
1

Coverage and Rate in MIMO Cellular Networks with Location-Aware
Transmission Rank Selection

Afaq A. Lone, Abhishek K. Gupta, Harpreet S. Dhillon, Somya Sharma

Abstract—In this letter, we study the performance of a
multiple-input multiple-output (MIMO) cellular network with
location-aware transmission rank selection, where the number of
transmit streams for every base-station (BS) and user equipment
(UE) link is determined based on the average received power
at the UE (hence, the link distance). We assume open-loop
zero-forcing beam-forming (OL-ZFBF) at the receiver. We first
develop a stochastic geometry based analytical framework for
this setup by including the adaptive rank as a mark of each
BS. Using this framework, we derive the coverage probability
and spectral efficiency (SE) as a function of the rank selection
threshold. Our analysis demonstrates that selecting transmission
rank for each link on the basis of distance improves SE. We also
investigate the tradeoff between coverage probability and SE.

Index Terms—Cellular networks, MIMO, stochastic geometry,
Poisson point process, open loop zero-forcing beamforming.

I. INTRODUCTION

Network densification and multi-antenna transmission are
two key ingredients of modern cellular networks. Given the
variety of services and devices supported by these networks,
there are many situations in which we cannot afford additional
signaling overhead required to obtain channel state information
(CSI) at the transmitter and hence have to limit ourselves
to open-loop transmission techniques. A simple technique to
harness multi-antenna transmission gains in the absence of
CSI at the transmitter (CSIT) is to dynamically select the
transmission rank for each BS-UE link based on the distance
of the UE from the BS. While the link-level performance
of this scheme is well-studied, the same is not true for
its comprehensive system-level modeling and performance
analysis, which is the main theme of this letter.

Prior Art. Over the past decade, stochastic geometry has
emerged as a powerful tool for the system-level analysis of
cellular networks. It has been particularly useful in accurately
modeling irregular deployments resulting from network den-
sification in heterogeneous cellular networks, e.g., see [1],
[2]. These tools have also been extended to study various
aspects of MIMO heterogenous networks, e.g., see [3]–[5],
where [3] derived upper bounds on coverage probability for
different multi-antenna techniques and [4] investigated the
impact of load balancing on the coverage and rate of these
networks. The most relevant prior art for us in this direction
is [5], which investigated the coverage probability in a MIMO
heterogeneous cellular network with (open loop) multi-stream
transmission to a single user using OL-ZFBF. However, all
these works assume that the number of streams transmitted
by each BS of a given tier is the same, which is overly
simplistic from the perspective of modern cellular networks,
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where BSs can decide the number of streams to be transmitted
to the user (termed transmission rank) based on the channel
conditions between BS and the user. In fact, this transmission
rank selection feature also appears in the 3GPP LTE-Advanced
and 5G standards. This rank selection can be facilitated by
calculating a rank indicator (RI) based on the current channel
at the UE and then feeding it back to the BS [6].

It is well-known that rank selection is useful in optimizing
link performance by avoiding resource wastage resulting from
transmitting too many streams on a weak MIMO channel
on one hand and transmitting too little streams on a strong
MIMO channel on the other [6], [7]. Even though this is
easy to understand for a single link, it is not so in a network
setting where transmission rank also impacts the interference
statistics. While there are some simulation-based studies dis-
cussing the impact of rank selection [6], [8] on the network
performance, this letter presents the first analytical system-
level analysis of this setup. Because of the consideration of
adaptive rank selection, the resulting stochastic geometry setup
is different from the ones encountered in the past works. For
example, the signal-to-interference ratios (SIRs) of different
streams are correlated and also dependent on the serving BS’s
location, which requires careful treatment.

Contributions. In this letter, we develop a stochastic geome-
try based analytical framework to study the effect of dynamic
rank selection in a cellular network with OL-ZFBF. In OL-
ZFBF, ZFBF is performed at the UE having full CSI and
hence CSIT is not assumed at the BS. Each BS decides the
number of streams for its associated UE based on the average
received power at the UE (equivalently based on the link
distance). Key technical contributions of our analysis are the
development of a tractable analytical approach which includes
the effect of location-aware dynamic rank selection and the
complete characterization of coverage probability and SE in
terms of key system parameters (particularly the selection
distance threshold used to determine the transmission rank).
We also compute the optimal values of this threshold that
maximize coverage and SE. Further, we discuss the trade
off between coverage probability and SE, and investigate the
optimal operating point to achieve the best trade-off.

Notation: X ∼ Γ(K) denotes that X is a Gamma random
variable with shape K and rate 1. B (a, b, z) is complimen-
tary incomplete Beta function i.e. B (a, b, z) =

∫ 1

z
ta−1(1 −

t)b−1dt. W(.) is the Lambert W function. LX(s) denotes the
Laplace transform (LT) of X .

II. SYSTEM MODEL

We consider the downlink of a MIMO cellular network,
where the locations of the BSs are modeled as a PPP Φ = {xi}
with density λ. Here, xi denotes the location of the i-th BS.
The UEs are distributed as an independent and stationary point
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process (PP) Φu with density λu. Each user connects to its
closest BS. We assume a saturated traffic model where each BS
has at least one UE to serve at all times. This can be justified
by assuming λu � λ, which implies that the probability
of finding an empty cell is very small. We further assume
standard power-law path-loss model `(r) = r−α with path-loss
exponent α > 2. We assume that each BS and UE is equipped
with M = 2 antennas. Therefore, each UE forms a 2 × 2
MIMO system with its serving BS and hence the maximum
number of streams supported for each user is 2. We further
consider dynamic selection of the transmission rank such that
the BS located at xi selects transmission rank ni based on the
average received power at the associated user. If the received
power is above a threshold pth, ni = 2, otherwise ni = 1.
Due to the monotonicity of the path-loss function, `(r), it
translates to the following rule: ni = 2 if di < R and ni = 1 if
di ≥ R where di is the distance between the BS xi and its UE
and R = p

−1/α
th is a design parameter (termed the selection

distance threshold). Here, ni can be seen as a mark for Φ,
with ni ∈ {1, 2}. The analysis can be extended to a general
M with 1 ≤ ni ≤ M [5] and more sophisticated RI based
rank selection methods [6] at the expense of more complicated
expressions and the possibility of obfuscating insights. Since
the two-antenna setup is already rich enough to reveal the
problem structure and key performance trends, the expressions
for general M are not included due to space constraints.

We consider OL-ZFBF, where ZFBF is performed at the
UE assuming perfect CSI, whereas CSIT is not required [9].
Along the same lines as [9], we assume that the BSs simply
turn on one transmit antenna per stream and the transmit power
is equally divided among streams, which are both justified in
OL-ZFBF due to the unavailability of CSIT. As discussed in
[9], turning on only the required number of antennas may
also reduce the overall interference in the network. Further,
we assume an independent Rayleigh fading channel between
every transmitter-receiver antenna pair. Our analysis will focus
on the typical user located to the origin, which connects to its
closest BS located at x0. The PDF of its distance r0 = ‖x0‖
from the user, is given as [2] fr0(r) = 2πλre−πλr

2

1(r > 0).
Let this BS be transmitting n0 ∈ {1, 2} streams. Based on the
marks assigned to the BSs, we split the set of interfering BSs
(i.e. Φ \ {x0}) into two PPs, Φ1 and Φ2, corresponding to ni
= 1 and 2, respectively. Hence, Φ = Φ1 ∪ Φ2 ∪ {x0}. The
received signal vector z0 ∈ Cn0×1 is

z0 = ‖x0‖−
α
2 h0s0+

∑
xi∈Φ1

‖xi‖−
α
2 hisi+

∑
xi∈Φ2

‖xi‖−
α
2 hisi.

Here, h0 ∈ CM×n0 is the fading channel matrix between
serving BS x0 and the typical UE, hi ∈ CM×ni is the fading
channel matrix between the interfering BS at xi and the typical
UE. Further si of size ni × 1 is the signal vector transmitted
by the i-th BS xi. When ni = 1, only the first antenna is
active, hence si can replaced with its first element si. We
ignore thermal noise in this analysis. In OL-ZFBF, the received
vector is multiplied with the zero-forcing beam-former, given
as (hH

0 h0)−1hH
0 which cancels the inter stream interference

completely at the cost of reduced degrees of freedom. Using

[9, Section II-A, Eq. (7)], the SIR for l-th stream is given as

SIRl =
1
n0
‖x0‖−α F0,l

I1,l + 1
2I2,l

(1)

with I1,l =
∑

xi∈Φ1

‖xi‖−αHi,l, I2,l =
∑

xj∈Φ2

‖xj‖−αHj,l. (2)

Here, Im,l denotes the sum interference from Φm for unit
transmit power on the l-th stream, F0,l ∼ Γ(m − n0 + 1) is
the fading power gain for the serving link and Hi,l ∼ Γ(ni) is
the fading power gain for the i-th interfering BS in Φm. We
have F0,l ∼ Γ(2) and F0,l ∼ Γ(1) for the serving BS with
one and two streams, respectively. Also, Hi,l’s are distributed
as Γ(1) and Γ(2) for Φ1 and Φ2, respectively [9, Eq.(9)]. For
n0 = 2, random variables F and H are independent across
streams. However, SIR1 and SIR2 are not independent due to
the presence of the same random variables {xi} in path-loss
terms ‖xi‖−α.

III. PERFORMANCE ANALYSIS

In this section, we derive the coverage probability and
spectral efficiency (SE) of the typical user.

A. Rank Distribution

We will first derive the distribution of ni, i.e., the probability
that the typical BS is transmitting 1 or 2 streams. The approx-
imate distribution of the distance between the typical BS and
a user distributed uniformly at random in its association cell
is given as P [u ≥ r] = exp(−1.28πλr2) [10]. Hence, the
probability that the typical BS transmits only one stream is

p1(ρ) = P [u> R]= exp
(
−1.28πλR2

)
= exp (−1.28ρ), (3)

where ρ = πλR2 is the normalized selection distance thresh-
old and represents the average number of BSs in a circle
of radius R. The underlying BS Poisson Voronoi tessellation
induces dependence in the marks ni and hence the PPs Φ1 and
Φ2. Handling this dependence exactly is intractable because
of which we will assume that the marks are independent. This
approximation does not affect the accuracy of the analysis as
shown later in Fig. 1(a). Therefore, we can treat Φ1 and Φ2

as two independent PPPs with densities λ1(ρ) = p1(ρ)λ and
λ2(ρ) = p2(ρ)λ, respectively with p2(ρ) = 1− p1(ρ).

B. Coverage probability

We define the coverage probability as the probability that
the SIR for all the streams is greater than the threshold τ i.e.

pc(τ) = E
[∏n0

l=1
1 (SIRl ≥ τ)

]
. (4)

This captures the fact that it will be meaningful to select two
stream transmission only when both streams are successful.
As n0 depends on r0, (4) can be written as

pc(τ) = pc,1 + pc,2

with pc,1 = E [1 (SIR1 ≥ τ)1 (r0 > R)] , (5)

pc,2 = E
[∏2

l=1
1 (SIRl ≥ τ)1 (r0 ≤ R)

]
. (6)

These two terms are derived in the following Lemmas.
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Lemma 1. The coverage probability for the typical UE when
it receives a single stream transmission is

pc,1 =

∫ ∞
R

P [SIR1 ≥ τ |r0] fr0(r)dr0 (7)

with P [SIR1 ≥ τ |r0] = LI (rα0 τ)− d

dt
LI (trα0 τ) |t=1 (8)

where I = I1,1 + I2,1/2 is the sum interference for the active
streams. See Appendix A for the proof.

Lemma 2. The coverage probability for the typical user when
it receives two stream transmission is

pc,2 =

∫ R

0

P [∩l (SIRl ≥ τ) |r0] fr0(r)dr0 (9)

with P [∩l (SIRl ≥ τ) |r0] = LI1 (2τrα0 )LI2 (τrα0 ) (10)

where Im = Im,1 + Im,2 is the sum interference from Φm
summed over both streams. See Appendix B for the proof.

To solve further, we require LT of various interference
terms. Next, we provide a general result for the LT.

Lemma 3. Given the serving BS is at a distance r0, the
Laplace transform of interference I from BSs Φ′ ∼ PPP(λ)
with effective fading H ∼ Γ(N) and unit transmit power,
evaluated at s = τrα0 , is given as (proof in Appendix C)

LI (τrα0 ) = E
[
e−τr

α
0 I
]

= exp
(
−πλmr2

0fN (τ)
)

(11)

where, fN (τ) =
∑N

k=1

(
m

k

)
q (N − k, k, τ)

with q (x, y, z) = 2/α(z)2/αB (x+ 2/α, y − 2/α, 1/(1 + z)) .

Equipped with these results, we now provide the coverage
probability expression in the following Theorem.

Theorem 1. The coverage probability for the typical user is

pc(τ, ρ) = pc,1 + pc,2, with (12)

pc,1 =

∫ ∞
ρ

e−vA(τ,ρ) (1 +vB(τ, ρ)) dv =
e−ρA

A2
[A+B +ABρ]

pc,2 =

∫ ρ

0

e−vC(τ,ρ)dv = (1− e−ρC(τ,ρ))/C(τ, ρ),

where A,B and C are given as:

A(τ, ρ) = p1(ρ)f1(τ) + p2(ρ)f2 (τ/2) + 1, (13)
B(τ, ρ) = p1(ρ)q(1, 1, τ) + 2p2(ρ)q(2, 1, τ/2), (14)
C(τ, ρ) = p1(ρ)f2(2τ) + p2(ρ)f4(τ).+ 1 (15)

Proof: See Appendix D.
This analysis can also be extended to the case of M > 2.

Here, the system will allow M possible ranks to transmit data.
Therefore, we will have a (M − 1)× 1 threshold vector ρ for
rank selection and Φ can be partitioned into M PPPs {Φk}.
The SINR coverage can be written as a summation of M
terms, one corresponding to each of the possible ranks. Note
that F0,l ∼ Γ(M − L + 1) and Hi,l ∼ Γ(ni). Using steps
similar to Appendix A, we can write each term in terms of LT
of interference and its derivatives. Please see [11] for details.
Terms A,B and C can be approximated as (see Appendix E):

A(τ, ρ) ≈ f2 (τ/2) + 1 = f1(τ) + 1 = Ã(τ), (16)

B(τ, ρ) ≈ 2q(2, 1, τ/2) = q(1, 1, τ) = B̃(τ), (17)

C(τ, ρ) ≈ f4(τ) + 1 = f2(2τ) + 1 = C̃(τ). (18)

where Ã, B̃, C̃ are functions of only τ . Using this approxi-
mation, we can simplify (12) to get the following result (See
Appendix F for the proof).

Corollary 1. The coverage probability pc is a decreasing
function of ρ, therefore SIR coverage is highest when ρ = 0
which means that all users are allotted a single stream.
Further, the maximum and minimum values of pc are

pc,max(τ) ≈ ( ˜A(τ) + B̃(τ))/Ã2(τ), pc,min(τ) ≈ 1/C̃(τ).

The optimality of single stream transmission from the SIR
standpoint is not surprising. However, simultaneous transmis-
sion of two streams has the potential of providing higher data
rate compared to a single stream transmission at the expense
of a lower SIR. This is discussed next by analyzing SE.

C. Spectral Efficiency

The SE η is defined as the average number of bits success-
fully transmitted per unit time and unit bandwidth [12] i.e.

η(τ, ρ) = E [n0 log2(1 + τ)1 (SIR ≥ τ)] (19)

Theorem 2. The SE in the considered network is

η(τ, ρ) = log(1 + τ)pc,1(τ, ρ)+ 2 log(1 + τ)pc,2(τ, ρ). (20)

The optimal value of ρ that maximizes SE is calculated next.

Theorem 3. The value of distance selection threshold ρ that
maximizes the SE is

ρopt ≈ 1
C̃−ÃW

(
2 C̃−Ã

B̃
exp

(
C̃−Ã
B̃

))
− 1

B̃
≤ 1

C−A+B . (21)

Proof: The ρopt can be obtained by differentiating (20)
with respect to ρ and equating it to zero, which gives

2e−ρC̃ − e−ρÃ(1 + ρB̃) = 0.

Solving the above equation we get the result in (21). The upper
bound can be proven using concavity of W.

Remark 1. From Theorem 3, we can make the following
observations: (i) The upper bound in (21) decreases with τ
which indicates that the optimal value of ρ decreases with
τ . (ii) Cor. 1 and Theorem 3 show that the values of ρ that
maximize η and pc are different. (iii) The optimal value of ρ
does not depend on the BS density λ. Therefore, as the BS
density increases, the distance threshold R decreases.

The use of optimal ρ results in the following degradation
and improvement in pc and η

∆pc = pc(τ, 0)− pc(τ, ρopt)

= (1− κÃ)B̃/Ã2 + (1− 2κC̃)/Ã− (1− κC̃)/C̃.

∆η = η(τ, ρopt)− η(τ, 0) =
[
(1−κC̃)/C̃−∆pc

]
log2(1 + τ).

with κ=
[
B̃W(2(C̃−Ã)/B̃e(C̃−Ã)/B̃)/(2(C̃−Ã))

]1/(C̃−Ã)

.

We also give the expression of ergodic rate defined as re =
E [n0 log2(1 + SIR)] in the following Theorem.
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Theorem 4. The ergodic rate of the typical user is given as

re =

∫ ∞
0

pc,1(2t − 1) + 2p′c,2(2t − 1)dt,

where pc,1 is given in Theorem 1 and p′c,2(τ) = 1−e−ρA(2τ,ρ)

A(2τ,ρ) .

Proof: To compute ER, we first apply the total probability
law over events r0≤R and r0>R. We then use the fact that
E [X] =

∫∞
0

P [X>x] dx. The rest of the steps are similar to
the proof of pc.

IV. NUMERICAL RESULTS

Unless stated otherwise, we consider α = 3, λ = 10/km2

and λu = 100/km2 for all our numerical results.
Fig. 1(a) presents the coverage probability pc for different

values of threshold radius R (equivalently p1 or ρ). The
close agreement between the theoretical and simulation results
verifies the accuracy of independent marking assumption.
Further, Fig. 1(a) shows that pc is the highest when R is equal
to 0 (i.e., each BS transmits a single stream) and lowest when
each BS transmits two streams. This is consistent with the
observations of [3]–[5] that the increasing multiplexing gain
reduces coverage probability. Further, the coverage probability
for the intermediate values of ρ remains between the two
extremes ρ = 0 and ρ→∞, which is consistent with Cor. 1.

Fig. 1(b) shows the variation of SE with ρ. This shows
the existence of optimal ρ that maximizes SE. The optimal
ρ depends on τ and decreases with an increase in τ . This is
consistent with Remark 1. Further, ρopt is remarkably close to
the exact ρ that maximizes SE. This validates the easy-to-use
approximations given in (16)-(18) and Theorem 3.

Fig. 2(a)-(b) present trade-off between pc and η for ρ = 0
(which maximises pc) and for ρ = ρopt (which maximises η).
Any ρ > ρopt will decrease both pc as well as η, and is hence
not desirable. Further, we observe that as we increase ρ from
0 to ρopt the decrease in pc is smaller than the increase in η
especially for the higher values of τ . Therefore, it is desirable
to operate near ρopt for moderate to high values of τ .

V. CONCLUSIONS

In this letter, we have analytically characterized the perfor-
mance of a MIMO cellular network with location aware rank
selection in terms of coverage, SE and ER. Several useful
insights were obtained from these analytical expressions. For
instance, we obtained an analytical characterization of ρopt,
that maximizes SE. While this optimal value is naturally
different from the one that maximizes coverage, we have
argued that it is desirable to operate near ρopt for moderate
to high values of SIR threshold, τ , to have the best tradeoff
between coverage and SE. This work can be extended in
multiple ways. First, one can extend this analysis to the case of
general M , which is tedious but conceptually straightforward
given the analysis presented here. An analytical investigation
of multiuser MIMO with dynamic rank selection for each
multiplexed user is an interesting future direction. A similar
analysis can also be performed for a closed-loop systems with
CSI available at both ends of the link, including the massive
MIMO settings. However, the resulting analysis is expected
to be significantly different due to technical difficulties in
deriving the underlying channel distributions.
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Fig. 1: Left: (a) Coverage probability for different values of threshold
distance R. Solid lines represent analysis and markers represent
simulation. Right: (b) Variation of SE with ρ for different values
of τ . ρopt computed in (21) is shown by a × on each plot.
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Fig. 2: Left: (a) Trade-off between pc and η with τ for ρ = 0 and
ρ = ρopt(τ). Right: (b) Variation of ∆pc and ∆η with τ .

APPENDIX A

From (5), pc,1=

∫ ∞
0

P [SIR1 ≥ τ |r0]1 (r0 > R) fr0(r)dr0

where P [SIR1 ≥ τ |r0] = P
[
r−α0 F0,1/(I1 + I2/2) ≥ τ

]
= P [F0,1 ≥ τrα0 I1,1 + τrα0 I2,1/2] = P [F0,1 ≥ τrα0 I] . (22)

Since, F0,1 ∼ Γ(2), for a random variable y,

P [F0,1 ≥ y] = Ey
[
e−y(1 + y)

]
= Ey

[
e−y
]
− d

dtEy
[
e−yt

]
|t=1.

In (22), y = τrα0 I , therefore, Ey [e−yt] = LI (trα0 τ) . Substi-
tuting it back in (22) completes the proof.

APPENDIX B

From (6), pc,2 =

∫ R

0

P [SIR1 ≥ τ,SIR2 ≥ |r0] fr0(r0)dr0.

Since, for a given realization of Φ, SIR1 and SIR2 are
independent, hence

P [∩l (SIRl ≥ τ) |r0] = EΦ

[∏
l
P [SIRl ≥ τ |r0,Φ]

]
. (23)

Now, P [SIRl ≥ τ |r0,Φ] = P
[
r0
−αF0,l/2/I1,l + I2,l/2 ≥ τ

]
= P [F0,l ≥ τrα0 (2I1,l + I2,l)] = E

[
e−2τrα0 I1,l−τr

α
0 I2,l |r0,Φ

]
where the last step follows from F0,l ∼ Γ(1). Now from (23),

P [∩lSIRi ≥ τ |r0] = EΦ

[∏
l
E
[
e−τr

α
0 (2I1,l+I2,l)|r0,Φ

]]
= EΦ [E [exp (−τrα0 (2I1 + I2))|r0,Φ]] . (24)

Now, since each Im is a function of Φm only, hence, from
independence of Φm’s,

P [∩lSIRi ≥ τ |r0] =
∏

m
EΦm [exp (−τrα0 (2I1 + I2))|r0] .

Now, using the definition of LT, we get the desired result.
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APPENDIX C

From (2), the LT LI(s) of Im at s = τtrα0 is given as

LIm|r0 (τtrα0 ) = E
[
e−τtr

α
0

∑
zi∈Φm

‖zi‖−αHi1(‖zi‖>r0)
]

(a)
= exp

(
−2πλm

∫∞
r0

[
1− EH

[
e−τtr

α
0 z
−αH

]]
zdz
)

(b)
= exp

(
−2πλm

∫∞
r0

[
1− (1 + τtrα0 z

−α)
−m
]
zdz
)

(c)
= exp

(
−πλmr2

0τ
2
α

∫∞
τ−

2
α

[
1−
(
1+tv−

α
2

)−m]
dv
)

(25)

where (a) from PGFL of PPP, (b) follows from moment
generating function (MGF) of H ∼ Γ(m) and (c) follows
by substituting τ

2
α (r0/z)

2 −→ 1/v. Now let

fm(τ) = τ2/α
∫∞
τ−2/α

[
1−

(
1 + v−α/2

)−m]
dv

(a)
= τ

2
α

∑m
k=1

(
m
k

) ∫∞
τ−2/α

(
v−α/2

)k(
1 + v−α/2

)−m
dv

(b)
= 2

ατ
2
α

∑m
k=1

(
m
k

) ∫ 1
1

1+τ
um−k+ 2

α−1 (1− u)
k− 2

α−1
du

=
∑m
k=1

(
m
k

)
q (m− k, k, τ)

where, (a) follows from using binomial series, (b) follows
from substituting

(
1 + v−α/2

)
−→ 1/u. Now using fm(τ) in

(25) and putting t = 1, we get the desired result.

APPENDIX D

To derive pc, we need to first derive the LT of I and Im as
defined in Lemma 1 and 2.
LT of I in Lemma 1 and pc,1: Since I = I1,1 + I2,1/2,

LI (rα0 τ) = LI1,1 (rα0 τ)LI2,1 (rα0 τ/2)

(a)
= exp

(
−πr2

0 (λ1f1(τ) + λ2f2 (τ/2))
)

(26)

where (a) follows from lemma 3. Further,
d
dtLI (trα0 τ) = d

dtLI1,1 (trα0 τ)LI2,1 (trα0 τ/2) ,

By differentiating (25) using Leibniz integral rule of differen-
tiation under the integral sign, we get following result,

d
dtLI (trα0 τ) |t=1 = exp

(
−πr2

0 (λ1f1(τ) + λ2f2 (τ/2))
)

×
(
πr2

0 {λ1q(1, 1, τ) + 2λ2q(2, 1, τ/2)}
)
. (27)

Using results in (26) and (27), we get,

P [SIR ≥ τ |r0] = exp
(
−πr2

0 (λ1f1(τ) + λ2f2 (τ/2))
)

×
(
1 + πr2

0 {λ1q(1, 1, τ) + 2λ2q(2, 1, τ/2)}
)
.

Using this result in (7), we get

pc,1 = 2πλ
∫∞
R

exp
(
−πλr2

0 (p1f1(τ) + p2f2 (τ/2) + 1)
)

×
(
1 + πλr2

0{p1q(1, 1, τ) + p22q(2, 1, τ/2)}
)
r0dr0.

Substituting πλr2
0 −→ v, we get the desired result.

LT of Im in Lemma 2 and pc,2: Note that

Im =
∑
l Im,l =

∑
zi∈Φm

‖zi‖−αHi

where, Hi = Hi,1 + Hi,2 ∼ Γ(2Nm) is the effecting fading.
Therefore, from Lemma 3,

LIm(τr0) = E
[
e−τr0Im

]
= exp

(
−πλ1r

2
0f2Nm(τ)

)
.

Now, from (10), and noting Nm = m,

P [∩lSIRi ≥ τ |r0] = exp
(
−πr2

0λ1f2(2τ)
)

exp
(
−πr2

0λ2f4(τ)
)
.

Using this result in (9), we get

pc,2 = 2πλ
∫ R

0
exp

(
−πλr2

0 (p1f2(2τ) + p2f4(τ) + 1)
)
r0dr0

Substituting πλr2
0 −→ v, we get the desired result.

APPENDIX E
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Fig. 3: Variations of f and q functions with respect to τ .

From Fig. 3, it can be seen that f1(τ) ≈ f2

(
τ
2

)
, q(1, 1, τ) ≈

2q
(
2, 1, τ2

)
and f2(2τ) ≈ f4(τ). Applying these to (13)-(15)

and noting p1 + p2 = 1, we get the desired result.
APPENDIX F

The local maxima/minima for pc occurs at ρ = ρ0 if
d
dρpc(τ, ρ)|ρ=ρ0

= 0 =⇒ exp ((C̃−Ã)ρ0) = B̃ρ0 + 1

Since C̃ > Ã (See Fig. 3), we get

ρ0 = 1
C̃−ÃW

(
C̃−Ã
B̃

exp
(
C̃−Ã
B̃

))
− 1
B̃

= 1
C̃−Ã

(
C̃−Ã
B̃

)
− 1
B̃

= 0.

Further, since the dpc

dρ is negative, pc decreases with ρ.

REFERENCES

[1] H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, “Modeling
and analysis of K-tier downlink heterogeneous cellular networks,” IEEE
J. Sel. Areas Commun., vol. 30, no. 3, pp. 550–560, April 2012.

[2] J. G. Andrews, A. K. Gupta, A. Alammouri, and H. S. Dhillon, An
Introduction to Cellular Network Analysis using Stochastic Geometry.
Morgan Claypool, 2022.

[3] H. S. Dhillon, M. Kountouris, and J. G. Andrews, “Downlink MIMO
HetNets: Modeling, ordering results and performance analysis,” IEEE
Trans. Wireless Commun., vol. 12, no. 10, pp. 5208–22, Oct. 2013.

[4] A. K. Gupta, H. S. Dhillon, S. Vishwanath, and J. G. Andrews, “Down-
link multi-antenna heterogeneous cellular network with load balancing,”
IEEE Trans. Commun., vol. 62, no. 11, pp. 4052–4067, Nov. 2014.

[5] M. G. Khoshkholgh, K. G. Shin, K. Navaie, and V. Leung, “Coverage
performance in multistream MIMO-ZFBF heterogeneous networks,”
IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 6801–18, Aug. 2017.

[6] Z. Bai, C. Spiegel, G. H. Bruck, P. Jung, M. Horvat, J. Berkmann,
C. Drewes, and B. Gunzelmann, “On the physical layer performance
with rank indicator selection in LTE/LTE-Advanced system,” in Proc.
IEEE PIMRC Workshops, 2010, pp. 393–398.

[7] Evolved Universal Terrestrial Radio Access, “Physical layer procedures
(release 8),” Technical Specification, 3GPP TS, vol. 36, p. V8, 2009.

[8] X. Chen, A. Benjebbour, Y. Lan, A. Li, and H. Jiang, “Impact of rank
optimization on downlink non-orthogonal multiple access (NOMA) with
SU-MIMO,” in Proc. IEEE ICCS, 2014, pp. 233–237.

[9] R. H. Y. Louie, M. R. McKay, and I. B. Collings, “Open-loop spatial
multiplexing and diversity communications in ad hoc networks,” IEEE
Trans. Info. Theory, vol. 57, no. 1, pp. 317–344, Jan. 2011.

[10] P. D. Mankar, P. Parida, H. S. Dhillon, and M. Haenggi, “Distance from
the nucleus to a uniformly random point in the 0-cell and the typical
cell of the Poisson–Voronoi tessellation,” J. Statistical Physics, vol. 181,
no. 5, pp. 1678–1698, Oct 2020.

[11] A. Lone, “Coverage analysis in MIMO cellular networks with location
aware transmission rank selection,” Master’s thesis, IITK, 2022.
[Online]. Available: http://home.iitk.ac.in/%7egkrabhi/thesis/afaq.pdf

[12] M. G. Khoshkholgh and V. Leung, “On the performance of MIMO-SVD
multiplexing systems in HetNets: A stochastic geometry perspective,”
IEEE Trans. Veh. Technol., vol. 66, no. 9, pp. 8163–8178, Sept. 2017.

This article has been accepted for publication in IEEE Wireless Communications Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LWC.2022.3191137

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.


