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1. Introduction

In this paper, we study online linear optimization problems with inventory management constraints in a bidding
scenario. In each time slot, a decision maker must satisfy an online arrival of asset demand d(t) in the cost minimization
setting, while it receives an online supply of asset u(t) in the profit maximization setting. The asset may be bought at a
cost or sold at a profit with the online arrival of price p(t), where the buying amount x(t) or selling amount y(t) must
also be decided online. With inventory management, the decision maker may utilize an inventory of capacity B to store
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Fig. 1. The energy price dynamics in the NYISO market in three consecutive days in December 2018.

the asset between time slots. With bidding strategies, the price p(t) and decision variables x(t), y(t) are not immediately
known in the current time slot — the decision maker must first submit a set of bids on the asset, after which p(t), x(t),
and y(t) are made known based on the submitted bids. The problems are considered PROFITMAX and CosTMIN for the
maximization and minimization versions.

Online linear optimization is well-studied and recent work on the inventory management variant has also provided
worst-case optimality guarantees for both maximization and minimization versions [1,2]. The bidding setting, however,
introduces new challenges in online algorithm design because the online price inputs are not even known in the current
time slot. Specifically, in most prior work in online algorithms, even though the future input is assumed to be unknown, the
online input for the current slot is known accurately. In this paper, we consider a case that the online input for the current
slot is also unknown. In such scenario, the online decision maker participates in a market-based bidding mechanism to
determine the amount of asset that should be traded (sold or bought) in the market.

From the technical perspective, the unknown price exacerbates the challenges of online algorithm design such that
prior algorithms that are designed for the settings with known current price are not applicable for the bidding scenarios.
Specifically, prior online algorithms are developed based on carefully-designed threshold functions that determine the
trading amount based on the current utilization of the inventory and the known current price [1,2]. In the bidding scenario
with unknown price, it is not possible to directly apply those threshold functions anymore and hence it is needed to design
strategies for both variants of the problem, i.e., PROFITMAX and COSTMIN.

In addition to introducing new technical challenges, both PRoFITMAX and CosTMIN are of significant practical relevance
for the timely problem of bidding strategy design for participation of energy storage systems in real-time electricity
markets. The bidding strategy for storage participation in markets is different from traditional energy resources since
energy storage systems are flexible resources that pose unique physical and operational characteristics. The first unique
challenge is the flexibility in the generation: energy storage systems are flexible in releasing energy, i.e., it is possible to
store energy and release it at future times if that is more beneficial. Traditionally, the trade in the electricity market was
based on the fact that the energy could not be stored, and the market operations and bidding strategies were designed
based on this fundamental assumption.

The second challenge is uncertainty: energy storage systems often provide energy alongside variable renewable
generation, which results in inherent uncertainty in their energy generation. In addition, the energy market is highly
uncertain and market prices change dynamically based on supply and demand fluctuations. A sample trajectory of real-
time energy prices in NYISO is demonstrated in Fig. 1, where one can see irregular and unpredictable patterns in three
different days.

The above two challenges make bidding strategy design for storage-assisted parties a fundamentally different problem
than the traditional energy market participants. However, the problem of interest in this paper can fully capture both
challenges: the flexibility in generation could be captured by the inventory management constraints, and the uncertainty
could be capture by the online algorithm design framework.

1.1. Our contributions

In this paper, we tackle the bidding strategy design problems for CosTMIN and PROFITMAX using a principled approach
grounded on online algorithm design [3]. This framework enables designing bidding strategies that are provably robust
against uncertainty. This paper makes the following contributions:

Algorithm design. We develop two online algorithms and analyze their performance using competitive ratio as a well-
established metric for online algorithms. The competitive ratio is defined as maximum ratio between an offline optimal
algorithm with full information on inputs and the limited information online algorithm. The design of our bidding
strategies is inspired by prior storage management algorithms in a simplified setting in which the market price is known
in advance [1,2,4]. However, in bidding strategy design problems, the decision maker submits bids without knowing the
market price. This may result in declining the bid, jeopardizing the feasibility of the online solution. Furthermore, the
actual amount of asset traded will also be uncertain, which introduces the challenge of underbidding and overbidding on
the asset due to the unknown price. Hence, the existing algorithms [1,2,4] are not applicable to the bidding scenario. We
utilize the possibility of submitting multiple bids [5] to the market and resolve these challenges for bidding strategies for
both demand and supply sides.
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Table 1

Summary of key notations.

Inputs

T The number of time slots, T > 1

T Set 7={1,2,...,T}

p(t) Market clearing price at t, pmin < p(t) < Pmax
0 The price fluctuation ratio, i.e., & = Pmax/Pmin
B The capacity of storage system

Pc Charge rate limit of storage system

0d Discharge rate limit of storage system

b(t)

The storage level (state of charge) at the end of t

Notations for CoSTMIN

d(t)
x(t)

The asset demand at ¢t
opt. variable The buying quantity at t

Notations for PROFITMAX

u(t)

The asset generation at t

y(t) opt. variable The selling quantity at t

Notations for bidding

m The maximum number of possible bids

< Di, Qi > Bid i including bidding price p; and bidding quantity g;
B The set of bids, i.e, B={<p1,q1 >,..., < Pmsqm >}

Competitive analysis. As the theoretical contribution, we characterize the competitive ratio of both proposed algorithms
as a function of number of bids, and show the competitive ratios approaches those values of the basic algorithms [1,2] as
the number of bids grows. More specifically, let « be the optimal competitive ratio of the basic algorithm proposed in [2]
for CosTMIN. Our competitive analysis shows that the proposed bidding strategy for CosTMIN achieves the competitive
ratio of «(8/a)/™=1, where m is the maximum number of bids. In addition, our bidding strategy for PROFITMAX achieves
the competitive ratio of (In6+1)9"/(m=1) showing a degradation factor of 8'/(™=1) as compared to the optimal competitive
ratio of (In® + 1) for the basic algorithm with known current price proposed in [1]. For both algorithms as m — oo, the
degradation factors due to unknown prices vanishes and the competitive ratios approaches to those optimal values for
the basic settings with known prices.

Empirical evaluations. Lastly, we empirically evaluate our bidding algorithms using extensive data traces of electricity
prices from NYISO [6], energy demands from Akamai data centers [7], and renewable production values from solar [8]
and wind [9] generation. In an extensive set of experiments, the performance of our algorithms is only 5% worse than the
cases in which the price of the market for the incoming slot is known in advance. In addition, our algorithms outperform
alternative baseline algorithms by more than 10%, on average. Finally, our results show that as the number of available
bids increases, the performance of our algorithms approach the ideal performance of algorithms which know the price in
advance.

2. Problem formulation

In this section, we present the system model and cast two optimization problems: CosTMIN that formulates the cost
minimization problem for a storage-assisted customer (STRDEM) participating in the asset market and PROFITMAX, a
profit maximization problem that focuses on storage-assisted supplier (STRSUP). While the formulated problems in this
section are generic and could be applied to any bidding scenarios with inventory management constraints, we present
the problems in the context of storage participation in the electricity market (see Table 1).

2.1. System model

We consider a time-slotted model, such that the time horizon T is divided into multiple slots with equal length,
e.g., 5 min in CAISO and NYISO [10], each of which is indexed by t. Shortly before slot t, STRDEM (and/or STRSUP)
along with other participants submit their bids for the next slot. The clearing price p(t) is determined shortly after the
participants submit their bids. Hence, the market participants do not know the value of p(t) for the incoming slot. We
assume that the minimum and maximum possible values of the clearing price over the time horizon are known in advance,
i.e., Pmin < p(t) < Pmax. This assumption is reasonable since these values could be predicted from the historical data of
prices. We denote parameter 6 as the ratio between the maximum and the minimum clearing prices, i.e., 8 = Pmax/Pmin-

For both STRDEM and STRSUP, we assume that there is a single storage system that could be a single large-scale physical
storage or a collection of multiple small storage units aggregated as a single virtual storage. Let B, o, and py be the capacity,
the maximum charge rate, and the maximum discharge rate of the storage system. Furthermore, we denote b(t) € [0, B]
as the storage level at the end of slot t.
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2.2. Cost minimization problem

We consider the following scenario. At each timeslot, demand d(t) arrives online that must be satisfied by either
submitting bids to the market with the unknown market clearing price p(t), or drawing from the storage system. The
decision maker can purchase extra assets from the market to keep in storage for future use. The goal is to design a
bidding algorithm to determine the value of x(t) as the procurement amount in each slot, so that the aggregate long-term
cost of purchases is minimized and the demand is satisfied.

Storage Model. By denoting b(t) € [0, B] as the storage level at the end of slot t, the evolution of storage level is given
by

b(t) = b(t — 1) 4 x(t) — d(t),
In addition, we have
0 < x(t) < d(t)+ min{pc, B — b(t — 1)},

that limits the procurement to the demand plus the minimum between the charge rate p. and the available capacity.
Finally,

x(t) = d(t) — min{pq, b(t — 1)},

limits the procurement to the demand minus the minimum between the maximum discharge rate p4 and the available
energy in the storage.

Problem Formulation. If the d(t) and p(t) are known for the entire time horizon in advance, the offline version of cost
minimization problem for STRDEM, can be formulated as a linear program as follows.

COSTMIN : min Zp(t)x(t)

teT

s.t.: VteT:
b(t) = b(t — 1) + x(t) — d(¢), (1)
x(t) > d(t) — min{pg, b(t — 1)}, (2)
x(t) < d(t) + min{p., B— b(t — 1)}, (3)
0 < b(t) < B, (4)

vars. : {x(t), b(t)} € RT.

The objective is to minimize the cost of buying for the market. Constraint (1) dictates the evolution of the storage, and
constraints (2)-(4) enforce the capacity and rate limits of the storage.

2.3. Profit maximization problem

There is a storage-assisted supplier (STRSUP) that produces some amount of the asset in each timeslot. In the example
of energy storage, this would be electricity from renewable sources such as wind farm or solar plant. The STRSUP has
on-site storage systems to store the asset mainly for mitigating the uncertainty of asset generation, and secondly, for
strategic supply to the market with potentially higher price to maximize the profit.

Asset Output. We denote the asset output of STRSUP at slot t by u(t) > 0. We assume that the value of u(t) is known
for the incoming slot when submitting the bid. However, the future values of u(t) are not known in advance. Depending
on the bidding strategy, u(t) could be directly committed to the market, partially be committed to the market and the
residual is stored on the storage, or entirely be stored on the storage for future supply to the market with higher price.

Given the asset output u(t), the goal is to design a bidding strategy to determine the value of y(t), i.e., the supply
quantity in each slot, such that the long-term profit of selling the asset to the market with time-varying clearing price is
maximized.

Storage Model. Given the asset output u(t) and the supply quantity y(t), the evolution of the storage is given by

b(t) = b(t — 1) — y(t) + u(t),

In addition, we have
0 < y(6) < u(t) + min{ pg, bt — 1)},

that limits the maximum supply in each slot by the discharge rate limit p,4. Also, we have
y(t) = u(t) — min{p., B — b(t — 1)},

that dictates the minimum supply amount to the market given the current storage level and the charging rate limit p. of
the storage.
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Profit Maximization Problem. The objective is to maximize the cumulative profit obtained by STRSUP over the time
horizon. The profit maximization problem PROFITMAX is formulated as

PROFITMAX : max Zp(t)y(t)

teT

st.: VteT:
0 < b(t) < B, (5)
y(t) < u(t) + min{pq, b(t — 1)}, (6)
y(t) > u(t) — min{p., B — b(t — 1)}, (7)
b(t) = b(t — 1) — y(t) + u(t), (8)

vars. : {y(t), b(t)} € RT,

where the constraints follow from the properties of the storage and the asset availability.
2.4. Tackling online problems

Both CosTMIN and PROFITMAX are linear programs that could be solved effectively in an offline manner [11,12].
However, in practice both problems should be solved in online scenario with the price p(t) as the common online variable
for both problems, and the asset demand d(t) as the additional online variable for CosTMIN, and the asset output u(t) as
the online variable for PROFITMAX. Hence, we are interested in developing online algorithms for both problems that make
decisions in each time t, knowing the past and current prices and demands/outputs, but not knowing those same inputs
for the future.

Designing online algorithms that implicitly dictate the asset storage charging/discharging decisions, however, is
challenging since in an online setting, we do not know if such decisions will work out favorably in the future. In the
literature, both problems have been tackled in online scenarios using different analytical approaches. In prior work [2,4],
there is a simplifying assumption that the price p(t) is known for the incoming slot. Using competitive analysis [3], online
algorithms have been proposed for both simplified problems. The goal is to design algorithms with the smallest competitive
ratio, that is, the cost ratio between the online algorithm and an offline optimal algorithm that has access to complete input
sequence. Our bidding strategies in this paper will be built on top of these existing competitive online algorithms.

The Structure of Bids. Tackling CosTMIN and PROFITMAX in the bidding scenario introduces two key challenges. First,
even the price for the current slot is not known to the decision maker. In other words, since the price will be cleared
after gathering all bids from suppliers and customers, bidding strategies should submit their bids without knowing p(t)
for the current slot. Second, the amount of asset traded to the market also faces uncertainty, which must be mitigated by
an appropriate bidding strategy.

In this setting, the bidding strategy design refers to the way that STRDEM or STRSUP determine its bids. A bid includes:

> Bidding price denoted as p(t) € [Pmin, Pmax], i.€., for the supplier, the minimum price at which STRSUP desires to
supply the asset to the market; and for the customer, the maximum price at which STRDEM is willing to buy from the
market.

> Bidding quantity denoted as q(t) > 0, i.e., the amount of asset at which STRDEM (resp. STRSUP) buys from (resp.
supplies to) the market at slot ¢ given the bid is accepted.’

In the example of electricity markets, usually participants can submit multiple bids with different bidding prices and
quantities. For example, in the PJM market, each participant can submit at most 10 bids [5]. To capture this, let m be
the maximum number of bids for each participant. Then, we denote (p;(t), gi(t)) as the ith bid in slot t. And we let
B = {{p1(t), qi(t)), ..., (pm(t), gm(t))} be the set of submitted bids at slot t. Without loss of generality, we assume the
supply bids are indexed in ascending order based on their bidding price, i.e., p1(t) < pa2(t) < - -+ < pm(t).

Once the market is cleared and p(t) is known, at the supply side, the bids with the bidding price less than or equal to
p(t) are accepted to supply their quantity into the market. More specifically, for STRSUP, let 0 < k < m be the index of
the last accepted bid. Hence, STRSUP will sell y(t) to the market in time t based on k bids:

k
¥y =Y aft). 9)
i=1

Similarly, for STRDEM, the bids with the bidding price greater than or equal to p(t) will get accepted to buy their quantity
from the market. For demand bids, we assume that the bids are indexed in descending order of their bidding price,
i.e,, p1(t) = po(t) > --- > pm(t). And letting k as the index of the last accepted bid, we have

k
()= qit). (10)
i=1

1 We assume that the market is big enough to absorb/satisfy the bidding quantities of STRDEM and STRSUP entirely and the participants satisfy
the minimum requirement for participation.
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Given the above relationship between the supply variable y(t) in PROFITMAX, the procurement variable x(t) in COSTMIN,
and the bidding quantities in Egs. (9) and (10), the goal of the bidding strategy design in this work is to set the bids so
as to maximize the long-term profit of STRSUP and respectively minimize the long-term cost of STRDEM. Note that the
variables x(t) and y(t) are characterized by the index k, and therefore take up to m + 1 different values. Since the it
is impossible to know which of these values x(t) or y(t) will take, one challenge in bidding strategy design is ensuring
all m + 1 possible outcomes are equally favorable. In the next section, we present the details of the proposed bidding
strategies.

3. Online bidding strategy design

In this section, we develop our bidding strategies for CosTMIN, called DEMBID in Section 3.1, and for PROFITMAX, called
SUPBID, in Section 3.3. In the case where the market price is known a priori, the high-level goal of online algorithms for
both STRDEM and STRSUP is to store more of the asset when the market price is cheap and discharge more from storage
when the price is high. With known market prices for the current slot, DEM-0N (ARP in [2]) and SUP-ON (sOffer in [4])
achieve the best possible competitive ratio among online algorithms. The main ideas are to utilize carefully designed
functions that determine reservation prices based on the storage level, and to introduce the notion of virtual storage for
tackling the uncertainty of demand and supply.

However, the market price is not known for the incoming slot in the bidding scenario. Hence, the above online
algorithms cannot be directly applied. The main challenges are as follows: (1) without knowing the market price, it is not
possible to directly use DEM-ON and SUP-ON since their required input of current price is unknown; (2) the possibility of
failure of bids may lead to the case that the demand is not fully covered in CosTMIN, and the waste of renewable output in
PrROFITMAX if there is not enough room in storage to store; and (3) the number of successfully accepted bids is uncertain,
and any number of accepted bids should result in a desirable amount of traded asset.

The high-level ideas of our bidding strategy design for addressing the above challenges are as follows. First, to tackle
the challenge of unknown of market price, we advocate the idea of submitting multiple bids with different bidding prices.
For each bid, the bidding quantity is designed in compliance with an adaptive reservation strategy. In this way, we can
mimic the adaptive reservation policy to reserve the asset with controllable deviations. Second, to tackle the challenge of
possibility of infeasible solution due to failure of the bids, we follow the idea of dividing the bids into two categories: The
first category is devoted to make sure that we respect the constraints of the problem. Specifically, in each slot, for CosTMIN,
we reserve a deterministic bid whose bidding price is set to pmax and the bidding quantity is the minimum required asset
to prevent the infeasible solution. That is, if the current maximum discharge possibility of storage, i.e., min{pg, b(t — 1)},
is less than the demand d(t), the algorithm will submit a deterministic bid with the bidding price of pn.x and bidding
quantity of d(t)—min{pg, b(t — 1)}. Third, the remaining bids will be designed by applying the so-called adaptive reservation
policy in [2] and a carefully designed partitioning strategy proposed in this paper. The bidding prices and quantities are
partitioned to provide performance guarantees regardless of the market price and which bids are accepted. For PROFITMAX
we follow the same design paradigm of submitting a deterministic bid and using a partitioning strategy for the remaining
bids. In the following, we develop two algorithms following these high-level ideas. Note that for simplicity, we present
our algorithms without taking into account the rate constraints of the storage systems. Specifically, we focus on the case
where the storage has only capacity constraints, but no rate constraints, i.e., p. = py = B. However, our algorithms could
be extended to include such constraints by projecting the values x(t) or y(t) into the feasible region of respecting those
constraints. This is done by restricting the bidding quantities such that x(t) respects the upper and lower bounds from
constraints (2)-(4), and similarly y(t) for constraints (6)-(7).

3.1. Bidding strategy design for STRDEM

We summarize the pseudocode of DEMBID as Algorithm 1. The main ideas of DEMBID are: (i) the construction of
virtual storage, which tackles the challenges due to the demand dynamics; (ii) adaptive reservation based on storage level,
which tackles the challenges due to price dynamics in the future; and (iii) multiple-bid strategy, which mitigates the risk
of unknown market price and failed bids. The first two are based on prior work [2], and the third one is the novelty of
this work. We discuss the details in the following.

Virtual Storage. Inspired from ideas in [2] for designing an online algorithm with the optimal competitive ratio, DEMBID
deals with demand dynamics by defining a notion of virtual storage. DEMBID views the demand in each time slot as flexible
demand that must be purchased from the market with some degree of freedom obtained by shifting it using storage. To
utilize this opportunity, DEMBID constructs several virtual storages to record the satisfied amount of the demand from
the market. Specifically, in each time slot with demand d(t) > 0, DEMBID initiates an additional virtual storage whose
capacity is equal to d(t). (Lines 31-35). The first virtual storage is always representative of the actual physical storage,
with capacity B. (Lines 1-3). Finally, when b(t) = 0, DEMBID has just used up the physical inventory to satisfy demand.
With no leftover asset to assist with future demand, the previous virtual storages have no further use. The number of
virtual storages is reset to 1, renewing the process as in Line 28. On the other hand, if b(t) > 0, there is leftover asset
that can help meet future demand. Then the status of the virtual storages will be not be renewed.

Adaptive Reservation Price. The storage will be regulated by an adaptive reservation policy, which deals with price
dynamics by defining a notion of reservation price. Having a properly constructed reservation price, DEMBID charges the

6
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Algorithm 1 DEMBID: The bidding algorithm for demand-side participant, for each t € 7.

: // Initializationatt=1
v<1;
: By < B;
&1 < [Pmax/al;
// The main algorithm for each t
B <0
:m(t) < m
// Deterministic bid: To ensure covering demand
7: if d(t) > b(t — 1) then
8: Xmin < d(t) — b(t — 1)

A WN =

a v

9: B <= BU < Pmax> Xmin >
10:  m(t) < m(t)—1
11: end if

// Decide bidding prices
12: 14 < (6 /a)!/™®)
13: Po < Pmax/®
14: foreachi=1,2,...,m(t) do
15 p< B
Ta
16: end for

// Decide bidding quantities
17: foreachj =1, 2, ..., m(t) do

v . +

18: qi < j=1 [GBj(pi) - GBj(mln(pi—ls Sv)]
19: end for
20: B« BU {< P1,G1 >, <DP2,q2 >, .-+ < Pm(t)> m(t) >}
21: Submit B

// Receive p(t) and update the physical storage
22: k < index of last accepted bid
23 X(t) < Y5 g
24: b(t) < b(t — 1)+ x(t) — d(t)

25: foreachi=1,2,...,vdo
26: & < min{;, p(t)}
27: end for

// Update the virtual storage
28: if b(t) = 0 then
29: Initialize the algorithm by executing Lines (2)-(4)

30: else

31: if d(t) > 0 then
32: v<v+1
33: B, < d(t)
34 &y < Dmax/o
35: end if

36: end if

storage if the bidding price is cheaper than the reservation price; otherwise, it discharges from the storage. DEMBID
adaptively determines the reservation prices based on the available storage level and updates its value whenever the
storage level is changed (see Lines 25-27). DEMBID determines the reservation price for the jth virtual inventory with
capacity B; by the following function,

p o p
st(p)zalen[(l — ) } pe [pmm, E] (11)
Pmax ) @ — 1 (o4

where

—(w(- =L 171 12
“‘( (_eexp(1)>+> ’ (12)

and W denotes Lambert-W function defined as inverse of f(z) = z exp(z), and 6 = Pmax/Pmin is the price fluctuation ratio.
Note that this function is carefully designed to guarantee a worst-case competitive ratio for the problem. Further,
in [2], it is shown that with this reservation function, DEM-0N achieves the best possible competitive ratio of « as defined

7
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in Eq. (12). In particular, the choice of « is motivated by being the exact same competitive ratio as the k-min search
problem [13] in the case of k — oco. In this problem, the buyer seeks to buy k > 1 units of an asset to minimize their
cost. At each timeslot t = {1, ..., T}, the buyer is presented price p(t), and must immediately decide whether to buy
some of the asset at the given price. In fact, the problem of online linear optimization with inventory management is a
generalization of k-min search when the market price is known.

Multiple-bid Strategy. The cost of the bidding strategy is ultimately determined by the last accepted bid pi(t). With an
asymptotically large amount of bids, DEMBID has sufficient available bids to closely estimate py(t) ~ p(t). So, the bidding
strategy of DEMBID should converge to optimal online DEM-0N. With this in mind, we design DEMBID to submit bidding
quantities g; that correspond with the adaptive threshold of DEM-0N.

DEMBID first sets a deterministic bid to ensure satisfying the demand (see Lines 7-11), while the remaining bids are set
according to an adaptive reservation policy. The function Gg, represents the target amount of stored asset in the (virtual)
storage indexed by j when the reservation price is given. In slot ¢, if the ith bid is successful, DEMBID stores an additional
amount of GB}.(pi(t)) — GBj(min(pi_l, &;)) into virtual storage j where the bidding price is p;(t) and the reservation price is
&;; otherwise, it stores nothing. Both can be stated in the following compact expression

[Ge,(pi(t)) — Gy (min(pi_1. &))] " -

GBj(p) is decreasing in p, which gives some intuition on the storage behavior. Once the storage level is low, DEMBID
is more eager to store the asset; hence, it accepts higher prices. On the other hand, at high storage utilization, it charges
the storage only if the price is low.

We can illustrate the storage behavior by examining DEMBID at price endpoints. Plugging in the price pni,, we have
Gg,(pmin) = Bj, meaning that all virtual storages will be stored at their capacity B;. Practically speaking, this indicates that
the first physical inventory is fully at capacity B, while the remaining virtual storages fully satisfy their respective time
varying demand d(t).

In the other extreme, plugging in "T%, we have G (”'Z‘KJ) = 0, meaning that all virtual storages will aim to store
nothing. Practically speaking, this means that with target storage of 0, DEMBID relies on previous inventory levels to meet
demand and will not purchase beyond the required demand.

Finally, the bidding quantity g; is determined by aggregating the value above over all virtual storages as in Lines 17-19.
In the case that py(t) = p(t), the procurement by DEMBID is equivalent to that of DEM-ON.

With the bidding quantities designed to guarantee convergence toward optimal online behavior, the bidding prices
are designed around realistic worst-case performance. py(t) is incorrect by a factor of ’;"—(f)), and our analysis in Section 3.2
shows that this factor characterizes how much DEMBID degrades the competitive ratio of DEM-0N. Thus we design our
bidding prices to minimize this degradation factor. DEMBID sets exponentially decreasing prices over the domain p €
[pmin, p“;‘”‘], with each successive bidding price being ry = (8/a)"™* times smaller than the previous bid. (Lines 12-16).
In turn, this guarantees that pi(t) is no more than ry times larger than the clearing price.

3.2. Competitive analysis of DEMBID
The following theorem gives the main result for DEMBID.

Theorem 1. DEMBID achieves the competitive ratio of opgmpip aS
0 1/(m—1)
ODEMBID = & * (*)
o

for m > 1, where m is the maximum number of bids, and « is defined in Eq. (12) as the competitive ratio of DEM-ON [2].

The competitive ratio apewsrp has several desirable qualities. First, apgwprp can interpreted as the online optimal
competitive ratio « degraded by a factor of (6 /oz)l/ (m=1)"which comes due to unknown price values for the incoming
slot. Furthermore, this degradation factor is decreasing with the number of bids m, and apgyerp converges toward « for
sufficiently large m. Lastly, by the nature of «, apgvgrp — 1, when 6 approaches 1. In what follows, we proceed to define
some additional notations to facilitate the proof of Theorem 1.

Preliminary Notation. Define w € £2 as an input instance including the prices and demands over the time horizon, i.e.

o = [o(t) = (p(t), d(t)]reT-

Consider the execution of DEMBID on input @ which produces a set of accepted bids for each t € 7. Let k be the index of
the last accepted bid at time t, which necessarily satisfies the following:

) >p(t), VI<i<k
! < p(t) otherwise.

For an input instance w, the set of accepted bids by DEMBID are also used to define an alternative input, wy, as

wp = [wp(t) = (pi(t), d(t))]reT
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Note that, associated with each input instance w, we can always find an input w, based on the above construction.
From DEM-ON being a-competitive, we have

cost,(DEM — ON) < « - cost,(0OPT) + cons, (13)
where cons > 0 is a constant number, and cost,(0OPT) is the cost of the offline optimal algorithm on the input w. The

following definition also specifies a portion of the procurement strategy for DEM-0N.

Definition 1. For any time t € 7, the minimum required procurement to satisfy the demand constraint is
Xmin(t) = [d(t) — b(t — 1]",
and the procurement by DEM-0ON is:

v

xomn_on(t) = max { ¥~ [Gy(p(D)) — G (§)] ", xmin(0) ¢ - (14)

j=1

We start to prove Theorem 1 by beginning with a result expressing the relationship between the procurement of
DEMBID and DEM-ON.

Lemma 1. For the time-specific inputs w(t) = (p(t), d(t)) and wy(t) = (prn)(t), d(t)),
xpeweIp(@(t)) = Xpen—on(@p(t)).

Proof. Note that the deterministic bid of DEMBID also procures quantity Xm;(t). For analysis, we decompose the
procurement of DEMBID into procurement from the reservation functions and procurement X;,(t):

K(E)(E)
xpewsIp(@(t)) = Z q; + Xmin(t

v

= max Z [st(Pk(r)(t)) - GBj(";:j)]+ , Xmin(t)

j=1
= Xpen—on(ws(t)).

The second equality is by construction of g;, and the last equality is from directly substituting the input wy(t) into (14). O

This result will help establish the following lemma on the cost of DEMBID.

Lemma 2. For any w € £2, cost,(DEMBID) is upper bounded by
cost,(DEMBID) < cost,,(DEM — ON).

Proof. Consider the cost of DEMBID:

cost,,(DEMBID) = ZP Wpemen(@(t)) Zpk(t) Ypemsn(@(t))

= Zpkm(r)xnmfw(w(t» = cost,,,(DEM — ON).
The first inequality is due to the nature of last accepted bids py(t) > p(t). O

Lemma 3. Letr = sup,., MaX;eT ”k(—(f)) be the maximum ratio between the last accepted bid and clearing price over the time
period. Then for any w € §2, DEMBID is « - r-competitive.

Proof. We substitute (13) into the result of Lemma 2, except with input w.

cost,(DEMBID) < cost,, (DEM — ON)
<« - cost,,(0OPT) + cons
cost,,(0PT)
' cost,(0PT)

(15)
cost,(0PT) + cons.

9
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Let xgpr(t) be the optimal offline procurement under w. Then

cost, OPT Z p X[]pT

Since wy, has the same demand inputs as @ and the demand constraints of CosTMIN only depend on demand, Xgpr(t)
produces a feasible solution to CosTMIN with input wy. Then, this feasible solution is an upper bound on cost,, (OPT),
ie,

T

T
cost,,(0PT) < Zp(f)XOPT Z t)Xgpr(t

t=1
It follows from the above expressions that
costwb(OPT) Zt 1 pk( )p(t WXapr(t)
cost,(0OPT) — Zt 1 p(E)xopr(t)
T Zt 1 b(t)Xgpr(t)
- Zt:1 p(t)xgpr(t)

=T,

where the second inequality simply uses the definition of r. Substituting the above result to (15) completes the proof. O

As the last step, we proceed to upper bound the value of r.

Lemma 4. When p; is set according to the DEMBID algorithm, we have r < (g)]/ (m=1),

Proof. Since py(t) is the last accepted bid, the first rejected bid is less than the clearing price, i.e. pr1(t) < p(t). This
helps provide an upper bound for r as follows

. pi(t) pr(t)
I = sup max —— < sup max

we2 t€T P(t)  wee t€T Prya(t)
At time t € T, DEMBID sets p;(t) such that p;(t) = po/rd, where ry = (0/a)"/™®. This means the ratio between two

consecutive bids is fixed by % = ry, regardless of the price and demand inputs. Thus
1

<9>1/m(t) <9>1/(m1)
r<rg=1|\-— <| -
o o

where the last inequality arises from m(t) being either m or m — 1 depending on the deterministic bid. O

Combining Lemmas 3 and 4 yields the result in Theorem 1.
3.3. Bidding strategy design for STRSUP

In this section, we propose SUPBID, a bidding strategy design algorithm for PROFITMAX that determines how to supply
the asset to the market and to charge/discharge the storage system. The simplified version of this problem when market
price is known for the incoming slot is studied in [4]. Like DEMBID, we design SUPBID following an adaptive threshold-
based strategy using virtual storage and multiple bids. Since the general flow of SUPBID is the same, in the following we
highlight the differences in the algorithms.

Virtual Storage. Unlike DEMBID, SUPBID initializes the virtual storage when the physical storage is fully charged (see
Line 29 in Algorithm 2). The renewal process in this setting denotes the case that there is no more free space to store the
renewable storage for future use, hence, we renew the virtual storage to its initial value.

Adaptive Reservation Policy. For each (virtual) storage j with capacity B;, an adaptive reservation policy is implemented
with the following threshold function [1]:

B; p
Fg(p) = — In 1), p € [Pmin,
Bj(p) g+ 1 ( Do + ) P € [Pmins Pmax]

Fg,(p), which is an increasing function with respect to p, refers to the target amount of the sold asset. Note that
Fg;(pmax) = Bj, meaning the algorithm will sell out the entire amount of asset in the storage if pmqx is observed. We
note that the above threshold function is designed such that SUP-0N achieves the best possible ratio of In6 + 1 for the
case that the price of incoming slot is known. Similarly, the usage of In6 + 1 in the threshold function is motivated by
being the same competitive ratio as the optimal online algorithm for the k-max search problem [13] as k — oo.

10
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Algorithm 2 SUPBID: The bidding algorithm for supply-side participant, for each t € 7.

A WN =

a v

10:
11:

12:
13:
14:
15:
16:

17:
18:
19:
20:
21:

22:
23:
24:
25:
26:
27:

28:
29:
30:
31:
32:
33:
34:
35:
36:

: // Initialization: att =1
v <« 1;
: By < B;
: &1 < Dmin;
// The main algorithm for t
B« 0
:m(t) < m
// Deterministic bid: To avoid overflow of asset
. if u(t) > B— b(t — 1) then

Xmin <— U(f) —B+ b(t - ])
B <« BU < Pmins Xmin >
m(t) < m(t) —1
end if
// Decide bidding prices
re <« g1/m(t)
Po <= Pmin
foreachi=1,2,...,m(t) do
pi < Ppo-T;
end for
// Decide bidding quantities
foreachi=1,2,...,m(t) do
i < )iy [Fs;(pi) — Fg(min(p;_1, §))]
end for
B <« BU{(p1. q1). (P2, G2). (3. G3). - - -, (D) Gme)) }
Submit B
// Receive p(t) and Update the reservation price
k < index of last accepted bid
ORI
b(t) < b(t — 1) — y(t) + u(t)
foreachi=1,2,...,vdo
& < max({&;, p(t)}
end for
// Update the virtual storage
if b(t) = B then
Initialize the algorithm by executing Lines (2)-(4)
else
if u(t) > 0 then
v<—v+1
B, < u(t)
Sv <= Pmin
end if
end if

Multiple-bid strategy. If the ith bid is accepted, the jth virtual storage sells

[F,(p(t)) — Fs,(min(pi_1. )] -

Then, the total bidding quantity g; is the aggregate amount sold over the set of available virtual storages as represented in
Line 18 of Algorithm 2. The main difference in bidding prices arises from the different adaptive reservation policy. Since
Fg;(p) is increasing, SUPBID submits exponentially increasing prices over the domain of Fy(p). Each successive bidding

price is r; = 6/™® times larger than the previous bid. For details of generating multiple bids, we refer to Lines 7-19. In

this manner, pi(t) is no more than rs times smaller than the clearing price.

3.4. Competitive analysis for SUPBID

Theorem 2. SUPBID achieves the competitive ratio of asypprp aS

asypsp = (In6 + 1) - V/m=D

for m > 1, where m is the maximum number of bids, and In6 + 1 is the competitive ratio of SUP-ON [1].

11
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The structure of the proof for Theorem 2 follows the same ideas as DEMBID, so we first comment on the main result. The
competitive ratio asypgrp has several desirable properties. First, asypgrp can interpreted as the online optimal competitive
ratio In 6 + 1 degraded by a factor of §/("=1), Furthermore, this degradation factor is decreasing with the number of bids
m, and agyperp converges toward Iné + 1, i.e., the optimal competitive ratio for simplified SUP-0N [1], for sufficiently
large m. Lastly, asypgrp — 1 when 6 approaches 1.

We now proceed to prove the result in Theorem 2 beginning with several lemmas.

Lemma 5. For any o € §2, profit (SUPBID) is lower bounded by

profit, (SUPBID) > profit,, (SUP — ON).
Proof. Through analysis similar to the proof of Lemma 1, we begin with the observation

Xsuperp(@(t)) = Xsyp—an(@p(t)).

Consider the profit of SUPBID:

profit,(SUPBID) Zp Wsuprp((t))

T

> ZPI<(r)(f)XSUPBID(w(f))
i=1
T

=Y Preo(t)Xsup—on(ep(t))
i=1

= profitwb(SUP — ON).

The first inequality is due to the nature of last accepted bids py)(t) < p(t), and the second equality is directly from
the profit structure of SUP-0ON under input w,. O
Lemma 6. Letr = inf,co min b "“i(t) be the minimum ratio between the last accepted bid and clearing price over the time
period and all inputs. Then for any w € §2, SUPBID is (In6 + 1) - r-competitive.

Proof. From SUP-ON being (In6 + 1)-competitive,

1
fit (SUP — ON) >
Profit,( )2 ot

where ¢ > 0 is a constant number, and profit (OPT) is the profit of the offline optimal algorithm on the input w. We
substitute (16) into the result of Lemma 5, except with input wy.

-profit, (OPT)+c, (16)

profit, (SUPBID) > profitwb(SUP — 0N)

> . fit (OPT c
= ng 41 Profit, (0P +

1 profitwb(OPT)
> .
“ In6+1 profit, (OPT)

profit (OPT)+c.
For clarity, let xgpr(t) be the optimal offline amount sold under w. Then
T
profit,(OPT) = Y  p(t)xopr(t).
t=1

Because wy, has the same demand inputs as w and the demand constraints of PROFITMAX only depend on demand, xgpr(t)
produces a feasible solution to PROFITMAX with input wj. Then this feasible solution is a lower bound on prof itwb(DPT):

T
profit,, (OPT) Z Exopr(t

12
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It follows from the above equation that

profit, (OPT) Zt 1 Piie) (E)xopr(t)
profit, (OPT) - Zt 1 p(6)xgpr(t)
Z[ 1pk([()[) (t)xopr(t)
B > P(t)xopr(t)
o "L P(Oaen(t)
>t P(E)xgpr(t)

=T,

where the second inequality simply uses the definition of r. Substituting the above equation to (17) completes the
proof. O

Lemma 7. When p; is set according to the SUPBID algorithm, we have r > 1/(m=1),

Proof. Since py(t) is the last accepted bid, the first rejected bid is less than the clearing price, i.e. pg)+1(t) < p(t). This
helps provide a lower bound for r as follows

n Pro)(t) . Pry(t)

> —_— .
teT  p(t) teT Piiey+1(t)
At time t € 7, SUPBID sets pj(t) as

re = Ol/m(t)
pi(t) = po - 1.
which means the ratio between two consecutive bids is fixed by p ’(t) = 15. Thus

F>r= 91/"7([ Z 0]/("’1*])
where the last inequality is from m(t) being either m or m — 1, depending on if the deterministic bid is submitted. O

Combining Lemmas 6 and 7 yields the result in Theorem 2.
4. Empirical evaluation

In this section, we evaluate the performance of our algorithms DEMBID and SUPBID using real-world data traces.
Additional overview and background on the electricity market are included in the Appendix. Our experiments will answer
the following questions:

(1) How do DEMBID and SUPBID compare to basic algorithms that know the market price for the incoming slot? Qur result
shows that the online strategies DEMBID and SUPBID are only 5% (on average) worse than the algorithms that know the
price in advance, and this performance gap shrinks as the number of bids grows.

(2) How do DEMBID and SUPBID compare to the bidding algorithms that do not utilize virtual storage in decision making?
Our result shows that by adding the virtual storage in decision making the performance will increase by at least 10%, on
average.

(3) How sensitive are DEMBID and SUPBID with respect to the parameters as the penetration of renewable and capacity?
Our results demonstrate that DEMBID and SUPBID outperform the alternative algorithms in a wide range of parameter
settings.

4.1. Experimental methodology

Settings. We use energy demand traces from Akamai clusters [14], renewable data generations (wind and solar) [8,9],
and electricity prices from NYISO [6]. We set the length of time slot to 5 min based on the recent FERC rule [10]. The
time horizon is 1 day (T = 12 % 24 = 288). Our data traces for renewable have the resolution of 15 min or 1 h. Hence,
in our experiments, we down-sample the renewable data to 5-minute slots. We set the capacity of energy storage to
C = 18 * maXqr d(t) (resp. C = 18 x maXxr u(t)), adequate storage to cover the demand (resp. to store renewable
output) for at least 1.5 h. The default renewable penetration for wind and solar is 50%. Finally, each data point in figures
corresponds to the average results of 365 days over a year.

> Energy Demand. For CosTMIN we need energy demand of a large energy customer. Toward this, we use energy
demand traces from Akamai’s server clusters [7]. The data includes the server load information of several worldwide data
centers during one month collected every 5 min, and we use the information of an Akamai data center in New York city.

13
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Table 2
Summary of algorithms that are evaluated.

Our proposed online algorithms

DEMBID The online bidding strategy for STRDEM (Algorithm 1)

SUPBID The online bidding strategy for STRSUP (Algorithm 2)

sDEMBID A simplified version of DEMBID without virtual storage

sSUPBID A simplified version of SUPBID without virtual storage

Other algorithms for comparison

OPT Optimal offline solution with storage for CosTMIN and PROFITMAX

DEM-ON [2] The existing online algorithm for CosTMIN with known p(t) (ARP in
the original paper)

SUP-ON [4] The existing online algorithm for PRoFITMAX with known p(t)

(sOffer in the original paper)

— —LOSANGELES—WIND —— NET| — —LOSANGELES—SOLAR — NET|
=210 =210

A iEddendls
Ep M P, JES L A A

0
Time (day) Time (day)

7
(a) Net energy demand with wind (b) Net energy demand with solar

Fig. 2. The net energy demand with on-site renewables.

To calculate energy consumption as a function of load, we use the standard linear model in [15,16]. We note that while
we use data center energy demand, the proposed algorithms are general and could be used for other loads.

> Renewable Data Traces. We gather the renewable data traces for both wind and solar. The wind data traces are
from Eastern and Western Data Sets with 100 MW to 1,435 MW Output Point Capacity [9]. The hourly solar data is from
PVWatts [8]. We picked the data from stations that are less than 80 miles from the New York City, where we have our
energy demands.

> Real-time Energy Prices: Finally, we use the real-time energy prices from NYISO [6], and a sample representation of
the time-varying energy prices is given in Fig. 1.

Performance Metric. For CosTMIN, we report the cost ratio between the cost of different algorithms divided by the cost
of the offline optimal solution denoted by OPT. Similarly, for PROFITMAX, we report the profit ratio between the profit
of offline optimal divided by the cost of different algorithms. For both CosTMIN and PROFITMAX versions, the ratios are
greater than 1 and the lower the ratio, the better the performance.

Comparison Algorithms. We compare the proposed bidding algorithms with several algorithms as listed in Table 2. First,
we note that by using cost and profit ratios as the performance metric, we implicitly compare our algorithms with the
offline optimum (0OPT). Furthermore, we compare with two categories of algorithms:

> sDEMBID and sSUPBID: Both DEMBID and SUPBID algorithms are designed based on the virtual storage for improved
performance. To show the impact of virtual storage, we also implemented a simplified version of both algorithms, called
sDEMBID and sSUPBID, in which we simply consider utilizing just one physical storage.

> DEM-ON (ARP in [2]) and SUP-ON (sOffer in [4]): Both algorithms are proposed in the previous work, and both
assume that the market price is known before the current slot. Since both algorithms have more information for decision
making, they are expected to achieve better performance than SUPBID and DEMBID. The gap in performance is due to
additional cost of not knowing the current price, and we investigate how to close this gap by submitting more bids.

4.2. Evaluation results for DEMBID and SUPBID

We evaluate the performance of DEMBID (SUPBID) by varying the number of bids in Fig. 3 (Fig. 4) from 10 to 18 and
varying the capacity of storage in Fig. 5 (Fig. 6). For DEMBID, we further change the penetration rate of renewables and
report the results in Fig. 7. Finally, we investigate the impact of rate constraints for SUPBID in Fig. 8.

> Wind vs. Solar. The results in Figs. 3, 5, and 7 for DEMBID show that for the cases with wind as the local renewable,
the cost ratios are slightly worse than the solar in most cases. This is because the wind output is much more unpredictable
than the solar output, as demonstrated in Fig. 2. This increased uncertainty leads to worse cost ratios for wind. The same
observation is visible for the profit ratios of SUPBID in Figs. 4, 6, and 8.

> Comparison of DEMBID and SUPBID vs. sDEMBID and sSUPBID. In most experiments, both SUPBID and DEMBID
substantially outperform sSUPBID and sDEMBID with only one storage. For example, in Fig. 3, the average cost ratios of
DEMBID and sDEMBID are 1.31 and 1.34 at 10 bids, demonstrating that DEMBID outperforms by 2.3%.
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Fig. 3. The impact of increasing bids on DEMBID.
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Fig. 6. The impact of capacity on SUPBID.

> Comparison of DEMBID and SUPBID vs. DEM-ON and SUP-ON. Fig. 3 (Fig. 4) show that at 10 bids, the average cost
(profit) ratio of DEMBID (SUPBID) is only 2.3% (32.1%) worse than DEM-0ON (SUP-0N). The performance degradation of
both algorithms decreases as the number of bids increases.

> Impact of Number of Bids. The results in Figs. 3 and 4 demonstrate that when the number of bids increases, the
performance of DEMBID and SUPBID improve. By ranging from 10 to 18 bids, DEMBID drops from 1.315 to 1.298 and
SUPBID drops from 2.4 to 2.2. This improved performance is aligned with the theoretical guarantees of SUPBID and
DEMBID improving with the number of bids.

> Impact of Storage Capacity. In these experiments, we fix the number of bids to 10 and vary the storage capacity.
We define n = C/maxc+ d(t) (resp. n = C/max.c+ u(t)) as the ratio between the capacity of storage and the maximum
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Fig. 8. The impact of rate constraints on SUPBID.

demand (resp. maximum output). The results in Figs. 5 and 6 demonstrate that the cost and profit ratios of all online
algorithms increase as the capacity increases. This is reasonable since with increased capacity, OPT has more design space
for cost minimization or profit maximization, making it harder for online algorithms to compete.

> Impact of Renewable Penetration. In CosTMIN we vary the penetration rate from 10% to 90%. The results in Fig. 7
demonstrate that with increased renewable penetration, the cost ratios of DEMBID and sDEMBID increase due to the
increased uncertainty of renewables.

> Impact of Rate Constraints. Lastly, we investigate the impact of different values of rate constraints on SUPBID. For
simplicity, we consider identical charging and discharge rates, and normalize them as a percentage of the storage capacity
as a common approach in characterizing battery specs. [17]. We choose three common categories of storages in data
centers based on their rate to capacity ratios [18,19]: (1) Compressed Air Energy Storage (CAES) with ratio of 5%; (2)
Lead-Acid (LA) with 20%; (3) Lithium-Ion (LI) with 35%. In Fig. 8 we report the profit ratios of SUPBID for different values
of rate to capacity ratio while also varying the number of bids. The results show that for higher rate to capacity ratio, the
profit ratio is also higher. This is due to a similar effect observed in the capacity experiments — OPT is less constrained
with higher rate to capacity ratios and has more design space, so DEMBID performs relatively worse.

5. Concluding remarks

In this paper, we developed bidding strategies for online linear optimization with inventory management constraints
with the application of storage-assisted participants in the supply and demand sides of the electricity market. Our
algorithms are built on top of the state-of-the-art algorithms for managing inventories in dynamic environments in
terms of market pricing and supply and demand. We tackled unique challenges of unknown price, possibility of failure
of bids,and uncertain asset trading quantity from multiple bid submissions. We analyzed the competitive ratios of our
online bidding strategies and showed that they converge to the best possible values with sufficiently large amounts of
bids. Our extensive experimental evaluations using real-world data traces showed that the performance of our algorithms
is within 5% of the algorithms that know the market price in advance, and outperform alternative algorithms by more
than 10%. As future work, we plan to extend our empirical study using the data from other locations to see the impact of
different markets on the performance of the algorithms.
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Appendix. An overview of electricity market

In this section, we provide the necessary background of deregulated electricity markets related to our work.

The supply chain. The supply chain of a deregulated electricity market is illustrated in Fig. A.9 where there are three main
components:

> In the middle, as the trader, there is an independent system operator (a.k.a., ISO, e.g., NYISO, CAISO, PJM, etc.), that
provides the trading place. ISO matches supply bids from suppliers and demand bids from utilities and customer by
running auction mechanisms.

> Customers, that are typically utility companies or in some cases large energy customers, who submit bids to buy
electricity from the market in order to serve a group of retail customers or its large energy demand.

> Suppliers or generation companies such as power plants who submit supply bids to sell electricity to market.

Market operations. Markets usually operate in multi-settlement manner. That is, the operations are done in different
settlement periods. The common approach is to have two-settlement market that includes day-ahead and real-time
operations. In the day-ahead market operation, suppliers and utilities submit their bids for the trades in the next day
on an hourly basis. On the other hand, the real-time electricity market usually operates in 5-minutes to 1 h basis. In this
paper, we focus on real-time operations of the market.

Bid submission. The bidding submission in real-time operation is as follows. Shortly before the operation time, the
suppliers and customers submit their bids, including the bidding price and the bidding quantity, for the forthcoming slot.
After receiving the bids from supply and demand parties, ISO matches the bids from both sides, runs a double auction
mechanism [20], and announces a market clearing price. Then, for a supply bid, if the bidding price is less than or equal
to the clearing price, its quantity is considered as the commitment to the market for the next slot. The supplier is paid
according to the clearing price. Similarly, for the demand side, if the bidding price is greater than or equal to the clearing
price, the bid is accepted and the bidder buys its bidding quantity from the market. Given the above scenario, the goal of
bidding strategies is to determine the bidding price and quantity such that the long-term profit of the supplier is maximized,
or equivalently, the long-term cost of the customer is minimized.

Storage-assisted participants. We consider storage-assisted participants for both sides of the market, as depicted in Fig. A.9.
On the supply side, we consider a supplier with renewable resources with on-site storage systems. We consider this
participant as a single entity with renewable and storage, and the bidding strategy determines how to sell the renewable
output to the market and/or charge/discharge the storage. Similarly, on the demand side, we consider an energy customer
like a data center that is large enough to participate in the market. While in experiments, we use data center energy
demands from data centers, our model is general and could be applied to any other type of energy customers or utilities
that participate in the market. We again consider that the energy of the large customer could be satisfied from multiple
resources such as local renewables, and on-site energy storage systems. Then, the bidding strategy determines how to
manage the storage and cover the energy by buying from the market.
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Fig. A.9. The supply chain of a deregulated electricity market with storage-assisted participants.
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