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Abstract. We develop a version of cluster algebra extending the ring of Lau-

rent polynomials by adding Grassmann variables. These algebras can be de-

scribed in terms of “extended quivers,” which are oriented hypergraphs. We
describe mutations of such objects and define a corresponding commutative

superalgebra. Our construction includes the notion of weighted quivers that
has already appeared in different contexts. This paper is a step towards un-
derstanding the notion of cluster superalgebra.

Introduction

Cluster algebras, discovered by Fomin and Zelevinsky [3], are a special class
of commutative associative algebras. It was proved by many authors that the
coordinate rings of many algebraic varieties arising in the Lie theory, such as Lie
groups of matrices, Grassmannians, various moduli spaces, etc., have structures of
cluster algebra; for a survey, see [19]. Cluster algebras naturally appear in algebra,
geometry and combinatorics, they are also closely related to integrable systems.

A cluster algebra is a subalgebra of the algebra of Laurent polynomials in Z[x±1
1 ,

. . . , x±1
n ] generated by certain polynomials with positive integer coefficients. A

cluster algebra is usually defined with the help of a quiver (an oriented graph) with
no loops and no 2-cycles; the generators of the algebra are defined with the help of
exchange relations and quiver mutations.

Our goal is to introduce a version of cluster algebras with nilpotent (Grass-
mann) variables {ξ1, . . . , ξm} that anticommute with each other and, in particu-
lar, square to zero. The algebras we consider are certain subalgebras of the ring
C[x±1

1 , . . . , x±1
n , ξ1, . . . , ξm], that are Laurent polynomials in x1, . . . , xn. Unfortu-

nately, we can only treat mutations of even variables leaving the odd ones frozen.
In this sense, the correct notion of cluster superalgebra is still out of reach. We
believe that the correct notion of mutations of odd variables should extend the
coordinate transformations considered in [15] and [18, 10].

We consider a notion of “extended quiver,” which is a hypergraph extending a
classical quiver. The main ingredients are modified exchange relations and quiver
mutations. The vertices of the classical quiver are labeled by the even variables,
the new vertices are labeled by the Grassmann variables (diamonds, in the figure
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below). Essentially, the mutations of an extended quiver can be described by the
following diagrams:

���

• ��� •�� =⇒

�

��

��

• ����� •��

�

��
• ��� •�� =⇒

���

��
• ����� •��

The “underlying quiver,” with vertices shown as black bullets, mutates in a standard
way. The additional vertices denoted by red diamonds that represent a group of
Grassmann variables connected to a standard (even) vertex, behave in a way quite
different from the standard mutation rules. Quite remarkably, the above mutation
rule includes the notion of weighted quivers (see [17] and references therein) which
is in a sense dual to the Bernstein-Gelfand-Ponomarev functor. We will explain
how to reduce the above mutation rules to the classical ones combined with a
transformation of quivers that we call a “monomial transform.”

This paper is based on the unpublished preprint [16], however we modify the
exchange relations suggested by [16] in such a way the restrictions on quiver muta-
tions disappear. The main motivation for our construction is the idea to develop
a complete notion of cluster superalgebra. One concrete example of our general
construction is the notions of superfriezes considered in [15]. Let us also mention
another attempt to develop the notion of cluster superalgebra [12] which is quite dif-
ferent from our construction. In particular, the exchange relations of [12], similarly
to [16], are at most quadratic in odd variables.

We would like to pay attention to the fact that unlike the present paper, [12]
contains expressions for mutations of odd variables. However, in our opinioin the
expressions in [12] has some flaws the most evident of which is that the transcen-
dence degree of the cluster algebra is generally speaking not mutationally invariant.

1. Extended quivers and their mutations

We introduce extended quivers, and describe their mutation rules. It turns out
that an extended quiver is not a graph but an oriented hypergraph. More precisely,
given a quiver Q, we add new, odd (or colored), vertices, and complete the set of
edges of Q by adding some 2-paths joining three vertices.

The reason for this notion is the general idea of superalgebra and supergeometry,
that supersymmetric version of every object should be understood as its “square
root.” The notion of extended quiver is an attempt to apply this idea in combina-
torics: a square root of an edge in a graph is understood as a 2-path joining two
odd vertices through an even vertex.

1.1. Introducing extended quivers. Let us recall that a hypergraph is a gen-
eralization of a graph in the following sense. A hypergraph G is a pair (G0,G1),
where G0 is the set of vertices and G1 is a set of subsets of G0, instead of the set of
edges as for a usual graph. We will be considering oriented hypergraphs for which
G1 is a set of arrows completed by a set of oriented 2-path.
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Definition 1.1. Given a quiver Q with no loops and no 2-cycles, an extended

quiver Q̃ with underlying quiver Q, is an oriented hypergraph defined as follows.

(A) The vertices of Q are labeled by {x1, . . . , xn}, Q̃ has m extra “colored”
vertices labeled by the odd variables {ξ1, . . . , ξm}, so that

Q̃0 = Q0 ∪ {ξ1, . . . , ξm}.
(B) Some of the new vertices {ξ1, . . . , ξm} are related by 2-paths through the

vertices {x1, . . . , xn} of the underlying quiver Q. The set of arrows Q1 is
completed by the set of 2-paths:

Q̃1 = Q1 ∪k {(ξi → xk → ξj)} .
(C) 2-paths with opposite orientation: ξi → xk → ξj and ξj → xk → ξi are not

allowed.

Although Q̃ is a hypergraph, and therefore can hardly be represented graphically,
the above definition is illustrated by the following diagram

ξi1

��

. . . ξir

��

ξj1��
. . . ξjs��

xk

representing a certain collection of 2-paths (less than or equal to r×s paths between
the odd variables).

Remark 1.2. Note that since all odd vertices are frozen in the current approach

we do not consider arrows between the odd vertices of Q̃, and this is certainly
an interesting question whether one can add such arrows and create a more rich
combinatorics of extended quivers.

1.2. Extended quiver mutations. Let us define the mutation rules of an ex-
tended quiver. These mutations are performed at even vertices only.

Definition 1.3. Given an extended quiver Q̃ and an even vertex xk ∈ Q0, the
mutation µ̃k is defined by the following rules:

(0) The underlying quiver Q ⊂ Q̃ mutates according to the same rules as in
the classical case [3].

(1*) Given a 2-path (ξi → xk → ξj) ∈ Q̃1, for all x� ∈ Q0 connected to xk by
an outgoing arrow (xk → x�), add the 2-paths (ξi → x� → ξj).

(2*) Reverse all the 2-paths through xk, i.e., change (ξi → xk → ξj) to (ξi ←
xk ← ξj).

(3*) Remove two-by-two the 2-paths through xk which are identical but have
opposite orientations, eventually created by rule (1*), i.e., 2-paths (ξi →
x� → ξj) and (ξi ← x� ← ξj) cancel each other.

The above rules can be illustrated by the diagram

ξi

��

ξj��

xm xk
�� x�

�� µ̃k
=⇒

ξi

��

�� ξj

��

��

xm ��x′
k

�� x�
��
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Example 1.4. One has

ξ1

����

ξ2�� ��

x1 x2
�� µ̃1

=⇒

ξ1

����

�� ξ2

��

�� ��

x′
1 x2
��

This mutation creates a new 2-path (ξ1 → x2 → ξ2), so that the resulting extended
quiver has two such paths (and not four as appears if one counts arrows between
ξ’s and x’s).

1.3. Weighted quivers: the case of two odd vertices. The simplest class of
extended quivers are those that have exactly two odd vertices, ξ1 and ξ2. Such an
extended quiver is equivalent to the usual quiver Q together with a function on the
set of vertices

w : Q0 → Z

that counts the number of oriented 2-paths through the vertex. For every xi ∈ Q0,

(1) a positive value of w(xi) corresponds to the number of 2-path ξ1 → xi → ξ2;
(2) a negative value of w(xi) corresponds to the number of 2-path ξ2 → xi → ξ1.

This function was called the weight function in [17] where it was applied to integer
sequences.

The quiver mutations defined above read as follows in terms of the weight func-
tion. The mutation µ̃k at kth vertex sends w to the new function µ̃k(w) defined
by

µ̃k(w)(i) = w(i) + [bki]+w(k), i �= k,

µ̃k(w)(k) = −w(k),
(1)

where [bki]+ is the number of arrows from the vertex k to the vertex i, and if the
vertices are oriented from i to k, then [bki]+ = 0.

Example 1.5. The following “Somos-4 quivers” (cf. [5] and [11])

a) x4

����

�� x1�� ��

��

��

x3 x2
������ and

b) x4 ����

��

x1

�� ��

��
��

x3 x2
������

are examples of so-called period 1 quivers. Each of them performs a cyclic rotation
under the mutation at x1, e.g.,

x4

����

�� x1�� ��

��

��

x3 x2
������

µ1
=⇒

x4

����

���� �� x′
1

�� ��

��
��

x3 x2
��

In both cases, there exists a period 1 weight function

a) w(x1) = 1, w(x2) = 0, w(x3) = 0, w(x4) = −1,

b) w(x1) = 1, w(x2) = 1, w(x3) = −1, w(x4) = −1,
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respectively, that also rotates under mutation (1); see [17]. In our initial notation,
the above weight functions correspond to the following extended quivers:

a) ξ1

��

�� ξ2

��

��

x4

����

�� x1�� ��

��

��

x3 x2
������

and

b) ξ1

��

��





ξ2

��

��

��

x4 ����

��

x1

�� ��

��
��

x3

��

x2





������

Note that the period 1 weight function is unique up to a multiple.
This leads to a family of extensions of the Somos-4 sequence [17].

1.4. Relation to BGP-functor. Let us mention that formula (1) appeared in
several different situations [9, 6, 2]. Furthermore, remarkably enough, this formula
is nothing else but the dual formula for that of the classical Bernstein-Gelfand-
Ponomarev functor (BGP-functor) in the theory of quiver representations.

Let Q be a quiver, its vertex v be a source. BGP-functor Fv acts on the quivers
and their representations in the following way. It takes quiver Q to Q̄ whose vertices
and arrows are in one-to-one correspondence with vertices and arrows of Q, for
vertex w and arrow α of Q we will denote the corresponding vertex and arrow of
Q̄ by w̄ and ᾱ, correspondingly. Fv(w) = w̄, Fv(α) = ᾱ for any w and α of Q. If
edge α = (w1 → w2), where w1 �= v and w2 �= v, then Fv(α) = ᾱ = (w̄1 → w̄2).
Edge α = (v → w) becomes ᾱ = (w̄ → v̄). Hence, vertex v̄ is a sink in Q̄.

If R is a representation of quiver Q, i.e., any vertex u of Q corresponds to a
vector space R(u) and an arrow α = (s → t) corresponds to a linear map R(α) :
R(s) → R(t), then, Fv : Rep(Q) → Rep(Q̄) is as follows: Fv(R(w)) = R(w) for
any w �= v; F (R(α)) = R(α) if none of endpoints of α coincides with v. Finally,
Fv(R(v)) is defined as follows. Let

β = {βi : v → wi, i = [1, k]}

be the collection of all arrows from v, R(β) : R(v) → ⊕k
i=1R(wi) is a sum of all

maps R(βi), i.e., R(β)(x) = (R(β1)(x), . . . , R(βk)(x)) for any x ∈ R(v). Define

�(R(β)) = {β(x), x ∈ R(v)} = {⊕iβi(x) ∈ ⊕k
i=1R(wi), x ∈ R(v)},

and set Fv(R(v)) = ⊕k
i=1R(wi)/�(R(β)). Assuming a nondegeneracy property

�(R(β)) � R(v), we see that the dimension vector (dimR(w))w∈Q, dimR(w) =
dim(R(w)) for all w ∈ Q, of representation R changes as follows.

dimFv(R)(w̄) = dimR(w), w �= v,

dimFv(R)(v̄) =
∑k

i=1 dimR(wi)− dimR(v).

Note that formula (1) describes the dual transformation.
Similarly, formula (1) describes the dual transformation to the change of dimen-

sion vector if v is a sink as well.

2. Exchange relations

We define the exchange relations of the even variables {x1, . . . , xn} corresponding
to mutations of extended quivers defined in the previous section.
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2.1. Introducing exchange relations.

Definition 2.1. Given an extended quiver Q̃, the mutation µ̃k replaces the variable
xk by a new variable, x′

k, and the other variables remain unchanged:

µ̃k : {x1, . . . , xn, ξ1, . . . , ξm} → {x1, . . . , xn, ξ1, . . . , ξm} \ {xk} ∪ {x′
k}.

The new variable is defined by the formula

xkx
′
k =

∏
xk→x�

x� +
∏

ξi→xk→ξj

(1 + ξiξj)
∏

x�→xk

x�, (2)

that will be called, as in the classical case, an exchange relation.

We denote by A(Q̃) the associative commutative superalgebra generated by the
initial variables {x1, . . . , xn, ξ1, . . . , ξm} together with all the mutations of xk.

Note that, after substitution ξ ≡ 0, the above formula obviously coincides with
the exchange relations for the classical cluster algebra corresponding to the under-
lying quiver Q. The first summand in (2) is exactly as in the classical case, the
second one is modified.

Remark 2.2. Note that, unlike the classical case, the above mutation of xk is not
an involution.

2.2. Example: quivers with weight function. In the simplest case of two col-
ored vertices, that we considered in Section 1.3, formula (2) reads

xkx
′
k =

∏
xk→x�

x� + (1 + wkε)
∏

x�→xk

x�,

where ε := ξ1ξ2 denotes the product of the odd variables (cf. [17]). Indeed, one
obviously has (1 + ε)wk = (1 + wkε) since ε2 = 0.

2.3. Example: the supergroup OSp(1|2). One of the first examples of cluster
algebras given in [3] is the algebra of regular functions on the Lie group SL(2). We
consider here its superanalog.

The most elementary superanalog of the group SL(2) is the supergroup OSp(1|2).
Let R = R0 ⊕ R1 be a commutative ring. The set of R-points of the supergroup
OSp(1|2) is the following 3|2-dimensional supergroup of matrices:




a b γ

c d δ

α β e


 such that

ad = 1 + bc− αβ,

e = 1 + αβ,

γ = aβ − bα

δ = cβ − dα.

(3)

The elements a, b, c, d, e ∈ R0, and α, β, γ, δ ∈ R1; these elements are generators of
the algebra of regular functions on OSp(1|2).

Choose the initial cluster coordinates (a, b, c, α, β), and consider the following
quiver:

β

		

α��

b �� a �� c
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The coordinate d is then the mutation of a, i.e., a′ = d. Indeed, the exchange
relation (2) for the coordinate a reads

aa′ = 1 + bc+ βα,

which is precisely the first equation for OSp(1|2) relating a and d. Note that,
similarly to the SL2-case the coordinates b and c are frozen cf. [3].

3. Laurent phenomenon and invariant presymplectic form

In this section we discuss two general properties of the constructed algebras,
namely the Laurent phenomenon and invariant presymplectic form.

3.1. The Laurent phenomenon. Since the division by odd coordinates is not
well-defined, all the Laurent polynomials we consider have denominators equal to
some monomials in {x1, . . . , xn}.

Our first statement is the following.

Theorem 1. For every extended quiver Q̃, all the rational functions x′
k, x

′′
k , . . .,

obtained recurrently by any series of consecutive admissible mutations, are Laurent
polynomials in the initial coordinates {x1, . . . , xn, ξ1, . . . , ξm}.

Proof. This statement follows from the classical Laurent phenomenon [4], after the
identification of Section 4. �

3.2. The presymplectic form. Consider the following differential 2-form:

ω =
∑

xi→xj

dxi ∧ dxj

xixj
+

∑
ξi→x�→ξj

d (ξiξj) ∧ dx�

x�
. (4)

Note that the summation goes over the elements of Q̃1. The first summand is
nothing but the standard presymplectic form (see [7, 8]) associated to the cluster
algebra corresponding to the underlying quiver Q.

Theorem 2. For every extended quiver Q̃, the form ω is invariant under mutations
µ̃k, combined with the exchange relations (2).

In other words, expressing xk in terms of the other variables and x′
k, and sub-

stituting to (4), one obtains precisely the presymplectic form associated to the

extended quiver µ̃k(Q̃).

Proof. Note that d(ξiξj) = d(1 + ξiξj). Then, the statement follows from the
standard result of invariance of compatible presymplectic form under a cluster mu-
tation. �

4. Reduction to the classical case: the monomial transform

In this section we explain how to reduce the mutation rule of Section 1.2 and the
exchange relations (2) to the usual mutations combined with a coordinate transfor-
mation that, following [8], we call the monomial transform. This in particular will
imply the Laurent phenomenon formulated in Section 3.1.
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4.1. Monomial transform: the definition. Given a quiver Q (with neither
loops nor 2-cycles), assume that the vertices of Q are split into two groups. To fix
the notation, we set

Q0 = {x1, . . . , xn1
} ∪ {y1, . . . , yn2

} .

In other words, Q is a colored quiver (with two colors).
The monomial transform at xk, that we denote by Tk, consists of three steps:

(1) add a new arrow (xm → yi) whenever xm and yi are connected to xk by
ingoing arrows;

(2) add a new arrow (yi → x�) whenever yi is connected to xk by an ingoing
arrow and x� is connected to xk by an outgoing arrow;

(3) change the variable xk to

x̃k = xk/yi. (5)

The monomial transform is illustrated by the following diagram:

yi

��

yj��

xm xk
�� x�

�� Tk=⇒

yi

�� ��

yj��

xm

��

x̃k
�� x�

��

4.2. From extended quiver to colored quiver. Given an extended quiver Q̃
(cf. Section 1), let us construct a colored quiver Qc according to the following rule.

(1) If Q̃0 = {x1, . . . , xn, ξ1, . . . , ξm}, we set

Qc
0 = {x1, . . . , xn, yij , | 1 ≤ i < j ≤ m} ; yij := 1 + ξiξj . (6)

(2) For every oriented 2-path (ξi → xk → ξj), add an arrow (yij → xk).

Conversely, given a colored quiver Qc with Qc
0 = {x1, . . . , xn, yij , | 1 ≤ i < j ≤ m},

one reconstructs an extended quiver Q̃ with Q̃0 = {x1, . . . , xn, ξ1, . . . , ξm}. We
denote by I the above identification between the extended quivers and the chosen
class of colored quivers.

The corresponding diagram is

ξi

��

ξj��

xm xk
�� x�

��
I�

yij

��
xm xk

�� x�
��

4.3. Mutations composed with monomial transforms. It turns out that the
mutations of extended quivers and the exchange relations described in Sections 1.2
and 2.1 are nothing but the usual mutations of the corresponding colored quivers
composed with the monomial transform.

Proposition 4.1. One has µ̃k = I ◦ µk ◦ I.

Proof. Straightforward from (6). �
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5. The main example: superfriezes

Frieze patterns were invented by Coxeter [1]. This notion provides surprising
relations between classical continued fractions, projective geometry (cross-ratios)
and quiver representations. Coxeter’s friezes are also related to linear difference
equations and the classical moduli spaces M0,n of configurations of points, see [14].
The set of Coxeter’s friezes is an algebraic variety that has a structure of cluster
varieties, associated to the Dynkin quivers An. For a survey, see [13].

The notion of superfrieze was introduced in [15] as generalization of Coxeter’s
frieze patterns. The collection of all superfriezes is an algebraic supervariety isomor-
phic to the supervariety of supersymmetric Hill’s (or one-dimensional Schrödinger)
equations [14] with some particular monodromy condition.

In this section we describe how the extended quiver Q̃ with the underlying
quiver An, correspondis to a superfrieze.

5.1. Supersymmetric discrete Schrödinger equation. Consider two infinite
sequences of elements of some supercommutative ring R:

(ai), (βi), i ∈ Z,

where ai ∈ R0 and βi ∈ R1.
The following equation with indeterminate (Vi,Wi)i∈Z is the supersymmetric

version of discrete Schrödinger equation (see [15]):




Vi−1

Vi

Wi


 = Ai




Vi−2

Vi−1

Wi−1


, where Ai =




0 1 0

−1 ai −βi

0 βi 1


. (7)

Note that the matrix Ai belongs to the supergroup OSp(1|2).
We assume that the coefficients ai, βi are (anti)periodic with some period n:

ai+n = ai, βi+n = −bi,

for all i ∈ Z. Under this assumption, there is a notion of monodromy, i.e., an
element M ∈ OSp(1|2), such that periodicity properties of the solutions of (7) are
described by M .

Supersymmetric discrete Schrödinger equations with fixed monodromy matrix

M =




−1 0 0

0 −1 0

0 0 1


 (8)

were considered in [15]. This is an algebraic supervariety of dimension n|(n + 1)
which is a version of super moduli space M0,n, see [20]. The notion of superfrieze
allows one to define special coordinates on this supervariety.

5.2. The definition of a superfrieze and the corresponding superalgebra.
Similarly to the case of classical Coxeter’s friezes, a superfrieze is a horizontally-
infinite array bounded by rows of 0’s and 1’s. Even and odd elements alternate and
form “elementary diamonds”; there are twice more odd elements.
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Definition 5.1. A superfrieze, or a supersymmetric frieze pattern, is the following
array

. . . 0 0 0

. . . 0 0 0 0 0 . . .

1 1 1 . . .

ϕ0,0 ϕ 1
2 ,

1
2

ϕ1,1 ϕ 3
2 ,

3
2

ϕ2,2 . . .

f0,0 f1,1 f2,2

ϕ− 1
2 ,

1
2

ϕ0,1 ϕ 1
2 ,

3
2

ϕ1,2 ϕ 3
2 ,

5
2

. . .

f−1,0 f0,1 f1,2

. .
.

. .
. . . .

. . .
. . .

. . .

f2−m,1 f0,m−1 f1,m

. . . ϕ 3
2−m, 32

ϕ2−m,2 . . . ϕ0,m ϕ 1
2 ,m+ 1

2
ϕ1,m+1

1 1 1

. . . 0 0 0 0 0 0

. . . 0 0 0 . . .

where fi,j ∈ R0 and ϕi,j ∈ R1, and where every elementary diamond

B

Ξ Ψ

A D

Φ Σ

C

satisfies the following conditions:

AD −BC = 1 + ΣΞ,

BΦ−AΨ = Ξ,

BΣ−DΞ = Ψ,

(9)

that we call the frieze rule.
The integer m, i.e., the number of even rows between the rows of 1’s is called the

width of the superfrieze.

The last two equations of (9) are equivalent to

AΣ− CΞ = Φ, DΦ− CΨ = Σ.

Note also that these equations also imply ΞΣ = ΦΨ, so that the first equation can
also be written as follows: AD −BC = 1− ΦΨ.
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One can associate an elementary diamond with every element of OSp(1|2) using
the formula




a b γ

c d δ

α β e


 ←→

−a

γ α

b −c

−β δ

d

so that the relations (3) and (9) coincide.
Consider also the configuration

Ψ̃ Ξ̃

B

Φ̃ Ξ Ψ Σ̃

A D

Φ Σ

C

The frieze rule (9) then implies

B (Φ− Φ̃) = A (Ψ− Ψ̃), B (Σ− Σ̃) = D (Ξ− Ξ̃).

Definition 5.2. The supercommutative superalgebra generated by all the entries of
a superfrieze will be called the algebra of a superfrieze.

5.3. Examples: superfriezes of width 1 and 2. The most general superfrieze
of width m = 1 is of the following form:

0 0 0 0

0 0 0 0 0 0 0 0

1 1 1 1 1

ξ ξ ξ′ ξ′ ξ − xη ξ − xη η η

x x′ x x′

ξ − xη xη − ξ η −η −ξ ξ −ξ′ ξ′

1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0

where

x′ =
2

x
+

ηξ

x
, ξ′ = η − 2ξ

x
.

One can chose local coordinates (x, ξ, η) to parametrize the supervariety of super-
friezes.
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The next example is a superanalog of so-called Gauss’ “Pentagramma mirificum:”

0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0

. . . 1 1 1 1 1

ξ∗ ξ ξ ξ′ ξ′ 1○ 1○ ζ∗ ζ∗

y′ x x′ x′′ y

−η′ η∗ 2○ η 2○′ η′ η∗ −η η

x′′ y y′ x x′

1○ − 1○ ζ∗ −ζ∗ ζ −ζ ζ ′ −ζ ′ −ξ′

1 1 1 1 1 . . .

0 0 0 0 0 0 0 0 0

. . . 0 0 0 0 0

The frieze is defined by the initial values (x, y, ξ, η, ζ). The next values are easily
calculated using the frieze rule

x′ =
1 + y

x
+

ηξ

x
, y′ =

1 + x+ y

xy
+

ηξ

xy
+

ζη

y
.

One then calculates

x′′ =
1 + y′

x′ +
η′ξ′

x′ =
1 + x

y
+

ηξ

y
+ ξζ +

x

y
ζη.

All these Laurent polynomials can be obtained as mutations of the initial coordi-
nates (x, y, ξ, η, ζ) and the initial quiver

ξ��

��

η

��

�� ζ

��
x �� y

For the odd coordinates, one has

ξ′ = η − x′ξ = η − 1 + y

x
ξ, η′ = ζ − y′ξ = ζ − 1 + x+ y

xy
ξ − ξηζ

y
, ζ ′ = −ξ

On the other side of the initial diagonal,

ζ∗ = η − yζ, η∗ = ξ − xζ, ξ∗ = −ζ.

Furthermore,

1○ =
(1 + x)

y
η − ξ − ζ, 2○ = xη − yξ,

and finally

2○′ = x′ζ − y′η =
1 + y

x
ζ − 1 + x+ y

xy
η − ξηζ

x
.
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5.4. Properties of superfriezes. The main properties of superfriezes are similar
to those of the classical Coxeter friezes, see [15].

(a) The property of glide symmetry reads

fi,j = fj−m−1,i−2, ϕi,j = ϕj−m− 3
2 ,i−

3
2
, ϕi+ 1

2 ,j+
1
2
= −ϕj−m−1,i−1.

This implies, in particular, the following (anti)periodicity:

ϕi+n,j+n = −ϕi,j , fi+n,j+n = fi,j ,

for all i, j ∈ Z.
(b) The Laurent phenomenon: entries of a superfrieze are Laurent polynomials

in the entries from any of its diagonals.
(c) The collection of all superfriezes of width n is an algebraic supervariety of

superdimension n|(n+1). It is isomorphic to the supervariety of Schrödinger
equations (7) with monodromy condition (8). The relation to difference
equations is as follows. The entries of the South-East diagonal of every
superfrieze are solutions to the discrete Schrödinger equation (7).

5.5. Superfriezes viewed as cluster superalgebras. Let us now describe the
cluster structure of the supervariety of superfriezes. Consider the following quiver
with m even and m+ 1 odd vertices:

ξ1 ��

��

ξ2

��

��

��

ξ3

��

�� · · · ξm ξm+1

��
x1

�� x2
�� x3 · · · xm

��

(10)
and the corresponding algebra.

Theorem 3. The algebra of a superfrieze of width m is a subalgebra of the algebra
corresponding to the above quiver.

Proof. Choose the following entries of the superfrieze on parallel diagonals:

1 1

∗ ξ1 ∗ ξ′1

x1 x′
1

∗ ξ2 ∗ ξ′2

x2
. . . x′

2

. . .

. . . ξm
. . . ξ′m

xm x′
m

∗ ξm+1 ∗ ξ′m+1

1 1

The entries {x1, . . . , xm, ξ1, . . . , ξm+1} determine all other entries of the super-
frieze, and can be taken for initial coordinates. Our goal is to calculate the entries
{x′

1, . . . , x
′
m, ξ′1, . . . , ξ

′
m+1} and show that these entries also belong to the algebra

A(Q̃) of the quiver (10).
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Using the frieze rule (9), one obtains the following recurrent formula:

xkx
′
k = 1 + xk+1x

′
k−1 + ξk+1ξk. (11)

On the other hand, let us perform consecutive mutations at vertices x1, and then at
x2, x3 . . . , xm of the quiver (10). After the (k− 1)st step, one obtains the following
quiver:

ξ1

		

ξ2��

		

ξ3��

��

· · · ξk��

��

ξk+1

��

�� · · ·

x′
1

�� x′
2 · · · x′

k−1 xk

��

���� xk+1 · · ·

Therefore, the mutation at xk is allowed, and the exchange relation for xk is exactly
the same as the recurrent formula (11) for x′

k. We have proved that the values of
the entries {x′

1, . . . , x
′
m} in the frieze coincide with the coordinates {x′

1, . . . , x
′
m} of

the quiver (10) after the iteration of even mutations.
Note that afterm consecutive mutations at even vertices, the quiver (10) becomes

as follows:

ξ1

		

ξ2��

		

ξ3��

		��

ξ3��

��

· · · ξm�� ξm+1��

��
x′
1

�� x′
2

�� x′
3 · · · x′

m−1
�� x′

m

		

Consider now the odd entries of the superfrieze {ξ′1, . . . , ξ′m+1}, and let us proceed
by induction.

For the first of the odd entries, one has

ξ′1 = ξ2 − x′
1ξ1.

Indeed, the frieze rule implies that the entry between ξ1 and ξ′1 (previously denoted
by ∗) is also equal to ξ′1, i.e., we have the following fragment of the superfrieze:

1 1

ξ1 ξ′1 ξ′1

x1 x′
1

∗ ξ2

The above expression for ξ′1 is just the third equality in (9). It follows that ξ′1
belongs to the algebra A(Q̃).

It was proved in [15] that the entries on the diagonals of the superfrieze satisfy
recurrence equations with coefficients standing in the first two rows. In particu-
lar, [15, Lemma 2.5.3] implies the following recurrence for the odd entries of the
superfrieze:

ξ′k − ξ′k−1 = −ξ1x
′
k, for all k.

One concludes, by induction on k, that all of the entries {ξ′1, . . . , ξ′m+1} belong to

the algebra A(Q̃). Again, using the induction one arrives at the same conclusion
for all parallel diagonals.

Finally, one proves in a similar way that the entries in-between, denoted by ∗,
also belong to the algebra A(Q̃). �
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