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Discrete time crystals (DTC) have been demonstrated experimentally in several different quantum
systems in the past few years. Spin couplings and cavity losses have been shown to play crucial
roles for realizing DTC order in open many-body systems out of equilibrium. Recently, it has
been proposed that eternal and transient DTC can be present with an open Floquet setup in the
thermodynamic limit and in the deep quantum regime with few qubits, respectively. In this work, we
consider the effects of spin damping and spin dephasing on the DTC order in spin-optomechanical
and open cavity systems in which the spins can be all-to-all coupled. In the thermodynamic limit,
it is shown that the existence of dephasing can destroy the coherence of the system and finally
lead the system to its trivial steady state. Without dephasing, eternal DTC is displayed in the
weak damping regime, which may be destroyed by increasing the all-to-all spin coupling or the spin
damping. By contrast, the all-to-all coupling is constructive to the DTC in the moderate damping
regime. We also focus on a model which can be experimentally realized by a suspended hexagonal
boron nitride (hBN) membrane with a few spin color centers under microwave drive and Floquet
magnetic field. Signatures of transient DTC behavior are demonstrated in both weak and moderate
dissipation regimes without spin dephasing. Relevant experimental parameters are also discussed
for realizing transient DTC order in such an hBN optomechanical system.

I. INTRODUCTION

In recent years, periodically driven (Floquet) quantum
many-body systems have attracted considerable atten-
tion since they are crucial for understanding new non-
equilibrium Floquet many-body localization (MBL) [1]
phase and may have potential applications in quan-
tum metrology [2]. One example of a non-equilibrium
Floquet-MBL phase is the discrete time-crystalline
(DTC) order [3–5], which is different from a continuous
time crystal [6–9] and is characterized by the breaking
of discrete time-translation symmetry (TTS) [10]. The
DTC order has been realized experimentally in several
quantum systems in the past few years [11–14]. Under
driving with a period T , the system can exhibit strobo-
scopic response with a period nT and it is expected to
be robust against imperfection of the driving [15, 16].
Recently, the DTCs in open Floquet systems have been
reported [17–23]. Since any realistic systems will be un-
avoidably coupled to its surroundings and the influences
of baths can be either negative or positive, the mecha-
nisms of stabilizing DTC in dissipative systems will be
important to explore.

Meanwhile, recent development of optomechanical sys-
tems [24–28] has facilitated breakthroughs of quantum
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technologies such as ground state cooling [29, 30], op-
tical sensing [31–35], and quantum information process-
ing [36, 37]. With nanoscale cavity optomechanical de-
vices, the coupling between light and motion of mechan-
ical resonators can be flexibly modulated with control-
lable loss [38], which may even reach ultrastrong cou-
pling regime [39]. A natural choice of mechanical modes
is to use membranes of two-dimensional materials due
to their excellent mechanical properties [40]. Recently,
hexagonal boron nitride (hBN) has drawn great interest
and served as a promising platform for exploring both
quantum and nanophotonic effects [41–45]. hBN has a
very wide bandgap and outstanding chemical and ther-
mal stability beyond that of graphene. As a type of
van der Waals materials, hBN can be integrated with
plasmonic, nanophotonic, and potentially more complex
structures [46–50]. The hBN membranes have low mass,
small out-of-plane stiffness, high elasticity modulus and
strong tensile strength, which make them a promising
candidate for high-Q mechanical resonators and high-
sensitivity sensors [51, 52]. A spin-mechanical system
based on color centers in a suspended hBN mechanical
resonator has been proposed [53, 54], which can even sim-
ulate the Rabi model in the ultrastrong coupling regime.
Very recently, optically addressable spin defects were ob-
served in hBN [55–57]. As the DTC order has been found
in N atoms in a lossy cavity [19–21], it is interesting to
explore the DTC in such spin-optomechanical systems
with incoherent noise (spin damping or dephasing).
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Figure 1. Sketches of the setups for realizing the DTC order:
(a) a large ensemble of spins trapped in a cavity and (b) a
suspended hBN monolayer membrane with a few spin color
centers under a microwave drive and a circular-localized mag-
netic field. The Hamiltonian is modeled by Equation (1) and
the Floquet driving protocol is that the spin-cavity coupling
λ is switched on (off) in the first (second) half of a Floquet
period T . In this work, both spin and cavity losses are con-
sidered.

In this work, we consider the DTC behaviors in an
open Floquet system as N qubits in a (mechanical) cav-
ity via switching on and off of the spin-cavity coupling.
In the thermodynamic limit, it describes a cavity QED
model with a large ensemble of trapped spins while, in
the deep quantum regime (with few qubits), it charac-
terizes an optomechanical model as a suspended hBN
monolayer membrane with a few spin defects under a
microwave drive and a Floquet magnetic field (Figure
1). We discuss stroboscopic dynamics in both regimes
and explore whether stroboscopic oscillations are stable
to spin damping and spin dephasing as well as the effect
of all-to-all spin coupling.

II. PERFECT DTC IN THE
THERMODYNAMIC LIMIT

We consider an open system as N qubits with all-to-all
interactions in a (mechanical) cavity (Figure 1). The all-
to-all coupling can be mediated by a photon in an optical
cavity [19] or a phonon in a mechanical oscillator [53, 54,
58]. The Hamiltonian is given by [19, 20, 53, 54, 59, 60]

Ĥ(h, λ) = ω0

∑

i

ŝzi+ωâ†â+
2h

N

∑

i<j

ŝzi ŝ
z
j+

2λ√
N

(â+â†)
∑

i

ŝxi ,

(1)

where â (â†) is the annihilation (creation) operator of the
photon field with optical frequency ω, ŝµi (µ = x, y, z) is
the spin- 12 angular momentum operator along the µ axis
for the i-th qubit of transition frequency ω0, and h (λ) is
related to the spin-spin (spin-cavity) coupling strength.
For convenience, a more compact version can be derived
as

Ĥ(h, λ) = ω0Ĵz + ωâ†â+
h

N
Ĵ2
z +

2λ√
N

(â+ â†)Ĵx, (2)

by introducing the collective angular moment operator
Ĵµ =

∑

i ŝ
µ
i and neglecting a constant term. We consider

a general decoherent model by including both the spin
and cavity losses. Then, the dynamics of the system can
be described by the master equation (setting ~ = 1)

dρ̂

dt
= −i[Ĥ, ρ̂] + γD[â]ρ̂+

Γ

N
D[Ĵ−]ρ̂+

Γ̃

N
D[2Ĵz]ρ̂, (3)

where Ĵ− = Ĵx − iĴy is the collective lowering operator
and D[ô]ρ̂ = ôρ̂ô†−(ô†ôρ̂+ρ̂ô†ô)/2. Here, γ = ω/Q is the
cavity damping rate with Q the quality factor. In addi-
tion, Γ and Γ̃ are the spin relaxation and dephasing rate,
respectively. Previous works mainly focused on the DTC
in cavity QED systems with merely the cavity loss or
the nearest-neighbor (short-range) spin coupling [19–21].
They have neither discussed stabilizing DTC in dissipa-
tive systems with all-to-all coupling nor considered the
effects of spin damping and spin dephasing.
First, we would like to consider the robustness of DTC

behavior in the thermodynamic limit N → ∞. By per-
forming the mean-field approximation and factorizing the
means of operator product, we obtain a closed set of semi-
classical equations as

j̇x = −ω0jy − hjyjz +
Γ

2
jxjz − Γ̃jx,

j̇y = ω0jx − 2λ
√
2ωxjz + hjxjz +

Γ

2
jyjz − Γ̃jy,

j̇z = 2λ
√
2ωxjy +

Γ

2
(j2z − 1),

ẋ = p− γ

2
x,

ṗ = −ω2x− γ

2
p− 2λ

√
2ωjx, (4)

where jµ = 〈Ĵµ〉/j with j = N/2 and
∑

µj
2
µ = 1,

x = 〈â + â†〉/
√
2Nω, and p = i〈â† − â〉/

√

2N/ω. The
set of Equation (4) is a generalization of that in Refer-
ence [19] which is a special case as h = 0 here. The
introduction of spin-spin coupling h breaks the original

stable attractors (jx, jy, jz)st = (±
√

1− µ2, 0,−µ)/2 and

(x, p)st = ∓[λ
√

2ω(1− µ2)/(ω2 + γ2/4)](1, γ/2), with
µ = (λc/λ)

2 and the critical spin-cavity coupling strength

λc =
√

(ω0/ω)(ω2 + γ2/4)/2. We would also like to fo-
cus on the steady-state solutions as Reference [19], which
is instead numerically found out due to the more com-
plexity considered. It is clear that there exist trivial
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Figure 2. Stroboscopic dynamics (top) and stroboscopic trajectories (bottom) of the scaled angular momentum vector
~j = (jx, jy, jz) (red, green, blue) in the thermodynamic limit for the perfect driving case ε = 0. The top shows typical
stroboscopic dynamics of jx (solid red curve), jy (dashed green curve) and jz (dotted blue curve) for the last 30 periods of the
entire 500-period evolution. The bottom displays the stroboscopic trajectories on the Bloch sphere for the entire 500 periods
(green) and for the last 100 periods (red) sphere. We consider no spin-cavity coupling h = 0 in (a–d) and increasing spin-cavity
coupling strength in (e–h) with h = 0.05, 0.1, 0.3, 1, respectively. The parameters are set as: (a,e) γ = Γ = 0.05, (b,f)
γ = 0.05, Γ = 0.3, (c,g) γ = Γ = 0.3 and (d,h) γ = 1.5, Γ = 0.3.

steady-state solutions as x = p = jx = jy = 0 and

jz = ±1. Besides, as long as the dephasing exists (Γ̃ 6= 0),
the steady-state solutions will fall into be trivial. This
can be understood as that the existence of dephasing
will finally destroy the coherence (non-diagonal terms
of density matrix) and leads to the final state as either
|+N/2〉 or |−N/2〉 when the Z2 symmetry is broken at

λ > λc. Here, |±N/2〉 are the eigenstates of Ĵz with

Ĵz |±N/2〉 = ±N/2 |±N/2〉. Therefore, we set Γ̃ = 0
in the following discuss, unless specifically mentioned.
Besides, we assume the spins are initially in the eigen-
state |→→ · · · →→〉 with jx|t=0 = 1, jy|t=0 = 0, and
jz|t=0 = 0 and the cavity mode is initially in a coher-
ent state |α〉 with x|t=0 = p|t=0 = 0. If we consider the
symmetry-broken regime λ > λc, it is clear that the final
state will fall into either one of the two nontrivial stable
states. To observe a DTC order, we perform the Flo-
quet driving protocol similar to Reference [19]: the spin-
cavity coupling λ is artificially switched off in the second-
half period, i.e., λ = 0 for (n + 1/2)T ≤ t < (n + 1)T
with n = 0, 1, 2, . . .. From an alternative viewpoint,
the Floquet driving is that we let the spins periodi-
cally driven by a leaky cavity in every first-half period
nT ≤ t < (n + 1/2)T . We introduce the imperfec-
tion parameter ε via a detuning between ω and ω0 as

ω = (1 − ε)ωT and ω0 = (1 + ε)ωT with ωT = 2π/T . In
the perfect case (ε = 0), it is not difficult to check that
the unitary dynamics during the second-half period con-

tributes a parity operator P = e−iπ(a†a+Jz) which flips
the stable state to the other one. If certain observables
of the spins (say jµ) or the cavity mode (say x, p) exhibit
period doubling oscillations which are robust against im-
perfection driving ε, then a DTC order may be identi-
fied. We also consider nonunitary imperfections due to
decoherence of the system. To observe the long-time be-
havior, we numerically solve a Floquet–Lindblad master
equation (setting λ in Equation (4) be periodically time-
dependent as characterized above) up to 500 periods T
by means of the Runge-Kutta method. We shall remark
that we have also tried more periods such as 5000 periods
as in Reference [19] but there is no qualitative difference.
For convenience, we set ωT = 1 and λ = 1 to illustrate
the perfect DTC in the λ > λc regime.
In Figures 2 and 3, we plot the stroboscopic dynamics

of the scaled angular momentum vector ~j = (jx, jy, jz)
as well as their stroboscopic trajectories on the Bloch
sphere for the perfect driving (ε = 0) and imperfect driv-
ing (ε 6= 0) cases, respectively. By comparing the first
row a-d where there is no spin-spin coupling with h = 0,
we clearly observe different stroboscopic dynamics in dif-
ferent dissipation regimes. First, the DTC order is well
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Figure 3. Stroboscopic dynamics (top) and stroboscopic trajectories (bottom) of the scaled angular momentum vector
components jx (solid red curve), jy (dashed green curve), jz (dotted blue curve) in the thermodynamic limit for the imperfect
driving case ε = 0.05. Other parameters are the same as Figure 2. The robustness of DTC against imperfection is clearly
shown in (a,d,e). Besides, it is interesting to find that the DTC can even benefit from the imperfection as comparing Figure 3g
with Figure 2g.

preserved by the existence of weak spin damping Γ as
shown in Figure 2a and robust again imperfection ε as
shown in Figure 3a. As the spin damping rate Γ in-
creases, the DTC dynamics becomes irregular with the
trajectory of ~j scattered on the Bloch sphere (Figures 2b
and 3b). However, the dynamics will become more regu-
larly with the area of stroboscopic trajectories reduced if
the cavity loss rate γ increases (Figures 2c and 3c). The
eternal stroboscopic oscillations will occur again with the
trajectories almost collapse into the two stable points for
γ � Γ (Figure 2d), which is robust against imperfec-
tion ε (Figure 3d) so as to identify the DTC order. Be-
sides, by comparing the second row (e-h) where there is
spin-spin coupling h 6= 0, different stroboscopic dynamics
from that of h = 0 is also demonstrated in different dis-
sipation regimes. From Figures 2e–h (perfect ε = 0 case)
with growing all-to-all coupling h, we observe that DTC
oscillations is gradually destroyed and the system finally
falls into one of the trivial stable states with jx = jy = 0
and jz = −1 (Figure 2h). By contrast, in the imperfect
case (ε 6= 0) as shown in Figures 3e–h, we surprisingly
find that the DTC order may be rebuilt by appropriate h
in the moderate damping regime, by comparing Figure 3g
with Figure 2g.

III. TRANSIENT DTC BEHAVIOR IN THE
DEEP QUANTUM REGIME

We proceed to focus on the few-atom cases [N ∼ O(1)],
which corresponds to the hBN optomechanical system as
displayed in Figure 1b. It is expected that a DTC behav-
ior may still survive in few atom cases, the so-called deep
quantum regime [19]. In this regime, we do not perform
semiclassical approximation so that all the quantumness
of the system is well maintained. The interplay among
spin-spin coupling, spin-cavity coupling and dissipations
may give rise to more subtle behaviors for transiently
long DTC in this deep quantum regime. By transiently
long we mean that the DTC lasts much longer than the
decay time γ−1. The initial state is chosen to be |⇒〉
⊗ |α〉, where |⇒〉 ≡ ⊗N

j=1 |→〉 is the eigenstate of Ĵx
with the eigenvalue N/2 and |α〉 is a coherent state with
â |α〉 = α |α〉. The Floquet–Lindblad dynamics extended
from Equations (1) and (3) is directly solved under a
truncation of 16 photons for α = 0.01.
Figure 4a shows the stroboscopic dynamics of the

scaled angular momenta jµ and quadratures x, p (in-
set) in the strong coupling regime (λ = 1) and weak
dissipation regime (γ = Γ = 0.05) for the two-qubit case
(N = 2). We clearly observe that jx and x exhibit strobo-
scopic oscillations with doubling period 2T after t ∼ 5T ,
which persists even at t ∼ 50T and thus is much longer
than the decay time (here γ−1 = Γ−1 ∼ 3T ). In this
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Figure 4. Stroboscopic dissipative dynamics of the scaled angular momenta of jx (red solid curve), jy (green dashed curve),
and jz (blue dotted curve) in the two-qubit N = 2 case. The inset shows quadratures x (purple solid) and p (black dashed)

behaviors. We consider weak dissipation in (a) h = γ = Γ = 0.05, Γ̃ = 0 and moderate dissipation in (b) h = γ = Γ = 0.3, Γ̃ = 0
but without spin dephasing as the thermodynamic limit case. Contrast to (a) and (b), (c) and (d) includes spin dephasing

Γ̃ ≈ 2Γ as suggested in Reference [53].

0 10 20 30 40 50

-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

x
,p

0 10 20 30 40 50

-0.5

0.0

0.5

1.0

t/T

j x
,j
y
,j
z

0 10 20 30 40 50

-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

x
,p

0 10 20 30 40 50

-0.5

0.0

0.5

1.0

t/T

j x
,j
y
,j
z

0 10 20 30 40 50

-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

x
,p

0 10 20 30 40 50

-0.5

0.0

0.5

1.0

t/T

j x
,j
y
,j
z

0 10 20 30 40 50

-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

x
,p

0 10 20 30 40 50

-0.5

0.0

0.5

1.0

t/T

j x
,j
y
,j
z

Figure 5. Stroboscopic dissipative dynamics of the scaled angular momenta of jx (red solid curve), jy (green dashed curve),
and jz (blue dotted curve) for the three-qubit N = 3 case. The parameter setups are the same as those in Figure 5.

sense, a transient DTC order is established in the deep
quantum regime before reaching the stationary state. In
Figure 4b, we plot the stroboscopic dynamics in the mod-
erate dissipation regime (γ = Γ = 0.3). In this case, the
decay time can be estimated as γ−1 = Γ−1 ∼ 0.5T so
that the stroboscopic dynamics occur immediately and
lasts over 10T , which still maintains a transient DTC or-
der. Moreover, if the spin dephasing Γ̃ ≈ 2Γ as predicted

in Reference [53] is additionally considered, as shown in
Figures 4c,d, we find that the oscillation time is merely
comparable to the decay time and thus no transient DTC
order exists. Besides, we observe similar phenomena if
more spins are involved such as the case of N = 3 shown
in Figure 5. One effect of increasing the spin number N
is that the transient oscillations evolve into an eternal
one as predicted at the thermodynamic limit N → ∞
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in Figure 2. Another effect of increasing N may be that
the stroboscopic oscillations is more robust against the
spin dephasing as comparing the oscillation dynamics of
quadrature x (purple solid) in Figures 4c and 5c.

Before ending, we would like to discuss the setup of
experimental parameters for realizing TDC order in the
optomechanical system of hBN monolayer membrane.
According to Referecne [53], a maximum magnetic field
gradient 270 G/nm may be reached such that the spin-
cavity coupling λ may become comparable or even larger
than the oscillator frequency ω. In this work, we con-
sider λ = ωT, ω = (1 − ε)ωT and ω0 = (1 + ε)ωT with
ε ≤ 10%, and the cavity loss rate γ ≤ 1.5ωT, which
indicates λc ≤ 0.65ωT. To insure the occurrence of tran-
sient DTC dynamics, we need operate in the regime of
λ > λc. Then, the minimal spin-cavity coupling is to
achieve λ > 0.65ωT, which is realizable in a suspended
circular hBN membrane with radius R ∼ 1 µm. An-
other important aspect is to control the dephasing rate
Γ̃ which is detrimental to the DTC order. According to
Reference [53], the spin dephasing mainly stems from op-

tical polarization Γ̃o and membrane vibrations Γ̃v, which
is proportional to the vibration frequency ω. Therefore,
to suppress the dephasing rate, it is suggested to reduce
the cavity frequency ω, which also corresponds to en-
hance the membrane radius R. Last, but not least, the
cavity loss promotes spin cooling and localization, which
is crucial to the emergence of DTC. However, as can be
indicated by comparing Figure 4b with Figure 4a (or
Figure 5b with Figure 5a), a too strong cavity loss γ
(corresponding to extremely low Q) may overdamp the
system dynamics and destroy the DTC order. Besides, a
stronger γ leads to a higher critical spin-cavity coupling
λc such that stronger spin-cavity coupling λ is needed,
which imposes a challenge to its experimental realiza-
tion. For cavity loss rate γ = 0.05ωT as considered in
Figures 4c and 5c, the quality factorQ is about 20, which
provides a balance between spin cooling and loss to make
experimental realization more feasible [52]. Overall, neg-
ligible spin dephasing, weak spin damping and appropri-
ate cavity loss are suggested in realizing transient DTC
order in such an optomechanical system.

IV. CONCLUSIONS

In summary, we have investigated DTC order in a Flo-
quet open system composed of N qubits trapped in a
(mechanical) cavity. The influences of all-to-all spin in-
teractions, spin damping, spin dephasing as well as cavity
loss are explored both in the thermodynamic limit and in
the deep quantum regime. It is shown that the existence
of dephasing will destroy the coherence of the system
and finally leads the system to its trivial steady state.
Without dephasing and all-to-all spin coupling, different
stroboscopic dynamics in different dissipation regimes is
demonstrated. First, with weak spin damping and weak
all-to-all coupling, eternal DTC oscillations are observed
and robust against imperfection. As the spin damping
rate increases, the stroboscopic dynamics evolves irregu-
larly accompanied by the trajectory of the scaled angular
momentum vector scattered on the Bloch sphere. How-
ever, with enhancement of cavity loss, the dynamics will
become more regularly and the eternal eternal DTC order
will reemerge at strong cavity loss. Besides, by growing
the all-to-all coupling, we demonstrate that stroboscopic
oscillations are gradually destroyed in the weak damp-
ing regime. It is interesting to show that the DTC order
may be rebuilt by appropriate all-to-all coupling in the
moderate damping regime.
We also focus on the few-atom cases, the so-called

deep quantum regime, the model of which describes a
suspended hBN monolayer membrane with a few spin
defects under a microwave drive and a Floquet mag-
netic field. A transient DTC lasting much longer than
the decay time can be found in both weak and mod-
erate dissipation regimes when there is no spin dephas-
ing. Nonetheless, the existence of dephasing will destroy
transient oscillations and leads the system fast to a triv-
ial steady state, which is consistent with the results ob-
tained by semiclassical approximation in the thermody-
namic limit. We also find that stroboscopic oscillations
may be more robust against the spin dephasing by in-
creasing the spin number. Finally, the parameters in the
experimental aspect are briefly discussed and how to re-
alizing transient DTC order in such an hBN optomechan-
ical system is suggested.
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PHY-2110591). Z.H. acknowledges the support from the
Fundamental Research Funds for the Central Universities
(Grant No. JUSRP21935) and the China Scholarship
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