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Abstract. We develop a new finite difference scheme for the Maxwell--Stefan diffusion system.
The scheme is conservative, energy-stable, and positivity-preserving. These nice properties stem from
a variational structure and are proved by reformulating the finite difference scheme into an equivalent
optimization problem. The solution to the scheme emerges as the minimizer of the optimization
problem, and as a consequence energy stability and positivity-preserving properties are obtained.
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1. Introduction. Cross-diffusion occurs in multicomponent systems, such as
ionic liquids, wildlife populations, gas mixtures, and tumor growth [16, 19]. In these
multicomponent systems, the diffusion happens not only in the direction from high
concentration to low concentration, but also in the opposite direction due to cross-
diffusion. In such cases, diffusion cannot be described by Fick's diffusion law, and
the Maxwell--Stefan diffusion model can be used instead. The Maxwell--Stefan model
assumes the friction between two components is proportional to their difference in
velocity and molecular fractions. It is widely used in modeling multicomponent sys-
tems.

In this work, we consider the Maxwell--Stefan diffusion system for an n-component
mixture on the torus Td, which reads, for i = 1, . . . , n,

\partial t\rho i +\nabla \cdot (\rho ivi) = 0,(1.1)

 - 
n\sum 

j=1

bij\rho j(vi  - vj) = \nabla log \rho i  - 
1\sum n

j=1 \rho j

n\sum 
j=1

\rho j\nabla log \rho j ,(1.2)

n\sum 
j=1

\rho jvj = 0.(1.3)

Here x \in Td, \rho i = \rho i(x, t), and vi = vi(x, t) are the density and velocity of the ith
component. The initial conditions are taken to be

\rho i(x, 0) = \rho i0(x), i = 1, . . . , n,
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and we assume that

(1.4) \rho i0(x) > 0 and
n\sum 

j=1

\rho j0(x) = 1 for x \in Td.

Solutions of (1.1) conserve the total density \partial t
\sum n

i=1 \rho i+\nabla \cdot 
\sum n

i=1 \rho ivi = 0 , and (1.3)
imposes an average velocity of the mixture vav =

\sum n
i=1 \rho ivi/

\sum n
i=1 \rho i = 0 and that the

total density
\sum n

i=1 \rho i is conserved at each x \in Td. Hypothesis (1.4) then fixes the
total density to

n\sum 
j=1

\rho j(x, t) = 1 for x \in Td, t > 0 .(1.5)

Accordingly, (1.1)--(1.3) reduces to

\partial t\rho i +\nabla \cdot (\rho ivi) = 0,(1.6)

\nabla \rho i =  - 
n\sum 

j=1

bij\rho i\rho j(vi  - vj),(1.7)

i = 1, . . . , n, which is the usual form of the Maxwell--Stefan diffusion system. We
emphasize that assumption (1.5) is made to simplify notation. One may instead
assume that the initial data satisfy \rho i0(x) > 0, and m(x) :=

\sum n
j=1 \rho j0(x) is a bounded

function, and then all arguments are extended with the obvious modifications. The
theoretical results are based on the hypothesis \rho i0(x) > 0. Nevertheless, for initial
data where some component touches zero, a scaling limiter developed in [21, 22] can
be used to prepare positive initial data for the scheme, and such a treatment does not
destroy the scheme accuracy (this point is detailed in section 2.2).

The system (1.1)--(1.3) can be obtained as the high-friction limit of the multicom-
ponent Euler equations [13]:

(1.8)

\partial t\rho i +\nabla \cdot (\rho ivi) = 0,

\partial t(\rho ivi) +\nabla \cdot (\rho vivi) +
\rho i
\varepsilon 
\nabla \delta F (\rho )

\delta \rho i
=  - 1

\varepsilon 

n\sum 
j=1

bij\rho i\rho j(vi  - vj),

when the total momentum (or the mean velocity) is zero. The energy functional F (\rho )
is given by

F (\rho ) =
n\sum 

i=1

\int 
Td

\rho i(x) log \rho i(x)dx.(1.9)

It was proved in [13] that, when the total momentum is zero, the system (1.8) con-
verges to (1.1)--(1.3) in the high-friction limit \varepsilon \rightarrow 0. Moreover, (1.1)--(1.3) can be
regarded as a gradient flow for F (\rho ).

This raises the following question: Given densities \rho 0 = (\rho 0i )
n
i=1, \rho 

1 = (\rho 1i )
n
i=1,

with
\sum 

i \rho 
0
i =

\sum 
i \rho 

1
i = 1, consider the minimization problem

min
(\rho ,v)\in K

\int 1

0

\int 
Td

n\sum 
i,j=1

1

4
bij\rho i\rho j(vi  - vj)

2dxdt(1.10)
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over the set

K =

\biggl\{ 
\rho = (\rho 1, . . . , \rho n) , v = (v1, . . . , vn) : \partial t\rho i +\nabla \cdot (\rho ivi) = 0, i = 1, . . . , n,

n\sum 
j=1

\rho jvj = 0 , \rho i(0, x) = \rho 0i (x) , \rho i(1, x) = \rho 1i (x)

\biggr\} 
.

The problem (1.10) as the minimum of the frictional work is motivated by the well-
known characterization of the Wasserstein distance in a one-component fluid obtained
by Benamou and Brenier [1]. The study of this question will be given in a forthcoming
work. The minimization (1.10) and the gradient structure of (1.1)--(1.3) detailed in
[13] motivate us to use the work of friction as a building block for a numerical scheme
of variational provenance---in the spirit of the well-known Jordan--Kinderlehrer--Otto
(JKO) scheme [15]---in order to exploit the gradient structure of the Maxwell--Stefan
system. This connection is pursued in the present work.

In this paper, we develop a new implicit-explicit finite difference scheme for the
Maxwell--Stefan system (1.1)--(1.3) and prove that the scheme is energy dissipating
and positivity-preserving, for arbitrary time step and spatial meshes. The scheme in
one dimension takes the form

\rho k+1
i  - \rho ki

\Delta t
+ dh(\^\rho 

k
i v

k+1
i ) = 0,(1.11)

 - 
n\sum 

j=1

bij \^\rho 
k
j (v

k+1
i  - vk+1

j ) = Dh log \rho 
k+1
i  - 1\sum n

j=1 \^\rho 
k
j

n\sum 
j=1

\^\rho kjDh log \rho 
k+1
j ,(1.12)

n\sum 
j=1

\^\rho kj v
k+1
j = 0(1.13)

(for the d-dimensional case the reader is referred to section 4). The subscript i refers
to the ith component and takes values i = 1, . . . , n, while the superscript k refers to
the kth time step. The equations (1.11)--(1.13) are computed at spatial grid points
\ell or \ell + 1

2 of staggered lattices in a way specified in section 2. The parameter \Delta t is
the time step, and h is the mesh size. The operators dh, Dh are central difference
operators, in one dimension, defined by

(dhfi)\ell =
fi,\ell +1/2  - fi,\ell  - 1/2

h
, (Dhfi)\ell + 1

2
=

fi,\ell +1  - fi,\ell 
h

,(1.14)

where \ell = \{ 1, . . . , N\} , N is the number of mesh intervals, and we set ( \^fi)\ell + 1
2

=
1
2 (fi,\ell + fi,\ell +1).

The scheme is induced by a spatial discretization of the constrained optimization
problem (cf. (3.1))

min
\~K

\biggl\{ \int 
Td

\Delta t
n\sum 

i,j=1

1

4
bij\rho 

k
i \rho 

k
j | ui  - uj | 2dx+

\int 
Td

n\sum 
j=1

\rho j log \rho j dx

\biggr\} 
,(1.15)

where the set \~K is defined to be

\~K =

\Biggl\{ 
(\rho , v) : \rho > 0,

\rho i  - \rho ki
\Delta t

+\nabla \cdot (\rho ki ui) = 0,
n\sum 

i=1

\rho ki ui = 0

\Biggr\} 
.

D
ow

nl
oa

de
d 

08
/0

2/
22

 to
 8

3.
13

7.
21

2.
15

7 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2324 X. HUO, H. LIU, A. E. TZAVARAS, AND S. WANG

The approach is motivated by the JKO scheme [15] and the Benamou--Brenier inter-
pretation of the Wasserstein distance [1], the latter suggesting an alternate variational
scheme for nonlinear Fokker--Planck equations espoused in [20]. The novelty here is (i)
that the limiting problem is a coupled parabolic system and (ii) that the mechanical
friction is a complex interaction among the different components (see [2]) that is only
captured in bulk by the dissipation functional (1.10). Nevertheless, this suffices for
capturing the detailed interaction.

We show that there exists a discrete energy function which dissipates along time
iterations and that the numerical solutions for the densities generated by the scheme
(1.11)--(1.13) preserve the positivity of the initial densities. The proof uses variational
arguments and is based on the reformulation of the finite difference scheme as an
equivalent optimization problem. An interesting feature is the role played by an
elliptic operator \scrL \Phi defined in (2.4) and the induced dual norm (2.5). The reader
familiar with the Wasserstein distance will recognize analogies with duality induced
norms [23, 25, 24] appearing in the theory of nonlinear Fokker--Planck equations and
induced by the metric tensor generating the Wasserstein metric.

A large literature [2, 3, 9, 10, 11, 16, 17, 18] employing diverse techniques has
provided a basic theory for the Maxwell--Stefan system (1.1)--(1.3). The existence
of global nonnegative weak solutions in L2([0,\infty );H1(Td)) was established in [18],
while local existence of strong solutions is shown in [2, 11]. Explicit finite difference
schemes were developed in [3, 9, 10]. The explicit scheme in [3] was formulated based
on rewriting equations (1.6)--(1.7) with the first n  - 1 components. The scheme is
easy to implement; a stability condition on the time step relative to the square of the
spatial mesh size is required, and no energy stability property is proved. The scheme
in [9] is semi-implicit and linear, and it was shown to be mass conservative, but
the energy stability of the scheme is not addressed. A fully implicit Euler--Galerkin
scheme is developed in [17] for the Maxwell--Stefan system coupled with a Poisson
equation, which is positivity-preserving, energy-stable, and convergent. Recently, in
[5], an implicit finite volume scheme was proposed for a cross-diffusion system similar
to the Maxwell--Stefan system. A nonlinear cutoff function was used to approximate
the values at cell interfaces to ensure nonnegativity of solutions. Both schemes in [17]
and [5] incorporate the entropy structure to ensure the energy-stable property. The
scheme proposed here is positivity-preserving and entropy-decreasing and provides a
connection between the finite difference scheme and a variational minimization prob-
lem. Both the energy stability and the positivity of solutions follow directly from
the property of the variational structure. The approach is quite robust, and we ex-
pect that, once the theory for the continuous problem (1.15) is further developed, it
will lead to theoretical results for more complicated schemes such as finite element
methods.

Recently there has been a growing interest in developing energy-stable and/or
positivity-preserving numerical schemes for nonlinear diffusion equations [6, 7, 12,
14, 21, 22, 26]. Positivity-preserving schemes for the Poisson--Nernst--Planck systems
were developed in [21, 22], where the maximum principle was used to show the non-
negativity of the scheme. A series of diffusion equations satisfying a gradient flow
structure was considered in [6, 7, 12, 26], where energy-stable schemes were developed
for the Cahn--Hillard equations, with positivity-preserving properties proved in [6, 7]
via optimization formulations. The technique was also used in [14] to prove the posi-
tivity and energy stability properties for a scheme associated to the quantum diffusion
equation. Our approach extends these works to a setting of systems that are gradient
flows by exploiting the frictional dissipation natural to the Maxwell--Stefan system.
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The structure of the paper is as follows: in section 2, we give the details of the
numerical scheme and show that it conserves the total mass and is consistent. In
section 3, we first prove that the numerical scheme is equivalent to an optimization
problem, in Theorem 3.1, and then show the energy stability and positivity-preserving
properties in Theorem 3.6. We provide the multidimensional scheme in section 4 and
show that similar properties also hold. Finally, we give some numerical examples to
verify the proved properties.

2. The scheme.

2.1. Notation. We use notation from [27]. We define the following two grids
on the torus T = [0, L] with mesh size h = L/N , where N is the number of mesh
intervals:

\scrC := \{ h, 2h, . . . , L\} , \scrE :=

\biggl\{ 
h

2
,
3h

2
, . . . , (N  - 1

2 )h

\biggr\} 
.(2.1)

We define the discrete N -periodic function spaces as

\scrC per := \{ f : \scrC \rightarrow R\} , \scrE per := \{ f : \scrE \rightarrow R\} .

Here we call \scrC per the space of cell centered functions and \scrE per the space of edge centered
functions. We use f\ell to denote the value of function f at grid point x\ell = \ell h. We also

define the subspace \r \scrC per :=
\Bigl\{ 
f : f \in \scrC per,

\sum N
\ell =1 f\ell = 0

\Bigr\} 
. We can extend the above

definitions to vector value functions. For example, we define \scrC n
per by

\scrC n
per := \{ f = (f1, . . . , fn) : fi \in \scrC per, i = 1, . . . , n\} .

The spaces \scrE n
per, \r \scrC n

per are defined the same way. The discrete gradients Dh and dh are
defined in (1.14). We define the average of the function values of nearby points by

\^f\ell + 1
2
=

f\ell + f\ell +1

2
if f \in \scrC per, and \^f\ell =

f\ell + 1
2
+ f\ell  - 1

2

2
if f \in \scrE per.(2.2)

The inner products are defined by \langle f, g\rangle := h
\sum N

\ell =1 f\ell g\ell \forall f, g \in \scrC per and [f, g] :=

h
\sum N

\ell =1 f\ell + 1
2
g\ell + 1

2
\forall f, g \in \scrE per. They can also be extended on \scrC n

per and \scrE n
per with

\langle f, g\rangle := h
n\sum 

i=1

N\sum 
\ell =1

fi,\ell gi,\ell \forall f, g \in \scrC n
per, [f, g] := h

n\sum 
i=1

N\sum 
\ell =1

fi,\ell + 1
2
gi,\ell + 1

2
.

We also take the following notation:

\langle f\rangle := h
N\sum 
\ell =1

f\ell , f \in \scrC per, [f ] := h
N\sum 
\ell =1

f\ell + 1
2
, f \in \scrE per.

Suppose f \in \scrC per and \phi \in \scrE per; the following summation-by-parts formula holds:

\langle f, dh\phi \rangle =  - [Dhf, \phi ].(2.3)

Next, we introduce a norm on \r \scrC n - 1
per . Let \Phi be an (n - 1)\times (n - 1) symmetric, positive

definite matrix, with \Phi ij \in \scrE per, i, j = 1, . . . , n - 1. We introduce the operator \scrL \Phi on
\r \scrC n - 1
per defined by

\scrL \Phi f :=  - dh(\Phi Dhf) =

\left(   - 
n - 1\sum 
j=1

dh(\Phi ijDhfj)

\right)  \forall f \in \r \scrC n - 1
per .(2.4)
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Since \Phi ij are nonsingular for any point on \scrE , \scrL \Phi is invertible on \r \scrC n - 1
per (by the Lax--

Milgram theorem). For any g \in \r \scrC n - 1
per , let f be determined by g = \scrL \Phi f ; we define the

norm

\| g\| 2\scrL  - 1
\Phi 

:= [Dhf,\Phi Dhf ].(2.5)

2.2. The scheme. The scheme (1.11)--(1.13) is written in the component form
as follows:

\rho k+1
i,\ell  - \rho ki,\ell 

\Delta t
=  - 1

h

\Bigl( 
\^\rho ki,\ell + 1

2
vk+1
i,\ell + 1

2

 - \^\rho ki,\ell  - 1
2
vk+1
i,\ell  - 1

2

\Bigr) 
,(2.6)

 - 
n\sum 

j=1

bij \^\rho 
k
j,\ell + 1

2
(vk+1

i,\ell + 1
2

 - vk+1
j,\ell + 1

2

)(2.7)

=
log \rho k+1

i,\ell +1  - log \rho k+1
i,\ell 

h
 - 1

h
\sum n

j=1 \^\rho 
k
j,\ell + 1

2

n\sum 
j=1

\^\rho kj,\ell + 1
2
(log \rho k+1

j,\ell +1  - log \rho k+1
j,\ell ),

n\sum 
j=1

\^\rho kj,\ell + 1
2
vk+1
j,\ell + 1

2

= 0,(2.8)

subject to initial data

\rho 0i,\ell = \rho i0(x\ell ), i = 1, . . . , n, \ell = 1, . . . , N,(2.9)

if \rho i0(x\ell ) > 0; otherwise if \rho i0(x\ell ) = 0 for some \ell and
\sum N

\ell =1 \rho i0(x\ell ) > 0, we will
impose a scaling limiter so that the obtained \rho 0i,\ell satisfy three properties: (i) \rho 0i,\ell are
positive for all \ell ; (ii) mass is preserved in the sense that

N\sum 
\ell =1

\rho 0i,\ell =
N\sum 
\ell =1

\rho i0(x\ell );

and (iii) accuracy of the scheme is not destroyed. For instance, it suffices to have
max\ell | \rho 0i,\ell  - \rho i0(x\ell )| \leq O(hr), r > 2. To achieve this, we use the limiter in [21, 22]

where the above three properties are rigorously proved. For
\sum N

\ell =1 \rho i0(x\ell ) = 0, we
simply remove this component from the system.

Next we study the conservation properties of the scheme. First we show that, at
each grid point, the total density is preserved.

Lemma 2.1. Suppose the solutions to the scheme (1.11)--(1.13) are positive for
k \geq 1. Then the total mass at each grid point is conserved; i.e.,

n\sum 
i=1

\rho ki,\ell =
n\sum 

i=1

\rho 0i,\ell , \ell = 1, . . . , N and k \geq 1.(2.10)

Proof. From (2.6) and (2.8), we have for \ell = 1, . . . , N

n\sum 
i=1

\rho k+1
i,\ell =

n\sum 
i=1

\rho ki,\ell  - \Delta t
n\sum 

i=1

dh(\^\rho 
k
i v

k+1
i )\ell 

=
n\sum 

i=1

\rho ki,\ell  - 
\Delta t

h

\Biggl( 
n\sum 

i=1

\^\rho ki,\ell + 1
2
vk+1
i,\ell + 1

2

 - 
n\sum 

i=1

\^\rho ki,\ell  - 1
2
vk+1
i,\ell  - 1

2

\Biggr) 
=

n\sum 
i=1

\rho ki,\ell .

This holds for any k, and hence (2.10).
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Next, we show that for each component, the mass is conserved, i.e., the summation
over grid points is conserved. The following lemma holds.

Lemma 2.2. Suppose the solutions to the scheme (1.11)--(1.13) are positive for
any k \geq 1. Then the mass for each component is conserved; i.e.,

N\sum 
\ell =1

\rho ki,\ell =
N\sum 
\ell =1

\rho 0i,\ell , i = 1, . . . , n, k \geq 1.(2.11)

Proof. From (2.6), we get

N\sum 
\ell =1

\rho k+1
i,\ell =

N\sum 
\ell =1

\rho ki,\ell  - 
\Delta t

h

N\sum 
\ell =1

\Bigl( 
\^\rho ki,\ell + 1

2
vk+1
i,\ell + 1

2

 - \^\rho ki,\ell  - 1
2
vk+1
i,\ell  - 1

2

\Bigr) 
=

N\sum 
\ell =1

\rho ki,\ell .

Iterating in k, we obtain (2.11).

2.3. The scheme in \bfitn  - 1 components. We consider first the solvability of
the algebraic system (1.2)--(1.3) under the hypothesis bij > 0. Since summing the
equations (1.2) in i = 1, . . . , n equals zero, these n equations are not independent.
One easily checks that for \rho i > 0 the homogeneous system

 - 
n\sum 

j=1

bij\rho j(vi  - vj) = 0

has only the trivial solution v1 = \cdot \cdot \cdot = vn. Hence the null space has dimension one.
The solution of (1.2)--(1.3) is given by the following lemma.

Lemma 2.3. Let \rho i(x, t) > 0, x \in Td, t > 0, i = 1, . . . , n, and suppose that bij > 0
and bij = bji for i \not = j and i, j = 1, . . . , n. Then the algebraic system (1.2), (1.3) has
a unique solution that is explicitly expressed by

\rho ivi =  - 
n - 1\sum 
j=1

Dij\nabla (log \rho j  - log \rho n), i = 1, . . . , n - 1, and \rho nvn =  - 
n - 1\sum 
i=1

\rho ivi,

where

Dij = Dij(\rho ) =
n - 1\sum 

s,m=1

Q - T
is B - 1

smQ - 1
mj , i, j = 1, . . . , n - 1,(2.12)

and

Bij = Bij(\rho ) =\delta ij

n\sum 
m=1

bim\rho i\rho m  - bij\rho i\rho j ,(2.13)

Qij = Qij(\rho ) =
1

\rho i
\delta ij +

1

\rho n
,(2.14)

(Q - 1)ij = Q - 1
ij (\rho ) = \delta ij\rho i  - 

\rho i\rho j\sum n
j=1 \rho j

.(2.15)

For \rho > 0, B is diagonally dominant and thus invertible. We note that QT = Q and
that by a direct computation QQ - 1 = Q - 1Q = I, where Q - 1 is determined by (2.15);
hence, Q is also invertible. The proof can be found in [13] or [28]. A similar formula
is established for the numerical scheme (1.11)--(1.13).
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Lemma 2.4. Assume bij > 0 and bij = bji for i \not = j and i, j = 1, . . . , n. Suppose
\rho ki,\ell > 0 for i = 1, . . . , n, \ell = 1, . . . , N . The solutions of (1.12)--(1.13) are calculated
by the explicit formula

\^\rho ki v
k+1
i =  - 

n - 1\sum 
j=1

\^Dk
ijDh(log \rho 

k+1
j  - log \rho k+1

n ), i = 1, . . . , n - 1,(2.16)

and \^\rho knv
k+1
n =  - 

\sum n - 1
i=1 \^\rho ki v

k+1
i . Here

\^Dk
ij =

n - 1\sum 
s,m=1

( \^Qk) - T
is ( \^Bk) - 1

sm( \^Qk) - 1
mj ,(2.17)

and \^Qk
ij = Qij(\^\rho 

k), \^Bk
ij = Bij(\^\rho 

k), ( \^Qk) - 1
ij = Q - 1

ij (\^\rho k) are the corresponding matrices

(2.13)--(2.15) with \rho i replaced by \^\rho ki .

Notice that formulas (2.16) hold at each grid point \ell + 1/2 = 3/2, . . . , N/2 +
1 (or 1/2); to simplify the notation, we do not write the subscript \ell + 1/2.

Proof. Multiplying (1.12) by \^\rho ki gives

\^\rho kiDh log \rho 
k+1
i  - \^\rho ki\sum n

s=1 \^\rho 
k
s

n\sum 
j=1

\^\rho kjDh log \rho 
k+1
j =  - 

n\sum 
j=1

bij \^\rho 
k
i \^\rho 

k
j (v

k+1
i  - vk+1

j ) ,

which is rewritten as

n\sum 
j=1

\Biggl( 
\delta ij \^\rho 

k
i  - 

\^\rho ki \^\rho 
k
j\sum n

s=1 \^\rho 
k
s

\Biggr) 
Dh log \rho 

k+1
j =  - 

n\sum 
j=1

\Biggl( 
\delta ij

n\sum 
m=1

bim\^\rho ki \^\rho 
k
m  - bij \^\rho 

k
i \^\rho 

k
j

\Biggr) 
vk+1
j .

(2.18)

Setting \^Bk
ij = Bij(\^\rho 

k) = \delta ij
\sum n

m=1 bim\^\rho ki \^\rho 
k
m  - bij \^\rho 

k
i \^\rho 

k
j , the right side of (2.18) is

expressed as

 - 
n\sum 

j=1

\^Bk
ijv

k+1
j =  - 

n - 1\sum 
j=1

\^Bk
ijv

k+1
j  - \^Bk

inv
k+1
n =  - 

n - 1\sum 
j=1

\^Bk
ij(v

k+1
j  - vk+1

n ).(2.19)

Using (1.13), we get

 - 
n - 1\sum 
j=1

\^Bk
ij(v

k+1
j  - vk+1

n ) =  - 
n - 1\sum 
j=1

\^Bk
ij

\biggl( 
vk+1
j +

1

\^\rho kn

n - 1\sum 
m=1

\^\rho kmvk+1
m

\biggr) 

=  - 
n - 1\sum 
j=1

\^Bk
ij

n - 1\sum 
m=1

\biggl( 
1

\^\rho km
\delta jm +

1

\^\rho kn

\biggr) 
\^\rho kmvk+1

m =  - 
n - 1\sum 

j,m=1

\^Bk
ij
\^Qk
jm\^\rho kmvk+1

m ,(2.20)

where \^Qk
jm = Qjm(\^\rho k) = 1

\^\rho k
m
\delta jm + 1

\^\rho k
n
. By direct calculation it is shown that \^Qk

jm is

invertible with inverse ( \^Qk) - 1
ij = (\delta ij \^\rho 

k
i  - 

\^\rho k
i \^\rho k

j\sum n
s=1 \^\rho k

s
). The left side of (2.18) is rewritten
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for i \not = n as

n\sum 
j=1

\Biggl( 
\delta ij \^\rho 

k
i  - 

\^\rho ki \^\rho 
k
j\sum n

s=1 \^\rho 
k
s

\Biggr) 
Dh log \rho 

k+1
j

=
n - 1\sum 
j=1

( \^Qk) - 1
ij Dh log \rho 

k+1
j  - 

\^\rho ki (
\sum n

j=1 \^\rho 
k
j  - 

\sum n - 1
j=1 \^\rho kj )\sum n

s=1 \^\rho 
k
s

Dh log \rho 
k+1
n

=
n - 1\sum 
j=1

( \^Qk) - 1
ij Dh(log \rho 

k+1
j  - log \rho k+1

n ).

This leads to expressing (2.18) as

n - 1\sum 
j=1

( \^Qk) - 1
ij Dh(log \rho 

k+1
j  - log \rho k+1

n ) =  - 
n - 1\sum 

j,m=1

\^Bk
ij
\^Qk
jm\^\rho kmvk+1

m .

Since \^Bk and \^Qk = ( \^Qk)T are invertible, we conclude that (2.16) holds.

We adopt the notation

\~f = (f1, . . . , fn - 1) for f = (f1, . . . , fn).(2.21)

With Lemma 2.4, the scheme (1.11)--(1.13) can be written as

\~\rho k+1  - \~\rho k

\Delta t
=  - dh

\biggl( 
\^DkDh

\biggl( 
1

h

\partial Fh

\partial \~\rho 
(\~\rho k+1)

\biggr) \biggr) 
,

where

Fh = Fh(\~\rho ) :=

\Biggl\langle 
n - 1\sum 
i=1

\rho i log \rho i

\Biggr\rangle 
+

\Biggl\langle \Biggl( 
1 - 

n - 1\sum 
i=1

\rho i

\Biggr) 
log

\Biggl( 
1 - 

n - 1\sum 
i=1

\rho i

\Biggr) \Biggr\rangle 
.(2.22)

2.4. Consistency. Let (P, V ) be the exact smooth solution of the equations
(1.1)--(1.2) in the space P, V \in C3

t,x([0, T ]\times T). The values at grid points are P k
i,\ell :=

Pi(x\ell , k\Delta t), V k
i,\ell := Vi(x\ell , k\Delta t). The local truncation errors are defined by

\tau 1i =
P k+1
i  - P k

i

\Delta t
+ dh( \^P

k
i V

k+1
i ),

\tau 2i = Dh logP
k+1
i  - 1\sum n

j=1
\^P k
j

n\sum 
i=1

\^P k
i Dh logP

k+1
i +

n\sum 
j=1

bij \^P
k
j (V

k+1
i  - V k+1

j ),

\tau 3i =
n\sum 

i=1

\^P k
i V

k+1
i .

We have the following lemma.

Lemma 2.5. Suppose the solutions (P, V ) to the system (1.1)--(1.3) are smooth in
time and space, with P, V \in C3

t,x and Pi(x, t) > 0 for x \in T and t > 0 and for any
i = 1, . . . , n. Suppose (P, V ) satisfies the condition (1.4). Then the local truncation
errors satisfy

| \tau 1i,\ell | , | \tau 2i,\ell + 1
2
| , | \tau 3i,\ell + 1

2
| \leq C(\Delta t+ h2).

Here C > 0 is a positive constant depending on (P, V ).

The elementary proof of this lemma is provided in the accompanying supplemental
file (supplement.pdf [local/web 227KB]).
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3. Optimization formulation.

3.1. Formulation via an optimization problem. In this section, we give
an optimization formulation of the scheme (1.11)--(1.13). We recall that the system
(1.1)--(1.3) can be written as the gradient flow of the energy functional (1.9); see [13].
Consider the minimization problem

\rho k+1 = argmin
\rho \geq 0,w

\left\{   1

\Delta t

\int 
Td

n\sum 
i,j=1

1

4
bij\rho 

k
i \rho 

k
j (wi  - wj)

2dx+ F (\rho )

\right\}   ,

with F (\rho ) as defined in (1.9), subject to the constraints

\rho i  - \rho ki +\nabla \cdot (\rho kiwi) = 0, i = 1, . . . , n, and
n\sum 

i=1

\rho kiwi = 0.

The idea is to calculate minimizers of the free energy penalized by the work consumed
by friction. The variational scheme is related to the JKO scheme [15], an analogy due
to the connection between frictional dissipation and the Wasserstein distance offered
by the Benamou--Brenier interpretation [1] of the Monge--Kantorovich mass transfer
problem. There is, however, one important difference, as the frictional dissipation is
more elaborate in the multicomponent mixture situation.

The minimizers of the above constraint problem can be calculated by considering
the min-max augmented Lagrangian

min
\rho ,w

max
\alpha ,\beta 

L(\rho , w, \alpha , \beta ) =
1

\Delta t

\int 
Td

n\sum 
i,j=1

1

4
bij\rho 

k
i \rho 

k
j (wi  - wj)

2dx+

\int 
Td

n\sum 
j=1

\rho j log \rho j dx

+

\int 
Td

\alpha 

n\sum 
i=1

\rho kiwidx+

\int 
Td

n\sum 
i=1

\bigl( 
\beta i(\rho i  - \rho ki ) - \nabla \beta i \cdot (\rho kiwi)

\bigr) 
dx.

Computing the variational derivatives gives

\delta L

\delta \rho i
= 0 implies log \rho i + 1 + \beta i = 0,

\delta L

\delta wi
= 0 implies

1

\Delta t

n\sum 
j=1

bij\rho 
k
i \rho 

k
j (wi  - wj) + \alpha \rho ki  - \rho ki\nabla \beta i = 0,

\delta L

\delta \alpha 
= 0 implies

n\sum 
i=1

\rho kiwi = 0,

\delta L

\delta \beta i
= 0 implies \rho i  - \rho ki +\nabla \cdot (\rho kiwi) = 0.

Let (\rho k+1
i , wk+1

i ) be the minimizer of the variational problem. Summing the second
of the above equations over the index i and using the first implies

\alpha 
n\sum 

i=1

\rho ki +
n\sum 

i=1

\rho ki\nabla log \rho k+1
i = 0.
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Taking vi = wi/\Delta t, we get

\rho k+1
i  - \rho ki

\Delta t
+\nabla \cdot (\rho ki vk+1

i ) = 0,

 - 
n\sum 

j=1

bij\rho 
k
i \rho 

k
j (v

k+1
i  - vk+1

j ) = \rho ki\nabla log \rho k+1
i  - \rho ki\sum n

j=1 \rho 
k
j

n\sum 
i=1

\rho kj\nabla log \rho k+1
j ,

n\sum 
i=1

\rho ki v
k+1
i = 0.

The latter corresponds to an implicit-explicit discretization in time of the system
(1.1)--(1.3).

Next we will give details of the optimization formulation for the fully discretized
scheme (1.11)--(1.13).

We prove the following theorem.

Theorem 3.1. Assume bij > 0 and bij = bji for i \not = j and i, j = 1, . . . , n. Given
\rho k \in \scrC per with \rho k > 0, there exists \delta 0 > 0 such that \rho k+1 > 0 is a solution of the
numerical scheme (1.11)--(1.13) if and only if it is a minimizer of the optimization
problem

\rho k+1 = argmin
(\rho ,w)\in K\delta 

\left\{   J =
1

4\Delta t

\left[  n\sum 
i,j=1

bij \^\rho 
k
i \^\rho 

k
j (wi  - wj)

2

\right]  + Fh(\rho )

\right\}   ,(3.1)

where Fh(\rho ) = \langle 
\sum n

i=1 \rho i log \rho i\rangle , and

K\delta =

\biggl\{ 
(\rho , w) : \rho \in \scrC n

per, w \in \scrE n
per; \rho i,\ell \geq \delta , \rho i,\ell  - \rho ki,\ell + dh(\^\rho 

k
iwi)\ell = 0,

n\sum 
i=1

\^\rho ki,\ell + 1
2
wi,\ell + 1

2
= 0 and

n\sum 
i=1

\rho i,\ell = 1 \forall i = 1, . . . , n, \forall \ell = 1, . . . , N

\biggr\} 
for any 0 < \delta \leq \delta 0.

We first prove a lemma that will be used later in the proof.

Lemma 3.2. Suppose \Phi is an (n - 1)\times (n - 1) symmetric positive definite matrix
with \Phi ij \in \scrE per for i, j = 1, . . . , n - 1. Suppose \phi \in \r \scrC n - 1

per is bounded in L\infty satisfying
\| \phi \| L\infty \leq M , where \| \cdot \| L\infty is defined by

\| \phi \| L\infty := max
i=1,...,n - 1
\ell =1,...,N

| \phi i,\ell | .

Then the following estimate holds:

\| \scrL  - 1
\Phi \phi \| L\infty \leq CM

\lambda min
h - 1

2 (n - 1)
1
2 ,

where C > 0 is a constant independent of h, and \lambda min is the minimum of all eigen-
values of \Phi :

\lambda min = min
\ell =1,...,N

\Bigl\{ 
\lambda \ell : \lambda \ell is the eigenvalue of (\Phi ij,\ell + 1

2
)(n - 1)\times (n - 1)

\Bigr\} 
.
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Proof. Since \| \phi \| L\infty \leq M ,

\| \phi \| 2L2 :=h
\sum 

i=1,...,n - 1
\ell =1,...,N

| \phi i,\ell | 2 = h
\sum 

i=1,...,n - 1
\ell =1,...,N

| M | 2 \leq (n - 1)hN | M | 2 = (n - 1)L| M | 2.

Setting g = \phi \in \r \scrC n - 1
per , and f = \scrL  - 1

\Phi g in (2.5), we get

\| \phi \| 2\scrL  - 1
\Phi 

= [Dhf,\Phi Dhf ].

Since \Phi is positive definite, so its minimum eigenvalue \lambda min > 0, we get

\lambda min\| Dhf\| 2L2 \leq [Dhf,\Phi Dhf ] =  - \langle f, dh(\Phi Dhf)\rangle = \langle f, \phi \rangle \leq \| f\| L2\| \phi \| L2 .

The use of the discrete Poincar\'e inequality gives \| f\| L2 \leq CP \| Dhf\| L2 . Therefore, we
get

\| Dhf\| L2 \leq CP

\lambda min
\| \phi \| L2 .

We can use the inequality \| f\| L\infty \leq CPh
 - 1/2\| Dhf\| L2 , which follows from \| f\| 2L\infty =

maxi=1,...,n f
2
i \leq 

\sum n
i=1 f

2
i \leq h - 1\| f\| 2L2 and the discrete Poincar\'e inequality. Applying

this inverse inequality leads to

\| f\| L\infty \leq CPh
 - 1

2 \| Dhf\| L2 \leq C2
P

\lambda min
h - 1

2L
1
2M(n - 1)

1
2 \leq CM

\lambda min
h - 1

2 (n - 1)
1
2 .

Proof of Theorem 3.1. The proof is divided into three steps. In the first two steps,
we prove that the optimization problem (3.1) has a unique interior minimizer, and,
in the last step, we prove that this minimizer is equivalent to the solution of the
numerical scheme (1.11)--(1.13).

Step 1. Existence of the optimization problem. First we show existence for the
optimization problem (3.1) for any \delta > 0. Notice that the objective function J in
(3.1) is convex in w, but it is not strictly convex. However, we can rewrite the
optimization problem by using the first n - 1 components of w and get an equivalent
convex optimization problem. We introduce

W = (W1, . . . ,Wn), Wi = \^\rho kiwi, i = 1, . . . , n,

and so
\sum n

i=1 Wi = 0.We adopt the notation of (2.21) and define \~W = (W1, . . . ,Wn - 1).
We have the following lemma.

Lemma 3.3. The following formula holds:

I( \~W ) :=
1

2

n\sum 
i=1

bij \^\rho 
k
i \^\rho 

k
j (wi  - wj)

2 = \~WT ( \^Qk)T \^Bk \^Qk \~W = \~WT ( \^Dk) - 1 \~W.(3.2)

For \^\rho k > 0, the function I : Rn - 1 \rightarrow R+ is strictly convex.

Proof. By the assumption that bij is symmetric, the following formula holds:

1

2

n\sum 
i,j=1

bij \^\rho 
k
i \^\rho 

k
j (wi  - wj)

2 =
n\sum 

i=1

wi

n\sum 
j=1

bij \^\rho 
k
i \^\rho 

k
j (wi  - wj).
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Recalling (2.19), (2.20), we also have

n\sum 
j=1

bij \^\rho 
k
i \^\rho 

k
j (wi  - wj) =

n - 1\sum 
j,m=1

\^Bk
ij
\^Qk
jm\^\rho mwm.

Therefore,

1

2

n\sum 
i,j=1

bij \^\rho 
k
i \^\rho 

k
j (wi  - wj)

2

=
n\sum 

i=1

wi

n - 1\sum 
j,m=1

\^Bk
ij
\^Qk
jm\^\rho mwm

=
n - 1\sum 
i=1

wi

n - 1\sum 
j,m=1

\^Bk
ij
\^Qk
jm\^\rho mwm  - 

n - 1\sum 
s=1

\^\rho ksws

\^\rho kn

n - 1\sum 
j,m=1

\Biggl( 
 - 

n - 1\sum 
i=1

\^Bk
ij
\^Qk
jm\^\rho kmwm

\Biggr) 

=
n - 1\sum 

s,i,j,m=1

\^\rho ksws

\biggl( 
\delta is
\^\rho ks

+
1

\^\rho kn

\biggr) 
\^Bk
ij
\^Qk
jm\^\rho kmwm

=
n - 1\sum 

s,i,j,m=1

\^\rho ksws
\^Qk
is
\^Bk
ij
\^Qk
jm\^\rho kmwm = \~WT ( \^Qk)T \^Bk \^Qk \~W.

Notice that \^Bk is a symmetric strictly diagonally dominant matrix with positive
diagonal entries since \rho k > 0 and thus is positive definite. Because of this and since
\^Qk is nonsingular, we have

( \^Qk)T \^Bk \^Qk is positive definite.

Therefore, (3.2) is a convex function of \~W .

We also need a lemma on the convexity of the discretized energy function Fh(\~\rho )
defined by (2.22) that incorporates the constraint

\sum n
i=1 \rho i = 1.

Lemma 3.4. The energy function Fh = Fh(\~\rho ) is a convex function of \~\rho .

Proof. Considering the function

f =
n - 1\sum 
i=1

\rho i log \rho i + \rho n log \rho n, \rho n = 1 - 
n - 1\sum 
i=1

\rho i,

we have

\partial f

\partial \rho i
= log \rho i + 1 - (log \rho n + 1) = log \rho i  - log \rho n,

\partial 2f

\partial \rho i\partial \rho j
=

1

\rho i
\delta ij +

1

\rho n
.

Since, for any z \in Rn - 1 and z \not = 0,

n - 1\sum 
i,j=1

\partial 2f

\partial \rho i\partial \rho j
zizj =

n - 1\sum 
i,j=1

\biggl( 
1

\rho i
\delta ij +

1

\rho n

\biggr) 
zizj =

n - 1\sum 
i=1

1

\rho i
z2i +

1

\rho n

\Biggl( 
n - 1\sum 
i=1

zi

\Biggr) 2

> 0,

the function f is a convex function of \~\rho . Therefore, Fh(\~\rho ) is convex in \~\rho .
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Using Lemmas 3.3 and 3.4, we deduce that the optimization problem (3.1) is
equivalent to

min
(\~\rho , \~W )\in \~K\delta 

\biggl\{ 
J =

1

2\Delta t

\Bigl[ 
\~WT ( \^Qk)T \^Bk \^Qk \~W

\Bigr] 
+ Fh(\~\rho )

\biggr\} 
,(3.3)

where

\~K\delta =

\biggl\{ 
(\~\rho , \~W ) : \~\rho \in \scrC n - 1

per , \~W \in \scrE n - 1
per ; \rho i,\ell \geq \delta ,

n - 1\sum 
i=1

\rho i,\ell \leq 1 - \delta and

\rho i,\ell  - \rho ki,\ell + dh(Wi)\ell = 0 \forall i = 1, . . . , n - 1, \ell = 1, . . . , N

\biggr\} 
.

Due to the above lemmas, the objective function J is a convex function of \~W and
\~\rho (note that ( \^Qk)T \^Bk \^Qk is a fixed matrix determined from the previous step). The
domain \~K\delta is affine in \~W , and it is convex and bounded in \~\rho . The optimization
problem (3.3) has a unique minimizer according to standard optimization theory [4].
Since the problems (3.1) and (3.3) are equivalent, there also exists a unique solution
to the optimization problem (3.1).

Step 2. The minimizer does not touch the boundary. Next, we show that there
exists a constant \delta 0 > 0 such that the solution of the optimization problem (3.1) could
not touch the boundary of K\delta for \delta \leq \delta 0. Recall that on the set \~K\delta ,

\rho i  - \rho ki + dh(Wi) = 0.

Hence, if we set

\~W = \^DkDh
\~f, \~g = \~\rho  - \~\rho k \in \r \scrC n - 1

per ,

where \~f \in \r \scrC n - 1
per is uniquely defined by the first equation above, then, according to

the definition (2.5),\Bigl[ 
\~WT ( \^Qk)T \^Bk \^Qk \~W

\Bigr] 
= [(Dh

\~f)T \^DkDh
\~f ] = \| \~\rho  - \~\rho k\| 2\scrL  - 1

\^Dk

.(3.4)

Therefore, the optimization problem (3.3) is equivalent to

min
\~\rho \in \r \~K\delta 

\biggl\{ 
J =

1

2\Delta t
\| \~\rho  - \~\rho k\| 2\scrL  - 1

\^Dk

+ Fh(\~\rho )

\biggr\} 
(3.5)

over the set

\r \~K\delta =

\biggl\{ 
\~\rho : \~\rho  - \~\rho k \in \r \scrC n - 1

per ; \rho i,\ell \geq \delta ,
n - 1\sum 
i=1

\rho i,\ell \leq 1 - \delta \forall i = 1, . . . , n - 1, \ell = 1, . . . , N

\biggr\} 
.

Recall that the notation \~\rho = (\rho 1, . . . , \rho n - 1) stands for the vector of the first n  - 1
densities which are computed at the grid points l = 1, . . . , N . The density \rho n appears
in the formulation (3.5) only indirectly through the constraint (1.5). Also, \~\rho  - \~\rho k \in 
\r \scrC n - 1
per means

\sum N
\ell =1(\rho i,\ell  - \rho ki,\ell ) = 0 for any i = 1, . . . , n - 1.

Let \~\rho  \star \in \r \~K\delta be a minimizer of the optimization problem (3.5). We will show that

\~\rho  \star does not lie on the boundary of \r \~K\delta . If it lies on the boundary,
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(i) either \rho  \star i,\ell = \delta for some i = 1, . . . , n - 1 at some grid point \ell ,

(ii) or
\sum n - 1

i=1 \rho  \star i,\ell = 1 - \delta at some grid point \ell .
First consider the case (i). Suppose that \~\rho  \star touches the boundary at the grid point
\ell 0 for the i0th component, that is,

\rho  \star i0,\ell 0 = \delta .(3.6)

We calculate the directional derivative of the objective function J at \~\rho  \star along the

direction \{ \nu : \nu \in R(n - 1)\times N\} with \~\rho  \star + s\nu \in \r \~K\delta as

d

ds
J(\~\rho  \star + s\nu )

\bigm| \bigm| \bigm| \bigm| 
s=0

(3.7)

=
d

ds

\bigm| \bigm| \bigm| \bigm| 
s=0

\biggl( 
1

2\Delta t
\| \~\rho  \star + s\nu  - \~\rho k\| 2\scrL  - 1

\^Dk

+ Fh(\~\rho 
 \star + s\nu )

\biggr) 

=
1

\Delta t

\Bigl\langle 
\scrL  - 1

\^Dk
(\~\rho  \star  - \~\rho k), \nu 

\Bigr\rangle 
+

n - 1\sum 
i=1

\Biggl\langle 
log \rho  \star i + 1 - log

\left(  1 - 
n - 1\sum 
j=1

\rho  \star j

\right)   - 1, \nu i

\Biggr\rangle 

=
1

\Delta t

\Bigl\langle 
\scrL  - 1

\^Dk
(\~\rho  \star  - \~\rho k), \nu 

\Bigr\rangle 
+

n - 1\sum 
i=1

\Biggl\langle \left(  log \rho  \star i  - log

\left(  1 - 
n - 1\sum 
j=1

\rho  \star j

\right)  \right)  , \nu i

\Biggr\rangle 
.

Here we use a contradiction argument, for which it suffices to find a direction \nu such
that the above directional derivative is negative. The first term on the right-hand side
of the above equation is bounded by Lemma 3.2, but the second term may become
sufficiently negative as \rho  \star i = \delta or 1 - 

\sum n - 1
i=1 \rho  \star j = \delta , at some point with a proper choice

of \nu . Based on this we argue in two cases respectively.
We divide the first case further into the following two cases:

(a)
n - 1\sum 
i=1

\rho  \star i,\ell 0 \geq 1

2
,

(b)
n - 1\sum 
i=1

\rho  \star i,\ell 0 <
1

2
.

Case (i) and (a). Suppose \{ \rho  \star i,\ell 0\} 
n - 1
i=1 achieves its maximum at the i1th compo-

nent, while \{ \rho  \star i0,\ell \} 
N
\ell =1 achieves its maximum at \ell 1. Define \nu by

\nu i,\ell =

\left\{           
1 for i = i0, \ell = \ell 0,
 - 1 for i = i1, \ell = \ell 0,
 - 1 for i = i0, \ell = \ell 1,
1 for i = i1, \ell = \ell 1,
0 otherwise.

Taking a variation in this direction, (3.7) becomes

1

h

d

ds
J(\~\rho  \star + s\nu )

\bigm| \bigm| \bigm| \bigm| 
s=0

(3.8)

=
1

\Delta t
(\scrL  - 1

\^Dk
(\~\rho  \star  - \~\rho k))i0,\ell 0  - 

1

\Delta t
(\scrL  - 1

\^Dk
(\~\rho  \star  - \~\rho k))i1,\ell 0  - 

1

\Delta t
(\scrL  - 1

\^Dk
(\~\rho  \star  - \~\rho k))i0,\ell 1

+
1

\Delta t
(\scrL  - 1

\^Dk
(\~\rho  \star  - \~\rho k))i1,\ell 1 + log \rho  \star i0,\ell 0  - log \rho  \star i1,\ell 0  - log \rho  \star i0,\ell 1 + log \rho  \star i1,\ell 1 .
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Note that the variation \nu i,l along which we calculate (3.7) is selected so that the

contributions of the terms log
\bigl( 
1 - 

\sum n - 1
j=1 \rho \ast j

\bigr) 
cancel out.

Since \{ \rho  \star i,\ell 0\} 
n - 1
i=1 achieves its maximum for the i1th component, in the case (a),\sum n - 1

i=1 \rho  \star i,\ell 0 \geq 1
2 implies

\rho  \star i1,\ell 0 \geq 1

2(n - 1)
.(3.9)

Since \{ \rho  \star i0,\ell \} 
N
\ell =1 achieves its maximum at the grid point \ell 1 and \~\rho  \star  - \~\rho k \in \r \scrC n - 1

per ,

(3.10) \rho  \star i0,\ell 1 \geq 1

N

N\sum 
\ell =1

\rho  \star i0,\ell =
1

N

N\sum 
\ell =1

\rho ki0,\ell \geq 
m

hN
,

where m is set to be m := mini\in \{ 1,...,n - 1\} \{ h
\sum N

\ell =1 \rho 
k
i,\ell \} . Moreover, for \~\rho  \star \in \r \~K\delta the

constraint
\sum n - 1

i=1 \rho  \star i,\ell 1 \leq 1 - \delta implies

\rho  \star i1,\ell 1 < 1.(3.11)

Next, we show that for \delta satisfying

\delta \leq min

\biggl\{ 
m

2hN
,

1

4(n - 1)

\biggr\} 
,(3.12)

if s > 0 is selected sufficiently small and \nu is as above, we have \~\rho  \star + s\nu \in \r \~K\delta . Indeed,

\rho  \star i0,\ell 0 + s = \delta + s \geq \delta , \rho  \star i1,\ell 1 + s \geq \delta + s,

\rho  \star i0,\ell 1  - s \geq m

hN
 - s \geq \delta , \rho  \star i1,\ell 0  - s \geq 1

2(n - 1)
 - s \geq \delta ,

n - 1\sum 
i=1

(\rho  \star i,\ell 0 + s\nu i,\ell 0) =
n - 1\sum 
i=1

\rho  \star i,\ell 0 \leq 1 - \delta ,
n - 1\sum 
i=1

(\rho  \star i,\ell 1 + s\nu i,\ell 1) =
n - 1\sum 
i=1

\rho  \star i,\ell 1 \leq 1 - \delta 

imply that if \delta satisfies (3.12), and for s > 0 small, then we have \~\rho  \star + s\nu \in \r \~K\delta .
Since \~\rho  \star  - \~\rho k \in \r \scrC n - 1

per and \| \~\rho  \star \| L\infty , \| \~\rho k\| L\infty \leq 1, we can apply Lemma 3.2 to (3.8)

with \phi = \~\rho  \star  - \~\rho k and \Phi = \^Dk and use (3.6) and (3.9)--(3.11) to get

1

h

d

ds
J(\~\rho  \star + s\nu )

\bigm| \bigm| \bigm| \bigm| 
s=0

\leq 8C

\lambda k
min\Delta t

h - 1
2 (n - 1)

1
2 + log \delta  - log

1

2(n - 1)
 - log

m

hN
+ log 1.

Here \lambda k
min is the minimum eigenvalue of \^Dk. Taking

\delta 0 \leq min

\Biggl\{ 
m

4(n - 1)hN
e
 - 8C

\lambda k
min

\Delta t
h - 1

2 (n - 1)
1
2

,
m

2hN
,

1

4(n - 1)

\Biggr\} 
,(3.13)

we have, for \delta \leq \delta 0, \~\rho 
 \star + s\nu \in \r \~K\delta and

1

h

d

ds
J(\~\rho  \star + s\nu )

\bigm| \bigm| \bigm| \bigm| 
s=0

\leq  - log 2 < 0.(3.14)
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This contradicts the assumption that \~\rho  \star is a minimizer, and so the situation (a) cannot
occur.

Case (i) and (b). Again \rho i0,\ell 0 = \delta and suppose now that \{ \rho  \star i0,\ell \} 
N
\ell =1 achieves its

maximum at the \ell 1th grid point. We take

\nu i,\ell =

\left\{   1 for i = i0, \ell = \ell 0,
 - 1 for i = i0, \ell = \ell 1,
0 otherwise,

and note that (3.10) still holds in the present setting. Using (3.6), (b), (3.10), and

the inequality 1 - 
\sum n - 1

i=1 \rho  \star i,\ell 1 \leq 1 - (n - 1)\delta \leq 1, we obtain

1

h

d

ds
J(\~\rho  \star + s\nu )

\bigm| \bigm| \bigm| \bigm| 
s=0

=
1

\Delta t
(\scrL  - 1

\^Dk
(\~\rho  \star  - \~\rho k))i0,\ell 0 + log \rho  \star i0,\ell 0  - log

\Biggl( 
1 - 

n - 1\sum 
i=1

\rho  \star i,\ell 0

\Biggr) 

 - 1

\Delta t
(\scrL  - 1

\^Dk
(\~\rho  \star  - \~\rho k))i0,\ell 1  - log \rho  \star i0,\ell 1 + log

\Biggl( 
1 - 

n - 1\sum 
i=1

\rho  \star i,\ell 1

\Biggr) 

\leq 4C

\lambda k
min\Delta t

h - 1
2 (n - 1)

1
2 + log \delta  - log

1

2
 - log

m

hN
+ log 1

\leq 4C

\lambda k
min\Delta t

h - 1
2 (n - 1)

1
2 + log \delta  - log

m

2hN
.

Taking

\delta 0 \leq min

\Biggl\{ 
m

4hN
e
 - 4C

\lambda k
min

\Delta t
h - 1

2 (n - 1)
1
2

,
m

2hN

\Biggr\} 
(3.15)

leads to \~\rho  \star + s\nu \in \r \~K\delta and

1

h

d

ds
J(\~\rho  \star + s\nu )

\bigm| \bigm| \bigm| \bigm| 
s=0

=  - log 2 < 0,

which contradicts the hypothesis that \~\rho  \star is a minimizer; so the situation (b) cannot
occur.

Case (ii). Assume there exists a grid index \ell 0 such that

n - 1\sum 
i=1

\rho  \star i,\ell 0 = 1 - \delta ,(3.16)

and suppose the maximum value of \{ \rho  \star i,\ell 0\} 
n - 1
i=1 occurs at the index i0. Then (3.16)

implies that, for \delta \leq 1/2, (3.9) holds; that is,

\rho  \star i0,\ell 0 \geq 1 - \delta 

n - 1
\geq 1

2(n - 1)
.(3.17)

Setting \rho kmin := mini=1,...,n,
\ell =1,...,N

\rho ki,\ell > 0, we have
\sum n - 1

i=1 \rho ki,\ell = 1  - \rho kn,\ell \leq 1  - \rho kmin.

Since \~\rho  \star  - \~\rho k \in \r Cn - 1
per , we have

N\sum 
\ell =1

n - 1\sum 
i=1

\rho  \star i,\ell =
N\sum 
\ell =1

n - 1\sum 
i=1

\rho ki,\ell \leq N(1 - \rho kmin).
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Suppose \{ 
\sum n - 1

i=1 \rho  \star i,\ell \} N\ell =1 achieves its minimum at the grid point \ell 1. Then using (3.16)

it follows for \delta \leq 1
2\rho 

k
min that

n - 1\sum 
i=1

\rho  \star i,\ell 1 \leq 1
N - 1

\sum 
\ell =1,,,,,N

\ell \not =\ell 0

n - 1\sum 
i=1

\rho  \star i,\ell 

= 1
N - 1

\Biggl( 
N\sum 
\ell =1

n - 1\sum 
i=1

\rho  \star i,\ell  - 
n - 1\sum 
i=1

\rho  \star i,\ell 0

\Biggr) 
\leq 1

N - 1

\bigl( 
N(1 - \rho kmin) - (1 - \delta )

\bigr) 
\leq 1 - N\rho kmin  - \delta 

N  - 1

\leq 1 - 2N  - 1

2(N  - 1)
\rho kmin .(3.18)

Taking now

\nu i,\ell =

\left\{    - 1 for i = i0, \ell = \ell 0,
1 for i = i0, \ell = \ell 1,
0 otherwise

in (3.7) and using (3.16), (3.17), (3.18), Lemma 3.2, and the inequality \rho  \star i0,\ell 1 \leq 1 - \delta \leq 
1, we obtain

1

h

d

ds
J(\~\rho  \star + s\nu )

\bigm| \bigm| \bigm| \bigm| 
s=0

=  - 1

\Delta t
(\scrL  - 1

\^Dk
(\~\rho  \star  - \~\rho k))i0,\ell 0  - log \rho  \star i0,\ell 0 + log

\Biggl( 
1 - 

n - 1\sum 
i=1

\rho  \star i,\ell 0

\Biggr) 

+
1

\Delta t
(\scrL  - 1

\^Dk
(\~\rho  \star  - \~\rho k))i0,\ell 1 + log \rho  \star i0,\ell 1  - log

\Biggl( 
1 - 

n - 1\sum 
i=1

\rho  \star i,\ell 1

\Biggr) 

\leq 4C

\lambda k
min\Delta t

h - 1
2 (n - 1)

1
2  - log

1

2(n - 1)
+ log \delta + log 1 - log

2N  - 1

2(N  - 1)
\rho kmin.

Taking

\delta 0 \leq min

\Biggl\{ 
(2N  - 1)\rho kmin

8(N  - 1)(n - 1)
e
 - 4C

\lambda k
min

\Delta t
h - 1

2 (n - 1)
1
2

,
1

2
\rho kmin,

1

4(n - 1)

\Biggr\} 
,(3.19)

we see that for \delta < \delta 0 the above inequality becomes negative. In addition,

\rho  \star i0,\ell 0  - s \geq 1

2(n - 1)
 - s \geq \delta , \rho  \star i0,\ell 1 + s \geq \delta + s \geq \delta ,

n\sum 
i=1

\rho  \star i,\ell 0  - s = 1 - \delta  - s \leq 1 - \delta ,
n - 1\sum 
i=1

\rho  \star i,\ell 1 + s \leq 1 - 2N  - 1

N  - 1
\delta + s \leq 1 - \delta 

imply that for \delta < \delta 0 the variation \~\rho  \star + sv \in \r \~K\delta for sufficiently small s > 0. This
contradicts the assumption that \~\rho  \star is a minimizer, and thus case (ii) cannot occur.
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In summary, setting \delta 0 to be the minimum among (3.13), (3.15), and (3.19), we
conclude that (i) and (ii) cannot occur. Consequently, for \delta \leq \delta 0, the minimizer to
the optimization problem (3.5), or equivalently (3.1), does not occur at the boundary.

Step 3. The equivalence with the numerical scheme. Any interior minimizer \~\rho \ast of
(3.5) must satisfy \biggl\langle 

\partial J

\partial \~\rho 
(\~\rho  \star ), \nu 

\biggr\rangle 
= 0(3.20)

for any \nu \in \r \scrC n - 1
per which is its tangent space; i.e., (3.7) equals zero. Due to the arbitrary

choice of \nu , we get

1

\Delta t
\scrL  - 1

\^Dk
(\~\rho  \star  - \~\rho k)i + log \rho  \star i  - log

\left(  1 - 
n\sum 

j=1

\rho  \star j

\right)  = Ci,

with Ci, i = 1, . . . n - 1, being constants, from which it follows that for i = 1, . . . , n - 1,

\rho  \star i  - \rho ki
\Delta t

= - \scrL \^Dk

\left(  log \~\rho  \star  - log

\left(  1 - 
n\sum 

j=1

\~\rho  \star j

\right)  \right)  
i

=
n - 1\sum 
j=1

dh( \^D
k
ijDh(log \rho 

 \star 
j  - log \rho  \star n)).

By Lemma 2.4, \~\rho  \star satisfies the numerical scheme (1.11)--(1.13).
Conversely, assume \rho k+1 > 0 is a solution of the numerical scheme (1.11)--(1.13);

we can reverse the above calculation with Ci = 0 to show that (3.20) holds, which,
together with the fact that the convex optimization problem (3.5) has a unique interior
minimizer, implies that \rho k+1 is also the minimizer of (3.5), or equivalently of (3.1).

Remark 3.5. The assumption (1.5) is not necessary in the above proof. Suppose\sum n
j=1 \rho j0(x) = m(x) > 0; the condition is discretized as

\sum n
j=1 \rho 

0
j,\ell = m\ell , \ell = 1, . . . , N .

The corresponding condition in the set \~K\delta is replaced by
\sum n

i=1 \rho i,\ell \leq m\ell  - \delta . The
right-hand side of (3.7) is again bounded by Lemma 3.2, and the second term becomes

sufficiently negative when \rho  \star i,\ell = \delta or m\ell  - 
\sum n - 1

i=1 \rho  \star i,\ell = \delta . The proof is divided into

similar cases. For example, for the case \rho  \star i0,\ell 0 = \delta and
\sum n - 1

i=1 \rho  \star i,\ell 0 \geq m\ell 0/2, the terms
\rho  \star i1,\ell 0 \geq m\ell 0/(2(n - 1)) and \rho  \star i1,\ell 1 \leq m\ell 1 and (3.8) is negative when \delta is small.

3.2. Properties of the scheme. The positivity-preserving and energy stability
properties of the scheme follow directly from Theorem 3.1.

Theorem 3.6. Assume \rho 0 defined in (2.9) is positive; the solution of the numer-
ical scheme (1.11)--(1.12) then satisfies

1. (positivity-preserving) \rho k > 0 for any k \geq 1,
2. (unconditional energy stability) the inequality

Fh(\rho 
k) + \| \~\rho k  - \~\rho k - 1\| 2\scrL  - 1

\^Dk

\leq Fh(\rho 
k - 1)(3.21)

holds for any k \geq 1.

Proof. 1. Starting from \rho 0, we apply Theorem 3.1 recursively to obtain

\rho k \in K\delta k
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for some constant \delta k that is chosen for each step by the minimum among (3.13),
(3.15), and (3.19). This yields, for every k,

\rho k \in 
\infty \bigcap 
k=1

K\delta k \subset K0\setminus \{ 0\} ,

so that \rho k > 0.
2. Since the solution of the numerical scheme (1.11)--(1.13) is the minimizer of

(3.5), we have

J(\rho k+1) \leq J(\rho k),

which is (3.21).

4. Multidimensional case. The scheme can be generalized to the multidi-
mensional case, and similar properties can be established. Before we present the
multi-dimensional scheme, we introduce some notation following [27]. Consider two
multidimensional grids defined by

\scrC d := \scrC \times \cdot \cdot \cdot \times \scrC \underbrace{}  \underbrace{}  
d

, \scrE xs
:= \scrC \times \cdot \cdot \cdot \times \scrE \times \cdot \cdot \cdot \times \scrC \underbrace{}  \underbrace{}  

d

, s = 1, . . . , d,

and the functions on them,

\scrC d
per := \{ f : \scrC d \rightarrow R\} , \scrE d

xs,per := \{ f : \scrE d
xs

\rightarrow R\} , \scrE d
per :=

\Biggl\{ 
f :

d\bigcup 
s=1

\scrE d
xs

\rightarrow R

\Biggr\} 
,

as well as the vector functions, (\scrC d
per)

n := \{ f = (f1, . . . , fn) : fi \in \scrC d
per, i = 1, . . . , n\} ,

(\scrE d
per)

n := \{ f = (f1, . . . , fn) : fi \in \scrE d
per, i = 1, . . . , n\} . We also define the space

(\r \scrC d
per)

n :=

\left\{   f \in (\scrC d
per)

n :
\sum 

\ell \in \{ 1,...,N\} d

fi,\ell = 0, i = 1, . . . , n

\right\}   .

We use f\ell 1,...,\ell d to denote the value of a function f at the grid point (x1 = \ell 1h, . . . , xd =
\ell dh). We introduce the finite difference operators Dh : \scrC d

per \mapsto \rightarrow \scrE d
per and dh : \scrE d

per \mapsto \rightarrow 
\scrC d
per as

Dhf\ell 1,...,\ell s+ 1
2 ,...,\ell 

d =
f\ell 1,...,\ell s+1,...,\ell d  - f\ell 1,...,\ell s,...,\ell d

h

and

dhf\ell 1,...,\ell d :=

d\sum 
s=1

f\ell 1,...,\ell s+ 1
2 ,...,\ell 

d  - f\ell 1,...,\ell s - 1
2 ,...,\ell 

d

h
.

We also define, for f \in \scrC d
per,

\^f\ell 1,...,\ell s+ 1
2 ,...,\ell 

d =
f
\ell 1,...,\ell s+1,...,\ell d

+f
\ell 1,...,\ell s,...,\ell d

2 , s = 1, . . . , d,

so that \^f \in \scrE d
per. We define the inner products

\langle f, g\rangle := hd
n\sum 

i=1

\sum 
\ell \in \{ 1,...,N\} d

fi,\ell gi,\ell \forall f, g \in (\scrC d
per)

n,

[f, g] := hd
n\sum 

i=1

N\sum 
\ell 1,...,\ell n=1

fi,\ell 1,...,\ell s+ 1
2 ,...,\ell d

gi,\ell 1,...,\ell s+ 1
2 ,...,\ell d

\forall f, g \in (\scrE d
per)

n.
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The following summation-by-parts formula holds for any f \in (\scrC d
per)

n and \phi \in (\scrE d
per)

n:

\langle f, dh\phi \rangle =  - [Dhf, \phi ].

Next we define a norm on (\r \scrC d
per)

n - 1. Suppose \Phi is an (n  - 1) \times (n  - 1) symmetric

positive definite matrix, with \Phi ij \in \scrE d
per. We introduce the following operator:

\scrL \Phi f =  - dh(\Phi Dhf) =  - 
n - 1\sum 
j=1

dh(\Phi ijDhfj),

where the multiplication \Phi ijDhfj is taken elementwise on the grid points. For any

g \in (\r \scrC d
per)

n - 1, let f be determined by g = \scrL \Phi f ; we define the following norm:

\| g\| 2\scrL  - 1
\Phi 

:= [Dhf,\Phi Dhf ].(4.1)

With the above notation, the numerical scheme for the system (1.1)--(1.2) is

\rho k+1
i  - \rho ki

\Delta t
+ dh(\^\rho 

k
i v

k+1
i ) =0,(4.2)

Dh log \rho 
k+1
i  - 1\sum n

i=1 \^\rho 
k
i

n\sum 
j=1

\^\rho kjDh log \rho 
k+1
j = - 

n\sum 
j=1

bij \^\rho 
k
j (v

k+1
i  - vk+1

j ),(4.3)

n\sum 
i=1

\^\rho ki v
k+1
i =0,(4.4)

subject to initial data

\rho 0i,\ell = \rho i0(x\ell ), i = 1, . . . , n, \ell = \{ 1, . . . , N\} d.(4.5)

All properties proved for the one-dimensional case carry over to the d-dimensional
case. The following theorem holds.

Theorem 4.1. Suppose \rho 0 > 0. The solution of the numerical scheme (4.2)--(4.4)
satisfies the following:

1. (Conservation of mass.) For k \geq 1,

n\sum 
i=1

\rho ki,\ell =
n\sum 

i=1

\rho 0i,\ell for all \ell \in \{ 1, . . . , d\} N ,

and \sum 
\ell \in \{ 1,...,d\} N

\rho ki,\ell =
\sum 

\ell \in \{ 1,...,d\} N

\rho 0i,\ell for all i = 1, . . . , n.

2. (Positivity-preserving.) For k \geq 1, \rho k > 0.
3. (Unconditional energy stability.) For k \geq 1, the following inequality holds:

Fh(\rho 
k) + \| \~\rho k  - \~\rho k - 1\| 2\scrL  - 1

\^Dk

\leq Fh(\rho 
k - 1),

where Fh(\rho ) := \langle 
\sum n

i=1 \rho i log \rho i\rangle .
The proof of the above theorem is based on the following.
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Theorem 4.2. Assume bij > 0 and bij = bji for i \not = j and i, j = 1, . . . , n.
Assume \rho k \in (\scrC d

per)
n is positive. Then there exists a constant \delta 0 > 0, such that

\rho k+1 > 0 is a solution of the numerical scheme (4.2)--(4.4) if and only if it is a
minimizer of the optimization problem

\rho k+1 = argmin
(\rho ,w)\in K\delta 

\left\{   J =
1

4\Delta t

\left[  n\sum 
i,j=1

bij \^\rho 
k
i \^\rho 

k
j (wi  - wj)

2

\right]  + Fh(\rho )

\right\}   ,(4.6)

where

K\delta =

\biggl\{ 
(\rho , w) : \rho \in (\scrC d

per)
n, w \in (\scrE d

per)
n; \rho i,\ell \geq \delta , \rho i,\ell  - \rho ki,\ell + dh(\^\rho 

k
iwi)\ell = 0,

n\sum 
i=1

\^\rho ki,\ell 1,...,\ell s+ 1
2 ,...,\ell d

wi,\ell 1,...,\ell s+
1
2 ,...,\ell d

= 0, and
n\sum 

i=1

\rho i,\ell = 1

\forall i = 1, . . . , n, \forall \ell = (\ell 1, . . . , \ell d) \in \{ 1, . . . , N\} d, s = 1, . . . , d

\biggr\} 
for any 0 < \delta \leq \delta 0.

The proof of these multidimensional results is similar and is provided in the
accompanying supplemental file (supplement.pdf [local/web 227KB]).

5. Numerical examples. We numerically validate our theoretical findings us-
ing numerical examples in both one and two dimensions.

5.1. One dimension. We perform the simulation on the Duncan and Toor ex-
periment [3, 8]. We extend the domain from [0, 1] to [0, 2] by reflection to make the
solution symmetric on T = [0, 2], and the initial conditions are taken to be

\rho 10(x) =

\left\{           
0.8 for 0 \leq x < 0.25,

1.6(0.75 - x) for 0.25 \leq x < 0.75,
0 for 0.75 \leq x \leq 1.25,

1.6(x - 1.25) for 1.25 < x \leq 1.75,
0.8 for 1.75 < x \leq 2,

\rho 20(x) = 0.2,

\rho 30(x) = 1 - \rho 10(x) - \rho 20(x).

The parameters (bij)n\times n are b12 = b13 = 1/0.833, b23 = 1/0.168.
Since \rho 10(x) = 0 on the subinterval [0, 75, 1.25] and \rho 30(x) = 0 on [0, 0.25) \cup 

(1.75, 2], we reinitialize the data following the procedure described in section 2.2,
which we outline as follows.

For fi \geq 0, but f\ell = 0 for some \ell , we find a neighboring index set S\ell such that
the local average

\=f\ell =
1

| S\ell | 
\sum 
j\in S\ell 

fj > \eta ,

with \eta being a small number less than O(hr), r > 2. Here | S\ell | is the number of indices
for which fj > 0. We use \=f\ell as a reference to define the scaling limiter

\~fj = \theta fj + (1 - \theta ) \=f\ell for all j \in S\ell ,
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Fig. 5.1. Simulation results at x = 0.72 (a) and the uphill diffusion region \rho 2v2Dh\rho 2 \leq 0
(calculated with h = 0.001 in (b) and h = 0.0001 in (c)).
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Fig. 5.2. Minimum value (a), discrete energy (b), and mass (c).

where \theta = ( \=f\ell  - \eta )/ \=f\ell . Such a limiter is positive and does not destroy the numerical
accuracy [21, 22].

When \rho i,\ell = 0 is modified by the above method, we also need to make sure
the total density

\sum n
i=1 \rho i,\ell = 1 is still preserved. Specifically, for all j \in S\ell , we set

\~\rho s,j = \rho s,j  - (\~\rho i,j  - \rho i,j) for some index s satisfying \rho s,j > \eta . Here we take \eta = 10 - 15

with mesh size h \geq 10 - 6.
We first take the mesh size to be h = 0.01 and the time step to be \Delta t = 0.001 and

compute until t = 2. The solution at x = 0.72 and the uphill diffusion zone defined
by \rho 2v2Dh\rho 2 \leq 0 are plotted in Figure 5.1. The solution approximately reaches
equilibrium at t = 2, and the uphill diffusion zone is almost the same compared to
the result in [3, 10]. Notice that here for any time step and mesh size, the scheme is
stable. However, for the scheme in [3, 9], \Delta t and \Delta x must be carefully set to make
the scheme stable. For example, \Delta t \leq b23h

2/2 was needed in [3] to make the explicit
scheme stable.

To verify the properties of the scheme, we plot the minimum value of \rho over
time, the discrete energy function Fh(\rho ), and the total mass in Figure 5.2. It can
be seen from the figures that the numerical solutions are positive, energy-dissipative,
and conservative.

In order to compute the convergence order, we take \Delta t = 0.00001 and the mesh
sizes to be 32, 64, 128, 256, 512, and 1024. This small time step is taken so that the
numerical error is dominated by the spatial discretization. We compare solutions at
t = 0.01. The last solution with 1024 meshes is taken as the reference solution. The
errors are plotted in Figure 5.3. The figure shows that the scheme is approximately
of second order in space.
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Fig. 5.3. Numerical errors.
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Fig. 5.4. The numerical solution at x = y = 0.7 (a), the minimum value (b), and discrete
energy (c).

5.2. Two dimensions. We take the same (bij) as in the one-dimensional exam-
ple and the initial data on T2 = [0, 2]\times [0, 2] to be

\rho 10(x, y) =

\left\{               

0.8 for x \leq 0.25 or x \geq 1.75 and x \leq 0.25 or y \geq 1.75,
0 for 0.75 \leq x \leq 1.25 and 0.75 \leq y \leq 1.25,

1.6(0.75 - x) for 0.25 \leq x < 0.75 and x \leq y < 2 - x,
1.6(x - 1.25) for 1.25 < x < 1.75 and 2 - x < y \leq x,
1.6(0.75 - y) for 0.25 \leq y < 0.75 and y < x \leq 2 - y,
1.6(y  - 1.25) for 1.25 < y < 1.75 and 2 - y \leq x < y,

\rho 20(x, y) = 0.2,

\rho 30(x, y) = 1 - \rho 10(x, y) - \rho 20(x, y).

The mesh size is taken to be h = 0.05, and the time step is \Delta t = 0.001. We calculate
for 500 time steps. The energy and minimum values are shown in Figure 5.4. We can
see that the minimum values are all positive and the energy is decaying.
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