactions on Vehicular Technology,
IEEE Internet of Things Journal, and Journal of Intelligent &
Robotic Systems. Note that apart from journal publications
(a total of 107 studies or 73.8%), some of the selected drone
scheduling studies were published in conference proceedings
(a total of 35 studies or 24.1%) and book chapters (a total of
3 studies or 2.1%).

The collected studies were then grouped into the following
categories for a detailed review:

1) General Drone Scheduling — this group of studies
focuses on basic attributes of the drone scheduling
problem, including utilization of drones, determination
of drone flight paths, and arrival times of drones at
nodes;

2) Drone Scheduling for Delivery of Goods — this group
of studies specifically focuses on the deployment of
drones for delivery of goods to the designated customer
locations;

3) Drone Scheduling for Monitoring — this group of studies
specifically focuses on the deployment of drones for
non-military monitoring and inspection purposes; and

4) Drone Scheduling with Recharge Considerations — this
group of studies specifically captures recharging opera-
tions of drone batteries in the drone scheduling problem.

If a study had an overlap between multiple categories, it was
grouped based on its primary area of focus. A distribution
of the selected studies by study category is delineated in
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Fig. 5, where it can be observed that the majority of the
collected studies were related to the general drone scheduling
problem (68 studies or 46.9% of the total number of stud-
ies). Moreover, a significant amount of studies were related
to drone scheduling for monitoring purposes (31 studies or
21.4% of the total number of studies). There is an assortment
of studies in the literature that deal with drone routes and
drone schedules. While a number of studies have incorporated
time components of drones (e.g., arrival times at nodes) as
variables, many studies have formulated models that determine
drone flight paths or trajectories with limited or no focus on
time components. Such models have been generally referred to
as “drone routing models” by the studies. The present survey
primarily concentrated on review of the studies that presented
drone scheduling models.

IV. REVIEW OF THE EXISTING LITERATURE

A detailed review of the studies, collected from the literature
search, is presented in this section. Each of the four aforemen-
tioned study categories will be analyzed, and the following
aspects will be highlighted: (i) a detailed scope of each
study category accompanied by a representative mathematical
model; (ii) review and evaluation of the pertinent studies;
(iii)) a summary of findings from the conducted studies;
and (iv) existing state-of-the-art limitations along with future
research needs.

A. General Drone Scheduling

The general drone scheduling problem is assessed in this
section of the manuscript. Several drone scheduling decisions,
such as utilization of drones, determination of drone flight
paths, arrival times of drones at nodes, etc., have been captured
by the studies that focused on the general drone scheduling
problem. Note that the studies under this category do not
specifically focus on delivery of goods and monitoring or
incorporate recharge considerations (which are the attributes
related to other study categories classified in this manuscript).
The general drone scheduling studies are inclined towards
the aforementioned basic drone scheduling decisions and may

have other considerations, such as data dissemination. A math-
ematical formulation for the general drone scheduling problem
can be presented as follows:

General Drone Scheduling Problem (GDSP)

min Z prhi (D
keK
Subject to :

D D xin=1 Vjel )

ielUC keK
> > xjp=1Viel A3)
jelUuC keK
Xk =0ielUC kekK 4)
D xejp = xix VeeC,kek 5)
jel iel
> > xeu=he Vkek (©6)
ceC jel
D> xik =l VkeK (7)
iel ceC
D xujk= D Xk Wwelkek (8)
jeluc ielUC
> D dijxiju <Di VkeK )
ielUC jeluC
tik +dij —M (1 —xijs) <tju Yie IUC,j e IUC, ke K

(10)
Xijk, b €{0,1},tx >0Vie IUC,j e IUC,k e K (11)

The objective function (1) of the GDSP mathematical for-
mulation minimizes the total drone operating cost. Constraint
sets (2) and (3) guarantee that each customer node is visited
once by only one drone. Constraint set (4) ensures that a
drone cannot travel from one node to the same node directly.
Constraint set (5) indicates that each drone returns to the
launch point where it departed from. Constraint sets (6) and
(7) show the utilization of drones (i.e., how many drones are
required to provide a specific service for the existing customer
locations). Flow conservation of the drone flights is guaranteed
by constraint set (8). Constraint set (9) ensures that the total
flight duration of a drone does not exceed its maximum
allowable flight duration. Constraint set (10) functions as a
time conservation constraint (as well as a sub-tour elimination
constraint), where M is a large positive number. In particular,
if a drone flies from node i to node j, then the arrival time
of the drone at node j should not be less than the sum of the
arrival time of the drone at node i and the flight duration
between nodes i and j. If a certain amount of time is to
be spent at the customer nodes (e.g., due to data transfer),
it can be added to the left-hand side of this constraint set.
Constraint set (11) defines the nature of the variables in the
GDSP mathematical formulation.

1) Description of the Relevant Studies:  Bertuc-
celli et al. [30] stated that supervision duties of drone
operators (e.g., task scheduling, information management)
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could be overwhelming, especially for an environment
with a large number of drones. In order to improve the
operator performance, the study presented a scheduling
model that had the objective of maximizing the reward for
operators due to completing tasks. A time window was
defined for each task. Comparisons with a greedy scheduling
method using Monte Carlo Simulation demonstrated the
efficiency of the developed methodology. Zeng et al. [31]
studied drone resource scheduling for battlefield applications,
especially for clusters of targets through synchronization of
missions. A total of three objective functions, which were
consolidated later into one objective function with weights,
were outlined. The three objective functions included:
(1) maximization of the attack benefit; (2) minimization of
the attack cost; and (3) maximization of the synchronization
benefit. Mission time windows along with arrival time
windows were incorporated. An exhaustive algorithm was
designed for small-scale instances of the problem. Khosiawan
and Nielsen [32] argued that schedulers were required to
ensure collision-free operations of drones in an indoor
environment. Therefore, a drone application system with a
scheduler was designed. A phased manner was incorporated
by the scheduler’s components in order to achieve abstraction
as well as efficiency in computational time.

Kim and Lee [33] studied the extension of network cover-
age, where drones delivered data from mobile devices to base
stations. Due to the limited transmission range of drones, the
service area was divided into multiple sections. Scheduling of
the sections was performed to maximize the network through-
put. Simulation results showed that the proposed methodology
could derive the optimal number of sections, considering the
transmission opportunity and channel error rate. Cai et al. [34]
deployed a pair of drones for data dissemination with secrecy.
One of the drones communicated with ground users, while
the other drone protected communications by jamming intrud-
ers. A mathematical model was formulated to maximize the
minimum worst-case secrecy rate among users through joint
optimization of drone flight paths and user schedules. Equality
constraints were imposed to reduce the complexity of the
nonlinear model. Cheng et al. [35] deployed drones to offload
data for cell-edge users within a mobile network. Drone
trajectories were optimized in order to maximize the sum rate
of edge users. At the same time, base station-drone interfer-
ences were avoided, and mobile users’ rate requirements were
fulfilled. The proposed non-convex model was disintegrated
into two convex models, and an iterative algorithm was used
for solution.

Chowdhery and Jamieson [36] argued that wireless net-
works could be hindered by emergencies (e.g., disasters),
which could lead to failure in meeting user demand or cov-
erage. Therefore, the study deployed mobile drone hotspots
to improve wireless networks. Under the system, a mobile
drone would provide coverage to a set of clients. A channel
prediction algorithm along with a client scheduling algorithm
were used for solution. Hua er al. [37] used drones to
communicate with nodes within a wireless sensor network.
A scheduling model was outlined to minimize the energy
consumption due to transmission and propulsion. In particular,
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decisions regarding flight paths, communication schedules,
and energy allocation were provided. Kim et al. [26] argued
that the maximum flight time of a drone was susceptible to
air temperature, as the battery capacity of a typical drone
declined by 25% when the air temperature was —10 °C.
It was advised that either drones with higher battery capacities
should be deployed, or the number of drones should be
increased at temperatures below 20 °C. The study employed
a total of three uncertainty sets (i.e., box, polyhedral, and
ellipsoidal) to assess uncertainties in battery capacity due to air
temperature. Numerical experiments indicated that the applied
robust optimization method was able to reduce drone failures
as compared to deterministic optimization methods.

Zeng et al. [38] employed drones as relay nodes to dis-
seminate data within vehicular ad-hoc networks. A scheduling
strategy was presented to maximize the total throughput of
such a network and to minimize the overall delay in transmis-
sion. A recursive least squares algorithm was used to predict
vehicular information, while a maximum vehicle coverage
algorithm was employed for scheduling vehicular movements.
Khosiawan et al. [39] discussed that only a few studies
designed drone scheduling models for indoor environments.
However, various industries, such as green houses, hospitals,
wind turbine factories, etc., could benefit from such models.
Hence, the system architecture for indoor applications of
drones was delineated. A mixed-integer nonlinear program-
ming model was developed to minimize the total makespan,
and the model was solved with a heuristic in conjunction
with Particle Swarm Optimization. Lyu et al. [40] assessed
wireless communication through drones to meet the shortage
of resources for dynamic Internet of Vehicles. Drones were
deployed to ensure throughput quality of service. A scheduling
scheme was designed, which incorporated the following tasks:
(1) monitoring of resource shortage; (2) deployment of mini-
mal drones; and (3) returning of drones with empty batteries.
Simulations were conducted to showcase the efficiency of the
proposed scheme.

Shi et al. [41] employed drone base stations for radio
access networks. A system was contemplated, where drone
base stations flew over areas of interest in order to assist
with communication between an area of interest and a base
station. A mixed-integer nonlinear programming model was
proposed to minimize the average path loss between a drone
base station and a user. After decomposing the studied prob-
lem into multiple sub-problems, a multi-drone base station
3-dimensional trajectory planning and scheduling algorithm
was used as the solution approach. A cluster of drones may
perform different tasks simultaneously. Tasks are ceased when
some drones in the cluster run low on battery. Yang et al. [42]
applied reinforcement learning for real-time task scheduling
of a drone cluster. Through calculation of task performance
efficiency, the cluster of drones was able to take autonomous
behavioral decisions in order to facilitate a decentralized
network. Fan et al. [43] studied data scheduling with drones
for vehicular networks. A data scheduling problem, which
encompassed priority of data transmission, network fairness,
link connection time, and link quality, was examined. The
data scheduling problem was reduced to a maximum weighted
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matching problem, and a data scheduling scheme was pro-
posed, which was inspired by the Blossom Algorithm.

Jin et al. [44] assessed charging a wireless rechargeable sen-
sor network with a drone. Charging deadlines for sensors and
energy levels of drones were incorporated for the charging sys-
tem. A drone scheduling model was formulated to maximize
the number of sensors charged by the drone. An approximation
algorithm was developed to solve the proposed model, and
simulation results found that the proposed solution methodol-
ogy had several benefits over the Greedy Replenished Energy
Algorithm. Li et al. [45] analyzed data capture scheduling with
drones in order to facilitate wireless sensor networks at areas
with no or limited cellular infrastructure. It was underlined
that buffer overflows at ground sensors could be caused by
drone maneuvers. A mathematical model was presented to
minimize the overall data loss. Furthermore, an absorbing
Markov chain was formulated to model data collection. Pu and
Carpenter [46] developed a priority-based service scheduling
method for data upload and download. Moreover, a service
request balancing method was presented for data upload and
download. Several considerations were incorporated, such as
data popularity, data size, and data request deadline. The
general drone scheduling problem has been addressed by a
number of other studies as well [12], [28], [47]-[94].

2) Summary of Studies: A summary of findings from the
collected studies, which addressed the general drone schedul-
ing problem, is presented in Table III. The table provides a
concise summary on the model formulations, model objectives,
time windows, drone characteristics, number of ground vehi-
cles, and solution approaches for the respective mathematical
models along with certain important notes and major consider-
ations. It was found that a significant number of the studies on
general drone scheduling formulated mixed-integer non-linear
programming (MINLP) models, did not enforce time windows,
and deployed multiple drones. The developed mathematical
models had a variety of different objective functions (e.g.,
maximize the total benefit, minimize the total operating cost,
and maximize the network utility). Moreover, the general
drone scheduling studies typically did not deploy any ground
vehicles in synchronization with drones. Heuristics were found
to be common solution approaches for the general drone
scheduling problem. In addition, many studies on general
drone scheduling deployed drones for data dissemination.

3) Future Research Needs: Limitations and future research
needs in the area of general drone scheduling include the
following:

« Drone operators may face difficulties if drone schedules
do not follow a consistent pattern (i.e., frequent changes
are observed from day to day). Therefore, new methods
that could facilitate the development of more consistent
drone schedules over a given planning horizon should be
designed [48], [49], [134], [137], [147].

o Several studies assume that drones will fly at their maxi-
mum speed. In the real world, however, the maximum
drone flying speeds could be shortened by additional
air resistance and result in larger flying times. Hence,
future studies should consider the drone flying speed as
an additional variable [2], [3], [26], [128].

o Due to the requirement of comparatively lower energy
to stay afloat, balloon-based drones could be more
energy-efficient as compared to traditional drones. Hence,
new mathematical formulations capturing the operational
features of balloon-based drones should be explored in
the future studies [36], [56], [84], [121].

o Comprehensive flight behaviors of drones may be incor-
porated by drone scheduling models [32], [167], [170].

o Some real-world systems may include a human in the
loop of drone service. Therefore, human behavior should
be captured for modeling such services. The effects of
potential human errors (e.g., drone operator errors) on
the drone operations could be further investigated as
well [49], [134], [136], [140], [149].

o Drone failure is a common phenomenon. Based on virtual
or physical tests, a distribution of drone failures could
be modeled and directly incorporated within the existing
mathematical models [81], [92], [138], [167].

o Multiple drone base stations may exist in a network for
data dissemination. Communication and resource alloca-
tion for such networks could be more explicitly modeled
in the future [60], [123], [145].

e Various solution approaches have been presented in
the literature to address the general drone schedul-
ing problem (i.e., exact optimization methods, heuris-
tics, and metaheuristics) [19], [22], [23]. The future
research should explore customized hybrid algorithms
that directly account for specific problem features and
deploy local search mechanisms [95]-[98]. Such algo-
rithms are expected to provide promising solutions to the
general drone scheduling problem in a timely manner.

B. Drone Scheduling for Delivery of Goods

An emerging application of drones is delivery of goods.
Over the recent years, drones have been employed by a
number of organizations to replace or complement ground
vehicles for delivery of goods. Hence, a significant portion
of the drone scheduling literature has focused on delivery of
goods. Even though drones boast a number of advantages,
their weight carrying capacity is very limited. Let Qy be the
weight carrying capacity of drone k. The demand of customer
J is denoted by ¢;, j € I. Then, a mathematical formulation
for the drone scheduling problem for delivery of goods can be
presented follows:

Drone Scheduling Problem for Delivery of Goods (DSPDG)

min Z Z Zd,‘jx,‘jk (12)
ielUC jelUC keK
Subject to :
Constraint sets (2) — (5), (8) — (10)
> D qixix < O VkeK (13)

ielUC jel
xijx €{0,1},t;x =0 VielUC,jelUC, ke K (14)
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TABLE III
SUMMARY OF FINDINGS: STUDIES ON GENERAL DRONE SCHEDULING

. . Number . .
References Formulation Model Objectives Tlme Drone_ . of Ground Solution Not(.es/Maj.or
Types Windows | Characteristics . Approaches Considerations
Vehicles
+uccelli e . Monte Carlo ..
Bertuccelli ft MINLP Maximize the total N/A MD N/A Simulation: Supervision of
al. (2010) [30] reward A drones
Heuristic
Maximize the attack
Zene et al benefit; minimize the Exhaustive Mission time
~ls o 1P attack cost; maximize Strict MD; ECC N/A N window and arrival
(2010) [31] o Algorithm X .
the synchronization time window
benefit
Khosiawan
and Nielsen N/A N/A N/A MD N/A N/A Indoor scheduling
(2016) [32]
Kim and Lee Maximize the . . L
(2017) [33] N/A throughput N/A SD N/A Heuristic Data dissemination
Cai CE al; INLP Maximize the minimum N/A MD N/A Heuristic Data dissemination
(2018) [34] worst-case secrecy rate
¢ hon)g CE 2.11' MINLP Maximize the sum rate N/A MD N/A Heuristic Data dissemination
(2018) [35] of edge users
Chowdhery .
and Jamieson N/A Mammlziitllilf network Soft MD N/A Heuristic Data dissemination
(2018) [36] utity
Hua ctal. MINLP Minimize the energy N/A SD; ECC N/A Heuristic Data dissemination
(2018) [37] consumption
Kim et al. Minimize the total .
(2018) [26] MIP operating cost N/A MD N/A CPLEX Air temperature
Minimize the overall
chg, ct ul; N/A transm1§ ston delay; N/A MD N/A Heuristic Data dissemination
(2018) [38] maximize the
throughput
Khosiawan et Minimize the maximum Heuristic;
ostawal | MINLP ¢ the maxumu N/A MD; ECC N/A Particle Swarm Indoor scheduling
al. (2019) [39] completion time L
Optimization
Lyu et al. . .
(2019) [40] N/A N/A N/A MD N/A N/A Data dissemination
Shi ot al Minimize the average
é“(’) ]LQ )‘ [4 1] MINLP drone base station to N/A MD N/A Heuristic Data dissemination
- user path loss
Yang et al. Real-time
(2019) [42] N/A N/A N/A MD N/A N/A scheduling
Fan et al. Maximize the network . . L
(2021) [43] N/A utility N/A MD N/A Heuristic Data dissemination
. . N Wireless
Jin et dl‘, ’ N/A Maximize the number Strict SD: ECC N/A Approxlmatlon rechargeable
(2021) [44] of charged sensors Algorithm
sensor network
(Lzloe: la)l.[ 45] N/A Minimize the data loss N/A SD; ECC N/A Deep Learning Data dissemination
Pu and ..
Carpenter N/A Maximize the total Strict MD; ECC N/A Heuristic Data dissemination
(2021) [46] benefit

Notes: 1P — Integer Programming; INLP — Integer Non-Linear Programming; MIP — Mixed-Integer Programming; MINLP — Mixed-Integer Non-

Linear Programming; SD — Single Drone; MD — Multiple Drones; ECC — Energy Consumption Considerations.

The objective function (12) of the DSPDG mathematical
formulation minimizes the total travel duration, as timely
delivery is essential for each customer served by the assigned
drone. Constraint set (13) implies that a drone can carry a
limited quantity of goods. Constraint set (14) defines the nature
of the variables in the DSPDG mathematical formulation.
Some examples of flight paths of drones that can be obtained
using the DSPDG mathematical model for delivery of goods
are depicted in Fig. 6.

1) Description of the Relevant Studies: Zhang et al. [99]
developed a drone scheduling scheme for delivery within an

area to minimize the overall delivery delay. Moreover, an allo-
cation scheme was presented for delivery within multiple areas
in order to maximize the probability of successful completion
of delivery requests. Murray and Chu [100] conducted one
of the pioneering studies on the traveling salesman problem
with drones. It was stated that drones might not be able to
deliver all packages due to the size or weight of packages
or the limited flight ranges of drones. Hence, two routing
and scheduling models were proposed for drones and trucks.
The first model, called the “flying sidekick traveling salesman
problem,” involved cooperation between a truck and a drone.
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Fig. 6. Flight paths of drones for delivery of goods.

The truck carried the drone and was deployed from the depot.
The drone would then be launched from the truck, visit/serve
customers, and return to the truck. A customer could also
be directly served by a truck. The second model, named
the “parallel drone scheduling traveling salesman problem,”
deployed a truck and a fleet of drones from the depot.
A customer could be served by either the truck or one of the
drones, and all of them had to return to the depot after serving
the customers. Ham and Kim [101] presented a material
transfer drone scheduling model for semiconductor factories.
The objective of the model was to minimize the maximum
completion time of delivery tasks, which were characterized
by priority. Precedence relationships were also defined for the
tasks, since drones had to compete for a limited number of
ports.

Boysen et al. [10] discussed that the last-mile delivery
with drones could be an effective solution to reduce roadway
traffic. The study developed two drone scheduling models
for delivery with drones along a given truck route. The
models weighted several considerations, such as use of a single
drone vs. multiple drones and identical vs. non-identical stops.
GUROBI was employed to solve the proposed mixed-integer
programming models. Numerical experiments revealed that
one of the models was able to handle up to 100 customer
nodes within a short time. Chen et al. [102] implied that drones
should deliver packages in a minimal time and reduce late
arrivals. A hybrid block-based edge recombination algorithm
was proposed, which was contrasted with the generic edge
recombination algorithm. Numerical experiments showed that
the proposed algorithm could obtain better results. Ham [103]
assessed the use of drones for last-mile delivery. In particular,
a fleet of trucks, a fleet of drones, and a set of depots
were considered. Moreover, each drone completed two types
of tasks: drop-off and pick-up. Initially, a drone dropped a
parcel at a customer location. Then, it could go to another
customer location to pick up a returned parcel or travel to

a depot in order to drop the next parcel at the respective
customer location. A constraint programming technique was
used to solve the problem. Results indicated that the proposed
solution approach could achieve optimality for most of the
tested problem instances.

Liu et al. [104] studied collaboration between trucks and
drones, where drones were transported by trucks. The study
modeled the demand point to be far from the warehouse.
The impacts of payload or battery weight on the energy
consumption of drones were not directly accounted for.
Saleu et al. [105] assessed the parallel drone scheduling
traveling salesman problem. A two-step heuristic algorithm
was developed to solve the studied problem, which employed
Dynamic Programming in order to split the set of cus-
tomers between the set of drones and the truck. Numerical
experiments indicated that the proposed heuristic was able
to return promising results. Shi and Ng [106] exhibited
a path planning algorithm to avoid collision during drone
deliveries. It was demonstrated that the proposed algorithm
could provide optimal results, when a waiting penalty was
added. Torabbeigi et al. [107] discussed that drones could be
faster and cheaper as compared to the conventional modes
of transportation. However, they should be reliable as well.
Therefore, the study proposed a two-staged model to improve
the reliability of drones in the form of minimizing the expected
loss of demand. Drone failures were modeled with an expo-
nential distribution.

Kim and Moon [108] stated that the flight range of drones
around a distribution center was limited. Hence, a parallel
scheduling scheme was proposed between a truck and a set
of drones. A mixed-integer programming model, which was
later divided into two models, was proposed to minimize the
delivery time of the truck and drones. It was demonstrated
that the proposed approach could eliminate route distortion.
Peng et al. [109] studied a cooperative service between drones
and vehicles. In that study, a vehicle acted as a mobile base
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station for a fleet of drones, which could serve customers
within a short distance due to battery limitations. The vehicle
moved between selected anchor points, and then the drones
were deployed to serve the customers near those points. When
all the customers near an anchor point were served, the vehicle
moved to another point. The proposed model was inspired
by several basic optimization problems, including the facility
location problem, vehicle routing problem, traveling salesman
problem, and bin packing problem. A hybrid version of the
Genetic Algorithm, which employed heuristic procedures for
population initialization, was used for solution. The devel-
oped solution approach was found to be more efficient when
comparing to some of the solution approaches found in the
literature.

Sawadsitang et al. [110] proposed a three-stage, stochastic,
multi-objective optimization model for drone delivery. The
model aimed to minimize the total cost of delivery as well
as the percentage of packages unsuccessfully delivered and
to maximize the total reward for the on-time delivery. The
e-constraint method was employed to handle the proposed
model, whose performance was evaluated by using real-world
data from a Singapore-based logistics company. Seakhoa-
King et al. [111] designed a scheduling algorithm to optimize a
time-sensitive delivery service provider’s revenue. The inputs
to the proposed algorithm included a function that captured
service agreements with customers and an expected distribu-
tion of flight times. It was demonstrated that the algorithm
was successful in increasing revenues. Wang er al. [112]
studied simultaneous use of independent drones, truck-carried
drones, and trucks for a hybrid parcel delivery system. The
numbers of truck-carried drones and trucks were assumed to
be equal, i.e., each truck carried a single drone. Numerical
experiments revealed that the proposed hybrid delivery system
outperformed the alternative approaches that employed only
independent drones or truck-carried drones.

Cheng et al. [113] proposed a drone delivery system con-
sidering time windows. A mathematical formulation was pre-
sented to minimize the travel cost and the energy consumption.
The employed energy consumption function incorporated
the impact of payload and battery weight. A Branch-
and-Cut Algorithm was used as a solution methodology.
Dell’Amico et al. [114] employed the traveling salesman
problem framework for the parallel drone scheduling problem,
where customers were shared between a truck and a set of
drones. During each trip, which started and ended at the depot,
the truck was allowed to serve multiple customers. The drones,
on the other hand, served only one customer during each
trip. A mixed-integer programming model was formulated
to minimize the maximum working time of all the vehicles.
A set of matheuristic algorithms were developed to solve the
proposed model, including Fast Heuristics and Random Restart
Local Search. Ham [115] presented a material transfer drone
scheduling model for a robotic mobile fulfillment facility.
Time windows and precedence relationships were assigned to
the tasks to be completed. Moreover, pick-ups and drop-offs
were facilitated by the employed drones.

Huang et al. [116] proposed two delivery methods involving
drones along with public transportation vehicles (e.g., trams,
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trains). Under one of the methods, packages were directly
delivered by drones, while collaboration between public trans-
portation vehicles and drones was established under the other
method. Several practical considerations, such as consump-
tion of energy, replenishment of battery, and trip time, were
captured. Torabbeigi et al. [27] employed a bi-level approach
for delivery of parcels with drones. At the strategic planning
level, a set covering approach was used to minimize the
initial depot opening cost. At the operational planning level,
on the other hand, delivery schedules were determined in
order to minimize the number of drones deployed. Specific
considerations for drones were incorporated, including the
impact of payload on flight duration as well as remaining
battery level. It was also stipulated that payload had a linear
relationship with battery consumption. Liu ez al. [11] discussed
that it was challenging for decision-makers to determine the
optimal number of drones to ensure that all parcels could be
delivered before the corresponding deadlines. A mathematical
model was formulated, where each parcel was assigned a
release time, a deadline, and a distance to the depot. A Genetic
Algorithm was developed to solve the model.

Torabbeigi et al. [117] implied that failures in drone delivery
systems could result in unmet demand as well as loss of
customer satisfaction. A Weibull distribution was used to
model drone failures, while a mixed-integer programming
model was proposed to minimize the expected loss of customer
demand. Simulated Annealing was employed to solve the
proposed model. A comparison with a traditional makespan
model revealed that the proposed approach could offer more
reliability. Yuan et al. [118] deployed a heterogeneous fleet
of drones for delivery of goods in an urban setting. Several
drone scheduling considerations were incorporated, including
weight carrying capacity, maximum allowable flight duration,
and flying speed. A Genetic Algorithm was developed for
solution, which included a weight-based loading technique.
Comparisons with two existing solution algorithms demon-
strated the superiority of the developed algorithm.

2) Summary of Studies: A summary of findings from the
collected studies, which captured drone scheduling for delivery
of goods, is presented in Table IV. It was found that a signifi-
cant number of the studies on drone scheduling for delivery of
goods formulated mixed-integer programming (MIP) models,
did not enforce time windows, and deployed multiple drones.
The developed mathematical models had a variety of different
objective functions (e.g., minimize the maximum completion
time, minimize the total delivery cost, and minimize the
overall delay). Moreover, a significant number of the studies
on drone scheduling for delivery of goods deployed either
single or multiple ground vehicles in synchronization with
drones. Heuristic and metaheuristic algorithms were found
to be common solution approaches for the drone scheduling
problem with delivery of goods. In addition, a significant
number of the studies considered parallel drone scheduling
and vehicle-drone cooperation.

3) Future Research Needs: Limitations and future research
needs in the area of drone scheduling for delivery of goods
include the following:

Authorized licensed use limited to: Florida State University. Downloaded on August 03,2022 at 01:33:54 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PASHA et al.: DRONE SCHEDULING PROBLEM: A SYSTEMATIC STATE-OF-THE-ART REVIEW

TABLE IV

SUMMARY OF FINDINGS: STUDIES ON DRONE SCHEDULING FOR DELIVERY OF GOODS

. . Number . .
References Formulation Model Objectives Tlme Drone. . of Ground Solution Not('es/Maj'or
Types Windows | Characteristics . Approaches Considerations
Vehicles
Minimize the overall delay;
Zhang et al. maximize the probability of Dynamic Prioritization of
(2014) [99] N/A successfully handling N/A MD N/A Programming service requests
service requests
Murray and L . ) Parallel drone
Chu (2015) MIP Minimize the completion N/A SD/MD Single GURQBI’ scheduling; vehicle-
time Heuristic .
[100] drone cooperation
Ham and Minimize the maximum IBM ILOG CP
Kim (2017) N/A S N/A MD N/A L Pick-up and delivery
[101] completion time Optimizer
. s . GUROBI; .
Boysen et al. MIP Minimize the completion N/A MD Single Simulated Vehlcle-d'rone
(2018) [10] time . cooperation
Annealing
Hybrid Block-
Chen et al. Minimize the completion Based Edge .
(2018) [102] N/A time; minimize the tardiness N/A SD N/A Recombination Late arrival
Algorithm
Ham (2018) Minimize the maximum Constraint Parallel drone
PO CP N Strict MD Multiple . scheduling; pick-up
[103] completion time Programming .
and delivery
Liu et al. - . Enumeration; Vehicle-drone
(2018) [104] 1P Minimize the total cost N/A SD Single Heuristic cooperation
Saleu et al. Minimize the completion . _ Parallel drone
(2018) [105] MIP fime N/A MD Single Heuristic scheduling
Shi and Ng Hybrid A* .
(2018) [106] N/A N/A N/A MD N/A Algorithm Drone failure
Torabbeigi et L .
al. (2018) MIP Minimize the expected loss | ;) MD N/A CPLEX; Drone failure
[107] of demand Heuristic
Kim and Minimize the completion .
Moon (2019) MIP time; minimize the number N/A MD Single XPRES.S .MP, Parallel d.r one
Heuristic scheduling
[108] of drones
Peng et al. MlnlleF! the .tot.al distance . Hybrlfi Vehicle-drone
(2019) [109] 1P cost; minimize the N/A MD Single Genetic cooperation
completion time Algorithm
Minimize the total delivery
Sawadsitang cost; minimize the
e; qlL (;0‘1 9)5 Lp percentage of unsuccessful Soft MD N/A E-Constraint Outsourcing to
0 I()-J - delivered packages; Method carrier
maximize the reward of on-
time delivery
Seakhoa- Time-sensitive
King et al. N/A Maximize the revenue Soft MD N/A Heuristic deli
(2019) [111] cvery
Wang et al Minimize the maximum Parallel drone
ans et & N/A © aximu N/A MD; ECC Multiple Heuristic scheduling; vehicle-
(2019) [112] completion time .
drone cooperation
Cheng et al. Minimize the travel cost and . ) Branch-and- Payload; time
(2020) [113] MINLP the energy consumption Strict MD; ECC N/A Cut Algorithm windows
Dell"Amico Minimize the maximum Parallel drone
et al. (2020) MIP Co N/A MD Single Matheuristic .
[114] completion time scheduling
am (202 inimi i . ick- ivery;
H am (2020) MIP: CP Minimize the maximum Strict MD N/A IBM OPL Plck.up anfi delivery;
[115] completion time time windows
L . . Vehicle-drone
Huang et al. Minimize the completion . . Dynamic S
(2020) [116] MIP time N/A SD; ECC Multiple Programming cooperation; recharge

considerations
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TABLE IV
(Continued.) SUMMARY OF FINDINGS: STUDIES ON DRONE SCHEDULING FOR DELIVERY OF GOODS

. Minimize the initial Variable
Torabbeigi et depot opening cost: Preprocessing
al. (2020) MIP Cpot opening cost; N/A MD; ECC N/A Algorithm; Primal Payload

minimize the number
[27] of drones and Dual Bound
Generation Methods
Liu et al. Minimize the number . . Time-sensitive
2021)[11] MIP of drones N/A MD N/A Genetic Algorithm delivery
Torabbeigi et Minimize the Simulated
al. (2021) MIP expected loss of N/A MD N/A . Drone failure
Annealing

[117] demand
Yuan et al Minimize the
( 7(); 1 ; [; 1‘8] MIP maximum completion N/A MD N/A Genetic Algorithm Heterogeneous fleet
- time

Notes: CP — Constraint Programming; IP — Integer Programming; LP — Linear Programming; MIP — Mixed-Integer Programming; MINLP — Mixed-
Integer Non-Linear Programming; SD — Single Drone; MD — Multiple Drones; ECC — Energy Consumption Considerations.

o Even though drone scheduling for delivery of goods
is becoming a popular research topic, there is a lack
of benchmarks in solutions for drone scheduling mod-
els involving delivery of goods. Hence, significant
efforts should be made in order to establish bench-
marks [92], [93].

« Battery consumption rate is affected by payload. There-
fore, payload should be incorporated in the bat-
tery consumption function by the future studies [27],
[166]-[168], [171].

o Replacement of trucks with public transportation vehi-
cles could be more profitable for vehicle-assisted drone
deliveries. Hence, incorporation of public transporta-
tion vehicles along with a consideration of their routes
into the drone scheduling models should be further
explored [44], [116].

« Many of the existing models involve one vehicle assisting
one or multiple drones. Collaboration between multi-
ple vehicles and multiple drones could be more prof-
itable [103], [112].

o« A comprehensive analysis of the advantages and dis-
advantages of vehicle-assisted drone deliveries could
be taken as a future research direction [10], [100],
[103]-[105].

o Dynamic placement of delivery orders is often captured
in real-world systems with ground vehicles. Such services
should also be proposed for drone deliveries.

C. Drone Scheduling for Monitoring

At earlier times, drones were used for military purposes,
such as surveillance and attack. With time, drones have been
employed by public and private entities for non-military mon-
itoring and inspection purposes (e.g., disaster management,
fault detection). Nonetheless, a number of drone scheduling
studies can be found that aim to employ drones for surveil-
lance. This study category includes the studies that involve
either security- or non-security-oriented monitoring. Under the
scope of the drone scheduling problem for monitoring, the
group of customers (or objects) are treated as targets to be
monitored. Each target or customer is allocated a specified
monitoring time s;,i € I. Then, a mathematical formulation

for the drone scheduling problem for monitoring can be
presented as follows:

Drone Scheduling Problem for Monitoring (DSPM)

min(m‘izx tix) YielUC,ke K (15)
1
Subject to :
Constraint sets (2) — (5), (8) — (9), (14)
tik+si+dij —M (1 —xijx) <tjx VielUC,
jeluC,kek (16)

The objective function (15) of the DSPM mathematical
formulation minimizes the maximum completion time of the
monitoring tasks. Constraint set (16) functions as a time
conservation constraint (i.e., if a drone travels from one node
to another, then, the arrival time at the destination node cannot
be less than the sum of the arrival time at the origin node, the
monitoring time at the origin node, and the travel duration
between the two nodes). Some examples of flight paths of
drones that can be obtained using the DSPM mathematical
model for various monitoring purposes are shown in Fig. 7.

1) Description of the Relevant Studies: Weinstein and Schu-
macher [119] scheduled drones using the framework of the
vehicle routing problem with time windows. Three objective
functions were examined: (1) minimization of the total travel
distance; (2) minimization of the maximum completion time;
and (3) minimization of the total travel time. The study
indicated that minimization of the maximum completion time
could be more precise for military applications (e.g., attack,
surveillance); however, it was associated with greater computa-
tional time. Li et al. [120] assessed a drone scheduling method
to survey an area after a disaster had passed. After a real-time
tracking of the locations of the available fleets of drones, the
arrival times of drones at a meeting point were estimated.
Afterwards, they were deployed to inspect the disaster zone.
Koulali ef al. [121] studied drone scheduling for disaster relief
and similar circumstances. Beaconing periods of competing
drones were modeled under a sub-modular game perspective.
The equilibrium beaconing strategy of each drone was assessed
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Fig. 7. Flight paths of drones for monitoring.

without prior knowledge of its opponent drone’s schedule.
Ghazzai et al. [122] studied parallel and sequential scheduling
of drones for an extended time period to cover events, which
were distributed temporally and spatially. Technical attributes,
such as battery capacity, were incorporated to schedule drones
that had to return to a docking station on a regular basis. It was
found that the total energy consumption, which consisted of
the energy consumption for covering events, waiting, and
flying, decreased, when a high-capacity battery was used.

Gu et al. [123] asserted that surveillance of small moving
targets was a challenging issue. Therefore, a sky-ground
surveillance network, including drones and wireless sensor
networks, was developed. Moreover, a task scheduling model
for multiple drones within the network was proposed by the
study. Cao et al. [124] discussed that wind turbines would
become a major energy source in the future, especially for
energy internet. However, installing and using wind turbines at
remote areas might incur significant costs. Hence, an inspec-
tion and computing model, equipped with drones, was pro-
posed. The model was based on mobile edge computing and
jointly optimized the computation and trajectory operations
of drones. Chen et al. [125] envisaged a scheme to inspect
air pollution from oceangoing vessels. The scheme involved
several aspects related to inspection of pollution, including
drone schedules. The drone schedules provided two major
decisions: (1) assignment of drones to vessels; and (2) time
of inspection. Hu et al. [126] argued that vehicle-drone coop-
erative surveillance had significant merit due to long driving
ranges of vehicles and extensive mobility of drones. A routing
and scheduling problem that involved a number of drones,
carried by a vehicle, to sense various targets in a parallel
fashion was formulated. A solution algorithm was developed,
which involved joint optimization of tour assignment, anchor
point selection, and path planning. Hu ef al. [127] allowed
recycling of drones at multiple locations in order to minimize
time wastage. Several decisions were considered, such as
determination of launching and recycling points, synchroniza-
tion, time scheduling, and others for inspection of wide areas.

13
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Drones have a significant potential in monitoring emissions
from vessels in emission control areas (i.e., areas where vessels
are required to use less harmful fuel). Hence, Xia et al. [128]
formulated a drone scheduling model in order to maximize the
total revenue generated from monitoring vessels by drones.
A Lagrangian Relaxation-based technique was employed to
solve the mixed-integer programming model that incorporated
time-dependent locations of vessels. Numerical experiments
conducted for the Pearl River Delta demonstrated that the
proposed approach could provide compact upper bounds for
instances comprising up to 100 vessels. Ejaz et al. [129]
employed an energy-aware task scheduling framework to col-
lect data from a ground Internet of Things network to be used
by first responders after a disaster had passed through an area.
The proposed framework aimed to minimize the total energy
consumption of drones. The optimal trajectory of drones was
determined by using a Genetic Algorithm. Moreover, the
health risk of the affected people was estimated with a decision
tree classification algorithm. Jung et al. [130] aimed to reduce
overlaps between the monitoring areas of different drones
within a surveillance system. The problem was formulated
as a maximum weight independent set problem. A solution
algorithm was developed, which was able to conserve energy
efficiently.

Jung et al. [131] analyzed a drone-based surveillance sys-
tem. Under the system, a number of drones equipped with
cameras monitored an area, but some of the surveillance
cameras were turned off at overlapping zones to obtain energy
efficiency. Moreover, unscheduled drones travelled to charging
stations. It was indicated that the proposed methodology was
applicable to drone taxi services as well. Zhang et al. [132]
formulated a game theory-based scheme to derive a bal-
ance between minimization of energy consumption and max-
imization of reputation of drones. Energy consumption of
drones was modeled considering the working state along with
scheduling strategies, while the reputation gain model was
based on practical scenarios. The game theory-based scheme
was employed to incorporate both models in order to maximize
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the operator’s payoff. Yi and Sutrisna [133] explored drone
scheduling for monitoring of construction sites. A mixed-
integer nonlinear programming model was formulated to direct
drones to spend more time at areas that required greater atten-
tion. Hence, the model incorporated the minimum monitoring
time and the actual monitoring time at different segments.
A Dynamic Programming Algorithm was used to optimize the
flying speed of drones. A real-world case study indicated that
the optimal flying speed along a given segment was dependent
on the minimum monitoring requirements of that segment and
its nearby segments. Drone scheduling for monitoring has been
captured by several other studies [134]-[149].

2) Summary of Studies: A summary of findings from
the collected studies, which captured drone scheduling for
monitoring, is presented in Table V. It was found that a
significant number of the studies on drone scheduling for
monitoring formulated mixed-integer programming (MIP) and
mixed-integer non-linear programming (MINLP) models, did
not enforce time windows, deployed multiple drones, and
incorporated energy consumption considerations. The devel-
oped mathematical models had a variety of different objective
functions (e.g., minimize the completion time, minimize the
energy consumption, and maximize the total surveillance ben-
efit). Moreover, a significant number of the studies on drone
scheduling for monitoring did not deploy any ground vehicles
in synchronization with drones. Heuristics were found to be
common solution approaches for the drone scheduling problem
with monitoring.

3) Future Research Needs: Limitations and future research
needs in the area of drone scheduling for monitoring include
the following:

« Multiple drones could be deployed to inspect a site more
effectively. However, that could incur additional costs.
Therefore, inspection of a site with multiple drones along
with related trade-offs in multi-objective settings could be
further examined [51], [110].

o Collaboration between drones could reduce or eliminate
overlaps between monitored areas. This could be another
future research avenue [130], [131].

« Reactive solution methodologies (e.g., consensus-based
algorithms) could be used for drone scheduling in order
to deal with unplanned events [49], [122], [163].

o Geographical features of monitored areas could be incor-
porated for effective scheduling of drones [56], [78],
[88], [165].

o Sudden events and disruptions can happen at any place
and any point of time. Such events may influence the
operations of drones that are assigned for monitoring
of specific objects. Advanced methodologies, such as
machine learning, could be employed to predict when
and where the upcoming events could happen.

« Remaining battery capacities may drop below a threshold
value because of environmental and other reasons, espe-
cially at disaster-affected monitored zones. Alternative
methodologies for developing drone schedules are needed
in such cases [2], [3], [81], [146].
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D. Drone Scheduling With Recharge Considerations

This section of the manuscript focuses on the drone
scheduling problem with recharge considerations. Note that
the studies, which captured recharge of devices other than
drone batteries (e.g., wireless sensor nodes), are not included
in this category. Recharge of drones has been modeled in
a wide variety of ways by researchers. Several aspects of
recharge (e.g., split jobs with recharge, recharge speed, battery
assignment, recharge capacity, charging station slots) along
with various energy functions have been captured by different
models. A representative mathematical model for the drone
scheduling problem for split jobs with recharge considerations
is presented in this section of the manuscript, where different
drones are allowed to process different segments (or portions)
of a customer’s job. Hence, the customers are divided into a
set of split jobs I = {1,..., Ny}. Various charging stations
are used to launch the set of drones K = {1, ..., Nx}. The
drones process split jobs and stop at charging stations for
recharge. After recharge, they are launched again to process
split jobs. Hence, the drones commence multiple flights
R={1,..., Ng}.

Due to multiple flights, a starting index and an ending index
are assigned to a charging station. Hence, the set of charging
stations is treated as a set of starting charging stations CS =
{1,..., Ncs} and a set of ending charging stations CE =
{1,..., Ncg}. Furthermore, an index for the flight number is
added to the variables. Therefore, a binary decision variable
Xijkr,i € [UCSUCE,j e [UCSUCE,k € K,r € R
is used. The value of x;jr is 1 if drone k flies from split
job i or charging station i to split job j or charging station
J during flight r, and O otherwise. Another positive auxiliary
variable t;,,i € [UCSUCE,k € K,r € R is used to record
the start time of split job i or the start time of recharge at
charging station i for drone k during flight . Moreover, the
time parameter s;,i € [ UCS U CE, in this case, indicates
either the processing time of split job i or the recharge time at
charging station i. Then, a mathematical formulation for the
drone scheduling problem with recharge considerations can be
presented as follows [150]:

The objective function (17) of the DSPRC mathematical
formulation minimizes the total travel duration. A total of
three groups of constraints are included in this model. The first
group of constraints [i.e., constraints (18) to (22)] applies some
basic routing rules for the DSPRC mathematical formulation.
Constraint set (18) implies that each drone is initially launched
from its designated starting charging station CS,,k € K.
Constraint set (19) indicates that each drone is launched from
a starting charging station and flies to either a split job or
an ending charging station. Constraint set (20) guarantees that
each flight of a drone is finished at an ending charging station.
Constraint set (21) indicates that a drone is not allowed to end
its flight at the starting index of a charging station. Constraint
set (22) ensures that each drone starts a flight from the
charging station where its previous flight ended. The second
group of constraints [i.e., constraints (23) to (25)] monitors
split jobs. Constraint set (23) ensures that a drone’s flight is not
ended at a split job. Constraint set (24) requires that each split
job is processed. Constraint set (25) implies that each split job
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TABLE V
SUMMARY OF FINDINGS: STUDIES ON DRONE SCHEDULING FOR MONITORING

. . Number . .
References Formulation Model Objectives Tlme Drone‘ . of Ground Solution Note‘:s/Maj'or
Types Windows | Characteristics . Approaches Considerations
Vehicles
Minimize the total travel
Weinstein and distance; minimize the GNU Linear .
. ) . . Soft and . Operator-imposed
Schumacher MIP maximum completion trict MD N/A Programming i ind
(2007) [119] time; minimize the total stne Kit 1me windows
travel time
Lietal. (2014) N/A N/A N/A MD N/A N/A Disaster
[120] management
Koulali et al Data
5 ; o N/A Maximize the payoff Strict MD; ECC N/A Heuristic dissemination;
(2016) [121] came theory
. L Spatially and
((;](‘)al%’)“E ° 2“]" MINLP M‘“é‘;‘r‘ézrg“’ﬁi‘f"gy Strict MD; ECC N/A GUROBI temporally
3 - P distributed events
. Moving targets;
et al. (2 . . K
[(;Lzl;Jt al. (2018) N/A N/A N/A MD; ECC Single N/A wireless sensor
) network
Minimize the
Cao et al. completion time; . .. Mobile edge
(2019) [124] N/A minimize the energy N/A MD; ECC N/A Heuristic computing
consumption
Chen et al Maximize the total Emissions from
: e MINLP weighted number of Strict MD N/A N/A
(2019) [125] . vessels
inspected vessels
st al. (2019 inimi icle-
Hu et al. (2019) P Mmlm}ze the N/A MD Single Heuristic Vehicle d_rone
[126] completion time cooperation
P 2016 inimi 1 icle-
Hu et al. (2019) N/A Minimize the time N/A MD Single Heuristic Vehicle d.rone
[127] wastage cooperation
Xia et al. Maximize the weights of . Lagrangian Emission control
(2019) [128] MIP all included arcs Strict MD N/A Relaxation areas
Ejaz et al. Minimize the energy . Genetic Disaster
(2020) [129] INLP consumption N/A MD; ECC NA Algorithm management
Maximize the
Jung et al. summation of weights of . . .
(2020) [130] 1P all possible independent N/A MD; ECC N/A Heuristic Conflict graph
sets in a conflict graph
Minimize the energy
Jung et al. consumption; maximize . i Recharge
(2020) [131] MIP the amount of charging N/A MD; ECC N/A Heuristic considerations
energy
Zhane ct al Minimize the energy Game theory;
2 0‘7 0 [l ?7 l N/A consumption; maximize N/A MD; ECC N/A Heuristic mobile edge
- - the reputation computing
. . . . Fixed path;
Yi and Sul:lsna NLP Max1mlze the total Strict SD: ECC N/A Dynamlg prioritization of
(2021) [133] surveillance benefit Programming arcas

Notes: 1P — Integer Programming; INLP — Integer Non-Linear Programming; MIP — Mixed-Integer Programming; MINLP — Mixed-Integer Non-
Linear Programming; NLP — Non-Linear Programming; SD — Single Drone; MD — Multiple Drones; ECC — Energy Consumption Considerations.

is started at its designated start time a;,i € I. The third group
of constraints [i.e., constraints (26) to (30)] regulates time.
Constraint set (26) indicates that the start time of a drone’s
flight and the end time of its previous flight are the same.
Constraint set (27) functions as a time conservation constraint.
Constraint set (28) links the two variables. Constraint set
(29) ensures that the total flight duration of a drone does
not exceed its maximum allowable flight duration. Constraint
set (30) defines the nature of the variables in the DSPRC
mathematical formulation. Some flight paths of drones with
recharge considerations that can be obtained using the DSPRC
mathematical model are illustrated in Fig. 8.

1) Description of the Relevant Studies: Kim and
Morrison [151] developed a scheduling scheme for capacitated
drones, where they could replenish their energy levels at
several stations and resume service. Split jobs were
accommodated (i.e., different drones could complete different
segments of a customer’s task). The objective of the proposed
model was to minimize the sum of the travel cost, drone
purchase cost, and station purchase cost. A Branch-and-
Bound Algorithm was employed to obtain global optimality
for the model, while a heuristic was used for large-size
instances of the problem. Kim ef al. [152] proposed a drone
scheduling model that incorporated automated charging
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stations along with split job considerations. The proposed
mixed-integer programming model was solved with a Genetic
Algorithm for large instances that could not be tackled by
CPLEX. Results demonstrated the efficiency of the proposed
methodology. Song et al. [150] designed drone schedules,
which allowed split tasks. A mixed-integer programming
model was developed, whose aim was to minimize the
total travel distance. It was indicated that the developed
mathematical model obtained significant improvements in
computational complexity, as compared to many of the
existing models in the literature. The model was solved with
CPLEX for instances with up to 20 split tasks.

Zhou et al. [153] demonstrated a cooperative network
between drones and ground vehicles. An aerial sub-network,
consisting of drones, assisted a sub-network of ground vehicles
through air-to-air and ground interactions. The ground vehicle
was used for drone energy monitoring and recharging. Such a
network architecture could be effective for a number of areas,
including pollution inspection, disaster management, and data
dissemination. Lim and Jung [154] discussed that geograph-
ical conditions (e.g., mountains, islands) might impede con-
ventional vehicles from completing deliveries on time. The
study presented a drone delivery scheduling model considering
battery capacity, recharge speed, and drone weight. Simu-
lation results based on a case study for remote islands in
South Korea, whose delivery lead time was 1-3 days longer
than other areas, demonstrated the potential of the proposed
approach. Park er al. [155] discussed that proper management
of drone batteries was not thoroughly explored in the literature.
Therefore, the study disintegrated battery management into
two sub-problems, including battery assignment and battery
scheduling, with the goal to minimize the degradation of drone
batteries. Battery assignment was conducted with an assign-
ment algorithm, while battery scheduling was formulated as

an integer programming model, which could be tackled with
external solvers. It was underlined that the state-of-health
degradation of drone batteries was affected by the idle time
between charge cycles, while energy consumption of drone
delivery services was impacted by battery assignment.

Kim and Lim [156] assessed two different kinds of wireless
charging systems, including stationary and dynamic. Under
the stationary wireless charging system, a drone could be
recharged after landing. On the contrary, the dynamic wireless
charging system would require a drone to fly over coiled
lines in order to be recharged. A hybrid model was proposed
to combine both of the systems to minimize the total cost.
Numerical experiments highlighted several merits of the pro-
posed model, including longer flight times along with reduced
landing times and uncontrolled times. Trotta et al. [157]
examined a mesh network of drones to facilitate continuity
of service through a ground-based recharge scheme. Game
theory-based strategies as well as swarm mobility algorithms
were applied for scheduling. In addition, a cost-benefit analysis
was performed to promote cooperation among drones for
recharge. Ghazzai et al. [158] studied drone-based intelligent
transportation systems. A drone-based traffic monitoring sys-
tem was proposed, where the permanent locations of docking
and charging stations were determined in order to maximize
the coverage efficiency. Afterwards, a scheduling scheme was
developed to minimize the total energy consumption.

Shin et al. [159] suggested that mobile charging stations
had limitations in charging drones due to the number of
available stations as well as charging time. Hence, the study
examined an auctioning process of charging time slots for such
stations through bidding. The proposed approach relied on the
distribution of participating drones, which was determined by
deep learning. Results indicated that the proposed approach
could be efficient for problem instances with multi-drone
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Drone Scheduling Problem with Recharge Considerations
(DSPRC)

i Y Sdpege ()
ielUCSUCE jelUCSUCE keK reR
Subject to :
> x(espikay =1Vke K (18)
jelUCE
> D xuwe=1VkeK,reR (19)
ceCS jelUCE
> > Xiar=1VkeK,reR (20)
ielUCS ceCE
> Xiar =0VceCS,keK,reR Q1)
ielUCS
Z Xickr = Z X(-1)jker+1) Ve € CE, k € K,
ielUCS jelUCE
r<IRl—1 (22)
Z Xojkr = Z Xipkr YO € I,k € K, 7 € R
jelUCSUCE ielUCSUCE
(23)
Z szijerIVjEI (24)
ielUCSUCE keK reR
DD tur=aiViel (25)
keK reR
Lekr = Le—1)k(r+1) YVee CE,ke K,r <|R|—1 (26)
Liky +si +dij — M (1 _xijkr) <ty Yie IUCS,
jelUCE, ke K,r € R 27
M- > xijgr =tur Vi€ [UCS,keK,reR (28)
jelUCE
> Y dmetY X s
ielUCSUCE jelUCSUCE iel jelUCSUCE
<Dy VkeK,reR (29)
Xijtr €10,1}, iy, >0Vie ITUCSUCE,
jelIUCSUCE, ke K,r €R (30)

scenarios. Tajrian and Kim [160] developed a scheduling
algorithm to facilitate power charging of drones. The algorithm
featured a scheduler that decided the order of recharge. Results
from simulation demonstrated that the algorithm was effective
in reducing the turnaround time and deadline miss ratio. For
5G mobile networks, Tipantufia ef al. [161] employed a drone
scheduling algorithm to promote Network Functions Virtu-
alization, a solution to promote orchestration, management,
and automation. The energy-aware solution was inspired by a
brute-force search combinatorial algorithm and could estimate
the number of drones to be deployed for a given degree
of service. Ahani et al. [162] considered battery recharge
while collecting data from sensor nodes. The latest data were
attempted to be collected. Hence, a performance metric, named
age of information, was employed that indicated the time
passed since the latest data collection. The objective of the

study was to minimize the mean age of information cost. The
study proved the considered problem to be NP-hard, and a
Graph Labeling Algorithm was used for solution. Comparisons
with a Greedy Algorithm showcased the superiority of the
proposed methodology.

Hassija ef al. [163] suggested that drones needed to be light-
weighted and could not be equipped with large batteries. It was
also implied that frequent recharge or battery replacements
could hinder the use of drones. Therefore, the study proposed
a model to optimize the schedule to charge drones within a
network. After entering the network, a drone had to make
a request for a charging slot. A scheduling algorithm was
used to allocate time slots between competing drones, with
a consideration of criticality and deadline. The trading of
energy between charging stations and charged drones was
determined through game theory. It was revealed that the
proposed solution approach was advantageous for both drones
and charging stations. Hu ef al. [164] envisioned a mobile
edge computing system that required cooperation between a
drone and an access point. The access point was responsible
for charging the drone and computing offloaded tasks of user
equipment. A mathematical model was proposed to optimize
the drone’s energy as well as trajectory, time allocation,
and task allocation. Some other studies have assessed drone
scheduling with recharge considerations as well [165]—-[172].

2) Summary of Studies: A summary of findings from
the collected studies, which captured drone scheduling with
recharge considerations, is presented in Table VI. It was
found that a significant number of the studies on drone
scheduling with recharge considerations formulated mixed-
integer programming (MIP) and mixed-integer non-linear pro-
gramming (MINLP) models, did not enforce time windows,
deployed multiple drones, and incorporated energy consump-
tion considerations. The developed mathematical models had
a variety of different objective functions (e.g., minimize the
total cost, minimize the total travel distance, and maximize
the revenue). Moreover, a significant number of the studies on
drone scheduling with recharge considerations did not deploy
any ground vehicles in synchronization with drones. Heuristics
were found to be common solution approaches for the drone
scheduling problem with recharge considerations. In addition,
data dissemination and split jobs were considered by some
studies.

3) Future Research Needs: Limitations and future research
needs in the area of drone scheduling with recharge consider-
ations include the following:

« Different drones of a fleet may be equipped with different
batteries. Therefore, the same energy function may not
be applicable to all drones. Hence, future studies need to
consider heterogeneous fleets of drones [46], [49], [118].

o Multiple auctions for the available mobile charging sta-
tions could be proposed in order to conduct a larger-scale
recharge of drones. However, additional formulations,
analyses, and verifications would be required [159], [163].

o Capacitated charging stations with a limited number
of drones and limited energy could be modeled by
future studies and incorporated within the existing
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TABLE VI
SUMMARY OF FINDINGS: STUDIES ON DRONE SCHEDULING WITH RECHARGE CONSIDERATIONS
Formulation Time Drone Number Solution Notes/Major
References Model Objectives . L . of Ground . J
Types Windows | Characteristics Vehicles Approaches Considerations
Kim and Minimize the total Branch-and-Bound
Morrison MIP N/A MD; ECC N/A Algorithm; Split jobs
AT e cost A
(2013) [151] Heuristic
Kim et al. Minimize the total . Genetic Algorithm; -
(2013) [152] MIP travel distance N/A MD; ECC N/A CPLEX Split jobs
Song et al. Minimize the total . . - -
(2013) [150] MIP travel distance N/A MD; ECC N/A CPLEX; Heuristic Split jobs
Zhou et al. N/A N/A N/A MD; ECC N/A N/A Data dissemination
(2015) [153] i
Lim and Jung . .
(2017) [154] N/A N/A N/A MD; ECC N/A N/A Charging speed
Minimize the state-
Park et al. of-health . Heuristic; Battery assignment;
(2017) [155] P degradation of N/A MD; ECC N/A Simulation battery scheduling
batteries
. . S Dynamic wireless
fim and Lim MINLP Minimize the total N/A MD; ECC N/A BARON charging; stationary
(2018) [156] cost . .
wireless charging
Trotta et al. Maximize the . .
(2018) [157] N/A network lifetime N/A MD; ECC N/A Heuristic Game theory
Maximize the Penalized Weighted
Ghazzai et al coverage efficiency; K-Means Placement of
B o MINLP S ’ Strict MD; ECC N/A Algorithm; Particle . .
(2019) [158] minimize the Swarm charging stations
energy consumption Optimization
Shin et al. Maximize the . . Deep learning-based
(2019) [159] N/A revenue N/A MD; ECC N/A Deep Learning auction
Tajrian and Minimize the ratio Prioritization for
Kim (2019) N/A of turnaround time N/A MD; ECC N/A Heuristic
. . recharge
[160] and deadline miss
Tipantuna et Maximize the use
al. (2019) N/A of available Strict MD; ECC N/A Heuristic Data dissemination
[161] resources
Abhani et al. Minimize the total . Graph Labeling . -
(2020) [162] N/A cost N/A SD; ECC N/A Algorithm Data dissemination
Hassiia cf al Maximize the Consensus
( 2‘0\7’ ('j])( i (2]‘ N/A revenue; maximize N/A MD; ECC N/A Heuristic timestamp; game
- > the flight time theory
Maximize the
Hu et al weighted sum Mobile edge
(2020) [164] MINLP completed task- N/A SD; ECC N/A Heuristic computing

input bits of user
equipment

Notes: 1P — Integer Programming; MIP — Mixed-Integer Programming; MINLP — Mixed-Integer Non-Linear Programming; SD — Single Drone; MD
— Multiple Drones; ECC — Energy Consumption Considerations.

mathematical formulations for the drone scheduling prob-

lem [118], [139].

« Charging stations may fail due to overuse. Hence, failure
of charging stations should be modeled in the mathemat-

ical formulations for the drone scheduling problem.

o Advanced technologies for more efficient recharge of

drones could be explored.

Public and private applications of drones are still at a
primary stage and limited with various restrictions (e.g.,
battery capacity, limited carrying capacity). Therefore, drone
schedules should be optimized to overcome such restrictions.
The drone scheduling problem is associated with optimization

V. CONCLUDING REMARKS

of drone flight paths and may include other features, such as

determination of arrival times at different nodes, considering

battery constraints and related limitations (e.g., flight duration
and range). This research conducted a comprehensive survey

of the studies that focused on the drone scheduling problem.

The selected studies were grouped into the following cate-

gories: (1) general drone scheduling; (2) drone scheduling for
delivery of goods; (3) drone scheduling for monitoring; and
(4) drone scheduling with recharge considerations. Represen-

tative mathematical models were provided for the considered
study categories. Furthermore, for each of the four study
categories, a detailed description of the studies was provided,
accompanied by a summary of findings, existing gaps in the
state-of-the-art, and critical future research needs.
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The review of the selected studies revealed that a wide range
of mathematical formulations were proposed, including linear
programming, non-linear programming, integer programming,
integer non-linear programming, mixed-integer programming,
mixed-integer non-linear programming, and other formula-
tions. Moreover, various model objectives were considered.
The considered minimization objectives include minimization
of the completion time, energy consumption, maximum com-
pletion time, total cost, number of drones, travel distance, and
expected loss of demand. On the other hand, the maximization
objectives include maximization of the revenue, throughput,
network utility, etc. Most of the studies did not use time
windows, while soft and strict time windows were enforced
by only a few studies. An overwhelming majority of the
reviewed studies deployed multiple drones but did not use
ground vehicles in synchronization with them. Moreover, some
studies directly considered energy consumption of drones.
Several solution approaches were employed by the selected
studies to tackle their mathematical models, which comprise
exact optimization approaches (e.g., CPLEX, GUROBI), meta-
heuristics (e.g., Genetic Algorithm, Particle Swarm Optimiza-
tion, Simulated Annealing), heuristics, and other approaches.
Furthermore, a variety of considerations were incorporated
by the selected studies, such as vehicle-drone cooperation,
parallel drone scheduling, data dissemination, time windows
at customer nodes, split deliveries, drone failures, and air
temperature effects on the drone battery capacity.

This study is expected to assist decision makers, researchers,
and scientists with better understanding of clear trends and
directions in the field of drone scheduling. Several extensions
may be associated with this study, including the following:

o There are many limitations in the field of drone schedul-
ing, some of which require more urgent attention than the
rest. Hence, a prioritization of limitations should be per-
formed in consultation with the appropriate professionals
to systematically guide the future research.

o The existing limitations in drone scheduling models could
be addressed by means of consultation with the appropri-
ate experts.

o Interviews with the major companies, which deploy
drones for service, could be conducted in order to clearly
identify the state-of-the-practice.

o More categories and sub-categories focusing on differ-
ent features of the drone scheduling problem could be
created (e.g., collaborative drone scheduling). Repre-
sentative mathematical models for those categories and
sub-categories may also be explored.

o Specific aspects of drone scheduling could be captured by
future surveys, including the type of launch point, time
components, maximum and selected speeds, continuity of
service, etc.

« A more detailed review and classification of the solution
approaches that have been used for the drone scheduling
problem could be performed. The existing algorithms
should be evaluated for their ability of adjusting to rapidly
changing environments. Adaptive and self-adaptive algo-
rithms proved their effectiveness for different decision

problems [173]-[177] and can be promising for the drone
scheduling problem as well.

« Drones may have different kinds of batteries as well as
corresponding energy consumption and recharge func-
tions. Hence, a drone scheduling model for a given
type of drone battery may not be accurate for another
type. Therefore, future surveys should categorize drone
scheduling models based on battery type.

o Drone batteries are at a developmental stage, where
advancements are being made regularly. Future research
should study these advancements more deeply.

« Automation is expected to improve operations efficiency
but imposes some legal challenges [178], [179]. Drones
can be purchased for private use. However, some regula-
tory and legal restrictions are associated with the private
use of drones. The future review studies could capture
these restrictions and propose a set of alternatives that
would assist in addressing these issues.
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