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Abstract. We develop a new finite difference scheme for the Maxwell-Stefan diffusion system.
The scheme is conservative, energy-stable, and positivity-preserving. These nice properties stem from
a variational structure and are proved by reformulating the finite difference scheme into an equivalent
optimization problem. The solution to the scheme emerges as the minimizer of the optimization
problem, and as a consequence energy stability and positivity-preserving properties are obtained.
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1. Introduction. Cross-diffusion occurs in multicomponent systems, such as
ionic liquids, wildlife populations, gas mixtures, and tumor growth [16, 19]. In these
multicomponent systems, the diffusion happens not only in the direction from high
concentration to low concentration, but also in the opposite direction due to cross-
diffusion. In such cases, diffusion cannot be described by Fick’s diffusion law, and
the Maxwell-Stefan diffusion model can be used instead. The Maxwell-Stefan model
assumes the friction between two components is proportional to their difference in
velocity and molecular fractions. It is widely used in modeling multicomponent sys-
tems.

In this work, we consider the Maxwell-Stefan diffusion system for an n-component

mixture on the torus T¢, which reads, for i = 1,...,n,
(11) (9tpi +V- (plvl) =0,
n 1 n
(1.2) =D bigpi(vi —v;) = Vg pi — WZMV@;PL
j=1 J=1FJ j=1

(1.3) > pijv; =0.
j=1

Here x € T?, p; = pi(w,t), and v; = v;(z,t) are the density and velocity of the ith
component. The initial conditions are taken to be

pi(z,0) = pio(x), i=1,...,n,
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and we assume that
(1.4) pio(z) >0 and ijo(l') =1 forz e T%
j=1

Solutions of (1.1) conserve the total density 9; > ., pi + V> ; piv; =0, and (1.3)
imposes an average velocity of the mixture vg, = Y .-y pivi/ > 1 pi = 0 and that the
total density >, p; is conserved at each z € T¢. Hypothesis (1.4) then fixes the
total density to

(1.5) ij(x,t)zl for x € T ¢t > 0.
j=1

Accordingly, (1.1)—(1.3) reduces to

(1.6) Opi +V - (pivi) = 0,
(17) sz = —Zbijpipj(vi —’Uj),
j=1
i = 1,...,n, which is the usual form of the Maxwell-Stefan diffusion system. We

emphasize that assumption (1.5) is made to simplify notation. One may instead
assume that the initial data satisfy p;o(z) > 0, and m(z) := Z?:l pjo(x) is a bounded
function, and then all arguments are extended with the obvious modifications. The
theoretical results are based on the hypothesis p;o(x) > 0. Nevertheless, for initial
data where some component touches zero, a scaling limiter developed in [21, 22] can
be used to prepare positive initial data for the scheme, and such a treatment does not
destroy the scheme accuracy (this point is detailed in section 2.2).

The system (1.1)—(1.3) can be obtained as the high-friction limit of the multicom-
ponent Euler equations [13]:

Owpi +V - (pivi) = 0,

(L8) pi LOF(p)

Ot(pivi) + V- (pviv;) + ;V 5p;

1 n
= > bijpipi(vi —v;),
j=1

when the total momentum (or the mean velocity) is zero. The energy functional F(p)
is given by

(19) szzéﬁmmwmm.

It was proved in [13] that, when the total momentum is zero, the system (1.8) con-
verges to (1.1)—(1.3) in the high-friction limit ¢ — 0. Moreover, (1.1)—(1.3) can be
regarded as a gradient flow for F(p).

This raises the following question: Given densities p° = (p?)™;, p' = (p})™,,
with >, p? =3, p} = 1, consider the minimization problem

1 n
1
1.10 min // —biipipi(vi —v;)idxdt
( ) (pv)EK Jo Tdi;14 ij 0 PJ( J)
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over the set

K:{P:(pl,.,_’pn)7v:(1}17.,.,1}n) : atpi+V‘(piUi):O, i:17"'7n7
S oy =0, pi0.2) = (), (L) = p3<x>}.
j=1

The problem (1.10) as the minimum of the frictional work is motivated by the well-
known characterization of the Wasserstein distance in a one-component fluid obtained
by Benamou and Brenier [1]. The study of this question will be given in a forthcoming
work. The minimization (1.10) and the gradient structure of (1.1)—(1.3) detailed in
[13] motivate us to use the work of friction as a building block for a numerical scheme
of variational provenance—in the spirit of the well-known Jordan—Kinderlehrer—Otto
(JKO) scheme [15]—in order to exploit the gradient structure of the Maxwell-Stefan
system. This connection is pursued in the present work.

In this paper, we develop a new implicit-explicit finite difference scheme for the
Maxwell-Stefan system (1.1)—(1.3) and prove that the scheme is energy dissipating
and positivity-preserving, for arbitrary time step and spatial meshes. The scheme in
one dimension takes the form

Pk+1 — P k. k41
1.11 TPy (Pt 0
(1.11) At + dn(pivi™) =0,
(1.12) § bigph (v T — vt = Dy log pi ! — § P Dy log phT,

Z] 1p]

j=1

(L13) LIRS

(for the d-dimensional case the reader is referred to section 4). The subscript ¢ refers
to the ith component and takes values i = 1,...,n, while the superscript k refers to
the kth time step. The equations (1.11)—(1.13) are computed at spatial grid points
{orl+ % of staggered lattices in a way specified in section 2. The parameter At is
the time step, and h is the mesh size. The operators d, Dy are central difference
operators, in one dimension, defined by

_ Jiwv12 = fie-1y2

(1.14) (dnfi)e = ; , M7

h

(Dnfi)eyr =

where £ = {1,...,N}, N is the number of mesh intervals, and we set (fi)[+

L(fie + fies1)-
The scheme is induced by a spatial discretization of the constrained optimization
problem (cf. (3.1))

(1.15) mjn{/w At Z b”plpj\uz—u]\ dac+/ ij log p; dac}

K L]l

D=

where the set K is defined to be

7 . Pi — pz
K—{(p,v).p>0, NtV pfu;) =0, Zpiui—()}
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The approach is motivated by the JKO scheme [15] and the Benamou-Brenier inter-
pretation of the Wasserstein distance [1], the latter suggesting an alternate variational
scheme for nonlinear Fokker—Planck equations espoused in [20]. The novelty here is (i)
that the limiting problem is a coupled parabolic system and (ii) that the mechanical
friction is a complex interaction among the different components (see [2]) that is only
captured in bulk by the dissipation functional (1.10). Nevertheless, this suffices for
capturing the detailed interaction.

We show that there exists a discrete energy function which dissipates along time
iterations and that the numerical solutions for the densities generated by the scheme
(1.11)—(1.13) preserve the positivity of the initial densities. The proof uses variational
arguments and is based on the reformulation of the finite difference scheme as an
equivalent optimization problem. An interesting feature is the role played by an
elliptic operator Lg defined in (2.4) and the induced dual norm (2.5). The reader
familiar with the Wasserstein distance will recognize analogies with duality induced
norms [23, 25, 24] appearing in the theory of nonlinear Fokker—Planck equations and
induced by the metric tensor generating the Wasserstein metric.

A large literature [2, 3, 9, 10, 11, 16, 17, 18] employing diverse techniques has
provided a basic theory for the Maxwell-Stefan system (1.1)—(1.3). The existence
of global nonnegative weak solutions in L2([0,00); H'(T?)) was established in [18],
while local existence of strong solutions is shown in [2, 11]. Explicit finite difference
schemes were developed in [3, 9, 10]. The explicit scheme in [3] was formulated based
on rewriting equations (1.6)—(1.7) with the first n — 1 components. The scheme is
easy to implement; a stability condition on the time step relative to the square of the
spatial mesh size is required, and no energy stability property is proved. The scheme
in [9] is semi-implicit and linear, and it was shown to be mass conservative, but
the energy stability of the scheme is not addressed. A fully implicit Euler—Galerkin
scheme is developed in [17] for the Maxwell-Stefan system coupled with a Poisson
equation, which is positivity-preserving, energy-stable, and convergent. Recently, in
[5], an implicit finite volume scheme was proposed for a cross-diffusion system similar
to the Maxwell-Stefan system. A nonlinear cutoff function was used to approximate
the values at cell interfaces to ensure nonnegativity of solutions. Both schemes in [17]
and [5] incorporate the entropy structure to ensure the energy-stable property. The
scheme proposed here is positivity-preserving and entropy-decreasing and provides a
connection between the finite difference scheme and a variational minimization prob-
lem. Both the energy stability and the positivity of solutions follow directly from
the property of the variational structure. The approach is quite robust, and we ex-
pect that, once the theory for the continuous problem (1.15) is further developed, it
will lead to theoretical results for more complicated schemes such as finite element
methods.

Recently there has been a growing interest in developing energy-stable and/or
positivity-preserving numerical schemes for nonlinear diffusion equations [6, 7, 12,
14, 21, 22, 26]. Positivity-preserving schemes for the Poisson—Nernst—Planck systems
were developed in [21, 22], where the maximum principle was used to show the non-
negativity of the scheme. A series of diffusion equations satisfying a gradient flow
structure was considered in [6, 7, 12, 26], where energy-stable schemes were developed
for the Cahn—Hillard equations, with positivity-preserving properties proved in [6, 7]
via optimization formulations. The technique was also used in [14] to prove the posi-
tivity and energy stability properties for a scheme associated to the quantum diffusion
equation. Our approach extends these works to a setting of systems that are gradient
flows by exploiting the frictional dissipation natural to the Maxwell-Stefan system.
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The structure of the paper is as follows: in section 2, we give the details of the
numerical scheme and show that it conserves the total mass and is consistent. In
section 3, we first prove that the numerical scheme is equivalent to an optimization
problem, in Theorem 3.1, and then show the energy stability and positivity-preserving
properties in Theorem 3.6. We provide the multidimensional scheme in section 4 and
show that similar properties also hold. Finally, we give some numerical examples to
verify the proved properties.

2. The scheme.

2.1. Notation. We use notation from [27]. We define the following two grids
on the torus T = [0, L] with mesh size h = L/N, where N is the number of mesh
intervals:

h 3h
(2.1) Ci= {h2h,...,L}, 512{272’,__7(N_%)h}_
We define the discrete N-periodic function spaces as

Cper ={f:C—=R}, & ={f:&—=>R}L

Here we call Cper the space of cell centered functions and &, the space of edge centered
functions. We use f; to denote the value of function f at grid point x, = ¢h. We also

define the subspace éper = {f : f € Cper, Zévzl fo= O} . We can extend the above
definitions to vector value functions. For example, we define CJ, by

Cger = {f:(fla'“vfn):fi eCpem ’L'Zl,...,n},

The spaces &7 Cn  are defined the same way. The discrete gradients Dy, and dj, are

per’ “per

defined in (1.14). We define the average of the function values of nearby points by
. . foor + fo_1

R I A e L

The inner products are defined by (f,g) = hZévzl fegeVf, g € Cper and [f,g] =
hZévzl Jor19041 V), 9 € Eper- They can also be extended on Cf,, and £, with

per per
n N n N

(F,9) :=hY > fiugie V9 €Chrs [f,0):=0D Y firr1Giers-
=1 4=1 =1 4=1

We also take the following notation:

N N
(f)==hY fo f€Coers [[1:=0D frrz, [€&Eper
=1

{=1

Suppose f € Cper and ¢ € Eper; the following summation-by-parts formula holds:

(2.3) (f,dno) = —[Dnf,¢].
Next, we introduce a norm on che_rl. Let ® be an (n—1) x (n— 1) symmetric, positive
definite matrix, with ®;; € &per, 4,7 = 1,...,n — 1. We introduce the operator L& on

€1 defined by

per

n—1
(24) Lof = —dh(q)th) =1 - Z d/h(q)ithfj) vVf e Coge_rl.

Jj=1
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Since ®;; are nonsingular for any point on &£, Lg is invertible on Cgerl (by the Lax—

Milgram theorem). For any g € C;Lerl, let f be determined by g = Lg f; we define the
norm

(2.5) lgll%_+ == [Dnf, @D f].

2.2. The scheme. The scheme (1.11)—(1.13) is written in the component form
as follows:

k1
(2.6) Pie —Pig 1 (% K+l sk k1 )7

At = _E pix@révi,é-i-% Pilfévi’ _1

RS B
Zb”pjlf-ﬁ-zz Vigry " Vierd)

log pf 7}, — log pit? 1 k
_ : +1
= - — Zp or1(log iy, —log o),
h hZ] 1pge+—] 1 g 3
n
oFFL

Z Jf+* j€+1 =0,
subject to initial data
(2.9) Py =piolze), i=1,...,n, £=1,...,N,

if pijo(xe) > 0; otherwise if p;o(zs) = 0 for some ¢ and Zév:l pio(ze) > 0, we will
impose a scaling limiter so that the obtained on,e satisfy three properties: (i) /’?,12 are
positive for all ¢; (ii) mass is preserved in the sense that

N N
Z P?,e = Z pio(ze);
=1 =1

and (iii) accuracy of the scheme is not destroyed. For instance, it suffices to have
maxy |p? , — pio(2z¢)] < O(h”),7 > 2. To achieve this, we use the limiter in [21, 22]

where the above three properties are rigorously proved. For Zé\;l pio(ze) = 0, we
simply remove this component from the system.

Next we study the conservation properties of the scheme. First we show that, at
each grid point, the total density is preserved.

LEMMA 2.1. Suppose the solutions to the scheme (1.11)~(1.13) are positive for
k > 1. Then the total mass at each grid point is conserved; i.e.,

n n
(2.10) prj:Zp?’g, £=1,...,N and k > 1.
i=1 i=1

Proof. From (2.6) and (2.8), we have for £ =1,...,N

DTS RN SR
_szé (sz€+2 ’Lf+ Zplsz fzrl >:prz
=1

i=1
This holds for any k, and hence (2.10). d
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Next, we show that for each component, the mass is conserved, i.e., the summation
over grid points is conserved. The following lemma holds.

LEMMA 2.2. Suppose the solutions to the scheme (1.11)—(1.13) are positive for
any k > 1. Then the mass for each component is conserved; i.e.,

N N
(2.11) Zpﬁe = Zpg@, i=1,...,n, k>1.
(=1 =1

Proof. From (2.6), we get

N Ar Y N
E+1 _ k+1 k+1 _ k
Zp DI TEED D Ny S st B Sy
=1 =1 =1
Iterating in k, we obtain (2.11). |

2.3. The scheme in n — 1 components. We consider first the solvability of
the algebraic system (1.2)—(1.3) under the hypothesis b;; > 0. Since summing the
equations (1.2) in ¢ = 1,...,n equals zero, these n equations are not independent.
One easily checks that for p; > 0 the homogeneous system

=D bigpi(vi —v;) =0
j=1

has only the trivial solution v; = --- = v,. Hence the null space has dimension one.
The solution of (1.2)—(1.3) is given by the following lemma.

LEMMA 2.3. Let p;(z,t) >0, 2 € T4t > 0,i=1,...,n, and suppose that b;; > 0
and bij = bj; fori#j andi,j=1,...,n. Then the algebraic system (1.2), (1.3) has
a unique solution that is explicitly expressed by

n—1
PiVi = — Z Dijv(logpj - IOan)v i= 17 s, — 1a and PnUn = — Z PiVi,
j=1 =
where
. ij — i y L)y=1,...,n—1,
2.12 Dij = Dij(p Q%TB i i =1 1
s,m=1
and
(213) Bij = Blj( 51] Z bzmplpm - bijpipja
m=1
1 1
(2.14) Qij = Qij(p) = ;%‘ +—,
(2.15) QY = Qi__jl(p) = 0;jpi — %

For p > 0, B is diagonally dominant and thus invertible. We note that Q7 = @Q and
that by a direct computation QQ~! = Q71Q = I, where Q! is determined by (2.15);
hence, @ is also invertible. The proof can be found in [13] or [28]. A similar formula
is established for the numerical scheme (1.11)—(1.13).
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LEMMA 2.4. Assume b;; > 0 and b;; = bj; fori# j and i,j =1,...,n. Suppose
pf’g >0 fori=1,...,n, {=1,...,N. The solutions of (1.12)—(1.13) are calculated
by the explicit formula

n—1
(2.16) proftt = =3 " DEDy(log o —log pitt), i =1,...,n— 1,
j=1
and pEoktt = — S kRl Here
n—1
(2.17) D= > (@Y (Bon (@),
s,m=1

and ij = Qi (p"), szj = By (p"), (Qk)fjl = Q;l(ﬁk) are the corresponding matrices
(2.13)(2.15) with p; replaced by pF.

Notice that formulas (2.16) hold at each grid point ¢ + 1/2 = 3/2,...,N/2 +
1 (or 1/2); to simplify the notation, we do not write the subscript £ + 1/2.

Proof. Multiplying (1.12) by p¥ gives

~k n
i Dulog ™ = <= 37 Dulog ! Z bigpr o5 (vl T — o),
s=1 pS j=1
which is rewritten as
(2.18)
3 <6ijﬁf - ank> Dplogphtt=—>" (% > bimprpl, — bijph p]> A
J=1 s=1 ps j=1 m=1

Setting Efj = Bij(p") = 6i5 > 0 _ bimpFpk, — bij[)f[)f, the right side of (2.18) is
expressed as

(2.19) ZBZ’g f“ ZB{; f“ BE yk+t = ZB ’f“ TAand)

Using (1.13), we get

n—1 n—1
1
_ZB k+1 k+1 ZB ( k+1+p ﬁlﬁq 11;+1)

m=1
1
(2.20) = —ZB Z <Ak 8jm + Ak>ﬁfn = Z BEQ i ont"
Pm p jim=1
where Qfm = Qjm(p") = ﬁl djm + =r. By direct calculation it is shown that Q
invertible with inverse (Q ) = (0P f - %) The left side of (2.18) is rewritten
s=1P
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fori;énas

pkpk
( hr — S~ jp )Dh log pi ™!

S

D IOg pk:+1

n—1 ~k no Ak n—1 Ak
Z(Qk) 1D, log pk'H Pi (Zj:l Pj — Z -1 PJ)
Jj=1 Zg:l ps

n—1
= > (Q")5;' Di(log pi ™ —log pkt1).
j_

This leads to expressing (2.18) as

nZl(Q’“) Dy (log pi ™ —log plt) = Z BEQb. kit
j=1 jm=1
Since B* and Q% = (Qk)T are invertible, we conclude that (2.16) holds. ad
We adopt the notation
(2:21) f=(eees fu) for f= (1o f)-

With Lemma 2.4, the scheme (1.11)—(1.13) can be written as

“k+1 _ ~k
ey A k LOFh 141
Al = dh(DDh< 8~(,0 )]s
where

(2.22) Fy, = Fy(p <szlogpz>+<<l—ripi> log <l—ipi>>.

2.4. Consistency. Let (P,V) be the exact smooth solution of the equations
(1.1)(1.2) in the space P,V € C?,([0,T] x T). The values at grid points are P, :=
Pi(xg, kKAL), Vl-’fe := Vi(xy, kAt). The local truncation errors are defined by

P_k?+1 _ Pk:
1 7 kyrk+1
e —————a P V;
I A NG A}
n n
7'1.2 =Dy log Pk+1 E Dy, log Pik+1 + E bijpjk(‘/ik"'l — ij""l)’

j=1 i=1 j=1
n
AT
i=1
We have the following lemma.

LEMMA 2.5. Suppose the solutions (P, V') to the system (1.1)~(1.3) are smooth in
time and space, with P,V € C’gm and P;(z,t) > 0 for x € T and t > 0 and for any
i=1,...,n. Suppose (P, V) satisfies the condition (1.4). Then the local truncation
errors satisfy

IT8el, |72 gy |7'22+%| < C(At + h?).

Here C > 0 is a positive constant depending on (P,V).

The elementary proof of this lemma is provided in the accompanying supplemental
file (supplement.pdf [local/web 227KB]).
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3. Optimization formulation.

3.1. Formulation via an optimization problem. In this section, we give
an optimization formulation of the scheme (1.11)—(1.13). We recall that the system
(1.1)—(1.3) can be written as the gradient flow of the energy functional (1.9); see [13].
Consider the minimization problem

1 1
k+1 . 2 k k 2
= arg min - *b"O'})' w; — W; d.%""Fp 5
g /)%0,11) At /Tdij 14 1 ‘7( ! J) ( )

with F(p) as defined in (1.9), subject to the constraints

n
pi—p¥+ V- (pFw) =0, i=1,...,n, and prwi:O.
i=1

The idea is to calculate minimizers of the free energy penalized by the work consumed
by friction. The variational scheme is related to the JKO scheme [15], an analogy due
to the connection between frictional dissipation and the Wasserstein distance offered
by the Benamou-Brenier interpretation [1] of the Monge-Kantorovich mass transfer
problem. There is, however, one important difference, as the frictional dissipation is
more elaborate in the multicomponent mixture situation.

The minimizers of the above constraint problem can be calculated by considering
the min-max augmented Lagrangian

1 = 1 .
minmax L(p, w, a, B) :—/ Z fbijpfpf(wi — w;)?dx +/ ij log p; dx
At Td i j:1 4 Td j:1

pw B

n

+ /w aipfwidx—k/w Z (@'(Pz‘ —pf) = VB (waz)) dx.

i=1

Computing the variational derivatives gives

oL
=0 implies logp; +1+ 6; =0,
opi
5L o 1<
Suw; — 0 implies A JE::I bijpfpf(wi —w;) +apf — pFVB =0,
oL ~
Sa =0 implies ; pfwi =0,
oL
55 =0 implies pi — pf +V- (pfwl) =0.

Let (pf’“, wf“) be the minimizer of the variational problem. Summing the second

of the above equations over the index i and using the first implies

n n
ad pb+> piViegpitt =o0.
=1 i=1
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Taking v; = w;/At, we get

k+1
Pi — —Pi k, k+1
At +v (pt z ) 07

—Zbupzpj P =it = pfViog pitt —

Z pk k+1 _

The latter corresponds to an implicit-explicit discretization in time of the system
(1.1)—(1.3).

Next we will give details of the optimization formulation for the fully discretized
scheme (1.11)—(1.13).

We prove the following theorem.

k k+1
7 pyVlogp; ™,
Z] 1p§; ’

THEOREM 3.1. Assume bjj > 0 and bj; = bj; fori# j andi,j=1,...,n. Given
pF € Cper with p* > 0, there exists 5o > 0 such that p*™' > 0 is a solution of the
numerical scheme (1.11)—(1.13) if and only if it is a minimizer of the optimization
problem

(3.1) p’“l:arg)reni{ri J—@ mep] —w;)*| + Fulp) ¢
’ i,7=1

where Fy(p) = (31—, pilog pi) , and

K&{(p7w): pECper’ E‘S‘pera pz€>5 Pzi*ngdeh( ’wl)g—o

szuf Wi gy 1 =0 and Zpi,g:1W:1,...7n, ‘v’le,...7N}
i=1

for any 0 < § < 4.
We first prove a lemma that will be used later in the proof.

LEMMA 3.2. Suppose @ is an (n—1) x (n—1) symmetric positive definite matriz
with ®;; € Eper fori,j=1,...,n—1. Suppose ¢ € Cgerl is bounded in L*° satisfying
o)L < M, where ||+ || is deﬁned by

[pllLe := max [¢; .
i=1,...,n—1
=1

Then the following estimate holds:

_ CcM _1 1
1£5" ¢l < T—h"F(n - D)2,

min

where C' > 0 is a constant independent of h, and A\, is the minimum of all eigen-
values of ®:

Amin = , minN {)\g : \¢ is the eigenvalue of (<I)ij7£+%)(n_1)x(n_1)} .

=1,...,
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Proof. Since ||¢||p= < M,

lllz2 ==h >

(P=h Y IMP < (n—DANIMP = (n - DLIMP.

Setting g = ¢ € C"!, and f = Lz'g in (2.5), we get

H¢||L 1 = [Dnf, @Dy f].

per ’

Since @ is positive definite, so its minimum eigenvalue Apnin > 0, we get

Aminl|Drfll7> < [Dnf, ®Dpf] = —(f,dn(®Dpf)) = (f, ) < || fllr2] ¢l L2-

The use of the discrete Poincaré inequality gives || ||z < Cp||Dp f||rz. Therefore, we
get

1D fllzz < +

2@l

We can use the inequality ||f||~ < Cph=1/2|Dy,f| 12, which follows from || f]|2~ =
maxi—1,..n f£ < Yoiq f& < h7Y|f]|32 and the discrete Poincaré inequality. Applying
this inverse inequality leads to

1 02 L. . CM )
1l < CPh™=|Dnflire < 5 P h=3LiM(n—1)% < him—1)3. O

min Amin

Proof of Theorem 3.1. The proof is divided into three steps. In the first two steps,
we prove that the optimization problem (3.1) has a unique interior minimizer, and,
in the last step, we prove that this minimizer is equivalent to the solution of the
numerical scheme (1.11)—(1.13).

Step 1. FExistence of the optimization problem. First we show existence for the
optimization problem (3.1) for any 6 > 0. Notice that the objective function J in
(3.1) is convex in w, but it is not strictly convex. However, we can rewrite the
optimization problem by using the first n — 1 components of w and get an equivalent
convex optimization problem. We introduce

W= (Wy,...,W,), Wi=prw;, i=1,...,n,

and so S| W; = 0. We adopt the notation of (2.21) and define W = (W1,..., W,_1).
We have the following lemma.

LEMMA 3.3. The following formula holds:

(32)  I(W):=

DN | =
O
Sy
<
=
=
=

> " biiptpf (wi — w;)? = WT(Q
=1

For pF > 0, the function I : R"~' — R* is strictly convez.

Proof. By the assumption that b;; is symmetric, the following formula holds:

= Z szﬁfﬁ] szzbuﬁfﬁ] J)

1]1
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Recalling (2.19), (2.20), we also have

n—1
szmm (wi —w;) = > BEQE, pmwnm.

Jjm=1
Therefore,
9 Z bl]ﬁfﬁ] ])2

’le

n—1

_sz Z B jmﬁmwm

J,m=1
n—1
:sz Lz: B mpmwm Zpéwb Z ( ZB ]mléfnwm>
jym=1 s=1 pn jm=1
- Z ( + 1) Qo
s,i,5,m=1 ’D

= Z ﬁEwSQfs Q]mpmwm = WT(Qk)TBkaW‘

s,t,7,m=1

Notice that B* is a symmetric strictly diagonally dominant matrix with positive
diagonal entries since p¥ > 0 and thus is positive definite. Because of this and since
Q" is nonsingular, we have

(Qk)TBka is positive definite.

Therefore, (3.2) is a convex function of . |

We also need a lemma on the convexity of the discretized energy function Fj(p)
defined by (2.22) that incorporates the constraint > ., p; = 1.

LEMMA 3.4. The energy function F, = Fp,(p) is a convex function of p.

Proof. Considering the function

n—1 n—1

F=2 pilogpi+pulogpn, pn=1-) pi

i=1 i=1

we have
af 0% f 1 1
Opi og p; + ( 0g Pn + ) 0Og P 0g Pn, 5/)1-5)/)]- Py ij T o

Since, for any z € R"~! and z # 0,

n—1 1 1 n—1 1 ) 1 n—1 2
Z apl > (maiﬁp) Zizj:ZEzi o ;zz >0,

i,j=1 i=1

the function f is a convex function of p. Therefore, Fj,(p) is convex in p. O
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Using Lemmas 3.3 and 3.4, we deduce that the optimization problem (3.1) is
equivalent to

(33) win {7= 50 [FT@7BQT] + R
(5 W)eKs 248
where
B _ ~ n—1
Ks = {(,37 W): peCia  We&llipie>0, > piy<1l-5and
1=1

pi}g—pie—‘rdh(Wi)e:OVi:17...,n—1,f=1,...,N}.

Due to the above lemmas, the objective function J is a convex function of W and
p (note that (QF)TB*Q* is a fixed matrix determined from the previous step). The
domain Kj is affine in W, and it is convex and bounded in p. The optimization
problem (3.3) has a unique minimizer according to standard optimization theory [4].
Since the problems (3.1) and (3.3) are equivalent, there also exists a unique solution
to the optimization problem (3.1).

Step 2. The minimizer does not touch the boundary. Next, we show that there
exists a constant dp > 0 such that the solution of the optimization problem (3.1) could
not touch the boundary of Ky for § < &y. Recall that on the set K,

pi = pf + dn(W3) = 0.
Hence, if we set

W =D"Dnf, g=p—p"eCrit

per >

where f e Cnlis uniquely defined by the first equation above, then, according to

per

the definition (2.5),

(3.4) (W7 (@47 BEQW | = (D f)" D Duf] = 17— 3113
D

Therefore, the optimization problem (3.3) is equivalent to

. . .
(3.5) min {J = oaz P~ p’“lli;ﬁ + Fh(P)}
P 8

over the set

n—1

f((;:{ﬁ:[)—ﬁkeccgerl;pi,gZé, ZWg1—5\7@:1,...,n—1,z:1,...,N}.

i=1

Recall that the notation p = (p1,...,pn—1) stands for the vector of the first n — 1
densities which are computed at the grid points [ = 1,..., N. The density p,, appears
in the formulation (3.5) only indirectly through the constraint (1.5). Also, p — p* €
Clo! means 205:1(10@@ - /)Ze) =0foranyi=1,...,n— 1.

Let p* € Kj be a minimizer of the optimization problem (3.5). We will show that
p* does not lie on the boundary of Kj. If it lies on the boundary,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/02/22 to 83.137.212.157 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SCHEME FOR MAXWELL-STEFAN SYSTEM 2335

(i) either pj, = 4§ for some i = 1,...,n — 1 at some grid point ,

(ii) or Z;:ll Py =1— 3 at some grid point /.
First consider the case (i). Suppose that p* touches the boundary at the grid point
{y for the ipth component, that is,

(3.6) oty = 0.
We calculate the directional derivative of the objective function J at p* along the
direction {v : v € RO*=D*N1 with p* + sv € Ks as

(3.7) iJ(ﬁ* + sv)

ds =0
=L (s — PR+ B+ )
ds|,_, \2At Con h
1 n—1 n—1
=At<£Ei(ﬁ*—ﬁk)7V>+Z<logpf+1—10g 1= p} _17Vi>
i=1 j=1
1 n—1 n—1
N <£gi(ﬁ* - ﬁ’“)w> +> < logp; —log | 1= p} ,ui> :
i=1 j=1

Here we use a contradiction argument, for which it suffices to find a direction v such
that the above directional derivative is negative. The first term on the right-hand side
of the above equation is bounded by Lemma 3.2, but the second term may become
sufficiently negative as p; = d or 1 — 22:11 p; = 0, at some point with a proper choice
of v. Based on this we argue in two cases respectively.

We divide the first case further into the following two cases:
(a)

n—1

*
Z Pi.ey =
1=1

)

N |

(b) )
- 1
=1

Case (i) and (a). Suppose {p; , 327! achieves its maximum at the 4;th compo-
nent, while {p} ,}/, achieves its maximum at ¢,. Define v by
1 fori:io,EZEO,
-1 fOI‘i:il, 8:507
Vie = -1 fOf’i:io, £:€1,
1 fOfi:’il,g:fl,
0  otherwise.

Taking a variation in this direction, (3.7) becomes

38) ~L 1 + o)

hds s=0
1 —1/~% =k 1 —1/~ ~k 1 1/~ =k
= E(‘Cﬁk (P - p ))io,éo - E(ﬁﬁk (P - p ))ihfo - E(‘Cﬁk(p - P ))ioll
1 -1/~ ~k *
+ 5L (7" = 0"))is ey +10g 0t 4y = 10g p}, 4, — log pi, 4, +10g pf, 4,
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Note that the variation v;; along which we calculate (3.7) is selected so that the

contributions of the terms log (1 - Z?;ll pj) cancel out.

n— 1

Since {p; éo achieves its maximum for the i;th component, in the case (a),

n—1 4 1
>y P 0, 7§1mp1es

3.9 P ———
(3.9) Pinto = 50 — 1)

Since {pj, Z}e | achieves its maximum at the grid point ¢; and p* — p* € Cpcr ,

N

m

(3.10) Pig sty = me, = pro,z Z N
NI

where m is set to be m := min;eqy. 13 {h Zé\rzl pﬁg}. Moreover, for p* € Ky the
constraint 37" Pt <1 -9 implies

(3.11) i, < 1.

Next, we show that for § satisfying

m 1
. <mind — ——
(3.12) 5_mm{2hN’4(n—1)}’

if s > 0 is selected sufficiently small and v is as above, we have p* + sv € K. Indeed,
p:(),eo +S:5+S Z 5a p;,h +s Z 5+57

s> 0,

_526, p;héo—SZm— =

. m
pioll -8 Z hN

n—1

n—1 n—1 n—1
Z(Pf,e(, + Svig,) = Z Pigg <106, Z(P;zl + Vi) = Z Pie, <196
i=1

i=1 =1 i=1

imply that if ¢ satlsﬁes (3.12), and for s > 0 small, then we have p* + sv € K;.
Since p* — p € Cper and ||5*|| =, ||p¥||z~ < 1, we can apply Lemma 3.2 to (3.8)

with ¢ = 5* — p* and ® = D¥ and use (3.6) and (3.9)~(3.11) to get

1d 8C' 1 1 1 m
——J h™2(n—1)% +logd — log — —log — +log 1.
nas’ 7Y LSO A (n=1)% +logd —log 5oy —log 775 + log
Here A\F,  is the minimum eigenvalue of D¥. Taking
. m — k h™ 3 (n— 1)2 m 1
3.13 9o < _ AmmA - -
(3:.13) O_mm{4(n—1)hNe 2hN’4(n—1)}

we have, for § < dg, p* + sv € Kjs and

1d
(3.14) Ed—J(p + sv) < —log2 < 0.
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This contradicts the assumption that §* is a minimizer, and so the situation (a) cannot
oceur.
Case (i) and (b). Again p;, ¢, = 0 and suppose now that {p} ,};_, achieves its
maximum at the ¢1th grid point. We take
1 fOI‘Z'Zio,f:gm
Vie = -1 fOriZio, Ezﬁl,
0 otherwise,
and note that (3.10) still holds in the present setting. Using (3.6), (b), (3.10), and
the inequality 1 — 37} pig, <1—(n—1)d <1, we obtain

1d
Edft]( + SV) o
1 n—1
= E(ﬁ_ﬁi (ﬁ* - ﬁk))io,fo + logp:o,éo — log (1 - Z p:,éa)
i=1
1 —1 /=% ~k * = *
= 7 Lo (0" = 7")igey —logply g, +log (1= ol
i=1
40 1 1
< “2(n—1)2 Z
< mmAth 2(n—1)2 +logd — log log W + log 1
4C 1 1 m
< “I(n-1)2 - :
< mmAth 2(n—1)2 4+ logd — log SN
Taking
fm et m
. < Amin &t _
(3.15) 0o < min { e SR
leads to p* + sv € K5 and
1d
——J(p* + sv) =—log2 <0,
h ds s=0

which contradicts the hypothesis that p* is a minimizer; so the situation (b) cannot
occur.

Case (ii). Assume there exists a grid index ¢, such that

n—1
(3.16) > pi,=1-4,
=1

and suppose the maximum value of {p} lo} 711 occurs at the index ig. Then (3.16)
implies that, for 6 < 1/2, (3.9) holds; that is,

1-9§ 1

3.17 X > > .
( ) p“”zo_n—l_Z(n—l)
R S, — — pk
Setting ppi, = Mini=1,...n, pM > 0, we have ZZ 1 pM =1 Pne < 1-piin
(=1,...N
Since p* — p* € Cgerl, we have
N n—1 N n-—1
k k
Zzpléf Zpi,ZSN(lipmin)'
=1 i=1 (=1 i=1
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Suppose {Z?’:_ll P Y| achieves its minimum at the grid point ¢1. Then using (3.16)
it follows for § < 1p% . that

n—1 n—1

* 1 *
DornSwT Y D rh
i=1

¢=1,,,,,N =1
0£00
N n—1 n—1
1 * *
i (X8 o)
0=1 i=1 i=1
< Nl—l (N(l - pfnin) -(1- 5))
ko _
<1— Npmin g
- N -1
2N —1
1 <1— ko

Taking now

-1 fOfi:io, fzgo,
Vie = 1 forizio, f:£17
0 otherwise

in (3.7) and using (3.16), (3.17), (3.18), Lemma 3.2, and the inequality pj , <1-4§ <
1, we obtain

1d
=75 + sv)

hds =0

n—1
1 -1/~ ~ * *
— g (Lpn (8" = 8" io.to =108 9], 4, +log (1 -y m—,zo>

i=1

n—1
1 _ ~k ~ * *
+ E(ﬁﬁi (p - pk))ioafl + Ingio,él - log <1 - Z pi,&)
=1

4C 1 1 1 2N —1
<——h2(n—1)2 —log——— +logd + log1 — log ——pF . .
— AﬁunAt 2(’”’ )2 Og 2(n_1) + Og + Og Og 2(N_1)pm1n
Taking
, (2N —1)pk. S h 3 m-1)7 1 1
1 0o < — TR o Ap At -
(3 9) 0 _mln{8<N—1)(n—1)e 72pm1na 4(7’L—1) )

we see that for § < §p the above inequality becomes negative. In addition,

Pfo,eofsszszfsa Pie, +8>0+52>9,

" = 2N —1
Y _s=1—-§—-5<1-9§ * <1-— 6 <1-9¢
;pu@o 8 §= ’ ;p17€1+5— N -1 ts<

imply that for § < &y the variation p* 4+ sv € Ks for sufficiently small s > 0. This
contradicts the assumption that p* is a minimizer, and thus case (ii) cannot occur.
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In summary, setting dp to be the minimum among (3.13), (3.15), and (3.19), we
conclude that (i) and (ii) cannot occur. Consequently, for ¢ < dg, the minimizer to
the optimization problem (3.5), or equivalently (3.1), does not occur at the boundary.

Step 3. The equivalence with the numerical scheme. Any interior minimizer p* of
(3.5) must satisfy

(3.20) <g‘;(ﬁ*), u> =0

for any v € Cogcjl which is its tangent space; i.e., (3.7) equals zero. Due to the arbitrary

choice of v, we get

1 —1 /% ~k * - * —
N Lon (0" = 0)i+logpy —log [ 1= p5 | =Ci,
j=1

with C;,i = 1,...n—1, being constants, from which it follows that fori =1,...,n—1,
p,.( - pk n n—1 o
= Lo (logp —log (1) 57 | | =D du(Di;Di(log g —log ).
j=1 ;o =l

By Lemma 2.4, p* satisfies the numerical scheme (1.11)—(1.13).

Conversely, assume p**! > 0 is a solution of the numerical scheme (1.11)—(1.13);
we can reverse the above calculation with C; = 0 to show that (3.20) holds, which,
together with the fact that the convex optimization problem (3.5) has a unique interior
minimizer, implies that p**! is also the minimizer of (3.5), or equivalently of (3.1).0

Remark 3.5. The assumption (1.5) is not necessary in the above proof. Suppose
> i=1 pjo(x) = m(x) > 0; the condition is discretized as S py=myl=1,...,N.
The corresponding condition in the set K is replaced by Z?:l pie < mg—6. The
right-hand side of (3.7) is again bounded by Lemma 3.2, and the second term becomes
sufficiently negative when p;, = or my — Z?:_ll pi¢ = 0. The proof is divided into
similar cases. For example, for the case p; , = ¢ and Z;L_:ll Pi 4y = My /2, the terms
i, 0o = My /(2(n — 1)) and pf, , < my, and (3.8) is negative when § is small.

3.2. Properties of the scheme. The positivity-preserving and energy stability
properties of the scheme follow directly from Theorem 3.1.

THEOREM 3.6. Assume p° defined in (2.9) is positive; the solution of the numer-
ical scheme (1.11)—(1.12) then satisfies
1. (positivity-preserving) p* > 0 for any k > 1,
2. (unconditional energy stability) the inequality

(3.21) Fulp)+ 18" =72 < Bl

holds for any k > 1.

Proof. 1. Starting from pg, we apply Theorem 3.1 recursively to obtain

p* e K,
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for some constant 0 that is chosen for each step by the minimum among (3.13),
(3.15), and (3.19). This yields, for every k,

(oo}
€ () Ks, € Ko\{0},
k=1

so that p* > 0.
2. Since the solution of the numerical scheme (1.11)—(1.13) is the minimizer of
(3.5), we have

J(p"h) < J(p),
which is (3.21). 1]

4. Multidimensional case. The scheme can be generalized to the multidi-
mensional case, and similar properties can be established. Before we present the
multi-dimensional scheme, we introduce some notation following [27]. Consider two
multidimensional grids defined by

Cl:=Cx--xC, &, =Cx--xEx--xC,s=1,...,d,
d d

and the functions on them,

per = {f Cd - R}v gdg,per = {f ‘qu - R}? per = {f U gds — R} )

as well as the vector functions, (CL.,)" := {f (fl, cofn) fi€Clyi=1,...,n},
(&4 Ser) i =Af=(f1,..., ) fi € Eger, ; =1,...,n}. We also define the space

(Cgcr)n = fe( pcr) : Z fij:O,’L.:].,...,n

e{1,...,N}d
We use f, ... ¢, to denote the value of a function f at the grid point (1 = l1h,...,2q =
¢3h). We introduce the finite difference operators Dy, : Cper — g];C)ler and dh Eger
d
Cper
Jer, esqn,. 00— for  es . ea
Dufoytigi s = I :
and
d le,...,zw%,...,ed *le,...,zs-% ..... £d
dhfh,...,ld = Z h .
s=1
W d ¢ _ fer,. 0541, ed L1 gs g _
e also deﬁne for f € Chers for,.. oo 41, pa = == 5 ,s=1,...,d,
so that f et We define the inner products

per

:hdz Z filng vfag 6( pcr)n’

i=1 ¢e{1,... N}

n N
d
gl:=nh Z Z fistr oot dta9istytotd ot VI 9 € ( per)n'

i=1401,...0,=1
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The following summation-by-parts formula holds for any f € (CZ,,)" and ¢ € (%.,)™:

{f;dn¢) = =[Dnf, 9.

Next we define a norm on (CZ )"!

ber . Suppose ® is an (n — 1) x (n — 1) symmetric

positive definite matrix, with ®;; € Sger. We introduce the following operator:

Lof =—dp(®Dpf) = Zdh @D f;),

Jj=1

where the multiplication ®;;Dy, f; is taken elementwise on the grid points. For any
(Cger)"’l, let f be determined by g = L4 f; we define the following norm:

(4.1) lgll%_+ = [Dnf, @D f].

With the above notation, the numerical scheme for the system (1.1)—(1.2) is

k+1

(4:2) % +dn (Pt =0,

(4.3) Dhlogp’“rl 5 AkZp Dhlogp Zb”pj b+l _ ’-Hl),
z 1Pq j=1

(@.4) Zﬁf £

subject to initial data

(4.5) Py =pio(ze), i=1,...,n, £={1,..., N}

All properties proved for the one-dimensional case carry over to the d-dimensional
case. The following theorem holds.

THEOREM 4.1. Suppose p° > 0. The solution of the numerical scheme (4.2)—(4.4)
satisfies the following:
1. (Conservation of mass.) For k> 1,

ZP?,@ = Zpag forallte{1,...,d}"
i=1 i=1

and

Z pﬁzz Z p?’z foralli=1,...,n

Le{l,...,d}N Le{l,...,d}N

2. (Positivity-preserving.) For k > 1, p* > 0.
3. (Unconditional energy stability.) For k > 1, the following inequality holds:

Fu(p") + 115" ~ ﬁk_lllig}v < F(p"h),

where Fy,(p) := (3.1, pilog p;) -

The proof of the above theorem is based on the following.
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THEOREM 4.2. Assume b;; > 0 and by; = bj; for i # j and i,j = 1,...,n
Assume p* € (CZ,.)" is positive. Then there exists a constant &y > 0, such that

per
PPt > 0 is a solution of the numerical scheme (4.2)~(4.4) if and only if it is a

minimizer of the optimization problem

(4.6) PP = argmin { J = 4At mepsz —w;)?| + Fu(p) 7,
(p,w)€EKs i,j=1

where

Ks = {(paw): pEe (Cper)n’ w e (gger) P Pie 2 J, pzf_pzf'i_dh( wl>f =0,

n
sz Gtk g Wity itk 0y = 0, and Zpi,e =1

i=1

Vi=1,...,n, ve_(zl,...,ed)e{1,...,N}d,5_1,...,d}

for any 0 <6 < 4.
The proof of these multidimensional results is similar and is provided in the

accompanying supplemental file (supplement.pdf [local/web 227KB]).

5. Numerical examples. We numerically validate our theoretical findings us-
ing numerical examples in both one and two dimensions.

5.1. One dimension. We perform the simulation on the Duncan and Toor ex-
periment [3, 8]. We extend the domain from [0, 1] to [0, 2] by reflection to make the
solution symmetric on T = [0, 2], and the initial conditions are taken to be

0.8 for 0 <z < 0.25,
1.6(0.75 — x)  for 0.25 < x < 0.75,
p1o(z) = 0 for 0.75 < x < 1.25,
1.6(x — 1.25) for 1.25 < z < 1.75,

0.8 for 1.75 < x < 2,

p20(z) = 0.2,
p30(7) =1 = p1o(z) — p2o(®).
The parameters (bij)an are b12 = b13 = 1/0833, b23 = 1/0168
Since p1p(z) = 0 on the subinterval [0,75,1.25] and pso(x) = 0 on [0,0.25) U
(1.75,2], we reinitialize the data following the procedure described in section 2.2,
which we outline as follows.

For f; > 0, but f; = 0 for some ¢, we find a neighboring index set Sy such that
the local average

fo= ‘S‘ij>77a

JESe

with 7 being a small number less than O(h"),r > 2. Here |Sy| is the number of indices
for which f; > 0. We use f as a reference to define the scaling limiter

fi=0fi+(1—6)f foralljes,,
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Fic. 5.1. Simulation results at © = 0.72 (a) and the uphsll diffusion region pavaDpp2 < 0
(calculated with h = 0.001 in (b) and h = 0.0001 in (c)).
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Fic. 5.2. Minimum value (a), discrete energy (b), and mass (c).

where § = (f; — 1)/ fe. Such a limiter is positive and does not destroy the numerical
accuracy [21, 22].

When p; ¢ = 0 is modified by the above method, we also need to make sure
the total density Y., p;¢ = 1 is still preserved. Specifically, for all j € S;, we set
Ps.j = Ps,j — (Pi,; — pi,;) for some index s satisfying ps ; > 1. Here we take n = 10715
with mesh size h > 1076.

We first take the mesh size to be h = 0.01 and the time step to be At = 0.001 and
compute until ¢ = 2. The solution at x = 0.72 and the uphill diffusion zone defined
by peveDpps < 0 are plotted in Figure 5.1. The solution approximately reaches
equilibrium at ¢ = 2, and the uphill diffusion zone is almost the same compared to
the result in [3, 10]. Notice that here for any time step and mesh size, the scheme is
stable. However, for the scheme in [3, 9], At and Az must be carefully set to make
the scheme stable. For example, At < byzh?/2 was needed in [3] to make the explicit
scheme stable.

To verify the properties of the scheme, we plot the minimum value of p over
time, the discrete energy function Fp(p), and the total mass in Figure 5.2. It can
be seen from the figures that the numerical solutions are positive, energy-dissipative,
and conservative.

In order to compute the convergence order, we take At = 0.00001 and the mesh
sizes to be 32, 64, 128, 256, 512, and 1024. This small time step is taken so that the
numerical error is dominated by the spatial discretization. We compare solutions at
t = 0.01. The last solution with 1024 meshes is taken as the reference solution. The
errors are plotted in Figure 5.3. The figure shows that the scheme is approximately
of second order in space.
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Fic. 5.3. Numerical errors.
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Fi1G. 5.4. The numerical solution at x = y = 0.7 (a), the minimum value (b), and discrete
energy (c).

5.2. Two dimensions. We take the same (b;;) as in the one-dimensional exam-
ple and the initial data on T? = [0,2] x [0,2] to be

0.8 for x <0.25 or x > 1.75 and x < 0.25 or y > 1.75,
0 for 0.75 <z < 1.25 and 0.75 < y < 1.25,
1.6(0.75 —x) for 025 <z <075 and z <y <2-—uz,
P1o(TY) = 16(e—1.25) for 1.25<a< L75and2—z<y<a
1.6(0.75 —y) for 025 <y <075 andy <z <2—y,
16(y —1.25) forl25<y<l7and2—y<z<y,
pao(z,y) = 0.2,

p30(x,y) =1 — pro(x,y) — p2o(z,y).

The mesh size is taken to be h = 0.05, and the time step is At = 0.001. We calculate
for 500 time steps. The energy and minimum values are shown in Figure 5.4. We can
see that the minimum values are all positive and the energy is decaying.
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