
30

Competitive Algorithms for Online Multidimensional
Knapsack Problems

LIN YANG, University of Massachusetts Amherst, USA
ALI ZEYNALI, University of Massachusetts Amherst, USA
MOHAMMAD H. HAJIESMAILI, University of Massachusetts Amherst, USA
RAMESH K. SITARAMAN, University of Massachusetts Amherst & Akamai Technologies, USA
DON TOWSLEY, University of Massachusetts Amherst, USA

In this paper, we study the online multidimensional knapsack problem (called OMdKP) in which there is a
knapsack whose capacity is represented in< dimensions, each dimension could have a di�erent capacity.
Then, = items with di�erent scalar pro�t values and<-dimensional weights arrive in an online manner and
the goal is to admit or decline items upon their arrival such that the total pro�t obtained by admitted items is
maximized and the capacity of knapsack across all dimensions is respected. This is a natural generalization
of the classic single-dimension knapsack problem and �nds several relevant applications such as in virtual
machine allocation, job scheduling, and all-or-nothing �ow maximization over a graph. We develop two
algorithms for OMdKP that use linear and exponential reservation functions to make online admission decisions.
Our competitive analysis shows that the linear and exponential algorithms achieve the competitive ratios of
$ (
p
\U) and $ (log (\U)), respectively, where U is the ratio between the aggregate knapsack capacity and the

minimum capacity over a single dimension and \ is the ratio between the maximum and minimum item unit
values. We also characterize a lower bound for the competitive ratio of any online algorithm solving OMdKP

and show that the competitive ratio of our algorithm with exponential reservation function matches the lower
bound up to a constant factor.
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1 INTRODUCTION
The online knapsack problem [15] (OKP) is a classical online optimization problem that has ap-
plication in a variety of domains such as cloud and edge computing [35, 53], online admission
control [11], online routing of virtual switches [38], and control of distributed energy resources
in smart grids [1–3, 42]. In the basic version of OKP, an online algorithm must make irrevocable
decisions about which items with di�erent values and weights to pack into a capacity-limited
knapsack without knowing what items will arrive in the future. The goal of the algorithm is to
maximize the aggregate value of admitted items while respecting the capacity of the knapsack.
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This problem has been tackled using the competitive online algorithm framework [8], and there are
algorithms [13, 15, 54] that achieve a competitive ratio of $ (log\ ) for the basic version, where \ is
a value �uctuation ratio between the most and the least valuable items. Further, it has been shown
that the competitive ratio has a lower bound of ⌦(log\ ) [54], hence the algorithms in [52, 54] are
optimal since their competitive ratio is tight.

Recently, the basic OKP has been extended to better capture properties of real-world applications.
In [13], an extended version of OKP, an online multiple knapsack problem has been considered
where there are multiple knapsacks with di�erent capacities, and divisible items could be packed
into a subset of knapsacks. Hence, the question becomes whether to admit or reject, and if admitted,
how to pack the item into a subset of knapsacks. In other work [44], the problem has been extended
to mechanism design settings, and game-theoretic properties such as truthfulness have been
investigated. Motivated by a cloud resource pricing application, the authors in [52] extended OKP to
a time-expanded version where the knapsack slots are expanded over time and items can demand
for a subset of time slots . In [51], the basic setting is extended to knapsacks with packing costs.
We will review the related work in more detail in Section 7.

In this paper, we study a di�erent extension of OKP, the online multidimensional knapsack
problem (OMdKP), in which there is a single knapsack whose capacity is represented by an <-
dimensional vector, and the weights (or sizes) of online items are<-dimensional. The goal of an
online decision maker is to pack the most valuable items so that the capacity of the knapsack in
each dimension is not exceeded. Note that this problem di�ers from the online multiple knapsack
problem in which �xed-weight items are packed into one or multiple knapsacks. In other words, in
the online multiple knapsack problem decisions must be made about both admission and allocation
whereas in OMdKP, only an admission decision is required. In Section 7, we further explore the
connections and di�erences between OMdKP and several other related problems such as online
multidimensional bin packing [10].
The multidimensional knapsack problem is of signi�cant practical relevance since it applies

to several application scenarios. As an example, consider a scenario in which there are di�erent
resources (e.g., CPU, memory, storage), and each arriving item (e.g., jobs or virtual machines) can
request more than one resource. Hence, OMdKP has been extensively studied in the literature [22,
23, 39, 47, 49]. However, all these works tackle the problem in an o�ine setting. In this work, we
focus on an online version where the goal is to design competitive algorithms for OMdKP.
The high-level idea of our algorithm design is to devise an online reservation (a.k.a. threshold)

function for admitting online items, a technique that is also commonly used in OKP. The exact
characterization of reservation function such that it leads to an online algorithm with bounded
competitive ratio, however, is a challenging task and highly depends on the problem setting and
underlying assumptions, i.e., in�nitesimal weights, or known value �uctuation ratio. Speci�cally,
we devise a reservation function that associates an implicit admission cost to the knapsack as a
function of its utilization. The reservation function is an increasing function of utilization, i.e., the
higher the knapsack’s utilization, the higher the admission cost. Then, given a proper reservation
function, an online strategy simply admits an incoming item only if its value is not less than the
current admission cost calculated from the reservation function. This high-level idea has been
used to develop optimal reservation functions for the basic OKP [52, 54] and the multiple knapsack
version [43], and it has been shown that the corresponding online algorithms can achieve the
best competitive ratios. However, designing online reservation policies for OMdKP is much more
challenging than for OKP, and no existing algorithms for OKP can be applicable in our setting.
Technically speaking, in OMdKP, the additional challenge for designing a reservation function
originates from multiple dependent dimensions of the knapsack that should be properly captured
by a reservation function. More speci�cally in OMdKP, while each item is associated with a single
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scalar value, its weight is multidimensional and the weight vector could be unbalanced across
di�erent dimensions. A naïve idea of extending existing algorithms for OKP by using the aggregate
weight across all dimensions will not be adequate, since items with the same value and aggregate
weight will be treated the same. For instance, consider two items with the same values and same
aggregate weight, one larger in an over-utilized scarce dimension, while the other item is larger in
an under-utilized dimension. A good online algorithm for OMdKP should admit the latter item more
readily than the former.

Our Contributions. In this paper, we develop two classes of online algorithms for OMdKP by using
two di�erent reservation policies, and analyze their competitive ratios. Speci�cally, we design
two reservation policies explicitly accounting for item weights across di�erent dimensions. The
�rst reservation policy is a linear function and the second is an exponential function of knapsack
utilization and the corresponding online algorithms exhibit di�erent competitive ratios. The main
contribution of this paper is providing the �rst order-optimal algorithm for OMdKP under the
commonly-made “in�nitesimal” assumption that item weights are “small enough”’ as compared to
the capacity of the knapsack.

We develop two algorithms based on linear (LinRP) and exponential (ExpRP) reservation policies,
and characterize their competitive ratios. The competitive ratios are characterized as a function
of two parameters U and \ . We de�ne U 9 = ⇠/⇠ 9 and U = max9 U 9 , where ⇠ 9 is the capacity of
dimension 9 and ⇠ is the aggregate capacity over all dimensions. In other words, U is the ratio
between the aggregate knapsack capacity and the minimum single dimension capacity. The second
parameter is \ that refers to the ratio between the maximum and minimum unit values of all items,
where unit value is the ratio between the value of an item and its aggregate weight over all dimen-
sions. Our analysis shows that LinRP achieves a competitive ratio of $ (

p
\U), and the competitive

ratio of ExpRP is $ (log\U). Then, we derive a lower bound of ⌦(log\U) for the competitive ratio
of any online algorithm solving OMdKP. Hence, ExpRP attains an order-optimal competitive ratio.
Lastly, we extend the ExpRP algorithm to the fractional version of OMdKP and our analysis shows the
fractional exponential algorithms achieves the competitive ratio of max {8, 4 log\U} + 1. It is also
worth noting that di�erent from majority of prior work, our theoretical analysis of the competitive
ratio of the proposed algorithms provides explicit bounds on the ratio of the maximum size of items
to the capacity of the knapsack. This appeared as the bounds of values of n in Theorems 3 and 4.
It is worth mentioning that when the values of \ and U are su�ciently large, the competitive

ratio of ExpRP is better than that of LinRP. However, in practical scenarios with a small number of
dimensions, the linear algorithms may outperform the exponential ones; hence both algorithms
are practically relevant. In Section 6, we numerically evaluate the performance of both LinRP

and ExpRP, and compare their performance with some extensions of single-dimension knapsack
algorithms.

2 THE ONLINE MULTIDIMENSIONAL KNAPSACK PROBLEM
In this section, we present the online multidimensional knapsack problem (OMdKP) as a gener-
alization of the classic online knapsack problem. In OMdKP, there is a knapsack with< (< � 2)
dimensions, and items arrive in an online fashion with di�erent weights (or, sizes) along each
dimension, and the goal is to pack as many as possible high-valued items such that the capacity
constraint of the knapsack over di�erent dimensions is respected. This is a natural generalization
of the knapsack problem and is motivated by several real-world applications such as online job-
resource allocation [7, 26], all-or-nothing �ow maximization [17], and more. In the following, we
formally introduce OMdKP.
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Table 1. Summary of notations

Notation Description
= Number of items, indexed by 8
< Number of dimensions, indexed by 9
⇠ 9 Capacity of dimension 9
⇠ Aggregate capacity over all dimensions

U
Ratio of the aggregate capacity to the minimum capacity, i.e.,
U = ⇠/min9 ⇠ 9

U 9
Ratio of the aggregate capacity to the capacity of dimension
9 , i.e., U = ⇠/⇠ 9

E8 Value of item 8
wi = [F8,1, . . . ,F8, 9 , . . . ,F8,<] Weight vector of the 8-th item

F8 Aggregate weight of the 8-th item
?8 Unit value of the 8-th item

\
Variation in value, i.e., ratio between the maximum and
minimum item values

u8 = [D8,1, . . . ,D8, 9 , . . . ,D8,<] Knapsack utilization after the decision on the 8-th item
G8 The optimization variable on the admission decision of item 8

l An input instance to OMdKP

⌦ The set of all feasible input instances to OMdKP

A An online algorithm for OMdKP
A(l) Pro�t of algorithm A under instance l
OPT(l) Pro�t of the optimal algorithm under instance l
CR(A) The competitive ratio of algorithm A de�ned in Equation (4)

2.1 Problem Statement
We consider a knapsack whose capacities along < dimensions is represented by vector C =
[⇠1, . . . ,⇠ 9 , . . . ,⇠<], where ⇠ 9 represents the capacity of dimension 9 2 [<] = {1, . . . ,<} and ⇠
is the aggregate capacity over all dimensions, i.e., ⇠ =

Õ
9 2 [<] ⇠ 9 . Without loss of generality, we

assume, ⇠1  ⇠2  · · ·  ⇠< . Items arrive in an online fashion, each with a di�erent value and
weights. Speci�cally, in round 8 2 [=] = {1, . . . ,=}, item 8 arrives with value E8 � 0, and a weight
vector wi = [F8,1, . . . ,F8, 9 , . . . ,F8,<], where F8, 9 � 0 is the size of item 8 in dimension 9 of the
knapsack. Given item values and weights along with the capacity vector of the knapsack, the o�ine
version of OMdKP can be formulated as

[OMdKP] max
’

82 [=]
E8G8 , s.t.,

’
82 [=]

F8, 9G8  ⇠ 9 ,89 2 [<], (1)

where G8 ’s are the optimization variables and G8 = 1 if item 8 is admitted and G8 = 0, otherwise.
We consider both integral and fractional versions of the problem. In the fractional version, G8 2
[0, 1],88 2 [=], and G8 2 {0, 1} ,88 2 [=] for the integral version. We are interested in an online
setting in which items arrive one-by-one and an online algorithm has to immediately decide
whether to admit the incoming item without knowing the future and in the absence of a stochastic
modeling. We present our main results for the integral version of OMdKP. However, our results can
be extended to the fractional case as we present in details in Section 5.
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2.2 Additional Notations and Assumptions
To facilitate our algorithm design, we introduce an auxiliary variable to represent the knapsack
utilization in each dimension after an online algorithm makes an admission decision for item 8 .
In particular, let u8 = [D8,1, . . . ,D8, 9 , . . . ,D8,<] be the knapsack utilization after making a decision
to admit item 8 or not, where 0  D8, 9  ⇠ 9 corresponds to the utilization of dimension 9 up to
the 8-th round, i.e., the aggregate size of admitted items up to item 8 for the integral version. For
convenience, D0, 9 = 0. We de�ne ?8 as the unit value of item 8 , i.e.,

?8 :=
E8
F8

,88 2 [=], (2)

whereF8 =
Õ

9 2 [<] F8, 9 is the aggregate size of item 8 . We further assume that ?8 2 [?min, ?max],88 2
[=], where ?min and ?max are lower and upper bound values on the unit value of each item. We
de�ne \ = ?max/?min as the value �uctuation ratio. To capture the variations in capacity, we de�ne
parameter U as the ratio between the aggregate capacity of knapsack over all dimensions and the
minimum single-dimension capacity, i.e., U =

Õ
9 ⇠ 9/min9 ⇠ 9 . For the ease of analysis, we also

de�ne U 9 = ⇠/⇠ 9 . Both parameters \ and U play a critical role in the competitive analysis of the
proposed algorithms.
In our algorithms, we assume that normalized weights of items are much smaller than the

capacity, i.e.,F8, 9/⇠ 9  Y ⌧ 1,88, 9 , where Y is de�ned as the largest single-dimension normalized
weight of items, that is

Y := max
82 [=]

max
9 2 [<]

F8, 9

⇠ 9
. (3)

This assumption naturally holds in large-scale systems and is common in online knapsack
literature [43, 50]. We present our results by explicit characterization of valid ranges for Y. Also, in
Section 5, we relax this assumption for our algorithms for the fractional model.

2.3 Competitive Algorithm Design Framework
Our goal is to design an online algorithm that makes an irrevocable admission decision based on
the available information, i.e., the knapsack capacity and the current utilization. The goal of an
online algorithm is to perform nearly as well as the o�ine optimum. We conduct our analysis using
the competitive framework [8] with competitive ratio as the performance metric. Speci�cally, for
an online algorithm A, the competitive ratio is

CR(A) = max
l 2⌦

OPT(l)
A(l) , (4)

where l 2 ⌦ denotes a feasible instance to OMdKP and ⌦ is the set of all feasible instances to OMdKP.
Also, OPT(l) is the o�ine optimum under instance l , and A(l) is the pro�t obtained by executing
online algorithm A over instance l . Note that the capacity of knapsack along< dimensions for
the online algorithm is identical to the knapsack capacity for the o�ine algorithm. We present
our algorithms for OMdKP in Section 3, followed by the competitive analysis in Section 4, and an
algorithm and analysis for the fractional setting in Section 5.

3 ONLINE ALGORITHMS
In this section, we present two online algorithms for OMdKP, and characterize their competitive
ratio as a function of U , i.e., the capacity variation parameter, and \ , the value variation parameter.
We note that assuming known \ is required for designing an online algorithm with bounded
competitive ratio even for the basic version of online knapsack problem [13, 15, 43, 50, 54]. The
parameter U , however, is new in the multidimensional setting and captures the heterogeneity of
capacity of dimensions.
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In the following, we �rst motivate algorithm design for OMdKP by analyzing the competitiveness
of the First-come First-serve (FCFS) strategy and show FCFS is $ (\U)-competitive. Hence, we need
to design better algorithms with better competitive ratios.
Then, we present the LinRP and ExpRP reservation policies as two online algorithms that take

into account the current knapsack utilization in admitting items. We analyze the performance of
both algorithms in Section 4 and show that they achieve$ (

p
\U) and$ (log\U) competitive ratios,

respectively. We also characterize a logarithmic lower bound for the competitive ratio of online
algorithms solving OMdKP, and show that the competitive ratio of ExpRP matches this lower bound
asymptotically. The tight competitive analysis of ExpRP is the major theoretical contribution of
this paper.

3.1 Warm-up: First-Come First-Serve: An $ (\U)-Competitive Algorithm
As a baseline algorithm,we consider the First-Come-First-Serve algorithm (FCFS), which admits each
arriving item unless there is insu�cient space. The following theorem with a proof in Appendix A.1
shows that FCFS is at least ⌦(\U)-competitive.

T������ 1. The competitive ratio of FCFS is ⌦(\U).
The above result shows that FCFS which is oblivious to item values and the residual capacity of

individual dimensions, fails to achieve a good competitive ratio. To design online algorithms with
improved competitive ratios, our idea is to balance the residual capacity of di�erent dimensions by
assigning implicit cost functions to each dimension as a function of their residual capacity. Based
on this high-level intuition, in the following, we introduce two policies that respectively associate
linear and exponential reservation functions with the dimensions by which the algorithm is able to
evaluate costs of admitting incoming items based on their demand and the available space. With
the above construction, the proposed algorithms admit an incoming item only when its value is
larger than or equal to the current admission cost.

3.2 Online Algorithm 1: A Linear Reservation Policy (LinRP)
We �rst introduce an$ (

p
\U)-competitive algorithm, called as the Linear Reservation Policy (LinRP).

Recall that the high-level idea of our algorithm design is to determine the implicit admission cost, and
admit the incoming item if its value is higher than or equal to the admission cost. The admission cost
is an increasing function of current utilization, the higher the utilization, the higher the admission
cost. Based on the current utilization of knapsack, LinRP de�nes I8, 9 , 9 2 [<] as the normalized
utilization of dimension 9 after the arrival of the 8-th item as follows:

I8, 9 =
�
D8, 9
⇠ 9

p
\<

⌫
, 9 2 [<] . (5)

Upon arrival of item 8 , LinRP admits the item only if its value satis�es the following threshold.

E8 � max
9 2 [<]

I8�1, 9

r
2U 9

<
F8, 9 , (6)

where I8�1, 9 is the normalized utilization of dimension 9 before arrival of item 8 . Details of the LinRP
algorithm are summarized in Algorithm 1. As compared to the naive FCFS strategy, dynamically
adjusts a threshold with respect to I8, 9 to admit an item based on the scarcity across each dimension.
In doing so, the LinRP algorithm can reserve the scarce space for high-valued items in future.

We now proceed to provide insights behind the reservation policy in Equation (6). The left hand
side is the value of the incoming item 8 , and I8�1, 9

p
U 9/<) in the right hand side represents scarcity

of the space in dimension 9 . Scarcity increases linearly with I8�1, 9 , hence the name linear reservation
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Algorithm 1 The LinRP Algorithm, upon arrival of item 8

1: if E8 � max9 2 [<] I8�1, 9

q
2U 9

< F8, 9 andF8, 9  ⇠ 9 � D8�1, 9 , 9 2 [<] then ù admit item 8 if

item value is greater than the admission cost and there is enough space.

2: G8  1 ù admit item

3: else
4: G8  0 ù decline item

5: end if
6: D8, 9  D8�1, 9 + G8F8, 9 , 9 2 [<] ù update utilization

7: I8, 9  
j
D8,9
⇠ 9

p
\<

k
, 9 2 [<] . ù update normalized utilization

policy. By multiplying the scarcity factor and the item weight in the same dimension, the LinRP
algorithm evaluates the cost in the corresponding dimension to admit item 8 . The item is admitted
if and only if there is enough space and its value is larger than or equal to all evaluated dimension
costs. Intuitively, in order to be admitted, items demanding scarce dimensions should have larger
values. In this way, LinRP prevents saturation of scarce dimensions by low-valued items. This leads
to an improved competitive ratio of LinRP as compared to the FCFS policy.

3.3 Online Algorithm 2: An Exponential Reservation Policy (ExpRP)
Now, we proceed to introduce ExpRP that uses the same high-level idea of LinRP, but, with di�erent
de�nitions for the normalized utilization and the reservation function for evaluating the admission
cost. The new de�nition of the normalized cost I8, 9 is

I8, 9 =
�
D8, 9
⇠ 9

log
�
\U 9

� ⌫
, 9 2 [<], (7)

that represents the normalized utilization of each dimension after arrival of the 8-th item. Then, the
new item 8 is admitted if there is enough capacity and the following inequality holds.

E8 �
<’
9=1

(2I8�1,9 � 1)F8, 9 . (8)

The details of the ExpRP algorithm are summarized in Algorithm 2. We note that one may attain
a di�erent competitive ratio by specifying a di�erent constant instead of 2 in the reservation
function (8). For simplicity, we just choose 2 as the base of the reservation function. It is worth
noting that following the recent approach in designing data-driven online algorithms [50], this
coe�cient could be changed to a parameter that could be learned in real-time to improve practical
performance.
Given enough available space for admission, ExpRP makes an admission decision based on

Equation (8), in which factor (2I8�1,9 � 1) represents the scarcity of dimension 9 . The larger the
variable I8�1, 9 , the larger the scarcity factor. By multiplying the scarcity and the weightF8, 9 in the
same dimension, ExpRP evaluates the cost in each dimension, and admits item 8 only if its value is
larger than or equal to the aggregate cost over all dimensions. Compared to LinRP, the scarcity
factor in ExpRP increase exponentially in I8, 9 and ExpRP admits the item only when its value is
at least equal to the sum of the costs over all dimensions. In general, ExpRP algorithm is more
conservative than LinRP in its admission decisions and thus tends to reserve the remaining capacity
for higher-valued items. In the next section, we analyze the competitive ratios of both LinRP and
ExpRP.
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Algorithm 2 The ExpRP Algorithm, upon arrival of item 8

1: if E8 �
Õ<

9=1 (2I8�1,9 � 1)F8, 9 andF8, 9  ⇠ 9 � D8�1, 9 , 9 2 [<] then ù admit item 8 if item

value is greater than the admission cost and there is enough space.

2: G8  1 ù admit item

3: else
4: G8  0 ù decline item

5: end if
6: D8, 9  D8�1, 9 + G8F8, 9 , 9 2 [<] ù update utilization

7: I8, 9  
j
D8,9
⇠ 9

log
�
\U 9

� k
, 9 2 [<], ù update normalized utilization

4 COMPETITIVE ANALYSIS
We �rst present our lower and upper bound results, and provide several remarks and insights about
our results. The proofs are given in Section 4.2.

4.1 Main Results
We present a lower bound for any competitive algorithm providing a feasible solution for OMdKP (in
Theorem 2) followed by the competitive results for LinRP (in Theorem 3) and ExpRP (in Theorem 4).
Recall that Y de�ned in Equation (3) serves as an upper bound of ratios between single-dimension
size of items and the capacity of the knapsack. This valid range for this parameter is explicitly
characterized to guarantee the competitive ratios.

T������ 2. (Lower Bound on Competitive Ratio for OMdKP) The competitive ratio of any online
algorithm providing a feasible solution to OMdKP is ⌦(log\U).

T������ 3. With Y < 1/(2p<) and< � 4, the competitive ratio of LinRP satis�es

CR(LinRP) 
p
2U

©≠≠
´
✓

1p
\<
� 2Y

◆ jp
\<

k ⇣jp
\<

k
� 1

⌘
\
p
<

™ÆÆ
¨

�1

.

Remark. When Y ! 0, representing the case with arbitrarily small item sizes, we have

CR(LinRP) 
p
2U

\ 3/2<jp
\<

k ⇣jp
\<

k
� 1

⌘ , or CR(LinRP) = $
⇣p

\U
⌘
.

T������ 4. With Y < min {1/3, 1/(2 log(\U))}, the competitive ratio of ExpRP satis�es

CR(ExpRP) max
⇢
12,

4 log (\U)
1 � 2Y log (\U)

�
+ 1.

Remarks. (1) When Y ! 0, the competitive ratio of ExpRP satis�es
CR(ExpRP)  max {12, 4 log\U} + 1.

Hence, ExpRP is $ (log(\U))-competitive.
(2) Comparing the result in theorems 2 and 4 shows that ExpRP achieves the optimal competitive

ratio up to a constant factor.
(3) For unit capacities for all dimensions, and unit values, i.e., \ = 1, we have the modi�ed

Y < min{1/3, 1/(2 log<)}, and the competitive ratio of ExpRP satisfying

CR(ExpRP)  max
⇢
12, 4

log<
1 � 2Y log<

�
+ 1.
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(4) When comparing the competitive ratios of reLR and ExpRP, one �nds that ExpRP outperforms
LinRP when U and/or \ are large. However, when these values are small, LinRP may outperform
ExpRP. In practice, however, these values are small, and this is further investigated in our numerical
experiments in Section 6.
(5) In the special case with < = 1, OMdKP is reduced to the basic version of online knapsack

problem [15, 54], or equivalently the so-called one-way trading [21] (see [14] for the equivalence).
Correspondingly, the ExpRP algorithm is reduced to the optimal algorithm for those two problems
which uses exponential thresholds to admit items.

(6) As we mentioned in the system model, we consider the aggregate size of an item to be
simply the sum of its sizes over all dimensions, i.e.,F8 =

Õ
9 2 [<] F8, 9 ,88 2 [=]. Our results can be

extended to account for a weighted aggregate size over dimensions. Speci�cally, let 3 9 � 0, 89 2
[<], be a priority coe�cient associated with dimension 9 and hence we can rede�ne the size
of item 8 as F8 =

Õ
9 2 [<] 3 9F8, 9 . In this new setting, we can extend the results by rede�ning

⇠ =
Õ

9 2 [<] 3 9⇠ 9 , and U 9 = ⇠/(3 9⇠ 9 ). Then, similar competitive ratios can be obtained by setting
U =

Õ
9 2 [<] 3 9⇠ 9/min9 2 [<] 3 9⇠ 9 .

(7) In the literature, primal-dual based methods have been used to design and analyze online
algorithms in many other related settings [12, 43]. Either primal-dual based method or ours has
the potential to achieve the best result. Actually, many of those algorithms, such as [43], make
decisions also based on a “pseudo-price function”, which is similar to the threshold functions in
our both LinRP and ExpRP algorithms.

4.2 Proofs
In this section, we prove the results in theorems 2-4.

An Informal Proof for Theorem 2. We �rst provide an informal, yet, intuitive proof sketch for
Theorem 2. A complete proof is provided in Appendix A.3. Note that the OMdKP problem can be seen
as an extension of its unit-density version of OMdKP (the OMdKP problem with \ = 1) or the one-way
trading problem [21] (with< = 1), then the adversary can construct cases where the competitive
ratio of any online algorithm is either ⌦(logU) (lower bound for the unit-density version of OMdKP,
see step 1 in the detailed proof of Theorem 2 in Appendix A.3) or ⌦(log\ ) (lower bound for the
one-way trading problem). By combining the two adversaries in the above two problems, we can
easily prove a lower bound for the general OMdKP problem which is ⌦(log\U), since

CR(A) � max {⌦(logU),⌦(log\ )} � 1
2
⌦(logU) + 1

2
⌦(log\ ) = ⌦(log\U).

A proof of Theorem 3. Let z = [I1, I2, . . . , I<] be the �nal state of the system executing the LinRP
algorithm, where I 9 = I=, 9 , 9 2 [<]. Let J; , ; = {0, 1, 2, . . . , b

p
\<c}, be the set of dimensions

satisfying I 9 � ; .
We prove the result by analyzing the two cases, (1) ⇠ 9 � D=, 9 � Y⇠ 9 ,89 2 [<], representing the

case that by the end of running the algorithm, the knapsack is not saturated along any dimension;
and (2) ⇠ 9 � D=, 9 < Y⇠ 9 , for some 9 2 [<], representing that at least one dimension is almost
saturated.

Case 1: ⇠ 9 � D=, 9 � Y⇠ 9 ,89 2 [<]. In this case, we can guarantee that the remaining space is
always larger than or equal to Y⇠ 9 and thus all of items will be admitted if Equation (6) is satis�ed.
Consider the following constraints for incoming item 8

constraint � 9 : E8 � I 9

r
2U 9

<
F8, 9 , 9 2 J1. (9)
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We categorize items violating the 9-th constraint as Type- 9 items and de�ne = 9 as the number of
admitted Type- 9 items and 8: , : = {1, 2, . . . ,= 9 }, be the :-th admitted Type- 9 item by any algorithm.
By the de�nition and using Equation (9), we upper bound the aggregate value of admitted Type- 9
items, denoted as +9 , as follows

+9 =
= 9’
:=1

E8: <

= 9’
:=1

I 9

r
2U 9

<
F8: , 9 = I 9

s
2⇠
<⇠ 9

= 9’
:=1

F8: , 9  I 9

r
2⇠⇠ 9

<
,

where the �rst inequality holds by the de�nition of Type- 9 items and the second one uses the fact
that

Õ= 9

:=1F8: , 9  ⇠ 9 .
Considering that I8, 9 is non-decreasing over time and less than or equal to I 9 , if there is an

item satisfying all the constraints in (9), it will be admitted by LinRP. Thus, the aggregate value
of the admitted items satisfying all the constraints in Equation (9), is not greater than +LinRP, as
the aggregate value obtained by LinRP. An item admitted by any algorithm is either a Type- 9
item, 9 2 J1, or the one satisfying all the above-mentioned constraints. Then, we can upper bound
the cumulative values of admitted items by any algorithm by

Õ
9 2J1 +9 + +LinRP. We also have

+LinRP �
Õ

9 2J1 I 9⇠ 9

p
1/(\<). Putting together the above results yields

CR(LinRP) 
Õ

9 2J1 +9 ++LinRP
+LinRP


Õ

9 2J1 I 9

q
2⇠⇠ 9

<Õ
9 2J1 I 9⇠ 9

q
1

\<

+ 1  max
9 2J1

I 9

q
2⇠⇠ 9

<

I 9⇠ 9

q
1

\<

+ 1 
p
2\U + 1. (10)

Case 2: ⇠ 9 � D=, 9 < Y⇠ 9 , for some 9 2 [<].
Combinedwith the assumption that Y < 1/(2

p
\<), it follows that there is some dimension 9 0 such

that the �nal state D=, 9 0 satis�es D=, 9 0 > ⇠ 9 0 �⇠ 9 0/(2
p
\<). Correspondingly, by the discretization

step in LinRP, we have I 9 0 �
jp

\<
k
� 1. The aggregate value of items admitted by LinRP is

+LinRP =
=’
8=1

G8E8 �
=’
8=1

G8 max
9

I8�1, 9

r
2U 9

<
F8, 9

�
=’
8=1

G8I8�1, 9 0

r
2U 9 0

<
F8, 9 0

=
=’
8=1

I8�1, 9 0
�
D8, 9 0 � D8�1, 9 0

� r2U 9 0

<

=
=’
8=1

�
D8�1, 9 0

⇠ 9 0

p
\<

⌫ �
D8, 9 0 � D8�1, 9 0

� r2U 9 0

<

�

jp
\<

k
�1’

;=1

;

✓
⇠ 9 0p
\<
� 2Y⇠ 9 0

◆ r
2U 9 0

<
.

(11)

The �rst inequality in the above equation is simply based on the rules of the algorithm. The last
inequality uses the feature of the step function and the fact that D8, 9 0 �D8�1, 9 0  Y⇠ 9 0 . One can �nd a
proof for it in A.2. Then, we can further lower bound the above equation as follows

+LinRP �
✓

1p
\<
� 2Y

◆ jp
\<

k ⇣jp
\<

k
� 1

⌘
2
p
<

p
2⇠⇠ 9 0 .
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We have

CR(LinRP) \⇠
©≠≠
´
✓

1p
\<
� 2Y

◆ jp
\<

k ⇣jp
\<

k
� 1

⌘
2
p
<

p
2⇠⇠ 9 0

™ÆÆ
¨

�1


p
2U

©≠≠
´
✓

1p
\<
� 2Y

◆ jp
\<

k ⇣jp
\<

k
� 1

⌘
\
p
<

™ÆÆ
¨

�1

.

(12)

Comparing the results in Equations (10) and (12) completes the proof.

A proof of Theorem 4. We de�ne Z = [I1, I2, . . . , I<] as the ending state of the system executing
the proposed ExpRP algorithm. Let J; , ; = 0, 1, 2, . . . , blog (\U)c, be the set of dimensions satisfying
I 9 � ; . Similarly, the proof is executed case by case.

Case 1: ⇠ 9 � D=, 9 � Y⇠ 9 , for any 9 2 [<].
Considering that the weight of items in dimension 9 is always less than or equal to Y⇠ 9 , we have

that a job is always admitted when Equation (8) holds.
First, we provide a lower bound for cumulative values of admitted items by the ExpRP algorithm,

which is denoted by +ExpRP. Based on the rules of the algorithm, one �nds that, for each admitted
item, the following equation holds.

E8 �
<’
9=1

(2I8�1,9 � 1)F8, 9 .

By the above equation, we can lower bound +ExpRP as follows.

+ExpRP =
=’
8=1

G8E8 =
=’
8=1

G8?8
’
9 2J

F8, 9

�
=’
8=1

’
9 2 [<]

(2I8�1,9 � 1) G8F8, 9

�
=’
8=1

’
9 2 [<]

✓
2
j
D8�1,9
⇠9

log(\U 9 )
k
� 1

◆
(D8, 9 � D8�1, 9 )

�
’
9 2J1

I 9�1’
;=1

�
⇠ 9 log�1

�
\U 9

�
� Y⇠ 9

� ⇣
2; � 1

⌘

=
’
9 2J1

�
⇠ 9 log�1

�
\U 9

�
� Y⇠ 9

� �
2
�
2I 9�1 � 1

�
� I 9 + 1

�

=
’
9 2J1

�
⇠ 9 log�1

�
\U 9

�
� Y⇠ 9

� �
2I 9 � I 9 � 1

�
,

(13)

where the �rst two inequalities are by the rules of the algorithm, and the last one follows similar
lines with the proof in A.2.

In addition to the above, we have another lower bound for +ExpRP

+ExpRP �
’
9 2J1

⇠ 9 log�1
�
\U 9

�
.
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Combining the above two equations yields

+ExpRP �max
8><
>:
’
9 2J1

⇠ 9 log�1
�
\U 9

�
,
’
9 2J1

�
⇠ 9 log�1

�
\U 9

�
� Y⇠ 9

� �
2I 9 � I 9 � 1

�9>=
>;

�V
’
9 2J1

⇠ 9 log�1
�
\U 9

�
+ (1 � V)

’
9 2J1

�
⇠ 9 log�1

�
\U 9

�
� Y⇠ 9

� �
2I 9 � I 9 � 1

�
,

(14)

for any V 2 [0, 1].
Next, we prove an upper bound for the total values of admitted items by any algorithm.
An item 8 with weight vectorw8 is called the Type-I item if the following equation holds.

E8 <
’
9 2 [<]

(2I 9 � 1)F8, 9 .

Otherwise, an item is called the Type-II item. Obviously, an item is either a Type-I item or a Type-II
item. In the following, we will upper bound the aggregate values of Type-I and Type-II items
admitted by any algorithm, respectively.

Aggregate value of Type-I items. Let 8: , : = 1, 2, . . . ,=1, be the indices of Type-I items and G8: ,
: = 1, 2, . . . ,=1, be the decisions correspondingly. Then, by the de�nition of the Type-I item, we
have that for any 8: , : = 1, 2, . . . ,=1, there is

G8: E8: < G8:

<’
9=1

(2I 9 � 1)F8: , 9 .

It follows from the above equation that
=1’
:=1

G8: E8: <
=1’
:=1

G8:

<’
9=1

(2I 9 � 1)F8: , 9

=
=1’
:=1

<’
9=1

(2I 9 � 1) G8:F8: , 9

=
<’
9=1

(2I 9 � 1)
=1’
:=1

G8:F8: , 9


<’
9=1

(2I 9 � 1)⇠ 9 ,

where the last inequality uses the fact that
Õ=1

:=1 G8:F8: , 9  ⇠ 9 , 9 = 1, 2, . . . ,<. By the above equation,
we upper bound the aggregate value of Type-I items that are admitted by any algorithm, which is
at most

Õ<
9=1 (2I 9 � 1)⇠ 9 .

Aggregate value of Type-II items. All the Type-II items are accepted by the ExpRP algorithm since
each of them satis�es

E8 �
’
9 2 [<]

(2I 9 � 1)F8, 9 �
’
9 2 [<]

(2I8�1,9 � 1)F8, 9 .

Thus, the aggregate value of Type-II items admitted by any algorithm is not larger than that of
admitted items by the ExpRP algorithm, i.e., +ExpRP.
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Concluding the above results, we upper bound the aggregate value of items admitted by any
algorithm by

<’
9=1

(2I 9 � 1)⇠ 9 ++ExpRP.

Combined with the results in Equation (14) with V = 1/4, the competitive ratio of ExpRP satis�es

CR(ExpRP) 
Õ<

9=1 (2I 9 � 1)⇠ 9 ++on
+on

=

Õ<
9=1 (2I 9 � 1)⇠ 9

+on
+ 1


Õ

9 2J1 ⇠ 9 +
Õ

9 2J2 (2I 9 � 1)⇠ 9

1
4
Õ

9 2J1 ⇠ 9 log�1
�
\U 9

�
+ 3

4
Õ

9 2J1

�
⇠ 9 log�1

�
\U 9

�
� Y⇠ 9

� �
2I 9 � I 9 � 1

� + 1

max

(
4

Õ
9 2J1 ⇠ 9Õ

9 2J1 ⇠ 9 log�1
�
\U 9

� , 4
Õ

9 2J2 (2I 9 � 1)⇠ 9

3
Õ

9 2 [<]
�
⇠ 9 log�1

�
\U 9

�
� Y⇠ 9

� �
2I 9 � I 9 � 1

�
)
+ 1

max
⇢
max
9 2J1

4 log
�
\U 9

�
,max
9 2J2

4
log

�
\U 9

�
1 � Y log

�
\U 9

�
�
+ 1

max
⇢
4 log (\U) , 4 log (\U)

1 � Y log (\U)

�
+ 1,

where the forth inequality uses the fact that

2I 9 � 1
2I 9 � I 9 � 1

 3, for any 9 2 J2 .

Case 2: ⇠ 9 � D=, 9 < Y⇠ 9 , for some 9 2 [<].
Without loss of generality, we assume that dimension 9 0 satis�es⇠ 9 0 �D=, 9 0 � Y⇠ 9 0 . By de�nition,

there is I 9 0 �
⌅
log

�
\U 9 0

� ⇧
� 1.

In the following, we assume \U 9 0 � 8. Otherwise, by using the fact that Y  1/3, we have

CR(ExpRP)  \⇠

D=, 9 0
 \⇠

(1 � Y)⇠ 9 0
 \⇠

2
3⇠ 9 0

<
3
2
⇥ 8 = 12,

completing the proof.
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By the rules of the ExpRP algorithm, we have

+ExpRP =
=’
8=1

G8E8

�
=’
8=1

G8

<’
9=1

(2I8�1,9 � 1)F8, 9

�
=’
8=1

(2I8�1,90 � 1) G8F8, 9 0

=
=’
8=1

 
2

�
D8�1,90
⇠90

log�1 (\U 90)
⌫
� 1

! �
D8, 9 0 � D8�1, 9 0

�

�
blog(\U 90)c�1’

;=1

⇣
2; � 1

⌘ �
⇠ 9 0 log�1

�
\U 9 0

�
� 2Y⇠ 9 0

�

=
⇣
2
⇣
2blog(\U 90)c�1 � 1

⌘
�

⌅
log

�
\U 9 0

� ⇧
+ 1

⌘ �
⇠ 9 0 log�1

�
\U 9 0

�
� 2Y⇠ 9 0

�
=

⇣
2blog(\U 90)c �

⌅
log

�
\U 9 0

� ⇧
� 1

⌘ �
⇠ 9 0 log�1

�
\U 9 0

�
� 2Y⇠ 9 0

�

=
�
\U 9 0 � log

�
\U 9 0

�
� 1

� �
⇠ 9 0 log�1

�
\U 9 0

�
� 2Y⇠ 9 0

�
�

\U 9 0

4
�
⇠ 9 0 log�1

�
\U 9 0

�
� 2Y⇠ 9 0

�
,

where the �rst inequality uses the rules of the algorithm, and the last one uses the fact that

2blog(\U 90)c �
⌅
log

�
\U 9 0

� ⇧
� 1 � 1

2
· 2blog(\U 90)c �

\U 9 0

4
,

when
⌅
log

�
\U 9 0

� ⇧
� 3.

Thus,

CR(ExpRP)  \⇠
\U 90
4

�
⇠ 9 0 log�1

�
\U 9 0

�
� 2Y⇠ 9 0

� =
4⇠ 9 0

⇠ 9 0 log�1
�
\U 9 0

�
� 2Y⇠ 9 0

 4 log (\U)
1 � 2Y log (\U) .

Concluding the above two cases yields

CR(ExpRP) max
⇢
12,

4 log (\U)
1 � 2Y log (\U)

�
+ 1.

This completes the proof.

5 EXTENSIONS TO FRACTIONAL MODELWITH ARBITRARY ITEMWEIGHTS
In this section, we extend our algorithms and results to fractional OMdKP, where each item could be
admitted partially, i.e., G8 is a real value in [0, 1], and the obtained value is also proportional to the
admitted fraction, i.e., G8E8 . We also relax the small size assumption for the fractional case. Recall
that the previous algorithms are analyzed by bounding the value of n de�ned in Equation (3) that
captures the limits on item size. For the fractional algorithm design, we relax those assumptions.

We consider the fractional model with arbitrary weights, where each item can be partially packed
to a multidimensional knapsack. For brevity, we omit extending the linear reservation policy and
only investigate the modi�ed exponential reservation policy for the fractional model, called as
ExpRP-F. ExpRP-F determines the admission amount of an item in an iterative manner. Speci�cally,
it splits each incoming item into multiple fractions indicated by parameter ~ in ExpRP-F and check
the exponential admission criterion as used in ExpRP to admit those fractions one-by-one. The
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Algorithm 3 The ExpRP-F algorithm for fractional packing of items with arbitrary sizes
1: Initialization: G8  0, D 9  D8�1, 9 , 9 2 [<]
2: while G8  1 do
3: I 9  

j
D 9

⇠ 9
log

�
\U 9

� k
4: ~  min9 2 [<]

(I 9+1)⇠ 9 log�1 (\U 9 )�D 9

F8,9

5: if ~E8 �
Õ<

9=1 (2I 9 � 1) ~F8, 9 then
6: G8  min {1, G8 + ~}
7: D 9  D 9 + ~F8, 9 , 9 2 [<]
8: else
9: return G8
10: end if
11: end while
12: return G8

iterative process stops when the item is fully admitted or the admissions criterion that increases
the admission cost iteratively violates. ExpRP-F is summarized in Algorithm 3.

T������ 5. The competitive ratio of ExpRP-F satis�es CR(ExpRP-F)  max {8, 4 log\U} + 1.

Comparing the result in Theorem 4 show that ExpRP-F achieves a better competitive ratio than
ExpRP. In addition, since ExpRP-F partitions the incoming item into smaller pieces and applies the
exponential admission criterion to each piece in an iterative manner, we can relax those bounded
item size assumptions for the integral model in the analysis of ExpRP-F. Our proof for Theorem 5
is given in Appendix B.

6 NUMERICAL EXPERIMENTS
In this section, we conduct numerical experiments to verify the theoretical results and evaluate
the performance of the proposed algorithms. We compare the performance of both linear and
exponential policies for OMdKP and several baseline algorithms such as FCFS and some heuristics
that are extended version of algorithms for single-dimension knapsack problem (more details in
Section 6.2).

6.1 Experimental Setup
As the performance metric, we report the empirical pro�t ratio of di�erent algorithms de�ned
as the ratio between the o�ine optimal pro�t and the pro�t obtained by the online algorithm.
Note that the pro�t ratio is the empirical counterpart of the theoretical competitive ratio. In all
experiments, we report the average pro�t ratios of di�erent algorithms for 20 random trials for
2000 items. Also, we report con�dence intervals (shaded areas) as well as cumulative distribution
functions (CDF) of all evaluated instances, so more statistical values including the worst-case pro�t
ratios are observable. Unless otherwise mentioned, we set the unit-value �uctuation ratio to be
\ = 5, i.e., unit values of items are randomly drawn from [1, 5], ⇠ =<, U/< = 2, and capacities are
chosen randomly such that ⇠1  ⇠2  ...  ⇠< holds.

6.2 Baseline algorithms
We are not aware of existing solution algorithms for online multidimensional knapsack problems;
hence we only compare the proposed algorithms with the o�ine optimal solution and the following
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Fig. 1. Comparison of FCFS with LinRP, ExpRP, S-KP, and M-KP with varying number of dimensions<. As<
grows, the performance FCFS degrades substantially, but, for the knapsack-based algorithms (both LinRP and
ExpRP, and the other two alternatives) the performance degradation is marginal. Due to the poor performance
of FCFS, we just compare the performance of LinRP, ExpRP, S-KP, and M-KP in the rest of this section.

baselines. The �rst baseline is FCFS, which is the simple �rst-come �rst-serve policy that does not
account for the item values and current utilization of the knapsack in admission decisions.
The other two baselines are heuristics that are simple extensions of existing online algorithms

for the single-dimensional knapsack problem. The second algorithm is S-KP, in which the multidi-
mensional inputs, i.e., item weights and capacities, are aggregated into a single scalar value, we
then apply the algorithm proposed in [52] and admit an item if the single dimension S-KP admits
the item. The third baseline algorithm is M-KP, which runs< independent single-dimension online
knapsack algorithm, one for each dimension and admits the item only if all< algorithms admit the
item. Indeed both S-KP and M-KP fail to capture unbalanced demands across dimensions and in the
following we compare their performance in a range of experimental scenarios.

6.3 Comparison with FCFS

We �rst compare the performance of LinRP and ExpRP to FCFS, S-KP, and M-KP as a function of
number of dimensions. We consider the following scenario for item arrivals. 2000 items arrive
in two batches of 1000 each. Items in the �rst batch have single-dimension demands and items
in the second batch have </2-dimension demands. Items in the second batch arrive after the
arrival of all of the items in the �rst batch. For each item in the �rst or second batch, the set of
demanding dimensions has been selected uniformly at random from< dimensions. We set \ = 1
and \ = 5 for the �rst and second batch of items, respectively. In Figure 1, we vary the number of
dimensions and report the average empirical pro�t ratio of the di�erent algorithms. The results
show a substantial increase in the empirical pro�t ratio of FCFS as< increases, while the pro�t
ratios of both LinRP and ExpRP (and the other two knapsack-based alternatives) increase slightly.
Since the performance of FCFS is substantially worse than that of the other algorithms, in the rest
of this section, we remove FCFS from future comparisons and focus on comparing the performance
of the knapsack-based baseline algorithms, i.e., S-KP and M-KP, to our algorithms.

Another interesting observation is that LinRP outperforms ExpRP in Figure 1, while the theoretical
competitive ratio of ExpRP is better than LinRP. We believe this is due to the following two reasons.
First, to be worst-case optimal, ExpRP is very conservative in admitting items, and waits for high
value and/or low weight items, and this admission threshold increases exponentially. This is aligned
with the common understanding of online algorithms that are designed for the worst-case and may
not perform well with typical input instances. Second, the di�erence in the theoretical competitive

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 3, Article 30. Publication date: December 2021.



Competitive Algorithms for Online Multidimensional Knapsack Problems 30:17

Fig. 2. The impact of heterogeneity (on the size of jobs across di�erent dimensions) on di�erent algorithms.
For the definition of heterogeneity we refer to Section 6.4. Heterogeneity equal to 0 reduces our problem to a
single knapsack problem, hence, the performance of all algorithms is close to each other. Our algorithms
clearly outperform S-KP and M-KP when heterogeneity is high.

Fig. 3. The impact of U (captures heterogeneity on the capacity of dimensions) on di�erent algorithms.
Parameter U =

Õ
9 ⇠ 9/min9 ⇠ 9 is the ratio between the aggregate capacity of knapsack and the minimum

single-dimension capacity, e.g., U/< = 1 represent the case that dimensions have the same capacity.

ratio of LinRP and ExpRP appears when we deal with su�ciently large values of \ and U such that
the di�erence between p. and log(.) functions becomes clear. In most of our experiments, however,
the values of \ and U are small, e.g., \ = 5, U = 5. Also, typical values for these parameters in
practice are expected to be small. A promising future direction is to integrate both algorithms with
the predictive models and data-driven adaptation tools. We discuss these approaches in Section 8.

6.4 The Impact of Heterogeneity among Items
The main motivation for new algorithm design in the multidimensional knapsack originates from
the fact that the size of each incoming item across di�erent dimensions might be unbalanced such
that the prior algorithms for the single-dimension setting fail to achieve satisfactory performance.
In what follows, we design an experiment to investigate the impact of heterogeneity of sizes
of items across di�erent dimensions. To create a notion of item heterogeneity, we consider the
following experimental scenario. Consider an< = 20-dimensional knapsack that is demanded by
= = 2000 items. Items arrive in two batches of size =1 and =2 = = � =1. The �rst batch consists of
one-dimension items and The second batch consists of items demanding at most</2 dimensions
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Fig. 4. The impact of di�erent knapsack capacities on di�erent algorithms. Di�erent capacities are represented
by parameter d =

Õ
82 [=]

Õ
9 2 [<] F8, 9/⇠ , e.g., d = 10 represents the case that the aggregate item size is 10

times than that of the aggregate capacity of knapsack, i.e., demand is roughly 10 times the available resource.

Fig. 5. The impact of parameter \ (captures variability of item values) on di�erent algorithms. Parameter
\ = ?max/?min, and captures the ratio between the maximum and minimum unit-value of items, e.g., \ = 10
represents the case that the most valuable item is 10 times be�er than the least valuable item.

of the knapsack. The exact number of demanding dimensions for each item has been chosen from
a uniform distribution in the range [3,</2]. Heterogeneity is de�ned as the ratio between =1
and =2. In Figure 2, we vary this heterogeneity ratio from 0, i.e., =1 = 2000,=2 = 0, to 0.5, i.e.,
=1 = 1000,=2 = 1000, and report the average empirical pro�t ratios of the algorithms (on the
left) and the CDF (on the right) of LinRP, and ExpRP, as compared to S-KP, M-KP. The graphs
show that the empirical pro�t ratios of S-KP and M-KP rise to 7.9 and 7.4 with heterogeneity of
0.5; however, the empirical ratio of LinRP and ExpRP never exceed 3.7 and 4.2. The results also
demonstrate that the empirical pro�t ratio of single-dimensional algorithms increases continuously
as the heterogeneity increases and hence they fail to e�ectively admit items. On the other hand,
while the pro�t ratio of LinRP and ExpRP increases initially with the increase of heterogeneity, it
becomes robust after the heterogeneity of � 0.3.

6.5 The Impact of Model Parameters: Capacity, Value Variation \ , and Dimension
Capacity Variation U

The theoretical results of our proposed algorithms for OMdKP are obtained as functions of di�erent
parameters of the problem such as the value �uctuation and dimension capacity variation. These
parameters may impact the empirical performance of the proposed algorithms. Hence, as the
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last experiment, we evaluate the impact of problem parameters, U (Figure 3), knapsack capacity
(Figure 4), and \ (Figure 5), on the performance of LinRP, ExpRP, and the baseline algorithms. To
evaluate the impact of capacity, we introduce parameter d as the ratio between the aggregate
weights of all items and the capacity, i.e., d =

Õ
82 [=]

Õ
9 2 [<] F8, 9/⇠ . We use the two batches of items

described in Section 6.4 with heterogeneity = 0.2, and set \ = 5, U = 2, and d = 5 as default values.
We set⇠ =<, and we select capacities of knapsack in each dimension in a way described in Section
6.1. We vary only one parameter in each experiment, maintaining the rest set to default values.
Finally, we report the average empirical pro�t ratios and CDFs of pro�t ratios of all algorithms. The
results are reported in Figures 3, 4, and 5. The results in Figures 3 and 4 demonstrate that when U
(normalized to U/<) and d increase, the empirical pro�t ratios of LinRP and ExpRP increase slightly
while the empirical pro�t ratio for S-KP and M-KP increases signi�cantly. For example, when d
reaches 12, the pro�t ratios of S-KP and M-KP are close to 8; however, the pro�t ratios for LinRP and
ExpRP are less than 5. The increase of empirical pro�t ratios in both cases (the increase of U and d)
makes sense and it follows from our theoretical results since the competitive ratios of both LinRP

and ExpRP increase with parameter U . We also note that this observation makes sense intuitively
since with the increase of both U and d , the design space for the o�ine optimization becomes
larger and hence the online algorithms cannot compete e�ectively with the o�ine optimum. Last,
Figure 5 shows that the pro�t ratios of all algorithms increase as the item value variation increases,
which is aligned with the fact that theoretical competitive ratios increase with \ .

7 RELATEDWORK
The o�ine version of OMdKP is a well-studied problem in di�erent settings in literature [22, 23,
29, 39, 47, 49]. Our problem is similar to 0-1 version [9, 23] each admitted item must be packed
into the knapsack entirely. The problem has been applied to a some application domains as well,
e.g., hardware-software partitioning [27], resource allocation [26]. Nevertheless, to the best of our
knowledge, the problem has not studies in the online setting. The o�ine version of the problem has
been studied in [24], where k-dimensional geometric knapsack with a capacity that is represented as
a k-dimensional hyperrectangle. Then, some k-dimensional hyperrectangle items arrive sequentially.
The goal is to �nd a set of items that can be placed inside the knapsack without any need to rotate,
such that there is no overlap between them and the aggregate value of all admitted items is
maximized.

In addition to the prior work for the online version of single-dimension knapsack, this problem
has been revisited extensively in literature by adding some additional assumptions to the basic
model. For example, in [20], several variants of the basic online knapsack problem have been
studied. They explore the sum-objective and max-objective function in which the pro�t of the
knapsack is equal to the value of the maximum valued item placed in the knapsack. However, they
restrict the o�ine algorithm to a unit capacity knapsack while the online algorithm may use a
larger capacity. A greedy algorithm (like admit the item if its size does not exceed the size of the
most oversized item in the knapsack) is developed for an enhanced item admission. In addition,
there are some restrictive modeling assumptions such that the items are categorized into four
categories (small, medium, big, huge), and the algorithmic decision is based on the category of the
arrived item. Hence, these di�erences makes our algorithms in the paper in clear contrast with
those in [20].
Another category of similar problems is the online multiple knapsack problem (OMKP) [13, 15,

28, 31, 37, 43, 54]. In OMKP there are multiple knapsacks with bounded capacity, and the input is a
sequence of items, each with an associated weight and value. The goal is to maximize the aggregate
value of admitted items such that the sum of the weight of items in each knapsack respects the
knapsack’s capacity. Upon the arrival of a new item, the online algorithm must decide whether
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to admit or reject the item; if it admits the item, it should determine in which knapsack the item
should be placed. As mentioned in the introduction, our problem is di�erent since we have the
item sizes for each dimension as an online input to the problem.
More broadly, our problem is in the category of online admission control problems in multiple

dimension. This setting can capture a variety of application domains. Some examples are connection
routing and admission control in network [25, 34, 38], cloud computing jobs [30, 35, 53], admission
control for electric vehicles at charging stations [2, 43, 46], and QoS bu�er management [48]. The
similarity between di�erent versions of these problems is that demands dominate the limited
resource. In other words, the online algorithm must reject some requests to respect the system’s
capacity. The online algorithm’s decision is mostly based on the current available resource and
predictions of future requests. However, those problems are mostly in single dimension setting,
while we tackle an online admission control problem in multiple dimensions.

We proceed to review other theoretical problems that are related to OMdKP. A closely related
problem is the online bin packing [4, 6, 10, 32], in which = items arriving online should be assigned
into a set of available bins such that the lowest possible number of bins is used. Di�erent from
OMdKP, there is no admission decision in the bin packing problem; however, opening a new bin
or putting the most recent arrived item in the available bins is an online dilemma for an online
algorithm. While the classic version of pin packing is single dimension, prior literature has tackled
the multidimensional bin packing problem as well [16, 19, 45]. In the multidimensional bin packing
problem, the size of items and capacity of bins are represented as a : dimensional vector. In most
cases, the capacity of bins in all dimensions is the same, however, the size of a particular item
in di�erent dimensions may vary. In other words, bins are hyper-cubes while items are hyper-
rectangle. While packing multidimensional items into bins is similar to the OMdKP, the di�erence
between these two problems is clear since there is no admission control in the online bin packing
problem. Also, opening a new bin is a �exibility that is not a design space in OMdKP.

We note that recently in literature some generic online resource allocation problems have been
studied [5, 7], that capture generic resource allocation and linear packing problems. However, they
cannot fully capture the problem of interest in this paper, and hence it becomes infeasible to to
compare their algorithms with ours. Speci�cally, the authors in [5] presents an online algorithm
for the online packing problems in which = items arrive sequentially and upon arrival item 8 , a
generic objective function should be optimized respect to a packing constraint. The �rst important
di�erence is that the underlying online problem in [5] is a linear problem, while OMdKP is an
integer problem. The authors in [7] study another generic online allocation problem with the �nite
horizon. At time C  ) a new item with non-negative reward function 5C and non-negative resource
consumption function 1C arrive, and the algorithm must decide the amount of resource given to
this item, GC . The goal is to maximize the aggregate reward, i.e.,

Õ
C 2 [) ] 5C (GC ), while respecting the

a resource consumption constraint, i.e.,
Õ

C 2 [) ] 1C (GC )  d) , where d is< dimensional resource
constraint vector. In this problem, the resource constraint is a collective constraint, and there is
no individual constraint on resources given to a particular item. This is a signi�cant contrast that
makes the online resource allocation problem di�erent from OMdKP. Last, they use regret as the
performance metric of the proposed algorithms, while we use competitive ratio.

8 CONCLUSION AND FUTURE DIRECTIONS
In this paper, we developed online algorithms for fractional and integral versions of the online
multidimensional knapsack problem. Our algorithms are based on carefully designed linear and
exponential reservation policies and achieve bounded competitive ratios for both fractional and
integral settings. By characterizing a lower bound for the competitive ratio of any online algorithm
solving the problem, we also showed that the competitive ratios of our exponential reservation
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policies for problem instance with small item weights matches the lower bounds up to a constant
factor. Later, we numerically veri�ed the performance of the proposed algorithms under a variety
of experimental scenarios and compared them with multiple baseline algorithms.
An interesting future work is to design online algorithms that relax the need for a bound on

item size for the integral model. One possible approach to relax this assumption is to develop
a proper randomized strategy that outputs an integral decision from our competitive fractional
algorithm. Another future direction is to relax the bounded assumptions on the values of items. An
initial idea is to extend the existing algorithms that relax this assumptions for one-way trading
problem [18]. Another promising future direction is on integrating the predictive models into
the algorithms design to improve the empirical performance of the competitive algorithms. The
motivation is clear from our empirical results where in several cases, LinRP, the algorithm with a
weaker theoretical guarantee than the lower bound, performs empirically better than ExpRP, the
one with a better competitiveness in worst case. This observation shows that developing worst-case
optimized algorithms is not su�cient to achieve theoretical and practical e�ciency at the same
time. We highlight two initial ideas to achieve this goal of the best of both worlds. First, one
can systematically integrate the predictions into the design of online algorithms. This could be
accomplished by using the new framework of online algorithms with ML advice [33, 36, 40, 41]. In
this model, it is assumed that some prediction of future is available in terms of advice from ML
models, and the goal is to integrate them into the design of online algorithms while keeping the
worst-case competitive ratios. The second approach is motivated from the fact that rather than
using hand-crafted worst-case optimized algorithms, practitioners prefer to optimize over a class
of algorithms and tune the parameters of these algorithms to �nd an algorithm with improved
performance in practice. To do this, we need to de�ne a class of parametric online algorithms [50],
as a meta-algorithm, and run online learning approaches in run time to �nd the best practical
algorithm within them. This idea is applied to the basic online knapsack problem in [50], however,
applying this to the multidimensional case calls for new algorithm design.
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A SUPPLEMENTARY PROOFS
A.1 Proof of Theorem 1
Consider a simple instance where the system execute a FCFS strategy to admit items. The adversary
can exhaust the space in the �rst dimension by repeatedly presenting the items with value 1 and
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the following weights to the FCFS algorithm for = times.
⇠1

=
, 0, . . . , 0

�
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Afterwards, the adversary presents the items with value \ and the following weights to the FCFS
strategy for another = times.


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=
, . . . ,

⇠<
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�
.

The FCFS strategy can only admit the �rst = items and will miss the rest, since it already uses
up the space in the �rst dimension to admit the �rst = items. Thus, the aggregate value of items
admitted by FCFS is ⇠1, while that earned by the optimal algorithm, which admits the last = items,
is \⇠ . In this way, we show that the competitive ratio of the FCFS strategy is at least (\⇠)/⇠1 = \U ,
completing the proof.

A.2 Proof of the Last Inequality in Equation (11)

We use Figure 6 to facilitate our proof. Speci�cally,
Õ=

8=1

j
D8�1,90
⇠ 90

p
\<

k �
D8, 9 0 � D8�1, 9 0

�
can be seen

as an approximation of the integral of the step function
j
D8�1,90
⇠ 90

p
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k
with step length being ⇠ 90p

\<
,

and be visualized by the colored area in Figure 6. By calculating a lower bound for the size of the
colored area, we prove the last inequality in Equation (11). We note that the methodology used
above is also applied to other proofs in the paper, e.g., the one for Equation (13).

1

2

3

Fig. 6. Visualized proof for Equation (11)

A.3 A Proof for the Lower Bound Result in Theorem 2
The core idea to prove the lower bound of competitive ratio is to construct two adversaries
under which the competitive ratio of any online algorithm is ⌦(logU) and ⌦(log\ ), respectively.
Accordingly, the proof contains the following two steps.
Step 1: Prove lower bound ⌦(logU).

To prove the lower bound, we de�ne Adversary 1 which generates a series of inputs as follows.
Generally, Adversary 1 runs multiple rounds, at each which it repeatedly presents a particular

type of items of unit density to the investigated online algorithm. During the ;-th round, ; =
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1, 2, . . . ,⇠/⇠1,1 we repeatedly present a job satisfyingF8,1 = X log�1 ⇠
⇠1

andF8, 9 = (; � 1)⇠1⇠ 9/(⇠ �
⇠1), 9 = 2, 3, . . . ,<, to the investigated online algorithm where X is a small positive. The adversary
can end at anytime. Speci�cally, Input-; refers to the input which ends after the ;-th round.

Let ~; be the number of admitted items by the online algorithm at the ;-th round. To guarantee a
competitive ratio less than log ⇠

⇠1
for the ;-th input, ; = 1, 2 . . . ,⇠/⇠1, we have

;’
; 0=1

; 0~; 0 > ;⇠1/X . (15)

Otherwise, the algorithm will have a competitive ratio that is at least log ⇠
⇠1
, because

;⇠1Õ;
; 0=1 ;

0~; 0X log�1 ⇠
⇠1

� ;⇠1

X log�1 ⇠
⇠1

;⇠1
X

= log
⇠

⇠1
,

where ;⇠1 corresponds to the cumulative values received by the optimal algorithm and the termÕ;
; 0=1 ;

0~; 0X log�1 ⇠
⇠1

corresponds to that of the online algorithm. Moreover, ~; should satisfy the
capacity constraint, i.e.,

⇠/⇠1’
;=1

~;X log�1
⇠

⇠1
 ⇠1, (16)

where the left hand side of the above equation is cumulative weighs in dimension 1 by the online
algorithm. Then, we can prove our result by showing that there are no feasible solutions for ~; ,
; = 1, 2, 3, . . . ,⇠/⇠1 that simultaneously satisfy Equations (15) and (16) (see Lemma 1 in appendix).
Thus, the competitive ratio of the online algorithm is always larger than or equal to log(⇠/⇠1).

Step 2: Prove a lower bound, log \
1+X + 1 for any X > 0.

To prove the above lower bound, we de�ne Adversary 2 which runs ! rounds. At each round,
Adversary 2 repeatedly presents the same type of items which only demands on resource 1. During
the ;-th round, ; = 1, 2, . . . , !, we repeatedly present a job satisfyingF8,1 = ⇠1 and E8 = ⇠1 (1+(;�1)X),
to the investigated online algorithm where X = (\ � 1)/(! � 1). Also, the adversary can end at
anytime. Speci�cally, Input-; refers to the input which ends after the ;-th round.
Let ~; be the number of admitted jobs by a deterministic online algorithm at the ;-th round,

or be the expectation if the algorithm is randomized. Up to the ;-th round, the value earned by
the optimal algorithm is (1 + ;X)⇠1, which is achieved by admitting the item at the ;-th round. To
guarantee a competitive ratio of log \

1+X + 1 for the ;-th input, ; = 1, 2 . . . , !, there is

;’
; 0=1

(1 + (; 0 � 1)X) ~; 0⇠1 � (1 + (; � 1)f)⇠1

✓
log

\

1 + X
+ 1

◆�1
. (17)

Moreover, ~; should satisfy the capacity constraint, i.e.,

!’
;=1

~;⇠1  ⇠1. (18)

Then, we will show that there are no feasible solutions for ~; , ; = 1, 2, 3, . . . , ! that simultaneously
satisfy Equations (17) and (18).

1Without loss of generality, we assume⇠/⇠1 to be an integer.
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Let &0 := 0 and

&; :=
;’

; 0=1

(1 + (; 0 � 1)f) ~; 0⇠1, ; = 1, 2, . . . , !.

We have

!’
;=1

~;⇠1 =
!’
;=1

(&; �&;�1)
1

1 + (; � 1)X

=
!�1’
;=1

&;

✓
1

1 + (; � 1)X �
1

1 + ;X

◆
+ &!

\

�
!�1’
;=1

(1 + (; � 1)X)
✓
log

\

1 + X
+ 1

◆�1 ✓
1

1 + (; � 1)X �
1

1 + ;X

◆
⇠1 +⇠1

✓
log

\

1 + X
+ 1

◆�1

=
!�1’
;=1

X

1 + ;X⇠
✓
log

\

1 + X
+ 1

◆�1
+⇠1

✓
log

\

1 + X
+ 1

◆�1

>⇠1

✓
log

\

1 + X
+ 1

◆�1 π \

1+X

1
G
3G +⇠1

✓
log

\

1 + X
+ 1

◆�1

=⇠1 log
\

1 + X

✓
log

\

1 + X
+ 1

◆�1
+⇠1

✓
log

\

1 + X
+ 1

◆�1
= ⇠1,

where the �rst inequality is from Equation (17) and the de�nition of&; . The above result contradicts
Equation (18). Note that X can be arbitrarily small when ! is large enough. This proves a lower
bound log \

1+X + 1 for any X > 0.
Combining the above two steps, we can lower bound the competitive ratio of any algorithm, A,

either stochastic or deterministic by

CR(A) � max {⌦(logU),⌦(log\ )} � 1
2
⌦(logU) + 1

2
⌦(log\ ) = ⌦(log\U).

This completes the proof.

L���� 1. Assume ⇠/⇠1 is an integer. There is no positive ~; , ; = 1, 2, . . . , ⇠
⇠1
, satisfying

;’
; 0=1

; 0~; 0 >
;⇠1

X
,

and
⇠/⇠1’
;=1

~;X log�1
⇠

⇠1
 ⇠1.

P����. We prove the lemma by contradiction.We assume there exist~; , ; = 1, 2, . . . , ⇠
⇠1
, satisfying

the above two equations. Let�0 := 0 and�; :=
Õ;

; 0=1 ;
0~; 0 for ; = 1, 2, . . . , ⇠

⇠1
. Then, we have�; >

;⇠1
X .

There is
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⇠/⇠1’
;=1

~;X log�1
⇠

⇠1
=
⇠/⇠1’
;=1

(�; ��;�1)
1
;
X log�1

⇠

⇠1

=
⇠/⇠1�1’
;=1

✓
1
;
� 1
; + 1

◆
�;X log�1

⇠

⇠1
+
�⇠/⇠1

⇠/⇠1
X log�1

⇠

⇠1

>
⇠/⇠1�1’
;=1

✓
1
;
� 1
; + 1

◆
;⇠1 log�1

⇠

⇠1
+⇠1 log�1

⇠

⇠1

=
⇠/⇠1�1’
;=1

1
; + 1

log�1⇠1
⇠

⇠1
+⇠1 log�1

⇠

⇠1
> ⇠1,

where the last inequality uses the fact that 1 + 1/2 + 1/3 + · · · + 1/(⇠/⇠1) > log ⇠
⇠1
. This contradicts

the assumption and completes the proof. ⇤

B PROOF FOR THE FRACTIONAL RESULT IN THEOREM 5
Let Z = [I1, I2, . . . , I<] be the ending state of the system executing the proposed ExpRP-F algorithm.
Let J; , ; = 0, 1, 2, . . . , blog(\U)c, be the set of resources satisfying I; � ; . Note that, at each round 8 ,
the ExpRP algorithm runs multiple rounds to determine G8 . Speci�cally, at each round, the ExpRP
algorithm will add a positive value ~. Let ~8,A , A = 1, 2, . . . ,=8 be the value of ~ generated by ExpRP-F
at the A -th round for item 8 . Obviously, G8 =

Õ=8
A ~8,A . Accordingly, we de�ne D8, 9,0 as D8�1, 9 , and D8, 9,A

as D8�1, 9 +
ÕA

:=1 ~8,:F8, 9 , A = 1, 2, . . . ,=8 .
The proof is executed case by case.

Case 1: D=, 9 < ⇠ 9 , for any 9 2 [<].
First, we provide a lower bound for cumulative values of admitted items by the ExpRP algorithm,

which is denoted by +ExpRP-F.

+ExpRP-F =
=’
8=1

=8’
A=1

~8,A
’
9 2 [<]

F8, 9

�
=’
8=1

=8’
A=1

’
9 2 [<]

✓
2
j
D8,A�1,9

⇠9
log(\U 9 )

k
� 1

◆
~8,AF8, 9

�
=’
8=1

=8’
A=1

’
9 2 [<]

✓
2
j
D8,A�1,9

⇠9
log(\U 9 )

k
� 1

◆
(D8,A , 9 � D8,A�1, 9 )

�
’
9 2J1

I 9�1’
;=1

⇠ 9 log�1
�
\U 9

� ⇣
2; � 1

⌘

=
’
9 2J1

⇠ 9 log�1
�
\U 9

� �
2
�
2I 9�1 � 1

�
� I 9 + 1

�

=
’
9 2J1

⇠ 9 log�1
�
\U 9

� �
2I 9 � I 9 � 1

�
.
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In addition, we have
+ExpRP-F �

’
9 2J1

⇠ 9 log�1
�
\U 9

�
.

Combining the above two equations yields

+ExpRP-F �max
8><
>:
’
9 2J1

⇠ 9 log�1
�
\U 9

�
,
’
9 2J1

⇠ 9 log�1
�
\U 9

� �
2I 9 � I 9 � 1

�9>=
>;

�V
’
9 2J1

⇠ 9 log�1
�
\U 9

�
+ (1 � V)

’
9 2J1

⇠ 9 log�1
�
\U 9

� �
2I 9 � I 9 � 1

�
,

(19)

for any V 2 [0, 1]. Next, we prove an upper bound for the aggregated value of admitted items by
any algorithm.

An item 8 with weight vectorw8 is called the Type-I item if the following equation holds.

E8 <
’
9 2 [<]

(2I 9 � 1)F8, 9 .

Otherwise, an item is called the Type-II item. Obviously, an item is either a Type-I item or a Type-II
item. In addition, all of Type-II items are accepted by the ExpRP-F algorithm since each of them
satis�es

E8 �
’
9 2 [<]

(2I 9 � 1)F8, 9 �
’
9 2 [<]

(2I8�1,9 � 1)F8, 9 .

Next, we will provide an upper bound for the total values of admitted Type-I items by any online
algorithm.
Let 8: , : = 1, 2, . . . ,=1, be the indices of Type-I items and G8: , : = 1, 2, . . . ,=1, be the decisions

correspondingly. Then, by the de�nition of the Type-I item, we have that for any 8: , : = 1, 2, . . . ,=1,
there is

G8: E8: < G8:

<’
9=1

(2I 9 � 1)F8: , 9 .

It follows from the above equation that
=1’
:=1

G8: E8: <
=1’
:=1

G8:

<’
9=1

(2I 9 � 1)F8: , 9

=
=1’
:=1

<’
9=1

(2I 9 � 1) G8:F8: , 9

=
<’
9=1

(2I 9 � 1)
=1’
:=1

G8:F8: , 9


<’
9=1

(2I 9 � 1)⇠ 9 ,

where the last inequality uses the fact that
Õ=1

:=1 G8:F8: , 9  ⇠ 9 , 9 = 1, 2, . . . ,<. By the above equation,
we upper bound the total amount of values of Type-I items that are admitted by any algorithm,
which is at most

Õ<
9=1 (2I 9 � 1)⇠ 9 . In addition, the total amount of values of Type-II items is not

larger than the that of admitted items by the ExpRP-F algorithm. Thus, the total amount of values
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of items admitted by any algorithm is then upper bounded by

<’
9=1

(2I 9 � 1)⇠ 9 ++ExpRP-F.

Combined with the results in Equation (19) with V = 1/4, the competitive ratio of the ExpRP-F
algorithm satis�es

CR(ExpRP-F) 
Õ<

9=1 (2I 9 � 1)⇠ 9 ++on
+on

=

Õ<
9=1 (2I 9 � 1)⇠ 9

+on
+ 1


Õ

9 2J1 ⇠ 9 +
Õ

9 2J2 (2I 9 � 1)⇠ 9

1
4
Õ

9 2J1 ⇠ 9 log�1
�
\U 9

�
+ 3

4
Õ

9 2J1 ⇠ 9 log�1
�
\U 9

� �
2I 9 � I 9 � 1

� + 1

max

(
4

Õ
9 2J1 ⇠ 9Õ

9 2J1 ⇠ 9 log�1
�
\U 9

� , 4
Õ

9 2J2 (2I 9 � 1)⇠ 9

3
Õ

9 2J ⇠ 9 log�1
�
\U 9

� �
2I 9 � I 9 � 1

�
)
+ 1

4 log (\U) + 1,

where the last inequality uses the fact that

2I 9 � 1
2I 9 � I 9 � 1

 3, for any 9 2 J2 .

Case 2: D=, 9 = ⇠ 9 , for some 9 2 [<].
Without loss of generality, we assume that dimension 9 0 satis�es D=, 9 0 = ⇠ 9 0 . Assume \U 9 0 � 8.

Otherwise, there is

CR(ExpRP-F)  \⇠

⇠ 9 0
 8.
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By the rules of the ExpRP algorithm, we have

+ExpRP-F =
=’
8=1

=8’
A=1

~8,AE8

�
=’
8=1

=8’
A=1

<’
9=1

✓
2
j
D8,A�1,9

⇠9
log(\U 9 )

k
� 1

◆
~8,AF8, 9

�
=’
8=1

=8’
A=1

 
2

�
D8,A�1,90

⇠90
log(\U 90)

⌫
� 1

!
~8,AF8, 9 0

=
=’
8=1

=8’
A=1

 
2

�
D8,A�1,90

⇠90
log(\U 90)

⌫
� 1

! �
D8,A , 9 0 � D8,A�1, 9 0

�

�
blog(\U 90)c’

;=1

⇣
2; � 1

⌘
⇠ 9 0 log�1

�
\U 9 0

�

=
⇣
2
⇣
2blog(\U 90)c � 1

⌘
� log

�
\U 9 0

�
+ 1

⌘
⇠ 9 0 log�1

�
\U 9 0

�
�

⇣
2log(\U 90) � log

�
\U 9 0

�
� 1

⌘
⇠ 9 0 log�1

�
\U 9 0

�
=

�
\U 9 0 � log

�
\U 9 0

�
� 1

�
⇠ 9 0 log�1

�
\U 9 0

�
� 1

2
\⇠ log�1

�
\U 9 0

�
,

where the last inequality uses the fact that \U 9 0 � 8.
Thus,

CR(ExpRP-F)  \⇠
1
2\⇠ log�1

�
\U 9 0

� = 2 log
�
\U 9 0

�
= 2 log (\U) .

Concluding the above two cases yields
CR(ExpRP-F) max {8, 4 log\U} + 1.
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