
FOCAS: Practical Video Super Resolution using Foveated
Rendering

Lingdong Wang
University of Massachusetts Amherst

Amherst, Massachusetts, USA
lingdongwang@umass.edu

Mohammad Hajiesmaili
University of Massachusetts Amherst

Amherst, Massachusetts, USA
hajiesmaili@cs.umass.edu

Ramesh K. Sitaraman
University of Massachusetts Amherst

Amherst, Massachusetts, USA
ramesh@cs.umass.edu

Figure 1: Left: low-resolution (LR) input; Middle: FOCAS takes 24 ms to construct a foveated high-resolution (HR) frame; Right:
Traditional (non-foveated) super-resolution (SR) takes 64ms to construct a full HR frame. Traditional SR upgrades the entire
frame of the LR input to HR, incurring large computational costs, high latencies, and low frame rates, making it unsuitable for
real-time video streaming. However, human vision is more sensitive to video quality in the central foveal region, and less sen-
sitive in the periphery. FOCAS upgrades only the central foveal region of each frame to HR, resulting in reduced computational
cost, lower latency, and higher frame rates, while nearly matching the perceptual video quality of traditional SR.

ABSTRACT
Super-resolution (SR) is a well-studied technique for reconstructing
high-resolu- tion (HR) images from low-resolution (LR) ones. SR
holds great promise for video streaming since an LR video segment
can be transmitted from the video server to the client that then
reconstructs the HR version using SR, resulting in a signi�cant
reduction in network bandwidth. However, SR is seldom used in
practice for real-time video streaming, because the computational
overhead of frame reconstruction results in large latency and low
frame rate.

To reduce the computational overhead and make SR practi-
cal, we propose a deep-learning-based SR method called Foveated
Cascaded Video Super Resolution (FOCAS). FOCAS relies on the fact
that human eyes only have high acuity in a tiny central foveal
region of the retina. FOCAS uses more neural network blocks in the
foveal region to provide higher video quality, while using fewer
blocks in the periphery as lower quality is su�cient. To optimize the
computational resources and reduce reconstruction latency, FOCAS
formulates and solves a convex optimization problem to decide
the number of neural network blocks to use in each region of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’21, October 20–24, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8651-7/21/10. . . $15.00
https://doi.org/10.1145/3474085.3475673

frame. Using extensive experiments, we show that FOCAS reduces
the latency by 50% � 70% while maintaining comparable visual
quality as traditional (non-foveated) SR. Further, FOCAS provides a
12 � 16⇥ reduction in the client-to-server network bandwidth in
comparison with sending the full HR video segments.

CCS CONCEPTS
•Computingmethodologies!Computer vision;Neural net-
works; Perception.

KEYWORDS
super resolution, foveated rendering, deep learning, latency

ACM Reference Format:
Lingdong Wang, Mohammad Hajiesmaili, and Ramesh K. Sitaraman. 2021.
FOCAS: Practical Video Super Resolution using Foveated Rendering. In
Proceedings of the 29th ACM International Conference on Multimedia (MM
’21), October 20–24, 2021, Virtual Event, China. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3474085.3475673

1 INTRODUCTION
Super-resolution (SR) is a well-studied mechanism to reconstruct
high-resolution (HR) frames of a video from low-resolution (LR)
ones. A key bene�t of SR is that it reduces the network bandwidth
required for video streaming, since a video client can download
the LR version of a video segment from the video server and re-
construct the HR version using SR. Thus, SR alleviates the network
bandwidth bottleneck of video streaming at the cost of additional
computation at the video client [19]. However, state-of-the-art SR

Poster Session 6 MM ’21, October 20–24, 2021, Virtual Event, China

5454

https://doi.org/10.1145/3474085.3475673
https://doi.org/10.1145/3474085.3475673

methods incur a large computational overhead, resulting in high
latency to construct each frame, leading to unacceptably low frame
rates. So, despite its potential, SR is seldom used for real-world
real-time video streaming.

With the goal of making SR practical, we propose Foveated
Cascaded Video Super Resolution (FOCAS), a real-time foveated
video SR method based on deep learning. Human eyes only possess
high acuity in the fovea, the central 5.2� region of the retina [3].
FOCAS uses this property to render the foveal region around the eye
�xation in high quality, while rendering the peripheral region in low
quality. Speci�cally, FOCAS downloads LR video segments and uses
neural network to perform SR. But unlike a traditional SR, FOCAS
uses more neural network blocks to produce a higher quality image
in the foveal region, while using fewer blocks in the peripheral
region where a lower quality will su�ce. Thus, FOCAS o�ers similar
visual quality as traditional SR, but using far fewer computation
resources. FOCAS can also be contrasted with traditional foveated
rendering that requires high-resolution (HR) content to �ll in the
foveal region. Traditional foveated rendering requires the server to
download HR content, thus consuming signi�cantly more network
bandwidth than FOCAS that downloads only LR content.

The main technical challenge of foveated SR is meeting the strin-
gent real-time latency requirement of 30–50 ms [2] to perform
SR on each frame, so that an adequate frame rate can be main-
tained. Note that the latency requirement imposes a budget on the
computational cycles available for performing SR. FOCAS optimally
allocates the computational budget by spending more computa-
tional cycles for performing SR in the foveal region where higher
quality is desired, and signi�cantly fewer computational cycles in
the peripheral region where a lower quality is su�cient.
Our Contributions. We now list our key contributions.

(1) We propose the novel idea of foveated SR that combines the
best aspects of foveated rendering and traditional SR. Foveated
SR achieves the same reduction in bandwidth as traditional SR by
enabling the client to download only LR video segments from the
server. However, foveated SR has signi�cantly less computational
overhead than traditional SR, allowing it to achieve similar video
quality with smaller latency. Likewise, foveated SR is similar to
traditional foveated rendering in that the foveal region is rendered
in high quality. However, traditional foveated rendering does not
reduce bandwidth signi�cantly as HR versions of the video segment
will still need to be downloaded for display in the foveal region.

(2)We design FOCAS that implements foveated SR using a deep
learning approach. FOCAS shrinks the intermediate feature map
in a cascaded manner during the inference phase. It can be easily
applied to any traditional SR model to perform foveated SR.

(3) FOCAS formulates the problem of performing foveated SR
within a latency budget as a convex optimization problem that can
then be solved e�ciently. The optimization determines how many
neural network blocks to use in which parts of the frame.

(4) We �nally conduct extensive experiments and show that
FOCAS can reduce the latency by 50% � 70%, leading to a 2 ⇥ �3⇥
frame rate improvement, while achieving visual quality that is com-
parable to traditional SR. Also, by downloading LR video segments
instead of HR ones, FOCAS achieves 12�16⇥ bandwidth saving. Our
implementation is available at github.com/UMass-LIDS/focas.

2 BACKGROUND AND RELATEDWORK
2.1 Foveated Rendering
Human eyes have high sensitivity in the fovea, the central 5.2�
region of retina. But the acuity of human eye rapidly decreases
outside fovea towards the periphery [3]. To utilize this property,
foveated rendering only renders the foveal region with high quality,
while rendering the peripheral region with low quality. In this way,
the computation required for rendering is largely reduced, as 5.2�
covers only 0.8% of total pixels on a regular display [9].

Multiresolution [9] proposes to render a frame in three concen-
tric regions with di�erent qualities, while each region’s resolution
is assigned according to a linear model of human visual acuity. [23]
proposes a foveated rendering system that varies pixel shading rate
based on its eccentricity. DeepFovea [16] proposes a deep-learning-
based video reconstruction method. But DeepFovea reconstructs
HR frames from discrete pixels instead of LR frames as in our case.

Prior foveated rendering methods assume that the HR versions
of the video are readily available in the video client. While foveated
rendering also haswide applications in video streamingwhere video
segments are transferred through the wide-area network (WAN). A
foveated video streaming strategy is proposed in [25] that divides
one frame intomultiple tiles, sends HR tiles for the foveal region and
LR tiles for the periphery. This method uses a commodity webcam
to trace eye movement instead of professional eye trackers. [13]
utilizes foveated video streaming for cloud gaming. [24] develops a
foveated streaming system for 360� video. [20] streams 360� video
using both a foveated scheme and semantic saliency.

2.2 Super Resolution
Single-image super-resolution (SISR) aims at improving the resolu-
tion of one single image. The �rst deep-learning model for SISR is
SRCNN [6], a 3-layer convolutional neural network (CNN). VDSR
[17] then proposes a deep network and introduces residual learn-
ing. ESPCN [27] designs sub-pixel convolution, an e�cient way to
upscale the feature map while maintaining locality. Later, DBPN
[10], HAN [22], CAR [28] and many other methods further improve
the performance of SISR.

By extending SISR, video super-resolution (VSR) tries to enhance
the resolution of the video. The key di�erence of VSR from SISR
is that VSR can utilize temporal information from other frames, as
scenes in a video typically have a strong correlation and locality.
From a technical standpoint, the literature on VSR could be divided
into two categories: non-recurrent methods and recurrent methods.

Non-recurrent VSR methods are usually based on 2D or 3D CNN.
Viewing each frame as a 2D tensor, EDVR [30] uses stacked 2D
deformable convolution layers to conduct VSR. TOFlow [31] per-
forms optical �ow estimation and warp operation between frames,
then aggregates frames to generate high-quality output. But inaccu-
rate motion estimation and motion compensation (MC&ME) might
incur artifacts. To avoid explicit MC&ME, PFNL [33] utilizes pro-
gressive fusion and non-local operation to capture features. From
another aspect, considering time as the third dimension, DUF [15]
adopts 3D convolution to generate dynamic upsampling �lters to
capture spatio-temporal features.

Recurrent VSR methods adopt recurrent neural network (RNN)
to capture historical semantic information from previous frames.

Poster Session 6 MM ’21, October 20–24, 2021, Virtual Event, China

5455

FRVSR [26] improves frame resolution by using MC&ME to align
adjacent frames in a recurrent manner. RBPN [11] extends back-
projection operation from SISR to VSR and performs it recurrently.
RLSP [7] propagates both previous SR output and previous feature,
and processes them with stacked convolutional layers. Following
RLSP, RRN [14] uses stacked residual blocks and achieves a better
SR quality. We take RRN as the base model for our work because of
its straightforward structure and good performance.

In traditional video SR, the full-size input will go through the
whole model, resulting in an output with uniform quality every-
where. However, since human eye pays much more attention to
the foveal region, this is an ine�cient approach to allocate com-
putational resources. As a result, when traditional SR methods are
applied to scenarios like real-time video streaming, they largely
sacri�ce model capacity and SR performance to meet the stringent
latency requirement [4, 32, 34]. In contrast, FOCAS allocates quality
only where it matters to the human visual system, achieving lower
latencies without a noticeable quality degradation.

3 FOCAS SYSTEM DESIGN
FOCAS includes three phases as shown in Fig. 2. In the �rst training
phase, we obtain a trained CNN model. The cornerstone of FOCAS
is the second phase, where through an optimization process, we
�nd the feature depth and region size to maximize foveated SR
quality given the latency constraint. Finally, we apply the settings
to model, and generate foveated SR results in the inference phase.

In what follows, we �rst present the model structure in Sec-
tion 3.1. In Section 3.2, we explain how we construct a customized
inference phase of FOCAS that takes into account the foveated SR.
Finally, we introduce how to train a model as required in the infer-
ence phase in Section 3.3. Note that we present the details of the
quality allocation phase in Section 4.

3.1 Model Structure
The architecture of FOCAS is built based on RRN [14] as shown in
Fig. 3. Here we brie�y introduce it and refer to [14] for details.

FOCAS adopts a recurrent structure. In recurrent iteration C , it
takes the current and previous frames �C and �C�1, previous feature
�C�1 and previous SR output $C�1 as the inputs. At the end of
iteration, the model will output �C and$C . The output �C is a deep
learning feature map carrying global information of the video. $C
is the result of SR, an upsampled image with higher resolution.

At �rst, the image $C�1 is reshaped by a Pixel Unshu�e layer.
Pixel Unshu�e layer moves data from the spatial dimension to the
depth dimension, transforming the tensor shape from⇠ ⇥ B� ⇥ B,
to B2⇠ ⇥� ⇥, , where B is an upscale factor. Pixel Unshu�e layer
is the inverse operation of Pixel Shu�e layer [27], which will be
used to transform a deep feature back to an image.

Later, input data are concatenated and fed into a convolution
(Conv) layer followed by ReLU [8]. Then the feature enters some
stacked residual blocks (ResBlock) [12]. ResBlock is composed of
Conv-ReLU-Conv layers, with a skip connection adding the input
to the output. In one branch, the feature from ResBlocks is sent into
a Conv-ReLU layer to be the output feature �C . In the other branch,
the feature is processed by a Conv layer, reshaped by a Shu�e layer,
and added with the bicubic-upsampled �C to be the SR result $C .

Despite its recurrent structure, FOCAS can simulate non-recurrent
video SR methods by not using recurrent states. Speci�cally, by
setting the recurrent state $C�1,�C�1 as null and still inputting
[�C�1, �C], the model only receives recent frames without global
knowledge. As the state-of-art video SR methods may adopt recur-
rent or non-recurrent structure, we examine the performance of
both types of FOCAS model for comprehensiveness.

3.2 Inference Phase
The idea of FOCAS inference comes from the observation that each
ResBlock in the model will introduce �ner details to the feature
map, hence improve the visual quality of SR output. On the other
hand, human eyes only identify high visual quality in a small foveal
region, and endure low quality in the large peripheral region.

Leveraging these properties, FOCAS only allows the feature map
for foveal region to go through more ResBlocks and gain higher
quality, while let the feature map for peripheral region early exit
to decrease the overall latency. As a result, the foveal region of SR
output is high-quality, while the peripheral region ends up with
lower but acceptable quality. Such a foveated SR strategy achieves
comparable visual quality with full-size SR, but greatly reduces the
latency by spending less computation on the periphery.

Following the common practice in foveated rendering [9, 25],
we adopt a three-region quality distribution. That is, FOCAS will
output an image consisting of three regions with decreasing visual
qualities. The foveal region around the eye �xation will have the
highest quality, the peripheral region will have the lowest quality,
and the blending region in the middle will have a medium quality.

The inference process of such a three-region FOCAS model is
illustrated in the third phase of Fig. 2, where the eye �xation is
assumed to be the center. At �rst, the input data �C , �C�1,$C�1,�C�1
are concatenated into a feature map and processed by a Conv layer.
Then, the feature map is processed by several ResBlocks to be a
low-quality feature, which can be interpreted as a low-quality im-
age. Secondly, we crop a sub-feature around the eye �xation from
the low-quality feature. Due to the locality of convolution opera-
tions, the feature map has a spatial correspondence with the output
image. Hence this sub-feature can be viewed as the blending region
in the �nal output. Only this sub-feature is sent into successive
ResBlocks and enhanced to achieve middle quality, while the rest
part is no longer computed. Finally, a small feature map for the
foveal region is cropped out of middle-quality feature, goes through
several additional ResBlocks, and achieves the highest quality.

After the above steps, we have a large low-quality feature map
for the periphery, middle-size medium-quality feature for the blend-
ing region, and a small high-quality feature for the foveal region.
We then stack these three features together centered at the eye
�xation. Finally, we send this mixed-quality feature map into the
last Conv layers, and obtain the output image and feature, both
with decreasing quality from the gaze point to periphery.

In the inference phase, the size of intermediate feature map
shrinks in a cascaded way. Therefore our method is named as
Foveated Cascaded Video Super Resolution. We argue that the
design of cascade inference suits the sequential architecture of mod-
ern CNN. Therefore, FOCAS can be pervasively applied to existing
SR methods, transforming them into their foveated SR counterparts.

Poster Session 6 MM ’21, October 20–24, 2021, Virtual Event, China

5456

Figure 2: Overview of FOCAS.

Figure 3: Model structure of FOCAS.

3.3 Training Phase
In contrast to the inference phase, our model is trained without
cascade. One may argue that the training for foveated SR could
be based on di�erent quality levels. But we claim that a cascaded
training strategy is highly ine�cient, since only a small region of
input data goes deeply into the model. As a result, the input data is
not fully utilized, and the deeper ResBlocks are not fully trained.

Another challenge is the need for adaptability of “interpreter”
layers, the last Conv layers before outputs working as the inter-
preter of feature maps. As required in the inference, the interpreter
must adapt to features of di�erent qualities from di�erent ResBlocks.
One can force the interpreter to adapt by feeding these features
to it in the training phase. But, it degrades the performance since
the model wastes its capacity on peripheral features, instead of
focusing on learning high-quality feature for the foveal region.

The solution to both problems is the same — train the end-to-end
model just like a regular RRN model without cascade. In this way,
the complete input data goes through the full model, leading to full
data utilization and full model training. Besides, the residual con-
nections will bypass features from all ResBlocks to the interpreter
layers. So the interpreter can eventually handle features of di�erent
qualities, even if they are never directly received in training.

Since FOCAS shares the same model structure and training pro-
cess with RRN, it can also share the same model parameter with
RRN. In other words, FOCAS can be derived from a pre-trained RRN
model, transforming a traditional SR model to a foveated SR one.
It proves that FOCAS is easy-to-use and can be applied to many
existing models even without re-training.

4 OPTIMUM QUALITY ALLOCATION
In this section, we focus on the optimization process of FOCAS,
where we make two decisions for each region— how large the
region size should be, and what is the right feature depth, i.e., how
many ResBlocks should each region’s feature go through. These two
decisions jointly determine the amount of computational resources
we allocate for each region, leading to di�erent visual quality and
di�erent latency. It is vital to allocate quality to each region wisely,
so that we can achieve the maximum visual quality under a limited
amount of resources. We formulate the problem as an optimization
problem in Section 4.1 and show how to solve it in Section 4.2.

4.1 Problem Modeling and Formulation
We �rst provide a model for visual quality. Then, we introduce
visual importance to model human vision. Next, we present the
estimation method of inference latency. Finally, we formulate the
optimization problem in Eq. (4) using all these concepts.

4.1.1 Visual quality and its relation to feature depth. It is challeng-
ing to model the visual quality for two reasons. Firstly, there is no
perfect measurement of video quality in human vision. Here we just
adopt normalized PSNR as the metric of visual quality. Secondly,
the visual quality of an SR result has a complicated relationship
with the content of the input image, recurrent state, and the feature
depth.When we have access to the target video or the target dataset,
an intuitive solution is to measure and record the mapping between
these factors and the visual quality of our pre-trained model over
the target data. Our goal in FOCAS, however, is to be generic and
adaptive to unknown input data. Hence, we model visual quality
as being content-independent and related only to feature depth. In
other words, we model all feature maps going through the same
number of ResBlocks result as having the same visual quality.

We now de�ne a function@(3) that maps feature depth3 to visual
quality. We use Vimeo-90K dataset [31] as our training dataset,
assume that it has a generic data distribution, and use it as the
input to the optimization module of FOCAS. We then feed the output
features from all ResBlocks to the last Conv layer, and obtain output
images with di�erent qualities. Finally, we measure the PSNR scores
of these images and normalize them to [0, 1]. These normalized
PSNR scores are used as visual qualities for di�erent feature depths
as shown in Fig. 4, where the x-coordinate is feature depth 3 , and
the y-coordinate is the visual quality @(3) 2 [0, 1]. Note that Fig. 4
represents the visual quality of FOCAS with recurrent states.

Poster Session 6 MM ’21, October 20–24, 2021, Virtual Event, China

5457

Figure 4: Visual quality as a function of feature depth.

FOCAS divides each frame into concentric squares centered at the
position of eye �xation as shown in Figure 5. The smallest center
square and the annular regions between two consecutive squares
form quality regions that are shown in di�erent colors. FOCAS as-
signs the same feature depth to pixels within the same region,
resulting in similar video quality. Note that the center square would
receive the highest feature depth and the feature depth decreases
as moving towards the periphery.

Figure 5: Quality regions. Figure 6: Visual importance.

4.1.2 Visual Importance. We adopt the model in [21] to assign a
weight to each pixel according to its importance in human vision,
and the weight follows a normalized 2D Gaussian function centered
at the gaze point. The mathematical formula is shown as follows:

FD,E =
1

2cfDfE
4
�((D�D4)2

2f2
D

+ (E�E4)2
2f2

E
)
, (1)

whereFD,E is the weight for position (D, E), (D4 , E4) is the position
of eye �xation, and both fD ,fE are set to be the foveal size 64 pixels
(2�) as in [21]. Denoting f = fD = fE , we can rewrite Eq. (1) into

F (G) = 1
2cf2

4�
G2
2f2 , (2)

where G =
p
(D � D4)2 + (E � E4)2 represents the distance from a

pixel to the position of eye �xation. An illustration of the visual
importance weight mask is shown in Fig. 6, where eye �xation is
the center and brightness means a higher value.

4.1.3 Inference Latency. The inference latency of the FOCAS model
is dominated by the computation time of ResBlocks. Since we as-
sign intermediate features with the same number of channels, the
runtime of a single ResBlock is proportional to the area (height ⇥
width) of the input feature. So, the runtime of FOCAS for one region

is proportional to the number of ResBlocks and the area of input
feature. We model the total inference latency as a linear function
of the sum of latency for each region, i.e.,

C (d, r) = � + ⌫
’#

8=1
(38 � 38+1)A28 . (3)

where �,⌫ are the linear coe�cients. For a region 8 , the area of
input feature is the square of region size A8 . Because a higher-quality
feature is computed based on a lower-quality feature, the feature
for a new region only need to go through 38 � 38+1 ResBlocks,
where 38 is the current region’s feature depth and 38+1 is the outer
region’s. Overall, (38 �38+1)A28 represents the latency of region 8 . To
measure the coe�cients � and ⌫ in Eq. (3), we randomly generate
108 models with di�erent feature depths as well as input areas,
and then measure their latency. As shown in Fig. 7, we can obtain
relatively accurate � and ⌫ using linear regression.

Figure 7: Linear �tting for latency estimation.

4.1.4 Optimization Problem Formulation. The objective of the opti-
mization is to maximize the overall visual quality under a foveated
view by assigning region size and feature depth for each region.
Meanwhile, the latency of the process must obey a speci�ed time
bound. Putting them together, this problem is formulated as

max
d,r

#’
8=1

A8’
G=A8�1

G4�
G2
2f2 @(38)

s.t. C (d, r) ) ,
A8�1  A8 , 88,
38�1 � 38 , 88,

(4)

where the optimization variables are d and r . More speci�cally, vari-
able d = (31,32, · · · ,3#) represents the vector of feature depths
with element 38 as the feature depth of region 8 . Further, r =
(A1, A2, · · · , A#�1) represents the region sizes. Note that the out-
ermost region is always the full input, so A# = !, where ! is the
input feature size. In this work we have ! = 270, 4⇥ downscaled
from the image height 1080. We set A0 = 0 and 3#+1 = 0 for consis-
tency.

We note that the closed-form representation of the objective
function in Problem (4) is derived by substituting F (G) in Eq. (2)
into the following equation:

2cGF (G)@(38) =
1
f2

G4�
G2
2f2 @(38). (5)

Poster Session 6 MM ’21, October 20–24, 2021, Virtual Event, China

5458

We now further explain the derivation of the above objective func-
tion. The foveated visual quality of SR output is the dot product of
its visual quality and the visual importance. Here we assume that
the gaze point is always at the center of the image. Then an intuitive
interpretation of foveated visual quality is to stack the visual quality
distribution in Fig. 5 with the visual importance weight mask in Fig.
6, and sum up the values in Fig. 5 weighted by Fig. 6. To do so, we
further assume that regions are circular for mathematical tractabil-
ity. Then, the objective function in Eq. (5) could be interpreted as
follows. There are # regions and G is the distance from a pixel to
the eye �xation. For each region 8 , 1  8  # , G varies from the
inner boundary A8�1 to the outer boundary A8 . At a given distance
G , there are 2cG pixels on the ring, all with visual importanceF (G).
While within the same region 8 , all pixels have the same visual
quality @(38). In other words, we traverse all pixels, sum up their
visual quality scores weighted by their visual importance scores. A
sanity check is that, the full-size SR result has the highest quality 1
everywhere, and the sum ofF (·) over all pixels equals 1, so full-size
SR has the highest possible foveated visual quality 1. In the end, by
removing the constant factors in Eq. (5), we obtain an equivalent
but simpli�ed objective function in Eq. (4).

Finally, we explain the three constraints in Problem (4). Firstly,
the inference latency de�ned in Eq. (3) is no more than a pre-
speci�ed time limit) . As discussed in Section 2.1,) should be
between 30-50 ms. Our experiments show that ⇠ 20 ms is enough
for FOCAS to achieve performance near the full SR approach. The
second constraint enforces that the radii are monotonically non-
decreasing. Thirdly, feature depth of the inner region is no less than
the outer region. The third constraint comes from the intuition that
@ is monotonically increasing with3 , and wewant to assign a higher
visual quality to inner regions compared to the outer regions.

4.2 Solving the Optimization Problem
In this section, we develop our solution approach to solve Prob-
lem (4). To facilitate our algorithm design, we �rst simplify Prob-
lem (4) to deal with one optimization variable. To do so, we leverage
the fact that there are only 10 ResBlocks in the FOCASmodel, so the
value of feature depth is between 1 to 10, i.e., 38 2 {1, 2, · · · , 10}.
Besides, the number of region is also small (3 in FOCAS). As a result,
the search space of d is limited and can be fully traversed by an
exhaustive search. In this way, we can view d as a pre-speci�ed
constant and focus on optimizing the region sizes r .

As the second step, we relax the objective function in Eq. (4) by
viewing discrete pixels as continuous as follows:

#’
8=1

A8’
G=A8�1

G4�
G2
2f2 @(38) ⇡

#’
8=1

π A8

A8�1
G4�

G2
2f2 @(38) 3G

= f2 [@(31)4�
A20
2f2 +

#�1’
8=1

(@(38+1) � @(38))4�
A28
2f2 � @(3#)4�

A2#
2f2],

(6)

where the second line in above equation is obtained by solving
the integral. We then replace the objective function in Eq. (4) with
Eq. (6) to obtain an approximate problem. Since f, A0, A# ,@(38) are
all constants, we only keep the middle term for simplicity without
loss of generality. Finally, we reverse the maximization problem

Algorithm 1 Quality Allocation of FOCAS
Input: Time limit) . Number of regions # .
Output: Optimal region sizes r⇤. Optimal feature depths d⇤.
for every d = (31,32, · · · ,3#) s.t. 31 � 32 � 3# do

Solve problem Eq. (8) with # ,) , d to get the result a.
r (dp01e, d

p
02e, · · · , d

p
0#�1e) .

Compute the score of objective function in Eq. (5) with d, r .
end for
return d, r with the highest score.

into a minimization one as follows:

min
r=(A1, · · · ,A#�1)

#�1’
8=1

(@(38) � @(38+1))4�
A28
2f2

s.t. � + ⌫
#’
8=1

(38 � 38+1)A28 ) ,

A8�1  A8 , 88 .

(7)

We then transform the constraint A8�1  A8 , into an equivalent one
by squaring both sides, hence, the variables all become square, i.e.,
in the format of A28 . Then, we can replace the optimization variable
with 08 = A28 , and re-write the problem as

min
a=(01, · · · ,0#�1)

#�1’
8=1

(@(38) � @(38+1))4�
08
2f2

s.t. � + ⌫
#’
8=1

(38 � 38+1)08 ) ,

0  01  02  · · ·  0#�1  !2 .

(8)

T������ 4.1. Problem (8) is a convex optimization problem.

P����. Denote the objective function in Eq. (8) as 5 , whose
Hessian matrix is r2 5 = diag((· · · , 1

4f4 (@(38)�@(38+1))4�08 , · · ·)).
Since visual quality of the inner region is always higher than the
outer, we have @(38) � @(38+1) > 0, which means r2 5 � 0. Hence,
the objective function 5 is convex.Meanwhile, all the constraints are
linear. Therefore, Problem (8) is a convex optimization problem. ⇤

Since Problem (8) is convex, we can solve it optimally using
convex solvers. We adopt CVXPY [1, 5], a Python framework for
convex optimization, to solve the problem optimally.

In summary, the algorithm to set region sizes and feature depths
for a FOCAS model is shown in Alg. 1. The user needs to indicate
the latency requirement) and the number of regions # . The al-
gorithm will exhaustively search every d, and then compute the
corresponding r by solving a convex optimization problem. At the
end, the combination of d, r with the highest foveated visual quality
is returned as the solution.

5 EXPERIMENTAL RESULTS
5.1 Overview and Setup
5.1.1 Dataset. Our training dataset is Vimeo-90K [31], a common
training dataset for SR containing 91,701 7-frame video segments
without eye trace. We train the FOCAS model on the training set of
Vimeo-90K, and then measure the visual quality w.r.t. feature depth

Poster Session 6 MM ’21, October 20–24, 2021, Virtual Event, China

5459

in Fig. 4 on its testing set. All frames are originally in 448 ⇥ 256
resolution, and randomly cropped into 256 ⇥ 256 tiles to be the
ground truth. Targeting at 4⇥ SR task, we downsample ground-
truth examples 4⇥ to be 64⇥ 64 as input. Downsampling is realized
by Gaussian blur with f = 1.6 as used in [14]. We use horizontal
and vertical �ips with probability 0.5 for data augmentation.

We adopt [29] as our testing dataset, which contains videos and
eye traces from human observers. We use 37 HD videos in the
dataset. All videos have 1920 ⇥ 1080 resolution and around 300
frames, with contents varying from people, buildings to natural
scenes. We further divide each video into 50-frame (2-second) clips
as input examples. For each video, there are 34 eye traces. We use
the average position of left eye and right eye’s gaze points as the
eye �xation. Only the �rst eye �xation during a frame is considered,
and the eye �xation is set to the center when losing track.

5.1.2 Performance Metrics. We adopt two performance metrics to
measure visual quality. Both metrics are applied to the luminance
channel, that is, Y channel of a YCbCr-format image.

The �rst metric is Peak Signal to Noise Ratio (PSNR). It is a non-
foveated metric that treats everywhere equally, representing the
visual quality under a global view.

The second metric is Eye-Weighted PSNR (EWPSNR) [21]. EW-
PSNR is similar to PSNR, but assigns weights to pixels according
to a 2D-Gaussian model of human vision. The EWPSNR metrics is
obtained as follows:

EWPSNR = 10 log
✓ (2= � 1)2
EWMSE

◆
, (9)

where

EWMSE =

Õ*
D=1

Õ+
E=1

�
FD,E · (� 0D,E � �D,E)2

�
*+

Õ*
D=1

Õ+
E=1FD,E

, (10)

* and + are the image height and width, (D, E) is a position,FD,E
is de�ned in Eq. (1), and = is the number of bits per sample set to
8. EWPSNR is a foveated metric that cares more about the foveal
region but less about the periphery, measuring the foveated visual
quality in human vision.

5.1.3 Implementation. We implement FOCAS using the PyTorch
framework. We adopt CVXPY [1, 5] as the convex optimization
solver for Alg. 1. Experiments are all conducted on GTX 2080Ti
GPU. We follow the same hyper-parameters and training setting
as RRN [14]. Speci�cally, intermediate features have 128 channels.
The learning rate is 10�4, and then decreases to 10�5 at epoch 60,
with a total of 70 epochs. The model is optimized by the Adam [18]
optimizer towards ✓1 loss function. Lastly, the settings of the Adam
optimizer are V1 = 0.9, V2 = 0.999 and 5 ⇥ 10�4 weight decay.

5.1.4 Stability. SR methods might incur artifacts or noises in the
video, which severely harms the visual quality. Here we develop
two strategies to prevent artifacts and improve the SR stability.

In the inference phase, directly stacking feature maps of di�erent
qualities causes obvious artifacts at region boundaries. To solve this
problem, we perform a 4-pixel linear interpolation at the boundary,
blending the features of adjacent regions.

In recurrent FOCAS, the feature depth for one position may vary
among frames, resulting in the possibility of small reconstruction

Table 1: FOCAS with Di�erent Quality Allocation Settings

Name) 31 32 33 4A1 4A2 ! (ms) Score

FOCAS-15 15 10 4 1 128 224 14.12 0.5474
FOCAS-16 16 10 8 1 224 256 14.82 0.8800
FOCAS-17 17 10 4 1 288 368 16.11 0.9603
FOCAS-20 20 10 8 1 416 448 18.47 0.9984
FOCAS-25 25 10 3 1 544 824 23.64 0.9999

error. The impact of this small error, however, could be accumu-
lated and ampli�ed since it is sent into future steps together with
recurrent states. As a result, it spreads out and becomes a major
artifact. This problem only appears when FOCAS runs for too long.
Hence, we solve it by alternating FOCAS inference and full-size
SR inference. The full-size inference will correct the small error
in recurrent states and prevent it from accumulating, while we
can still adopt foveated inference to gain latency reduction for the
remaining frames.

5.2 Results
5.2.1 �ality Allocation. Since the visual quality function mea-
sured on FOCASwith and without recurrent state are similar, we use
the function in Fig. 4 for both experiments. We adopt a three-region
foveated scheme, i.e., # = 3. Then, by setting di�erent latency
constraint) , we can derive di�erent versions of FOCAS from Alg. 1
with di�erent performance-latency trade-o�s. Here we report 5
variants of quality allocation settings in Table 1.

In this table,) is the latency limit in ms, and we name the corre-
sponding FOCAS version after their) . With 3 regions, 38 represents
the feature depth of region 8 and A8 is the region size. Note that A3 is
always the full input size so we omit it in Table 1. Beyond these, col-
umn ! refers to the actual inference latency in runtime. And “Score”
represents the value of objective function described in Eq. (5). Tar-
geting at 4⇥ SR task, all these models gain 16⇥ theoretic bandwidth
saving since the size of uncompressed LR resource to download is
1
16 of its HR origin. With the MPEG4 compression codec, FOCAS
achieves 12.85⇥ bandwidth saving on our testing dataset.

The input feature to ResBlocks are 4⇥ down-scaled in width and
height by the Pixel Unshu�e layer. For an intuitive comparison
with the ground-truth image of size 1080⇥ 1920, we show 4A8 in the
table. Taking the architecture of FOCAS-20 as an example. Firstly,
the input of size 1080⇥1920 (actually 270⇥480) goes through 33 = 1
ResBlock, achieving low quality as the peripheral region. Then, a
blending region of A2 = 448 ⇥ 448 is cropped and goes through 7
more blocks to achieve depth 32 = 8. Finally, the foveal region of
A1 = 416 ⇥ 416 reaches depth 31 = 10 for the highest quality.

The results show that runtime inference latency always satis�es
the latency limit) . As for the SR performance, FOCAS-15 performs
poorly due to its stringent latency requirement. But FOCAS-20 per-
forms satisfyingly with 0.9984 score in 18.47 ms, and FOCAS-25
achieves 0.9999 in 23.64 ms. As the latency increases, the objective
score rises rapidly at �rst but gradually saturates. This diminishing
return observation is reasonable since we can easily improve the
visual quality by enhancing the quality of foveal region when the
score is low. But once it reaches the limit, we can barely bene�t
from increasing the peripheral quality.

Poster Session 6 MM ’21, October 20–24, 2021, Virtual Event, China

5460

Table 2: Comparison of Non-Recurrent SR Methods

Method Foveated Latency(ms) PSNR EWPSNR

Bicubic 1.14 27.77 91.00
RRN-10L 63.55 34.13 97.72
RRN-3L 24.01 33.30 96.90
FOCAS-15 X 14.12 30.86 95.70
FOCAS-16 X 14.82 30.90 96.90
FOCAS-17 X 16.11 30.92 97.42
FOCAS-20 X 18.47 31.04 97.71
FOCAS-25 X 23.64 31.23 97.72

Table 3: Comparison of Recurrent SR Methods

Method RRN/FOCAS Latency(ms) PSNR EWPSNR

Bicubic - 1.14 27.77 91.00
RRN-10L - 63.55 34.88 98.50
RRN-5L - 35.17 30.78 97.30
FOCAS-15 3/4 35.30 32.30 96.82
FOCAS-16 3/4 35.70 32.33 97.69
FOCAS-17 3/4 36.44 32.36 98.11
FOCAS-20 2/3 36.50 32.27 98.37
FOCAS-25 1/3 33.61 31.95 98.41

5.2.2 Non-recurrent FOCAS. We compare the performance of non-
recurrent FOCAS with other non-recurrent SR methods in Table 2.
The full-size SR baselines are bicubic upsampling and non-recurrent
RRN [14]. We report the 10-block RRN (RRN-10L), which has the
highest visual quality, as well as 3-block RRN (RRN-3L), which has
similar latency with FOCAS-25.

The results show that FOCAS-20 and FOCAS-25 achieve compara-
ble foveated visual quality (EWPSNR) with RRN-10L but gaining
71% and 63% latency reduction, respectively. Comparing with RRN-
3L, FOCAS-25 has similar latency and lower PSNR, but signi�cantly
higher EWPSNR. This means that FOCAS is worse than RRN-3L from
a global view but looks better in human eyes. Note that RRN-3L
can be viewed as letting the whole image go through 3 ResBlocks,
allocating uniform quality to the image. In contrast, FOCAS will let
the foveal region go through 10 blocks but let the periphery go
through just 1 block. Veri�ed by the experiments, we conclude that
foveated SR performs better than traditional SR in a non-recurrent
setting.

Figure 8: Results of recurrent SR methods. Top: peripheral
region. Bottom: foveal region.

5.2.3 Recurrent FOCAS. For recurrent SRmethods, we take bicubic
upsampling, 10-block RRN, and 5-block RRN as baselines and show
the experimental results in Table 3. As discussed in Section. 5.1.4,
to make recurrent FOCAS stable, we need to alternatively use full-
size SR and FOCAS inference. ‘RRN/FOCAS’ = 1/3 means that one
out of four frames is processed by RRN-10L and rest are by FOCAS.
We deliberately set the ratio so that all FOCAS models have similar
latency with RRN-5L for fair comparisons.

As) increases, FOCAS model will perform increasingly better
in terms of foveated visual quality (EWPSNR). FOCAS-16 to FOCAS-
25 suppress the EWPSNR score of RRN-5L with similar inference
time. The best one among them, FOCAS-25, can achieve comparable
EWPSNR with RRN-10L in only a half of runtime. The same obser-
vation is also illustrated in Fig. 8. The performance of FOCAS-25 is
very close to RRN-10L and clearly better than RRN-5L in the foveal
region, at the cost of peripheral quality.

Di�erent from the perfect performance of non-recurrent FOCAS,
recurrent FOCAS performs slightly worse than full-size SR and gains
less latency reduction. This is because the greedy nature of FOCAS
con�icts with its recurrent manner. Uniform-quality SR will en-
hance somewhere not being watched at the moment, which is
wasteful in non-recurrent scenarios. But in recurrent scenarios, the
computation of an unseen position will contribute to the future
through recurrent states. In contrast, FOCAS never invests in the
future. FOCAS greedily allocates resources according to the current
gaze point, leading to performance loss in the long run. Despite this,
by comparing FOCAS-25 with RRN-5L, we conclude that foveated
SR also outperforms full-size SR in a recurrent setting.

6 CONCLUSION
Exploiting the fact that human visual acuity rapidly decreases out-
side the fovea, we proposed the idea of foveated SR to reduce the
inference latency without noticeable visual quality degradation.
Toward this, we designed FOCAS that generates HR videos out of LR
ones by reconstructing the foveal region with more computational
resources, and paying less attention to the periphery. In this way,
FOCAS reduces the inference latency signi�cantly while maintain-
ing similar visual quality. The unique technical challenge in FOCAS

is to �nd the right size and quality of the foveated regions. We
addressed this challenge by formulating and optimally solving a
convex optimization problem that determines feature depths and
region sizes of all regions. As proven by extensive experiments, non-
recurrent FOCAS achieves the same foveated visual quality while
saving about 70% latency. Meanwhile, recurrent FOCAS achieves
visual quality that is comparable to the baseline, while also attain-
ing a 50 � 70% latency reduction, 2 � 3⇥ frame rate improvement,
and 12 � 16⇥ bandwidth saving. Thus, FOCAS is a practical way to
employ foveated SR in real-time video streaming.

ACKNOWLEDGMENTS
We acknowledge the support from the U.S. National Science Foun-
dation (NSF) under grant numbers CNS-2102963, CAREER-2045641,
CNS-1763617, CNS-1901137.

Poster Session 6 MM ’21, October 20–24, 2021, Virtual Event, China

5461

REFERENCES
[1] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. 2018.

A rewriting system for convex optimization problems. Journal of Control and
Decision 5, 1 (2018), 42–60.

[2] Rachel Albert, Anjul Patney, David Luebke, and Joohwan Kim. 2017. Latency
Requirements for Foveated Rendering in Virtual Reality. ACM Trans. Appl. Percept.
14, 4, Article 25 (Sept. 2017), 13 pages. https://doi.org/10.1145/3127589

[3] Christine A. Curcio, Kenneth R. Sloan, Robert E. Kalina, and Anita E. Hen-
drickson. 1990. Human photoreceptor topography. Journal of Compara-
tive Neurology 292, 4 (1990), 497–523. https://doi.org/10.1002/cne.902920402
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cne.902920402

[4] Mallesham Dasari, Arani Bhattacharya, Santiago Vargas, Pranjal Sahu, Aruna
Balasubramanian, and Samir R. Das. 2020. Streaming 360-Degree Videos Using
Super-Resolution. In IEEE INFOCOM 2020 - IEEE Conference on Computer Com-
munications. 1977–1986. https://doi.org/10.1109/INFOCOM41043.2020.9155477

[5] Steven Diamond and Stephen Boyd. 2016. CVXPY: A Python-embedded modeling
language for convex optimization. Journal of Machine Learning Research 17, 83
(2016), 1–5.

[6] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2014. Learning a
Deep Convolutional Network for Image Super-Resolution. In Computer Vision –
ECCV 2014, David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (Eds.).
Springer International Publishing, Cham, 184–199.

[7] D. Fuoli, S. Gu, and R. Timofte. 2019. E�cient Video Super-Resolution through
Recurrent Latent Space Propagation. In 2019 IEEE/CVF International Conference
on Computer Vision Workshop (ICCVW). 3476–3485. https://doi.org/10.1109/
ICCVW.2019.00431

[8] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep Sparse Recti�er
Neural Networks. In Proceedings of the Fourteenth International Conference on
Arti�cial Intelligence and Statistics (Proceedings of Machine Learning Research,
Vol. 15), Geo�rey Gordon, David Dunson, and Miroslav Dudík (Eds.). JMLR
Workshop and Conference Proceedings, Fort Lauderdale, FL, USA, 315–323. http:
//proceedings.mlr.press/v15/glorot11a.html

[9] Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and John Snyder. 2012.
Foveated 3D Graphics. ACM Trans. Graph. 31, 6, Article 164 (Nov. 2012), 10 pages.
https://doi.org/10.1145/2366145.2366183

[10] Muhammad Haris, Gregory Shakhnarovich, and Norimichi Ukita. 2018. Deep
Back-Projection Networks for Super-Resolution. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR).

[11] Muhammad Haris, Gregory Shakhnarovich, and Norimichi Ukita. 2019. Recur-
rent Back-Projection Network for Video Super-Resolution. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[13] Gazi Karam Illahi, Thomas Van Gemert, Matti Siekkinen, Enrico Masala, Antti
Oulasvirta, and Antti Ylä-Jääski. 2020. Cloud Gaming with Foveated Video
Encoding. ACM Trans. Multimedia Comput. Commun. Appl. 16, 1, Article 7 (Feb.
2020), 24 pages. https://doi.org/10.1145/3369110

[14] Takashi Isobe, Fang Zhu, Xu Jia, and Shengjin Wang. 2020. Revisiting Temporal
Modeling for Video Super-resolution. arXiv:2008.05765 [eess.IV]

[15] Younghyun Jo, Seoung Wug Oh, Jaeyeon Kang, and Seon Joo Kim. 2018. Deep
Video Super-Resolution Network Using Dynamic Upsampling Filters Without
Explicit Motion Compensation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[16] Anton S. Kaplanyan, Anton Sochenov, Thomas Leimkühler, Mikhail Okunev,
Todd Goodall, and Gizem Rufo. 2019. DeepFovea: Neural Reconstruction for
Foveated Rendering and Video Compression Using Learned Statistics of Natural
Videos. ACM Trans. Graph. 38, 6, Article 212 (Nov. 2019), 13 pages. https:
//doi.org/10.1145/3355089.3356557

[17] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. 2016. Accurate Image Super-
Resolution Using Very Deep Convolutional Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[18] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 [cs.LG]

[19] Royson Lee, Stylianos I. Venieris, and Nicholas D. Lane. 2020. Neural Enhance-
ment in Content Delivery Systems: The State-of-the-Art and Future Directions
(DistributedML’20). Association for Computing Machinery, New York, NY, USA,
34–41. https://doi.org/10.1145/3426745.3431336

[20] Wei-Tse Lee, Hsin-I Chen, Ming-Shiuan Chen, I-Chao Shen, and Bing-Yu Chen.
2017. High-resolution 360 Video Foveated Stitching for Real-time VR. Computer
Graphics Forum 36, 7 (2017), 115–123. https://doi.org/10.1111/cgf.13277

[21] Zhicheng Li, Shiyin Qin, and Laurent Itti. 2011. Visual attention guided bit
allocation in video compression. Image and Vision Computing 29, 1 (2011), 1–14.
https://doi.org/10.1016/j.imavis.2010.07.001

[22] Ben Niu, Weilei Wen, Wenqi Ren, Xiangde Zhang, Lianping Yang, Shuzhen Wang,
Kaihao Zhang, Xiaochun Cao, and Haifeng Shen. 2020. Single Image Super-
Resolution via a Holistic Attention Network. In Computer Vision – ECCV 2020,
Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.).
Springer International Publishing, Cham, 191–207.

[23] Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris Wyman, Nir
Benty, David Luebke, and Aaron Lefohn. 2016. Towards Foveated Rendering for
Gaze-Tracked Virtual Reality. ACM Trans. Graph. 35, 6, Article 179 (Nov. 2016),
12 pages. https://doi.org/10.1145/2980179.2980246

[24] Miguel Fabian Romero-Rondón, Lucile Sassatelli, Frédéric Precioso, and Ramon
Aparicio-Pardo. 2018. Foveated Streaming of Virtual Reality Videos. In Proceedings
of the 9th ACMMultimedia Systems Conference (Amsterdam, Netherlands) (MMSys
’18). Association for Computing Machinery, New York, NY, USA, 494–497. https:
//doi.org/10.1145/3204949.3208114

[25] Jihoon Ryoo, Kiwon Yun, Dimitris Samaras, Samir R. Das, and Gregory Zelinsky.
2016. Design and Evaluation of a Foveated Video Streaming Service for Com-
modity Client Devices (MMSys ’16). Association for Computing Machinery, New
York, NY, USA, Article 6, 11 pages. https://doi.org/10.1145/2910017.2910592

[26] Mehdi S. M. Sajjadi, Raviteja Vemulapalli, and Matthew Brown. 2018. Frame-
Recurrent Video Super-Resolution. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[27] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz, Andrew P. Aitken,
Rob Bishop, Daniel Rueckert, and Zehan Wang. 2016. Real-Time Single Image
and Video Super-Resolution Using an E�cient Sub-Pixel Convolutional Neural
Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[28] W. Sun and Z. Chen. 2020. Learned Image Downscaling for Upscaling Using
Content Adaptive Resampler. IEEE Transactions on Image Processing 29 (2020),
4027–4040. https://doi.org/10.1109/TIP.2020.2970248

[29] Toinon Vigier, Josselin Rousseau, Matthieu Perreira Da Silva, and Patrick Le Callet.
2016. A New HD and UHD Video Eye Tracking Dataset. In Proceedings of the 7th
International Conference on Multimedia Systems (Klagenfurt, Austria) (MMSys ’16).
Association for Computing Machinery, New York, NY, USA, Article 48, 6 pages.
https://doi.org/10.1145/2910017.2910622

[30] Xintao Wang, Kelvin C.K. Chan, Ke Yu, Chao Dong, and Chen Change Loy.
2019. EDVR: Video Restoration With Enhanced Deformable Convolutional
Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops.

[31] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T Freeman. 2019.
Video Enhancement with Task-Oriented Flow. International Journal of Computer
Vision (IJCV) 127, 8 (2019), 1106–1125.

[32] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, and Dongsu Han.
2018. Neural Adaptive Content-aware Internet Video Delivery. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). USENIX
Association, Carlsbad, CA, 645–661. https://www.usenix.org/conference/osdi18/
presentation/yeo

[33] Peng Yi, Zhongyuan Wang, Kui Jiang, Junjun Jiang, and Jiayi Ma. 2019. Progres-
sive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-
Temporal Correlations. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV).

[34] Anlan Zhang, Chendong Wang, Bo Han, and Feng Qian. 2021. E�cient Volu-
metric Video Streaming Through Super Resolution. In Proceedings of the 22nd
International Workshop on Mobile Computing Systems and Applications (Virtual,
United Kingdom) (HotMobile ’21). Association for Computing Machinery, New
York, NY, USA, 106–111. https://doi.org/10.1145/3446382.3448663

Poster Session 6 MM ’21, October 20–24, 2021, Virtual Event, China

5462

https://doi.org/10.1145/3127589
https://doi.org/10.1002/cne.902920402
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cne.902920402
https://doi.org/10.1109/INFOCOM41043.2020.9155477
https://doi.org/10.1109/ICCVW.2019.00431
https://doi.org/10.1109/ICCVW.2019.00431
http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
https://doi.org/10.1145/2366145.2366183
https://doi.org/10.1145/3369110
https://arxiv.org/abs/2008.05765
https://doi.org/10.1145/3355089.3356557
https://doi.org/10.1145/3355089.3356557
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3426745.3431336
https://doi.org/10.1111/cgf.13277
https://doi.org/10.1016/j.imavis.2010.07.001
https://doi.org/10.1145/2980179.2980246
https://doi.org/10.1145/3204949.3208114
https://doi.org/10.1145/3204949.3208114
https://doi.org/10.1145/2910017.2910592
https://doi.org/10.1109/TIP.2020.2970248
https://doi.org/10.1145/2910017.2910622
https://www.usenix.org/conference/osdi18/presentation/yeo
https://www.usenix.org/conference/osdi18/presentation/yeo
https://doi.org/10.1145/3446382.3448663

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Foveated Rendering
	2.2 Super Resolution

	3 FOCAS System Design
	3.1 Model Structure
	3.2 Inference Phase
	3.3 Training Phase

	4 Optimum Quality Allocation
	4.1 Problem Modeling and Formulation
	4.2 Solving the Optimization Problem

	5 Experimental Results
	5.1 Overview and Setup
	5.2 Results

	6 Conclusion
	Acknowledgments
	References

