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The Response of an Inerter-Based
Dynamic Vibration Absorber
With a Parametrically Excited
Centrifugal Pendulum

The inerter has been integrated into various vibration mitigation devices, whose mass
amplification effect could enhance the suppression capabilities of these devices. In the
current study, the inerter is integrated with a pendulum vibration absorber, referred to
as inerter pendulum vibration absorber (IPVA). To demonstrate its efficacy, the IPVA is
integrated with a linear, harmonically forced oscillator seeking vibration mitigation. A the-
oretical investigation is conducted to understand the nonlinear response of the IPVA. It is
shown that the IPVA operates based on a nonlinear energy transfer phenomenon wherein
the energy of the linear oscillator transfers to the pendulum vibration absorber as a result of
parametric resonance of the pendulum. The parametric instability is predicted by the har-
monic balance method along with the Floquet theory. A perturbation analysis shows that a
pitchfork bifurcation and period doubling bifurcation are necessary and sufficient condi-
tions for the parametric resonance to occur. An arc-length continuation scheme is used
to predict the boundary of parametric instability in the parameter space and verify the per-
turbation analysis. The effects of various system parameters on the parametric instability
are examined. Finally, the IPVA is compared with a linear benchmark and an autopara-
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1 Introduction

The inerter is a mechanical device with two terminals, each of
which exerts an equal and opposite inertial force proportional to
the relative acceleration between the terminals [1]. The inerter
amplifies the inertial effects of a small mass by using motion trans-
mission mechanisms, fluids, and levers [1]. By virtue of its mass
amplification effect, the inerter has been studied to improve the per-
formance of various passive vibration mitigation techniques in the
last decade. lkago et al. [2] developed the tuned viscous mass
damper (TVMD), which consisted of a tuning spring in series
with the inerter and a viscous damper in parallel. It was shown
that the TVMD outperformed the viscous damper alone when
applied to a seismically excited single degree-of-freedom (SDOF)
structure. Furthermore, Lazar et al. [3] proposed the tuned inerter
damper (TID), wherein the inerter was substituted for the oscillating
mass of a tuned mass damper (TMD). The TID and TMD were com-
pared in seismically excited multiple-degree-of-freedom structures
and demonstrated similar effectiveness. Later, Lazar et al. [4] con-
sidered the TID in suppressing the midspan vibration of cables and
showed that the TID outperformed the optimal viscous damper.
Moreover, Qian et al. [5] studied serial and parallel connections
between the TID and a base-isolation system and concluded that
the serial TID outperformed the parallel TID for practical structures.

The inerter has also been applied to enhance the inertial effects of
dynamic vibration absorbers (DVAs). Marian and Giaralis [6] pro-
posed the tuned mass damper inerter (TMDI), which consisted of a
TMD and the inerter in series. In a 3DOF structure simulation, they
showed that for achieving similar vibration control performance, the
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weight of the TMDI was four times lighter than the TMD. Further-
more, De Domenico and Ricciardi [7] incorporated the TMDI in a
base-isolation system and demonstrated that the displacement
demand of the base-isolated structure could be significantly
reduced. Moreover, Joubaneh and Barry [8] studied the perfor-
mance of four models of electromagnetic resonant shunt TMDI
(ERS-TMDI) on both vibration suppression and energy harvesting
and identified the best model. Their parametric studies showed that
increasing the inertance enhances the performance of the best model
in terms of both vibration mitigation and energy harvesting. On the
other hand, Tai [9] proposed the tuned inerter-torsional-mass
damper (TITMD), which integrated the inerter and a torsional
mass damper. In comparison with the TMDI, the TITMD achieved
20-70% improvement when having identical weights.

In recent years, the inerter has been integrated with nonlinear
vibration absorbers. Qian and Zuo [10] considered the effects of
adding an inerter to a nonlinear vibration absorber. The nonlinear
vibration absorber consisted of a tuned mass damper with nonlinear
spring containing both linear and cubic stiffness. They observed
that the spring-inerter-damper system added to the beam outper-
formed the nonlinear vibration absorber without inerter. Further-
more, Kakou and Barry [11] added a nonlinear spring to the
electromagnetic resonant shunt tuned mass damper-inerters
(ERS-TMDI) [8] to analyze the implications of coupling a nonlinear
spring to the system. Two configurations of the system, one with the
energy harvester between the tuned mass and ground and other with
the energy harvester between primary structure mass and the tuned
mass, were compared for their efficacy in vibration suppression and
energy harvesting of the system. It was found that Configuration-1
exhibits higher range of feasible forcing without degrading the per-
formance compared to Configuration-2. It was also observed that
for optimal Configuration-1, higher nonlinear stiffness, inerter mag-
nitude and resistance, and lower capacitance and inductance
improved the energy harvesting performance. Yang et al. [12] pro-
posed the nonlinear inertance mechanism (NIMs) created by
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combining oblique inerters with one common hinged terminal and
the other terminals fixed. It was shown that the addition of NIM
can enhance the vibration isolation capabilities of a system. The
NIM was combined with two different types of isolators, a spring-
damper isolator, and a nonlinear quasi-zero-stiffness (QZS) isolator.
After the addition of the NIM, the linear isolator showed bending of
the frequency response curve toward the low-frequency range and
reduction of the original peak values in dynamic response. For
QZS systems, after addition of NIM, larger frequency range of
small dynamic response amplitude and lower kinetic energy of
the mass were observed. In this article, we integrate the inerter
and a centrifugal pendulum such that the centrifugal pendulum is
parametrically excited by the inerter. The integrated system is
referred to as the inerter pendulum vibration absorber (IPVA) for
the rest of this article. A variety of systems wherein a pendulum
vibration absorber is parametrically excited by a primary structure
have been studied extensively. One class of such systems are the
autoparametric vibration absorbers, which give rise to interesting
nonlinear responses, such as internal resonance [13,14], amplitude-
modulated response [15], and chaos [13]. Specifically, they may
achieve vibration mitigation by utilizing the transfer of kinetic
energy from the primary structure to the pendulum vibration
absorber [16-18]. By virtue of the energy transfer phenomenon,
autoparametric vibration absorbers have been studied for achiev-
ing vibration mitigation and energy harvesting at the same time
[19-23]. To achieve the energy transfer phenomenon, however,
the natural frequency of the autoparametric vibration absorbers
need to be tuned around half the natural frequency of the primary
structure, resulting in bulky and heavy designs. Motivated by the
studies on the autoparametric vibration absorbers, we incorporate
the IPVA in a single degree-of-freedom (SDOF) linear oscillator
and study parametric resonance of the IPVA and its application to
vibration mitigation.

The rest of this article is organized as follows. In Sec. 2, we will
present the design of the IPVA and derive the equations of motion.
In Sec. 3, we study the stability of periodic solutions of the system
and conduct a bifurcation analysis to determine the boundary of
parametric instability. In Sec. 4, direct numerical integration is
used to verify the stability boundary obtained from Sec. 3.
Section 5 shows the effects of various parameters on the stability
boundary. Section 6 compares the proposed system with a linear
benchmark and an autoparametric vibration absorber in Ref. [17].
This study is concluded in Sec. 7.

2 Inerter Pendulum Vibration Absorber

In this section, we present the design of the IPVA and derive the
corresponding equations of motion. We present two designs: rack-
pinion based IPVA and ball screw based IPVA, as shown in Fig. 1.
Specifically, the rack-pinion and ball screw IPVA are used to sup-
press vibrations in the horizontal and vertical directions, respec-
tively. Their working principles are briefly described as follows.
Figure 1(a) shows a SDOF linear oscillator (primary structure)
that moves in the horizontal direction and is excited by an external
force F, which is modeled by a linear spring of stiffness &, a mass M,
and a viscous damper of damping coefficient c. The external force is
assumed to be harmonic, i.e., F' = F sin Qt, where F, and Q are the
force amplitude and excitation frequency, respectively. Denote by x
the displacement of primary structure. To suppress the vibration of
primary structure, a rack-pinion based pendulum vibration absorber
is considered, which consists of a rack-pinion of radius R, a carrier
of radius R,, and a pendulum vibration absorber of mass m and
length . The rack-pinion is installed between the primary mass
and the ground to convert the linear oscillation of the primary
mass into rotation of the pinion. As a result, the linear displacement
of primary structure and the pinion’s angular displacement are
related through x=R6. Note that because the pendulum oscillates
in the horizontal plane, the gravity is neglected. Moreover, the
carrier is fixed to the pinion, and the pendulum is pivoted on a
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point on the circumference of the carrier. Figure 1(c) shows a
primary structure that moves in the vertical direction and incorpo-
rates the ball screw IPVA. The ball screw is attached between the
ground and the primary structure such that linear motion x of the
mass is converted to angular motion @ of the ball screw with effec-
tive radius R=L/2x. L refers to the lead value associated with the
ball screw as a measure of the ratio of linear displacement of the
nut to full rotation of the screw. More specifically, x = Rf, which
is the same as the rack-pinion design. A pendulum, of length r
and mass m, is also attached perpendicular to the screw, at a
radius of R, from the center of the screw and with an angular dis-
placement of ¢ with respect to the attachment point. Note that
two pendulums are shown, but one is to be fixed in place to
avoid rotating unbalance. Also, the pendulum moves in the horizon-
tal plane; thus, the gravity is also neglected in the ball screw IPVA.
Both systems consist of two degrees-of-freedom, one associated
with the pinion’s angular displacement (6) and the other with the
pendulum’s angular displacement relative to the pinion (¢).

2.1 Equations of Motion. Although different mechanisms are
used, the working principle of both systems are identical. Therefore,
their equations of motion are identical. Lagrange’s equations are
used to derive the equations of motion. First, the total kinetic
energy of the system is derived as follows:

T=Ty+T.+T, 1)
where

1 .2 1 .o
TM—EM(RH) Te=310",

T,= %Jp(é + (b)2+%m<R;92 + rz(é + ¢)2+2Rprcos(¢)9(f9 + ¢))
2)

are the kinetic energy of the structure, carrier, and pendulum,
respectively. Here, J is the moment of inertia of the carrier-pinion
composite and J, is the moment of inertia of pendulum with
respect to its center of mass

velw=lwe )

2 2

To account for energy loss at the pivot point of the pendulum, a tor-
sional viscous damping coefficient c,, is introduced. The virtual work
done by the force F = F|, sin(Qt), the damping torque in the pendu-
lum, and the damping force in the primary mass can be derived as
Féx, —cp¢5¢, and —ciox, respectively, where ¢, and c are the
torque damping coefficient in the pendulum and damping coefficient
of the viscous damper between primary mass and ground, respec-
tively. Then, the virtual work done by the force F, the damping
torque (due to ¢, and viscous damping c) are derived as follows:

SW = FR60 — c,p5¢ — cR*050 )

Therefore, the equations of motion of the system obtained using
the Lagrange’s equations are written as follows:

(MR2 +J+ mRﬁ +mr? + 2mR,r cos ¢)é
+ (mr* + mRyrcos ¢ +J,) ¢ + cR*0
+kR20 — 2mR,r@sin p — mR,r¢p” sin ¢ = Fo sin(QO)R,

(mr* +J,) + m(r* + R,rcos ¢)0 + c,p + mR,,r(92 singg=0
(%)

It is assumed that the pendulum is made of a point mass such that its
moment of inertia with respect to the pivot point is much larger than
the pendulum’s moment of inertia with respect to its center of mass,
ie., mr’> > J,,. Furthermore, J = (m,, + m(.)Rg, where m,, and m,. are
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Rack-pinion and ball screw IPVA systems schematics and CAD realizations: (a) SDOF system incorporating rack-pinion

IPVA, (b) CAD realization of rack-pinion IPVA system, (c) SDOF system containing ball screw IPVA system, and (d) CAD real-

ization of the ball screw IPVA system

the pinion mass and carrier mass, respectively, and R, is the radius of
gyration. As the primary mass M is much larger than the sum of m,
and m,, and as the pinion radius R and the radius of ggration R, have
the same order of magnitude, it is assumed that MR >>J. Without
loss of generality, J and J,, are neglected. We rescale the time and
convert Eq. (5) into a dimensionless form for further analysis using
the following parameters:

mR, [k Q . r
=——, W)=,/ W=—"1, T=wopl, =—
Br=mr P Vy @0 b T=R,

c (o Fy , d0

§=2wOM’ §”=2w0MR2’ /= 0=

Denote x=[6, ¢]T and f=|[fsin wr, 0]”. The dimensionless equa-
tions of motion are obtained as follows:

Mx" +Cx' + Kx + g(x, X, x") =f (7)
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where

1 1412 2 ) 0 Lo
Mo | T 2+71) e £ ’ K:[ ]
/’trn ﬂrr’ O pr O 0
g(x X X//) =un (20// +¢//) cos ¢ — ¢/ (20/ + ¢/) sin ¢
s Ay r 0// COS¢+9/2 Sil’l¢

®

It is worth noting that the strength of the nonlinear inertial terms
g(x, X/, x") is proportional to y, and 7. The moment of inertia ratio
U, can be readily magnified by adjusting the ratio R,/R, thereby cre-
ating strong nonlinear inertial effects with a small pendulum mass.

For example, for a mass ratio % =3%, aratio R,/R = /10 leads to

u,=0.3, indicating that the inertia effect is magnified by a factor of
ten. Furthermore, the pendulum length ratio # is proportional to the
length of the pendulum. Therefore, a long pendulum leads to
strong nonlinear inertial effects.
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3 Parametric Resonance of IPVA

According to the studies on autoparametric resonance, parametric
resonance plays an essential role in transferring the kinetic energy
of a primary structure to the pendulum vibration absorber
[16-18]. As will be demonstrated in Sec. 6, when parametric reso-
nance occurs to the IPVA, a similar energy transfer phenomenon is
observed, resulting in vibration mitigation of the primary structure.
In this section, we will determine the conditions for which paramet-
ric resonance will occur to the IPVA. To this end, we use the har-
monic balance method to determine the parametric instability of
the system.

3.1 Harmonic Balance Method. By virtue of the harmonic
balance method, periodic solutions of the system are assumed to
take the following form:

0,(t) = XP:(G)” cos(p ) +0 sin(py T))
=

()= + é(cp; cos(2%) + @3 sin( 7))

where ©,, @, and @, are unknown Fourier coefficients to be deter-
mined. Note that v € N accounts for subharmonics. Furthermore, a
constant @ is included to consider asymmetric oscillation of the
centrifugal pendulum [24]. Denote by x,=[6,, (f),,]T the vector of
assumed periodic solutions. After substituting Eq. (9) into the equa-
tions of motion (7), we obtain the following residue term:

(©))

R() = Mx/ + Cx, + Kx, — g(xp, X, xp) £ (10)
To obtain an expression relating the Fourier coefficients, a Galerkin
procedure [25] is used to project (10) on the orthogonal trigono-
metric basis, yielding 2P + 1 nonlinear algebraic equations

2nv/® 2nv]®
ho(R) = J R@dr=0, hR)= j R@)sin() dr =0
0 0
27v/w
h;(i):J R(T)cos( )df—o (1
0
where =[07, ®", @,]", ©=[6¢,..., 085, 0,...,0;]", and
®=[0,..., 0 &, o] Note that g(xp,x xp) will
result in  composite  trigonometric  terms such  as

cos(tll";7 sin( pa)r/y)). These terms can be expanded using the

Jacobi—Anger expansion, namely, an infinite series of products of
Bessel functions and trigonometric functions [26] (see also Appen-
dix B for the expansion formulas). For the current study, the Jacobi—
Anger expansion is truncated at Bessel functions of order up to third
to capture the necessary nonlinear effects.

We solve Eq. (11) for the Fourier coefficients using the Newton—
Raphson method. Substitution of the Fourier coefficients into
Eq. (9) will lead to the periodic solutions. The stability of the peri-
odic solutions will be determined in the next section.

3.2 Stability. To determine the stability of the periodic solu-
tions, small perturbations are introduced into Eq. (9) as follows:
0(z) = 0,(7) + 6p(r) and ¢(z) = ¢, (7) + 5y(2) (12)

where |85(7)| < <1 and |§4(7)| < <1. Denote by & =[5y, 54,]7 the
vector of small perturbations. Substitution of Eq. (12) into Eq. (7)
and linearization with respect to 6,(r) and ¢,(7) yield

/1 / ag _
< o )6 <C+6 )6 ( &>5—0 (13)
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where the Jacobian matrices dg/ox"’, dg/dx’, and dg/ox are evaluated
at X=x,, X' =x,, and X" =X, respectively, wherever appropriate.
Note that the Jacobian matrices are periodic functions of period
T =2mvlw, e.g., 0g/ox(r)=0g/ox(t+T). Because Eq. (13) have
periodic coefficients, one can use Floquet theory to determine the
stability [27]. To this end, Eq. (13) is transformed into the state-
space form and numerically integrated using MATLAB’s ode45
(based on an explicit Runge—Kutta integration method) over one
period T to obtain the fundamental matrix. The absolute and relative
tolerance were taken to be 107 to ensure accuracy. If any eigen-
value of the fundamental matrix has a magnitude greater than
unity, the periodic solutions are unstable.

Although Eq. (13) can be used to determine the stability of arbi-
trary periodic solutions, it is a numerical approach; hence, it is hard
to understand how parametric resonance occurs to the IPVA. To
gain physical insights, we also use a semi-analytical approach to
determine the stability. To that end, we apply a multiple-scale
approach to Eq. (13) as follows. Because a compact and lightweight
design of the [IPVA system is preferred in practical applications, we
consider u,<<1. Assummg that the parameters p,, &, &, are small
quantities, we set y, = 6/4,, &= ef &= e{,, and introduce the fol-
lowing asymptotic expansions:

80.4(7) = 8y (70, T1....) + €8y (20, T, )+

Tk=€kT, k=0,l, (14)
d el

—=—dec—++ -

dr  0Org ory

where lel <<1 is a small bookkeeping parameter.

After substituting Eq. (14) into Eq. (13) and collecting terms that
will lead to parametric instabilities, the equation obtained in order
0 is expressed as follows:

© 250) 2 AsO)
2’3y 0o D0, 25 % +A(Xp) O—0  (5s)
ot} 0 Toh papP O n ¢
where
/ 2 : /!
A(x,) = cos(gsp)(ep) —sin(¢,)0, (16)

is a periodic coefficient of period 7. It is worth noting that the first
equation in Eq. (15) shows that 6(90) are stable harmonic functions.
Therefore, the stability of the periodic solutions are determined
by the second equation in Eq. (15).

When the nonlinearity is weak, periodic solutions (9) are domi-
nated by primary harmonics, i.e., P=1 and v=1. As Eq. (15) is
derived by the multiple-scale approach, it is accurate when the non-
linearity is weak. Therefore, in addition to Eq. (13) (Floquet theory),
Eq. (15) is used to determine the boundary of parametric instability
for periodic solutions of primary harmonics, which will explain how
parametric resonance occurs to the IPVA. Thus, P=1and v=1 are
substituted in Eq. (9) to obtain 8, = ©f cos(wr) + O] sin(wr) and
¢, = Do + @] cos(wr) + @] sin(wz). After substituting these
expressions of ® and ® into Eq. (15) and expanding in terms of
Bessel functions up to third order, we arrive at a damped Mathieu
equation as follows:

%8y 2¢, 068y

M(X) 0 4 v(X)
+ 5
o3 P 670 n

=~ cos(wr — )5“” =0 (17
n
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where

_ @*0c(Py)
a 2
V(&)? = [boby + 2by(by + b3)]c(a) + (2bobs + 2b1bs — bT)c(2a)

u(X) {01 [Jo(P@)) + 2(P)s2a)] + 21, (Ps()},

563
+ (2bobs — biby)c(3a) — bibsc(da) + by + Tl

by = —s(@0)O 7w J; (@),

+b3 + b3,
by = 8(@0)Ow*Jo (D)),
by = —s(@0)® 10 J2(@1), b3 = —s(P0)O;wJ3(P)

0=/ (05)"+(©])", @ =/(®)"+(®})", (18)

D¢ — DO’
=t -1 1Y1 1¥1 19
a=tan (ch@f + D6 (19)

where c(-) =cos(:), s(-) =sin(-), and J,(-) denotes Bessel functions
of the first kind of order n. Note that the detail of phase angle y is
not provided because y is irrelevant to stability. There are two
things worth noting in Eqs. (17) and (19). First, bg=b;=b, =
b3 =0 or v(X) =0 when ®,=0. Because v(X) is the magnitude of
parametric excitation, no parametric instabilities can occur when
v(X) =0. In other words, nonzero asymmetric oscillation, i.e.,
@, #0, is a necessary condition for parametric instabilities.
Second, the linear stiffness term u(X) is composed of nonlinear iner-
tial coupling induced by the carrier motion ;. As the nonlinear
inertial coupling results in linear stiffness per se, the pendulum
can have parametric resonance without having any linear stiffness.
Compared to the autoparametric vibration absorbers, which would
need to have low linear stiffness to tune their natural frequency
around half the natural frequency of the primary structure
[16-18], the nonlinear inertial coupling of the IPVA enables
compact designs.

To determine the boundary of parametric instability, Eq. (17) is
transformed to the standard form of Mathieu equation [13]:

2

ﬂ +pX)¥ — 2¢g(X) cos2w)¥ =0 (20)
ow?

where

.
¥ =5Pexp A.fpw , 2w=wr—Y)
AV

ey

-2
® = 4u(X) 4¢, ® = 2v(X)
T

The boundary of parametric instability for Eq. (20) corresponds to
the transition curves in the p — g plane [28]. Because we seek the
boundary that occurs with low force magnitudes, we compute the
transition curve that occurs with the lowest p and ¢ values. Mathe-
matically, this transition curve is expressed as p = Al(q), where
Ay (q) are the characteristic values for even Mathieu functions
with characteristic exponent 1 and parameter g [28]. In this
article, A, (q) is computed by the “MathieuCharacteristicA” func-
tion of woLFRAM MATHEMATICA 11.3. Note that p and ¢ are functions
of f and w. Therefore, p = A, (q) is solved with Eq. (11) simulta-
neously to yield the transition curves in the f— o plane.

3.3 Pitchfork Bifurcation. As mentioned in Sec. 3.2, nonzero
asymmetric oscillation, i.e., @y # 0, is necessary to induce paramet-
ric instabilities. To determine when it occurs, 6, = O cos(wr) +
0] sin(wr) and ¢, = @o + @] cos(wr) + @] sin(wr) are substituted
into Eq. (13) to solve for stable periodic solutions with ®y#0.
We use the pendulum length ratio # as the bifurcation parameter
to obtain a bifurcation diagram that shows the parameter space,
wherein ©y#0 will occur. To track the bifurcation points with
varying 7, a bifurcation tracking algorithm that is based on arclength
continuation is used with Eq. (13); see Appendix A for the detail.
Figure 2 shows a bifurcation diagram of ®, with varying 7. Three
branches of the bifurcation were obtained using three different
sets of initial conditions (one corresponding to each branch,
namely, the lower, middle, and upper). It can be observed that @
undergoes a supercritical pitchfork bifurcation at a critical value
of . After this critical value of , ®( # 0 and parametric instabilities
become possible. For the rest of this article, we will only explore
parametric instabilities with the parameters that lead to ®¢ # 0.

——stable
----- unstable

0.6 0.7 0.8

Fig. 2 Pitchfork bifurcation of ¢, for f=0.007, #,=0.2, ©=0.9, § =&, =0.005
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— Instability boundary using (9)
—e— Instability boundary using (15)

0.025 -

0.02

+ 0.015

0.01

0.005

0.85

Fig. 3 Parametric instability boundary for n=0.3, x,=0.25, £ =
0.005, &, =0.005

3.4 Period Doubling Bifurcation. Within the parameter space
wherein @, # 0 exist, the boundary of parametric instability is com-
puted in the f— @ plane. To find an initial bifurcation point for the
bifurcation tracking algorithm described in Appendix A, @ =0.8 is
set and Eq. (13) is repeatedly used to compute the Floquet multipli-
ers as f decreases until the maximum magnitude of the Floquet

(a) ‘ ‘ ‘ ‘
—FFTof ¢
10 F --=--FFT of ¢|
100[ 4

FFT

multipliers becomes unity. Afterward, the bifurcation tracking algo-
rithm will generate the boundary as described in Appendix A. To
verify whether the boundary is indeed of parametric instability,
the Mathieu equation (20) is used to generate the transition curve
as described in Sec. 3.2. The boundary and transition curve for a
set of parameters are shown in Fig. 3. As shown, although the tran-
sition curve underestimates the boundary, they are in qualitative
agreement. Specifically, the discrepancy between the two curves
increases as the force magnitude f increases. Because the transition
curve is predicted by the perturbation method, it is reasonable that it
is more accurate for small force magnitudes. Thus, the comparison
verifies the claim that the boundary indicates parametric instability.
To gain more insight, the Floquet exponents corresponding to a few
points on the boundary are computed and found equal to +in/T,
where i = v/—1. According to Ref. [29], this indicates period dou-
bling bifurcation. Since periodic doubling bifurcation is a
co-dimension one bifurcation, it is a curve in a parameter plane
[30]. Therefore, the parametric instability boundary is in fact a
boundary of period doubling bifurcation. When this bifurcation
occurs, the pendulum oscillation will have subharmonics of w/2,
i.e., v=2in Eq. (9). It is worth noting that the autoparametric vibra-
tion absorbers also have a similar bifurcation behavior, that is, sub-
harmonics of half excitation frequency induced by parametric
instabilities [16—18].

Within the parameter space wherein subharmonics of @/2 exist,
the stability of the subharmonics can be further investigated. Pre-
liminary investigations indicates the presence of another period
doubling bifurcation, implying that subharmonics of quarter
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T

Fig. 4 FFT and time series of periodic solutions at point 1 in Fig. 3: (@) FFT at point 1, (b) time series of # at point 1, and (c) time

series of ¢ at point 1
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frequency will appear. Therefore, it is hypothesized that there exists
a cascade of period doubling bifurcations in the f— @ space, which
eventually leads to chaotic motions of the system. Determination of
the boundary of this additional period doubling bifurcation,
however, is out of the scope of this paper.

Figure 3 is a bifurcation diagram that shows the parameter space
for qualitatively different solutions, defined by the instability
boundary. By locating the parameters in Fig. 3, the qualitative beha-
vior of the corresponding solutions can be predicted. For example,
X2 resides in the parameter space just above the boundary. Accord-
ingly, periodic solutions of primary harmonics along with subhar-
monics of excitation frequency are predicted at X2. Next, we
verify the predictions by Fig. 3 by direct numerical integration.

4 Numerical Demonstration

To verify the bifurcation analysis in Sec. 3.4, numerical integra-
tion (MATLAB’s ODE4Y) is used to obtain the solutions of Eq. (7) at
three representative points in Fig. 3 (denoted by markers “Xx” fol-
lowed by numbers, e.g., X2). Among these three points, points
X1 and X2 lead to periodic solutions, whereas point X3 leads to non-
periodic solutions. The fast Fourier transform (FFT) of the periodic
solutions are computed to reveal the frequency components, which
are shown in Figs. 4(a), 5(a), and 6(a). On the other hand, a time
series of the solutions are presented to show the dynamical behav-
iors, shown in Figs. 4(a), 5(b), 6(b), 4(c), 5(c), and 6(c). Note that
the frequencies @ of the FFT are normalized with respect to the

Journal of Vibration and Acoustics

excitation frequency. It follows that primary harmonics correspond
to components at @ = 1, subharmonics of half excitation frequency
correspond to components at @ = 0.5, etc.

There are several things worth noting in Figs. 3—6. First, the pre-
diction at point X1 is in good agreement with the numerical solu-
tions. As shown in Fig. 3, point X1 is below the instability
boundary. It is expected that the periodic solutions are dominated
by primary harmonics. This prediction is verified by Fig. 4,
which shows that the periodic solutions at point X1 have the
largest components at @ = 1, corresponding to primary harmonics.
Furthermore, in Fig. 3, as we increase the value of f and reach point
X2, the primary harmonics undergo a period doubling bifurcation.
As a result, subharmonics of half excitation frequency should
arise. As shown in Fig. 5, subharmonics of half excitation frequency
indeed exist, which verifies the prediction in Fig. 3. Second, the
parameters at X3 lead to strong nonperiodic solutions composed
of both oscillation and intermittent rotations of the pendulum, as
shown in Figs. 6(c) and 7(c). Similar nonperiodic solutions are
also observed in autoparametric resonance vibration absorbers [18].

In addition to FFT, the Poincaré sections are used to demonstrate
the period doubling bifurcations predicted by Fig. 3. The Poincaré
sections are computed by the Hénon trick [31], which are defined as
follows:

P'(xg) = xn(ro + 2nxw/w; X,—1, T()), n=1,2,... (22)
where x,,_; and x,, are the solutions of the system (7), which pass
through the Poincaré section at time 7=r7y+2(n— )7/ and
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T = 19+ 2n7lw, respectively. Successively, the points X, X; = P(Xo),
X, =PA(Xp), ... correspond to the intersection of the trajectory
x(7; Xg, 7g) With the sections at t=1q, 79+ 27w, 179+ 4nlw, ...,
respectively.

To demonstrate the period doubling bifurcation, Poincaré sec-
tions corresponding to point X1 and X2 are plotted in Fig. 7. As
shown in Fig. 7(a), X1 leads to a fixed point on the Poincaré
section, corresponding to period-1 solutions. Figure 7(b), on the
other hand, shows two fixed points, corresponding to period-2 solu-
tions. Therefore, it is clear that the system has undergone a period
doubling bifurcation when moving from X1 to X2.

5 Parametric Studies

In this section, we analyze the effect of the parameters on the
instability boundary. We consider four parameters in Eq. (6),
namely, u,, 1, &, and &,. It can be seen that these parameters can
be varied independently of each other. Therefore, we will observe
the effect by varying one parameter while keeping the other param-
eters constant. We start by increasing the value of # while keeping
the others constant. From Fig. 8, it can be observed that increasing #
does not make any significant change in the lowest f value for para-
metric instability to occur, which corresponds to the vertex of the
boundaries. That means that value of # should not influence the
energy transfer capabilities of the system by a lot. However, a
minimum threshold value of 7 is required for period-doubling

041011-8 / Vol. 144, AUGUST 2022

bifurcation to occur as discussed in Sec. 3.3. We next vary pu,.
From Fig. 9, it can be observed that the required values of f to
attain parametric instability decrease as yu, increases. This can
be attributed to the fact that the inertia supplied by the pendulum
vibration absorber increases as the mass amplification factor y, is
increased. The value of u, can be controlled by changing the ratio
R,/R, which can be adjusted by changing the carrier radius (R,,).

While keeping the other parameters constant, we vary the
viscous damping ratio ¢ and observe its effects. From Fig. 10, it
can be seen that the requirement of f to achieve nonlinear energy
transfer increases with the increase in the viscous damping. In a
similar fashion, we vary the &, while keeping the other parameters
constant. We see that the values of f required to achieve parametric
instability increase as the viscous damping increases. The observa-
tions on the effects of both viscous damping match well with the
effect of viscous damping on parametric instability—the larger
the viscous damping, the larger the force it takes to cause paramet-
ric instability [28].

Last but not least, the parameter p, has a significant influence on
the instability boundary, as demonstrated in Sec. 5. As shown in
Fig. 9, a larger pu, not only leads to lower force magnitudes
required to cause parametric resonance but a wider frequency
bandwidth of parametric resonance, which is beneficial in terms
of vibration mitigation. The parameter y, can be readily increased
by changing the ratio of R,/R without incurring the large weight to
the system, which is attributed to the mass amplification effect of
the inerter.
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6 Discussion

In the beginning of this study, it was proposed that a nonlinear
energy transfer phenomenon similar to autoparametric resonance
takes place when the parametric instability occurs. To demonstrate
this, we compare the proposed system with two systems, a linear

0.8 0.85 0.9 0.95 1

Fig. 8 Parametric instability boundary for x,=0.4, £=0.005,
&p =0.01 for various values of 5

Journal of Vibration and Acoustics

benchmark and an autoparametric vibration absorber with paramet-
rically excited pendulum [17]. The linear system here is character-
ized by locking the pendulum at its initial position (¢=0),
effectively removing all the nonlinearities in the system. By
setting ¢p=¢’ =¢” =0 in Eq. (7), the equation of motion of the
linear system is written as follows:

[1+p,(1+7* +20)]0" +260 +2£,60 +0=Ffsinor  (23)

1.
By using 6 = 5®e“”’ + c.c., the equation can be solved to obtain

o= f
2iw(E+ &) +1—?[14pu,(1+7>+29)]

(24)

We computed the root-mean-square (rms) of the IPVA system and
compared it with the linear system. The comparison is shown in
Fig. 12. The response from the 2401th to 3000th cycle was used
to compute the rms to eliminate transient effects. The IPVA param-
eters used in Figs. 12(a) and 12(b) correspond to Figs. 3 and 11,
respectively.

Several things are worth noting in Fig. 12. First, it is shown that
the response of the primary structure flattens for a range of excita-
tion frequencies. In comparison with the response of the linear
system, the IPVA shows significant vibration suppression with
the flattening region. For example, as shown in Fig. 12(b), 0 for
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Fig. 11 Parametric instability boundary for 7=0.4, u,=0.4, =
0.005 for various values of &,

fo=0.025 flattens for w €[0.81, 0.87]. In comparison with Figs. 3
and 11, it is clear that the flattening occurs when the system is
within the parametric instability boundary. For example, as
shown in Fig. 11, when &,=0.015 and f,=0.025, the system is
within the parametric instability boundary for o €[0.81, 0.87].
This observation agrees with Fig. 12(b). Second, within the flatten-
ing region, the response of the primary structure barely increases
despite an increase in the force magnitude, suggesting a saturation
phenomenon similar to autoparametric vibration absorbers [23] and
nonlinear vibration absorbers with quadratic nonlinearities [32].
Note that the response of the IPVA system in Fig. 12(b) is nonper-
iodic for f=0.035 within a range of w; thus, different initial condi-
tions may lead to different rms responses. To examine the effect of
initial conditions, ten rms responses were computed and plotted at
six discrete @ values, each corresponding to a different initial con-
dition vector [0, ®, 0, gb]T that was randomly chosen from a stan-
dard normal distribution with zero mean and a unit standard
deviation; see the inset in Fig. 12(b).

Next, we compare IPVA with the autoparametric vibration
absorber shown in Fig. 13. Because the autoparametric system
oscillates in the vertical direction, the ball screw IPVA is considered

2.5 T T
(6) ——1,=0.025 (IPVA)
. + f,=0.035 (IPVA)
TR e f, = 0.025 (Linear)
S5 |1 025 i
L= [ ¥ § %
Q\: i “10.245 ¥
?1, .‘"'.0.24¥§*;’*6* |
S | \ * * i
! 10235 ¥ *
'l \\ i *
/ 10.23 %
05+ / \ 0.82 0.84 0.86 0.88 7

093 095 0.97 0.99
w

Fig. 12 Comparison of IPVA with the linear system for various parameters: (a) comparison of linear system (f, = 0.007) with
IPVA for different f, values for =0.3, u,=0.25, £ =0.005, and &, =0.005 and (b) comparison of linear system (f, = 0.025) with
IPVA for different f, values for 7=0.4, u,=0.4, £ =0.005, and £, =0.015
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Fig. 13 The autoparametric vibration absorber [17]

hereinafter. The equation of motion of the autoparametric system is
written as follows [17]:

(M +m) i+ cic+ ke + ml(g'is sing + ¢ cos ¢) = Fy sin(Q1)

mPp + cqp + (mgl + mix) sing =0

where x and ¢ represent the primary structure displacement and
pendulum angular displacement, respectively, M, k, and ¢ are the
mass, stiffness, and viscous damping coefficient of the primary
structure, respectively, and m and [/ are the pendulum mass and
length, respectively. Furthermore, a viscous damping coefficient
¢, is introduced to account for energy loss at the pivot point of
the pendulum.

According to Ref. [17], when the natural frequency of the pendu-
lum is tuned around half of the natural frequency of the primary
structure, the system shows autoparametric resonance for a certain
set of parameters when excited harmonically. This autoparametric
resonance results in energy transfer from the primary structure to
the pendulum, thereby achieving vibration suppression of the
primary structure. Because the IPVA system and the autoparametric
system achieve vibration suppression in a similar way, the latter is
an ideal benchmark system for comparison. For a fair comparison,
the primary structure parameters, excitation force magnitude, and
pendulum mass are kept identical in both systems. Specifically,
primary mass M =5 kg, natural frequency of the primary structure
wo = k/M =4z rad/s, pendulum mass m=0.5 kg, force magni-
tude Fp=0.491 N, and £=0.005 or £=0.01. Note that two
values of ¢ are considered to examine the performance of the
IPVA when the damping ratio of the primary structure changes.
The remaining parameters pertaining to the autoparametric system
are ¢,=8.68x10°N-m-s and /=12.42 cm, which were taken

(8) 008 75— " ——IPVA ()
My s 3 * IPVA (b)
0.025 f 852; § § % § Autopara. in [18]
o¥ * 1"
0.02+ |
E0.015
x
0.01
0.005
i ‘ , ,
0.8 0.85 09 0.95 1

w

from Ref. [17]. Specifically, the pendulum length was chosen to
achieve autoparametric resonance, and the gendulum damping coef-
ficient was determined from &, =c,/(2ml°w,)=0.05, where w, =
J/g/1 is the natural frequency of the pendulum. The remaining
parameters pertaining to the IPVA system are R, R,,, and r. Three
sets of R, R,,, and r were chosen as follows: (a) R=2.49 cm, R, =
4.97 cm, and r=1.99 cm; (b) R=1.78 cm, R,=3.55 cm, and r=
1.42cm; and (¢c) R=2.07cm, R,=4.14cm, and r=1.66cm.
These three sets are labeled as IPVA (a), IPVA (b), and IPVA
(c), respectively, in Figs. 14 and 15. These three sets all lead to
#,=0.4 and n=0.4 and lead to f=0.025, f=0.035, and f=0.030,
respectively. In this way, the dependence of the IPVA on different
values of f will be examined. The rms response of the IPVA system
and autoparametric system were computed using the same direct
numerical integration scheme with the same settings that were
used to generate Fig. 12. The effects of initial conditions were
examined for both systems when their responses were observed
to be nonperiodic using the same method used to obtain Fig. 12(b).

There are several things worth noting in Fig. 14. First, it can be
clearly seen that the response curve of the primary structure displa-
cement x for both IPVA (a) and IPVA (b) flattens for a range of w,
which demonstrates the energy transfer phenomenon for two differ-
ent sets of parameters. Specifically, IPVA (b) has a more compact
design (smaller R, R,, and r) and shows better performance.
Although the autoparametric system shows similar vibration sup-
pression, both IPVA (a) and IPVA (b) outperform it. Second, let
us examine the pendulum response in Fig. 14(b). As seen, for
both IPVA (a) and IPVA (b), the pendulum response significantly
increases within the @ range of parametric instability (w €[0.81,
0.87] for IPVA (a) and o €[0.80, 0.89] for IPVA (b)), indicating
that the kinetic energy of the primary structure transfers to the pen-
dulum, resulting in the response flattening observed in Fig. 14(a). It
is noteworthy that both IPVA (a) and IPVA (b) have a larger pen-
dulum angular velocity than the autoparametric system. Similarly,
Figs. 15(a) and 15(b) show the comparison of IPVA (c) with the
autoparametric system for £=0.01. As can be observed, IPVA (c)
outperforms the autoparametric system in terms of vibration sup-
pression. Furthermore, it also leads to a larger pendulum angular
velocity.

In addition to better vibration suppression, the IPVA system has
two other advantages in comparison with the autoparametric
system. First, it generates higher pendulum angular velocities, as
shown in Figs. 14(b) and 15(b). Kecik and Boroweic [33] proposed
an energy harvesting autoparametric system where they installed an
electromagnetic generator at the pendulum pivot point to convert

‘ ——IPVA (a)
% i L * IPVA(E)

Autopara. in [18]

¢ (rad/s)

0.8 0.85 0.9 0.95 1
w

Fig. 14 Comparison of IPVA and autoparametric vibration absorber for a set of parameters: (a) comparison of frequency
response of ¢ for IPVA and autoparametric system with =0.4, u,=0.4, £ =0.005, and for IPVA &,=0.015, whereas &, =0.05
for autoparametric system and (b) comparison of frequency response of pendulum’s velocity for IPVA and autoparametric
system with =0.4, 4, =0.4, £=0.005, and for IPVA &, =0.015, whereas &, = 0.05 for autoparametric system
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Fig. 15 Comparison of IPVA and autoparametric vibration absorber for a set of parameters: (a) Comparison of frequency
response of x for IPVA and autoparametric vibration absorber with 7=0.4, 4, =0.4, £=0.01. For IPVA, £, =0.015, and for autop-
arametric vibration absorber, £, =0.05 and (b) Comparison of velocity of pendulum for IPVA and autoparametric vibration
absorber with n=0.4, 4, =0.4, £=0.01. For IPVA, £,=0.015, and for autoparametric vibration absorber, £, =0.05.

the pendulum angular motion into electricity. As the larger angular
velocity, the larger electricity can be generated, and the larger
angular velocity in the IPVA system may lead to better performance
in terms of energy harvesting, which remains to be explored in the
future. Second, the IPVA system leads to a more compact design.
The largest length in the IPVA system is the sum R, +r of the
carrier radius and pendulum length. IPVA (a) has R,+r=
6.69 cm, which is the maximum among the three. On the contrary,
the autoparametric system requires a long pendulum (/ = 12.42 cm)
as it needs this length to tune the natural frequency.

7 Conclusion

This study analyzes the IPVA system proposed in Ref. [34] with
a focus on vibration suppression of a linear oscillator subject to
single harmonic excitation. It is shown that for a given excitation
force magnitude, the pendulum parameters can be chosen such
that parametric resonance occurs to the pendulum vibration
absorber for a specific range of excitation frequencies. It is also
shown that a pitchfork bifurcation and period doubling bifurcation
of the pendulum response are necessary and sufficient conditions
for the parametric resonance. Furthermore, when parametric reso-
nance occurs, the kinetic energy of the linear oscillator transfers
to the pendulum, resulting in vibration suppression of the linear
oscillator. A saturation phenomenon similar to autoparametric
vibration absorbers and nonlinear vibration absorbers is observed
in the IPV A system; that is, the response of the linear oscillator satu-
rates despite the increase in the force magnitude. Meanwhile, the
increased energy due to the increase in the force magnitude seems
to transfer to the pendulum, resulting in increased pendulum
response. Furthermore, the system is compared to the autopara-
metric vibration absorber. It is shown to outperform the autopara-
metric vibration absorber in terms of vibration absorption and
energy harvesting capabilities.
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Appendix A: Bifurcation Tracking Algorithm

Algorithm Formulation. A bifurcation tracking algorithm
based on Ref. [35] is formulated as follows. First, define a vector
function consisting of all the algebraic equations in Eq. (11) as
follows:

ho(X; )
K (s )

fx; M) = h}(f‘(; A) (A1)

S (X; M)

hyp(X; )

where X is the vector consisting of all the Fourier coefficients in
Eq. (11) and A are bifurcation parameters of interest, e.g., A =4
in Sec. 3.3 and A = [f, ®]” in Sec. 3.4. Second, define a scalar func-
tion g(X; A) that outputs the maximum magnitude of eigenvalues of
the fundamental matrix of Eq. (13). A bifurcation point will satisfy
the following equations:

ooy f(x; A) _
h(x; )\')_<g(f(;7»)—l>_0 (A2)

Now suppose a solution X to Eq. (A2) is found for a bifurcation
point A = Ao, e.g., by numerical integration. To obtain a neighbor-
ing bifurcation point, we use an arc length continuation method.
Assume that there exists a neighboring solution X; = Xo + 6%, for
a neighboring bifurcation point A, = Ay + Ay satisfying Eq. (A2)
with /[|6%0|1> + |60 ]|*> < <1, where ||.|| depicting the > norm.
Imposing the constancy of arc length constraint, we obtain

[8%0lI* + 1820ll* = [I%1 — Roll* + A1 — Aoll* = 57 (A3)

where s is sufficiently the small arc length. Therefore, solving
Eqgs. (A2) and (A3) together will give a neighboring bifurcation
point.
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Numerical Implementation. The bifurcation tracking algo-
rithm is implemented numerically using Newton—Raphson itera-
tions as follows. Suppose a solution X, for a bifurcation point Ay
is known. Define a new vector function:

h&; 1) }

PO A4
1% — %oll2 + 1A = o2 = 82 (A9

P&, A; Xo, o) = {

which needs to equal 0 to obtain a neighboring bifurcation point.
Suppose two neighboring solutions X;—; and X; are found for
two bifurcation points Ay_; and A, respectively. Denote by
y=[%",27]" the solution to Eq. (A4). A neighboring solution is
initially guessed to be

Vi = Ve + (Vi — Yeot) =2V — ¥ie (AS)

Next, Eq. (A4) is solved using Newton—Raphson iterations with the
initial guess. The correction to the initial guess is given by

+1 -1 % _
Y =¥ = TR R M), n=0,1

with yfgz | =4, being the initial guess and J is the Jacobian matrix.
To calculate J, we use the forward difference method, i.e., the vth
column of J is expressed as follows:

IG )= P(¥ih + eevi R, lz) - Py & M)

(A6)

where e, is the vth column in the Nx N identity matrix and N
being the dimension of y and 0<e<<l1. For the calculations in

this study, e=10"> was taken and the convergence criterion

Iy — 3 1 <1071 was used. Newton-Raphson iterations

will give the value of y,,, this (along with y;) can be further
used to calculate y,,», thereby tracking the bifurcation points.

Appendix B: Jacobi-Anger Expansion

The Jacobi-Anger formulas used for expansion are as follows
[26]:

cos(eho sinw) = Jo(dho) + 2J2(hg) cos(2w) + 2a(dho) cos(dy) + ...,
(B1)

sin(gh siny) = 27, (o) sinw) + 2J3(g) sin(Gy)
+2J5(ho) sin(5y) + ... (B2)

where J,,(¢ho) is a Bessel function of the first kind of order m. For
¢o=2.0 radians (115 deg), J4(¢ho)=0.034 and Js5(¢po) =0.007.
Therefore, only the first two terms are required in the expansion
for a good accuracy over a wide range of pendulum oscillations.
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