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Abstract The space Pold � CPd of all complex-valued binary forms of degree d
(considered up to a constant factor) has a standard stratification, each stratum of which
contains all forms whose set of multiplicities of their distinct roots is given by a fixed
partition μ � d. For each such stratum Sμ, we introduce its secant degeneracy index
�μ which is the minimal number of projectively dependent pairwise distinct points
on Sμ, i.e., points whose projective span has dimension smaller than �μ − 1. In what
follows, we discuss the secant degeneracy index �μ and the secant degeneracy index
�μ̄ of the closure S̄μ.
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1 Introduction

Below by a form we will always mean a binary form. The standard stratification of the
d-dimensional projective space Pold of all complex-valued binary forms of degree d
(considered up to a non-vanishing constant factor) according to the multiplicities of
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their distinct roots is a well-known and widely used construction in mathematics (see
e.g. Arnol’d 2014; Vassiliev 1992; Khesin and Shapiro 1992). Its strata denoted by Sμ

are enumerated by partitions μ � d. In particular, cohomology of Sμ with different
coefficients appears in many topological problems and was intensively studied over
the years, see e.g. Vassiliev (1992) and references therein.

Definition 1 Given a positive-dimensional quasi-projective variety V ⊂ CPd , we
define its secant degeneracy index �V as the minimal positive integer � such that there
exist � distinct points on V which are projectively dependent, i.e. whose projective
span has dimension at most �−2. (Observe that singular points of V are not considered
as collapsing distinct points. For example, according to our definition, a point of self-
intersection of V is still considered a just one point of V ).

Remark 1 The secant degeneracy index in much more general context has been intro-
duced by e.g. Beltrametti and Sommese (1995)while discussing the �-ampleness of the
linear system of hyperplane sections for different �. This notion was further developed
in a recent paper (Chiantini and Ciliberto 2010). (We have to mention that unlike many
modern authors, we only consider reduced finite subschemes of V ). As was pointed
out to us by the anonymous referee, the secant degeneracy index has already appeared
in a number of topics in algebraic geometry and, in particular, is closely connected
with the identifiability of tensors and higher order normality. For example, a related
question about the uniqueness of representation of generic forms of subgeneric rank
as sums of powers of linear forms has been studied in a recent article (Chiantini et al.
2015).

Remark 2 Obviously, 3 ≤ �V ≤ d + 2. The upper bound is attained for a rational
normal curve inCPd . On the other hand, if V containsCP1 \{finite set}, then �V = 3.
We owe to the anonymous referee the important observation that the above trivial upper
bound �V = d +2 is attained only on (Zariski open subsets of) rational normal curves
and this bound can be improved as follows. Namely, if c := codim V = d − dim V ,
then �V ≤ c + 2 unless V is a variety of minimal degree which in our notation means
that deg V = c + 1. By the classical results of Del Pezzo and Bertini, every positive-
dimensional variety of minimal degree contains a line which implies that �V = 3,
unless V is a rational normal curve or a Veronese surface, see e.g. Theorem 1 of
Eisenbud and Harris (1987). For the Veronese surface (which is a surface in CP5),
�V = 4 = c + 1. To see that, one can take 4 points on a conic. Thus, one concludes
that �V ≤ c + 2 unless V is a Zariski open subset of a rational normal curve in which
case �V = c + 3 = d + 2.

Observe that if a quasi-projective variety V is contained in quasi-projective W , then
�V ≥ �W . For a positive-dimensional quasi-projective variety V ⊂ CPd , denote by
�V̄ the secant degeneracy index of the closure V̄ ⊂ CPd . Obviously, �V̄ ≤ �V . The
latter inequality can be strict as shown by Example 1 below.

The principal question considered in the present paper is as follows.

Problem 1 For a given partition μ � d, calculate/estimate its secant degeneracy
indices �μ := �Sμ and �μ̄ := �S̄μ

.
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Example 1 For μ(d) = (2d + 1, d, d, d, d) and μ′(d) = (2d + 1, 2d, 2d), �μ̄(d) =
�μ′(d) = 3, but �μ(d) grows to infinity when d → ∞. (This result follows from
Theorem 1 below.)

For a given partition μ, the equation

f1 + f2 + · · · + f�μ = 0, (1)

is called theminimal secant degeneracy relation for Sμ. A solution of the latter equation
is a collection of pairwise non-proportional forms from Sμ satisfying (1).

Analogously, for a given partition μ, the equation

f1 + f2 + · · · + f�μ̄
= 0, (2)

is called the minimal secant degeneracy relation for S̄μ. A solution of the latter
equation is a collection of pairwise non-proportional forms from S̄μ satisfying (2).

Most of our results deal with the secant degeneracy index �μ. However, the second
part of Theorem 1 provides a non-trivial lower bound for �μ̄ generalizing a similar
result of a well-known paper Newman and Slater (1979) from 1979 where the special
case of partitions with equal parts was considered.

The first result of this note is as follows. Recall the notion of the refinement partial
order “ 
′′ on the set of all partitions of a given positive integer d. Namely, μ′ 
 μ in
this order ifμ′ is obtained fromμ by merging of some parts ofμ. The unique minimal
element of this partial order is (1)d , while its unique maximal element is (d).

For a partition μ = (μ1 ≥ μ2 ≥ · · · ≥ μr ), define its jump multiset Jμ as the
multiset of all positive numbers in the set {μ1 − μ2, . . . , μr−1 − μr , μr }. We denote
by hμ the minimal (positive) jump of μ, i.e. the minimal element of Jμ, and by hμ̄ the
minimal jump of all partitions μ′ � μ.

Theorem 1 For any μ = (μ1 ≥ μ2 ≥ · · · ≥ μr ),

(i) �μ >

√
hμ + 1

4
+ 3

2
,

and

(ii) �μ̄ >

√
hμ̄ + 1

4
+ 3

2
.

To formulate further results, we divide the set of all partitions into two natural
disjoint subclasses as follows.
Notation. For a given partition μ = (μ1 ≥ μ2 ≥ · · · ≥ μr ) and a non-negative
integer t , define the partition μ〈t〉 as

μ〈t〉 := (μ1 + t ≥ μ2 + t ≥ · · · ≥ μr + t).

Definition 2 We say that a partition μ has a growing secant degeneracy index if
limt→∞ �μ〈t〉 = +∞ and we say that μ has a stabilising secant degeneracy index
otherwise.

123



502 G. Nenashev et al.

We are able to characterize these two classes in the following terms.

Definition 3 Given a partition μ and a positive integer m, a solution of

f1 + f2 + · · · + fm = 0, (3)

with pairwise non-proportional fi ∈ Sμ is called a common radical solution if all fi ’s
have the same radical, i.e. the same set of distinct linear factors (considered up to a
constant factor). We call a partition μ such that there exists m and a common radical
solution of (3) a partition admitting a common radical solution.

The following proposition is straightforward.

Proposition 2 A partition μ = (μ1 ≥ μ2 ≥ · · · ≥ μr ) = (im1
1 , im2

2 , . . . , ims
s ) with

distinct i j ’s has a stabilising secant degeneracy index if and only if, for some positive
integer m, there exists a common radical solution of (3). A partition μ as above has
a growing secant degeneracy index if and only if the linear span of the Symr -orbit of
any form f ∈ Sμ has the dimension equal to the multinomial coefficient r !

m1!m2!...ms ! .
(Here the symmetric group Symr acts on any f ∈ Sμ by permuting all its r distinct
roots.)

At the moment we do not have a purely combinatorial description of partitions
admitting a common radical solution. However we were able to study a somewhat
stronger property.

Definition 4 We say that a partition μ = (μ1 ≥ μ2 ≥ · · · ≥ μr ) admits a strongly
common radical solution if for some integer m, a common radical solution exists for
any choice of r distinct roots.

Theorem 3 A partition μ = (μ1 ≥ μ2 ≥ · · · ≥ μr ) admits a strongly common
radical solution if there exists a sequence {a1, . . . , ar } of positive integers such the
number of different permutations π of μ such that (π ◦ μ)i ≥ ai is at least |μ| −∑r

i=1 ai + 2, where (π ◦ μ)i is the i-th entry of the partition (π ◦ μ).

In fact, we strongly suspect that the converse to Theorem 3 holds as well.

Conjecture 1 A necessary and sufficient condition for a partition μ = (μ1 ≥ μ2 ≥
· · · ≥ μr ) to admit a strongly common radical solution is given by the existence of a
sequence {a1, . . . , ar } of positive integers such the number of different permutations
π of μ such that (π ◦ μ)i ≥ ai is at least |μ| − ∑r

i=1 ai + 2, where (π ◦ μ)i is the
i-th entry of the partition (π ◦ μ).

At the moment we can settle Conjecture 1 for a large class of partitions, but not for
all partitions.

The structure of the paper is as follows. In Sect. 2, we formulate several general
results about �μ, the most interesting of them being an upper bound of �μ in terms
of the minimal jump. In Sect. 3, we discuss common radical solutions of (1) and in
Sect. 4, we present a number of open problems.
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2 General Results on the Secant Degeneracy Index

Given a partition μ = (μ1 ≥ μ2 ≥ · · · ≥ μr ), we call ν = (μi1 ≥ μi2 ≥ · · · ≥ μis )

where 1 ≤ i1 < i2 < · · · < is ≤ r , a subpartition of μ.

Proposition 4 For a partition μ = (μ1 ≥ μ2 ≥ · · · ≥ μr ) and any subpartition ν of
μ, the inequality

�μ ≤ �ν,

holds. In particular, �μ ≤ μr + 2.

Proof Given a subpartition ν = (μi1 ≥ μi2 ≥ · · · ≥ μis ) of a partition μ = (μ1 ≥
μ2 ≥ · · · ≥ μr ), let

f1 + f2 + · · · + f�ν = 0,

be a linear dependence of pairwise non-proportional binary forms from Sν realizing
its secant degeneracy index. Take the partition μ̂ = μ\ν = (μ̂1 ≥ μ̂2 ≥ · · · ≥ μ̂r−s).
Multiplying the latter equality by

∏r−s
j=1(x − a j y)μ̂ j , where a j are generic complex

numbers, we get a linear dependence between polynomials in Sμ. The inequality
�μ ≤ μr + 2 is a special case of the general inequality, if one chooses ν = (μr ).
Observe that for the partition (d) � d, �(d) = d + 2, since the set of binary forms of
degree d with a root of multiplicity d is a rational normal curve in Pold � CPd . ��
Example 2 The latter upper bound �μ ≤ μr + 2 is sharp in case of any partition with
μr = 1, but not in general. Namely, already for μ = (22) � 4, �μ = 3 < 4 = μ2 + 2.
For μ = (32) � 6, �μ = 4 < 5; μ = (42) � 8, �μ = 4 < 6, see Reznick (1999).

Before formulating general results about �μ, let us present several concrete classes
of μ and some information about the corresponding �μ.

Proposition 5 Let μ = (μ1 ≥ μ2 ≥ · · · ≥ μr ) be a partition with two different
indices i1 and i2 such that μi1 − μi1+1 = μi2 − μi2+1 = 1. Then, �μ ≤ 4.

Proof Without loss of generality, assume that i1 < i2, and consider two different
cases.

Case 1. i2 = i1+1.Take a subpartition ν = (μi1 , μi1+1, μi1+2) = (μi1+2+2, μi1+2+
1, μi1+2) and set k = μi1+2. We know that �μ ≤ �ν . So it is enough to prove that
�ν ≤ 4.Take three distinct complexnumbers p, q and r , and consider four polynomials

g1 = (x − p)k+2(x − q)k+1(x − r)k, g2 = (x − p)k+2(x − r)k+1(x − q)k,

g3 = (x − q)k+2(x − p)k+1(x − r)k, g4 = (x − r)k+2(x − p)k+1(x − q)k .

A linear combination ag1 + bg2 + cg3 + dg4 is given by

Q(x)(a(x − p)(x − q) + b(x − p)(x − r) + c(x − q)2 + d(x − r)2),
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where Q(x) = (x− p)k+1(x−q)k(x−r)k . Polynomials (x− p)(x−q), (x− p)(x−r),
(x − q)2 and (x − r)2 are linearly dependent. Thus there exist a, b, c, d such that
ag1 + bg2 + cg3 + dg4 = 0. Hence �ν ≤ 4.

Case 2. i2 > i1 + 1. Take a subpartition ν = (μi1 , μi1+1, μi2 , μi2+1) = (μi1+1 +
1, μi1+1, μi2+1 + 1, μi2+1); set k1 = μi1+1 and k2 = μi2+1. We know that �μ ≤ �ν .
So it is enough to prove that �ν ≤ 4. Take four distinct complex numbers p, q, r and
t , and consider four polynomials

g1 = (x − p)k1+1(x − q)k−1(x − r)k2+1(x − s)k2 ,

g2 = (x − q)k1+1(x − p)k−1(x − r)k2+1(x − s)k2 ,

g3 = (x − p)k1+1(x − q)k−1(x − s)k2+1(x − r)k2 ,

g4 = (x − q)k1+1(x − p)k−1(x − s)k2+1(x − r)k2 .

A linear combination ag1 + bg2 + cg3 + dg4 is given by

R(x)(a(x − p)(x − r) + b(x − q)(x − r) + c(x − p)(x − s) + d(x − q)(x − s)),

where R(x) = (x − p)k1(x − q)k1(x − r)k2(x − s)k2 . Polynomials (x − p)(x − r),
(x − q)(x − r), (x − p)(x − s) and (x − q)(x − s) are linearly dependent. Thus there
exist a, b, c, d such that ag1 + bg2 + cg3 + dg4 = 0, and hence �ν ≤ 4. ��
Definition 5 By the radical of a given binary form we mean the binary form obtained
as the product of all distinct linear factors of the original form.

Proposition 6 For any partition μ = (μ1 ≥ μ2 ≥ · · · ≥ μr ) and given an arbitrary
positive integer i , consider the partition μ′ = (μ1 + i ≥ μ2 + i ≥ · · · ≥ μr + i ≥
i, i, . . . , i), where the entry i is repeated r(�μ − 1) times at the end of μ′. Then,
�μ′ ≤ �μ.

Proof Let f1, . . . , f�μ be a solution of (1). Consider the radical g of the polynomial
f1 f2 . . . f�μ . Since every form f j has exactly r distinct roots, the degree of g is less
than r�μ.

Construct g′ as the product of g by r�μ − deg(g) new distinct linear forms, and set
f ′

j = f j · (g′)i , for j = 1, . . . , �μ. It is easy to see that each f ′
j has the root partition

given by μ′. Furthermore, one has

f ′
1 + · · · + f ′

�μ
= ( f1 + · · · + f�μ) · (g′)i = 0,

hence, �μ′ ≤ �μ. ��
Corollary 1 For any partition μ containing the subpartition ν = (t + 1, t, t), where
t is a positive integer, the secant degeneracy index �μ equals 3. More generally, for
any positive integer t , and any partition μ containing the subpartition ν = (t +
i, t, t, . . . , t︸ ︷︷ ︸

i+1

), the secant degeneracy index �μ is at most i + 2.
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We finish this section with the proof of Theorem 1.

Proof Both parts of Theorem 1 are settled in a similar way. Namely, given μ, let
{ f1, . . . , f�} be a collection of forms solving either (1) or (2). (In the first case � = �μ

and in the second case � = �μ̄.) Assume that { f1, . . . , f�} gives a counterexample to
the statement. Denote by g the GCD of { f1, . . . , f�} and consider the relation

f1
g

+ · · · + f�
g

= 0.

In case (i) of Theorem 1, for any i , every root of the polynomial fi
g has multiplicity

at least hμ, because this multiplicity equals μk − μl for some k ≤ l. Observe that, for
all k ≤ l, μk − μl is either 0 or is greater than or equal to hμ.

In case (ii) of Theorem 1, for any i , every root of the polynomial fi
g has multiplicity

at least hμ̄, because this multiplicity equals
∑

k∈A μk − ∑
l∈B μl , where A and B are

two subsets of {1, . . . , r}. Observe that, for all pairs (A′, B ′) such that A′ ∩ B ′ = ∅,
| ∑k∈A′ μk − ∑

l∈B′ μl | is either 0 or is greater than or equal to hμ̄.
The rest of the proof is the same in both cases. In what follows, h stands for hμ in

case (i) and for hμ̄ in case (ii). Consider the sequence of Wronskians

wi = W

(
f1
g

, . . . ,
fi−1

g
,

fi+1

g
, . . . ,

f�
g

)
, i = 1, . . . , �.

All these Wronskians are proportional to each other due to the latter relation.
Let α be a root of some fi . There exists an index s such that fs

g is not divisible by
(x − α), since otherwise g is not the GCD.

For a given t, consider the multiplicity of the root ofwt at α. It satisfies the inequal-
ity:

ordα(wt ) ≥
∑ (

ordα

(
f j

g

))
− (� − 2)#

{
i : (x − α)| fi

g

}
,

because any column of the Wronski matrix corresponding to (x − α)| f j
g is divisible

by (x − α)
ordα

( f j
g

)
−�+2

.
Hence,

degw1 ≥
�∑

i=1

(
deg

(
fi

g

)
− (� − 2)#roots

(
fi

g

))

= �(|μ| − deg g) − (� − 2)
�∑

i=1

#roots

(
fi

g

)
.

On the other hand,

degw1 ≤ (� − 1)

(
deg

(
fi

g

)
− � + 2

)
= (� − 1)(|μ| − deg g) − (� − 1)(� − 2).
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We obtain

(� − 1)(|μ| − deg g) − (� − 1)(� − 2) ≥ �(|μ| − deg g) − (� − 2)
�∑

i=1

#roots

(
fi

g

)
,

i.e.,

(� − 2)
�∑

i=1

#roots

(
fi

g

)
− (� − 1)(� − 2) ≥ |μ| − deg g.

The number #roots

(
fi
g

)
of distinct roots is at most |μ|−deg g

h , because each root has

multiplicity at least h. Thus

(� − 2)(� − 1)
|μ| − deg g

hμ

− (� − 1)(� − 2) ≥ |μ| − deg g.

Hence, (� − 2)(� − 1) > h. ��

3 Partitions with Growing and Stabilising Secant Degeneracy Index

Theorem 7 If μ = (μ1 ≥ μ2 ≥ · · · ≥ μr ) satisfies the inequality

m ≤
√

μr

r − 1
+ 1,

then any solution of (3) is a common radical solution.

Proof Assume the opposite. Let { f1, . . . , fm} be a solution of (1) which is not a
common radical solution. Let g be the GCD of { f1, . . . , fm}.

For the term fi = ci (x − ai,1)
μ1 · · · (x − ai,r )

μr , define

gi := (x − ai,1)
μ1−m+2 · · · (x − ai,r )

μr −m+2.

Observe that gi is a polynomial, because any root of fi hasmultiplicity at leastμr > m.
Consider the sequence of Wronskians

wi = W ( f1, . . . , fi−1, fi+1, · · · , fm), i = 1, . . . , m.

They are proportional to each other, because f1+ . . .+ fm = 0. Notice that, for i �= t,
the column in the Wronski matrix for wt corresponding to fi is divisible by gi . Hence
wt is divisible by

∏m
i=1 gi/gt .

Since { f1, . . . , fm} is not a common radical solution, there exists α ∈ C, such that
α is a root of f p but is not a root of fq for some p �= q.

Since the Wronskians wp and wq are proportional, they are divisible by

LC M

(∏m
i=1 gi

gp
,

∏m
i=1 gi

gq

)
=

∏m
i=1 gi

GC D(gp, gq)
=

∏m
i=1 gi

gp

gp

GC D(gp, gq)
.

123



Secant Degeneracy Index of The Standard Strata... 507

Then theseWronskians are divisible by
∏m

i=1 gi
gp

(x −α)μr −m+2. Therefore their degrees
are greater than or equal to

(m − 1)(|μ| − r(m − 2)) + μr − m + 2.

On the other hand, the degrees of the Wronskians are at most (m − 1)(|μ| − m + 2).
Thus,

(m − 1)(|μ| − m + 2) ≥ (m − 1)(|μ| − r(m − 2)) + μr − m + 2,

which implies that −(m − 1)(m − 2) ≥ −r(m − 1)(m − 2) + μr − m + 2. After
straightforward simplifications the latter inequality gives

m − 1 ≥
√

μr

r − 1
.

Contradiction. ��
Corollary 2 For μ = (μ1 ≥ μ2 ≥ · · · ≥ μr ), either �μ ≥

√
μr

r−1 + 1 or any solution

of (1) is a common radical solution.

Remark 3 For any partitionμwith a growing secant degeneracy index, i.e., for �μ〈t〉 →
∞, we know that

√
μr + t

r − 1
+ 1 ≤ �μ〈t〉 ≤ μr + t + 2,

see Proposition 4 and Theorem 1.

Now we present a sufficient condition for μ to have a growing secant degeneracy
index.

Corollary 3 Any partition μ = (μ1 ≥ μ2 ≥ · · · ≥ μr ), such that every its jump is at
least (r !)2, has a growing secant degeneracy index.

Proof Assume that �μ〈t〉 does not grow to infinity. Then by Theorem 1,

�μ〈t〉 ≥
√

ht
μ + 1

4
+ 3

2
≥

√
h0

μ + 1

4
+ 3

2
≥

√
(r !)2 + 1

4
+ 3

2
> r !.

However the number of different polynomials (up to a constant factor) with fixed r
roots of multiplicities μ〈t〉 is at most r !. Hence no common radical solution can exist.
Contradiction. ��

We continue with the proof of Theorem 3.
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Proof Let f = (x−c1y)μ1 ·(x−c2y)μ2 ·. . .·(x−cr y)μr be any form from Sμ. Consider
the set D(a1,...,ar ) of permutations of the multiset τμ satisfying the asumptions (i) and
(ii) of Theorem 3. For any π ∈ D(a1,...,ar ), define fπ as the form from the Symr -orbit
of f corresponding to π . Any such form fπ is divisible by g = (x − c1y)a1 · (x −
c2y)a2 · . . . · (x − cr y)ar , because π satisfies the above assumptions.

For any π ∈ D(a1,...,ar ), define f̂π := fπ
g ∈ S|μ|−∑r

i=1 ai
. If |D(a1,...,ar )| ≥ |μ| −∑r

i=1 ai +2, then the forms f̂π are linearly dependent. Therefore, the forms fπ , where
π runs over D(a1,...,ar ), are also linearly dependent. ��

The next proposition shows that if there are many jumps of small sizes, then the
secant degeneracy index is bounded.

Proposition 8 Let d be a positive integer greater than 45. For a partition μ = (μ1 ≥
μ2 ≥ · · · ≥ μr ), if the number of jumps of sizes less than or equal to d is at least
2(log d + log log d + 2), then �μ ≤ d(log d + log log d) + 2. (Here by log we mean
the binary logarithm, i.e. the logarithm with base 2.)

Proof Assume that there are at least 2(log d + log log d) + 2) such jumps. Consider
every second such jump; the number of these jumps is at least t = [log d+log log d+2].
Assume that they occupy positions j1 < . . . < jt , i.e. (μ ji −μ ji +1) ≤ d, for i ∈ [1, t].
Furthermore ji + 1 < ji+1, because there is a nontrivial jump between them.

Consider the set of permutations of μ = {μ1, . . . , μr } such that:

• i /∈ { j1, . . . , jt }, πi ≥ μi ;
• i ∈ { j1, . . . , jt }, πi ≥ μi+1.

The number of such permutations is 2t . By Theorem 3, there is a solution of the
size

∑t
i=1(μ ji − μ ji +1) + 2 ≤ d · t + 2, because

d · t + 2 ≤ d · (log d + log log d + 2) + 2 ≤ d · (log d + log log d + 3)

≤ d · 2 · log d ≤ 2log d+log log d+1 ≤ 2t

which finishes the proof. ��

3.1 Examples

It is rather obvious that all partitions with two parts have growing secant degeneracy
index. Indeed, if there exists a common radical solution of (3), then its length m is
smaller than or equal to r ! which in case of two parts equals 2.

Proposition 9 (i) For partitions μ = (p, 2), one has that �μ = 3 when p = 2, and
�μ = 4 when p > 2.

(ii) For partitions μ = (p, 3), one has that �μ = 4 when p = 3, 4, 5 and �μ = 5
when p > 7. Cases μ = (6, 3) and μ = (7, 3) are still open.

Proof In case μ = (3, 4) we found an example:

y3(x + y)4 − y3x4 = L(x + ay)3y4 + (1 − L)(x + by)3y4,
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where a = 3 − √
3, b = 3 + √

3 and L = 9−5
√
3

18 ;
In case μ = (5, 3) we found an example:

f1 + f2 − f3 − f4 = 0,

where f1(x) = (x + c51 y)3(x + c−3
1 y)5; f2(x) = (x + c52 y)3(x + c−3

2 y)5; f3(x) =
(x + c−5

1 y)3(x + c31 y)5; f4(x) = (x + c−5
2 y)3(x + c32 y)5. Here

c1 = −c2 =
(
1 + i

√
35

6

) 1
4

.

��
Using computer algebra packages we were able to prove the following statement.

Proposition 10 For a partition μ with three parts a ≤ b ≤ c, the following three
conditions are equivalent:

(i) μ has a stabilising secant degeneracy index;
(ii) μ has a strongly stabilising secant degeneracy index;

(iii) the triple a ≤ b ≤ c belongs to one of the following three types: a = b, c = a+1;
b = a + 1, c = a + 2; b = a + 1, c = a + 3.

Proof (i) ⇔ (ii). Note that any triple of distinct points in CP1 can be transformed
into any other triple of distinct points in CP1 by a Möbius transformation. Therefore,
if a stabilising solution exists for some choice of three distinct roots, it exists for any
other triple of distinct roots.

(i i) ⇔ (iii). Consider the S3-orbit of the function f1(t) = (t−x1)a(t−x2)b(t−x3)c

containing 6 pairwise distinct functions f j , j = 1, . . . , 6 in case a < b < c and 3 such
functions if any two of them coincide. Denote by W the corresponding Wronskian
of f1, . . . , f6 (divided by the trivial factor which is a polynomial of degree 6 in t).
If μ = (a, b, c) has strongly stabilising secant degeneracy index, then W ≡ 0 for
all t, x1, x2, x3. In particular, all coefficients of W (t) should vanish identically. Using
Maple we able to find all possible triples (a, b, c) for which all coefficients of W (t)
are identically 0. The solutions are presented in (iii) above.

��

4 Final Remarks and Problems

1. Conjecture 1 from the introduction is equivalent to the claim that for an appropriate
choice of an r -tuple of distinct complex numbers, a certain matrix whose entries
are polynomials in these numbers has full rank. In other words, that somemaximal
minor of this matrix is a non-trivial polynomial in the latter r -tuple which is highly
plausible. Unfortunately, the structure of the matrix is rather involved and so far
we are only able to handle a large number of special cases.
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2. Conditions formulated in Proposition 2 are difficult to check which motivates the
following questions.

Problem 2 Give necessary and sufficient combinatorial conditions for a partition μ

to have a growing/stabilizing secant degeneracy index.

Problem 3 For any partition μ with a growing secant degeneracy index, what is the
leading term of the asymptotic of �μ〈t〉 , when t → +∞? Does it depend on a particular
choice of μ?

3. The next statement is obvious.

Proposition 11 The number �μ̄ is monotone non-decreasing in the refinement partial
order. In other words, if μ′ 
 μ′′, then �μ̄′ ≥ �μ̄′′ .

Based on a substantial number of calculations, we conjecture the following.

Conjecture 2 For any partition μ � d, there exists μ′ � μ such that �μ̄ = �μ′ .
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