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1. Introduction

Let A be a commutative ring with multiplicative identity, and let S be an A-algebra. 
Recall that S is said to be formally unramified over A if the module of Kähler differentials 
ΩS/A is zero. It is well-known that a finitely generated formally unramified algebra over 
a field k is a finite product of separable field extensions of k [1, Cor 16.16]. Since such 
an algebra is always reduced, this leads to the following natural question:

Question. Under what hypothesis is a formally unramified algebra over a field reduced?
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It is easy to find non-reduced formally unramified algebras over an arbitrary field of 
characteristic p (see Example 2.1). However, the question is subtle when the ground field 
has characteristic zero. For example, Ofer Gabber proposed a construction of a non-
reduced formally unramified algebra over an arbitrary field of characteristic zero, which 
we explain in Theorem 2.2.

The main purpose of this note is to prove that, in spite of Gabber’s example, formally 
unramified extensions of a perfect field are indeed often reduced. For example, we show 
that if A is a local algebra separated in its m-adic topology and formally unramified 
over a perfect field, then A is reduced (Theorem 3.1). As a corollary, we deduce that any 
Noetherian k-algebra formally unramified over a perfect field is reduced (Corollary 3.3), 
a fact we have not been able to find in the literature though we expect it may be known 
to experts. We include an example to show that formally unramified does not imply 
reducedness for Noetherian local k-algebras, however, without the assumption that k is 
perfect (Example 3.2), quite unlike the finite type case.

We also get positive results in the graded case:

Theorem. Let R be an N-graded formally unramified algebra over a perfect field k. If the 
degree zero graded piece of R is Noetherian, then R is reduced.

Note that it is not necessary to assume that the graded ring R is finitely generated 
over R0, nor that k ⊂ R0. We prove this theorem, as well as some variants in which R0
is not assumed to be Noetherian, in Section 3. See Theorem 3.6 and Remarks 3.7, 3.10
and 3.12.

Notations and conventions. Every ring in this paper is assumed commutative and with 
multiplicative identity. Importantly, we do not assume that rings are Noetherian, unless 
we explicitly state so. A triple (R, m, k) represents a (not necessarily Noetherian) local 
ring R, with maximal ideal m and residue field k.

The set of non-negative integers is denoted by N. The symbol p denotes a positive 
prime integer.

The notation ΩS/A denotes the module of Kähler differentials of an A-algebra S, and 
the symbol d denotes the universal derivation S → ΩS/A. We suppress the dependence 
on S and A in the notation for d to make the notation less clumsy, so it is important to 
pay attention to the context (that is, the target module for d) when dealing with several 
algebras or different ground rings. See [3, Tag00RM] for basics on Kähler differentials.
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2. Examples of non-reduced formally unramified algebras

In this section, we discuss examples of non-reduced formally unramified algebras. We 
first recall that it is easy to find such examples in prime characteristic.

Example 2.1. Fix a field k of positive characteristic p. Let k[X] be the polynomial ring 
in one variable over k, and denote by L an algebraic closure of its fraction field. For 
n ∈ N, let X1/pn ∈ L be the pn-th root of X. Consider the k-subalgebra k[X1/p∞ ] of L
generated by the X1/pn as we range over all natural numbers n. Let A be the quotient 
ring k[X1/p∞

]
(X) .

Denote the image of X in A by x. Observe that d(x1/pn) = d((x1/pn+1)p) = 0 for each 
n ∈ N. Since the d(x1/pn) generate ΩA/k as an A-module, we see that ΩA/k is zero. But, 
of course, the algebra A is non-reduced: for example x1/p in A is one of many non-zero 
nilpotent elements.

We now describe an example of Ofer Gabber:

Theorem 2.2. Fix any field k of characteristic zero. There exists a formally unramified 
local k-algebra that is not reduced.

Remark 2.3. Gabber’s example in Theorem 2.2 is necessarily non-Noetherian, as is Ex-
ample 2.1. As we soon prove, Noetherian local formally unramified algebras over a perfect 
field are always reduced; see Corollary 3.3.

Proof of Theorem 2.2. We will construct a direct limit of local k-algebras

(R0, m0, k) ↪→ (R1, m1, k) ↪→ (R2, m2, k) ↪→ . . . (1)

satisfying

(i) k ↪→ R0 is a proper inclusion.
(ii) Each algebra Ri is a finite dimensional local k-algebra, with the natural composition 

k ↪→ Ri � Ri/mi an isomorphism.
(iii) The local k-algebra inclusion Ri ⊆ Ri+1 induces the zero map ΩRi/k → ΩRi+1/k for 

each i ∈ N.

Then to produce the local k-algebra satisfying the conclusion of Theorem 2.2, we take 
the direct limit, setting

R∞ := lim−−→
i∈N

Ri, m∞ := lim−−→
i∈N

mi.

The k-algebra R∞ is a local ring with a non-zero maximal ideal m∞. Since the 
construction of modules of Kahler differentials commutes with taking direct limits 
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[3, Tag 00RM]), we have ΩR∞/k = lim−−→
i∈N

ΩRi/k = 0. Furthermore, because each Ri is finite 

dimensional, we know each mi is nilpotent, and so each element of m∞ is nilpotent. So 
(R∞, m∞, k) serves as an example proving Theorem 2.2.

To construct the sequence (1), we begin by taking R0 to be B as defined in the next 
lemma.

Lemma 2.4. Fix a field k of characteristic zero, and an integer n ≥ 5. Let F =
X2Y 2 + Xn + Y n in the power series ring k[[X, Y ]]. Let B denote the quotient ring 
k[[X, Y ]]/( ∂F

∂X , ∂F
∂Y ). Then,

(i) B is an Artinian local ring; that is, dimk(B) < ∞
(ii) The image f of F in the quotient ring B is not zero but its square is zero.

(iii) The element df is zero in ΩB/k.

Before proving Lemma 2.4, we point out how to use it to construct the sequence (1)
of algebras Ri. Having set R0 = B, we can then inductively produce (Ri, mi, k) from 
(Ri−1, mi−1, k) using Lemma 2.5 below.

Lemma 2.5. Fix a field k of characteristic zero. Let (R, m, k) be any local k-algebra of 
finite dimension over k such that the composite map k ↪→ R → R/m is an isomorphism. 
Then there exists a finite dimensional local k-algebra extension (R, m, k) ↪→ (R̃, m̃, k)
(with k ↪→ R̃ → R̃/m̃ also an isomorphism) such that the induced map ΩR/k → ΩR̃/k is 
the zero map.

Thus Theorem 2.2 is proved as soon as we prove the preceding two lemmas, which we 
now do in turn, using Lemma 2.4 to establish Lemma 2.5.

Proof of Lemma 2.4. For (i), we use the fact that k[[X, Y ]] is a two-dimensional UFD 
[2]. Since ∂F

∂X , ∂F
∂Y have no common factors, they form a regular sequence in the power 

series ring k[[X, Y ]]. In particular, the ideal ( ∂F
∂X , ∂F

∂Y ) is primary to the maximal ideal, 
so that the quotient B = k[[X, Y ]]/( ∂F

∂X , ∂F
∂Y ) is finite dimensional over k.

For (ii), we introduce some notation. Set F1 = 2Y 2 + nXn−2 and F2 = 2X2 + nY n−2, 
so that ∂F

∂X = XF1 and ∂F
∂Y = Y F2. We also use lower case letters to indicate images in 

the quotient B = k[[X, Y ]]/( ∂F
∂X , ∂F

∂Y ).
Note that

F − 1
n

(X ∂F

∂X
+ Y

∂F

∂Y
) = (1 − 4

n
)X2Y 2, (2)

so that f = (1 − 4
n )(xy)2 in B. To see that this element is non-zero, we argue by 

contradiction. Lifting to the power series ring, the statement that f = 0 would mean 
that
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X2Y 2 = G
∂F

∂X
+ H

∂F

∂Y
= GXF1 + HY F2

for some power series G, H. Using the unique factorization property, we see that G = Y G1
and H = XH1 for some power series G1, H1. So, we get XY = G1F1 +H1F2. Comparing 
order two terms on both sides of the last equality, we get a contradiction. So f �= 0 in 
B.

To show f2 = 0 in B, we again invoke Equation (2), observing that it is enough to 
show that (x2y2)2 = 0 in B. In fact, we’ll show that xy3 = 0 in B. Computing in the 
power series ring, we have

F1 − n

2 Xn−4(F2) = Y 2(2 − n2

2 Xn−4Y n−2) ∈ (F1, F2)

and since 2 − n2

2 Xn−4Y n−2 is a unit in k[[X, Y ]], we have Y 2 ∈ (F1, F2). Multiplying by 
XY , we conclude that

XY 3 ∈ (XF1, Y F2) = ( ∂F

∂X
,

∂F

∂Y
),

whence xy3 = 0 in B. In particular, f2 = x4y4 = 0 in B.
(iii) The universal derivation B → ΩB/k sends f to df = ∂F

∂X dx + ∂F
∂Y dy = 0, where 

abusing notation, the notation ∂F
∂X and ∂F

∂Y denotes the images in B. Since these coeffi-
cients are zero in B, we see that df = 0. �
Proof of Lemma 2.5. Fix a finite dimensional algebra (R, m, k) as in the lemma. It suf-
fices to show that, for a given non-zero r ∈ m, we can construct a finite dimensional 
local k-algebra (R′, m′, k) (with composite k ↪→ R′ � R′/m′ an isomorphism) and a 
local k-algebra injection R ↪→ R′ such that the induced map ΩR/k → ΩR′/k sends dr to 
zero. Indeed, first observe that our hypothesis implies that ΩR/k is generated by elements 
r where r ∈ m. So choosing a k-basis e1, e2, . . . , el for m, it is clear that we simply need 
to repeat the construction l times (first for r = e1 and then for r the image of e2 and 
so on), to get (R̃, m̃, k) together with a local k-algebra injection R ↪→ R̃ such that the 
induced map ΩR/k → ΩR̃/k sends each dei to zero. So R̃ can be taken to be the finite 
dimensional local k-algebra guaranteed by the lemma.

So fix non-zero r ∈ m. Let t ∈ N be such that rt = 0 but rt−1 �= 0. Now, for B

as in Lemma 2.4, define Bt to be the tensor product of t − 1 copies of B over k. For 
1 ≤ i ≤ t − 1, let gi = 1 ⊗ . . . ⊗ f ⊗ . . . 1 ∈ Bt (where f is at the i-th spot), and set 

g =
t−1∑
i=1

gi. Define R′ = R ⊗k Bt/(r ⊗ 1 − 1 ⊗ g).

Observe that there is a canonical k-algebra map ι : R → R′, and that R′ is a finite 
dimensional local k-algebra with residue field k. It remains to show that the induced 
map ΩR/k → ΩR′/k sends dr to zero and that ι is injective. To the first end, we invoke 
Lemma 2.4, which tells us that df = 0 in ΩB/k, so that each dgi is zero in ΩBt/k, thus 
dg is zero in ΩBt/k as well. Because g and r get identified in R′, it follows also that the 
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natural image of dr in ΩR′/k is dg = 0 as well. That is, the image of dr under the natural 
map ΩR/k → ΩR′/k induced by ι is zero, as needed.

It remains only to show that ι : R → R′ is injective. For this, observe that in Bt, we 
have that g2

i = 0 for all i, so that gt = 0; however, gt−1 = (t − 1)!f ⊗ f ⊗ . . . ⊗ f is not 
zero. Set At = k[z]/zt. We have k-algebra injections At ↪→ R and At ↪→ Bt sending z
to r and to g respectively, so that we can consider both R and Bt as At-algebras. The 
natural map R ⊗k Bt → R ⊗At

Bt kills r ⊗ 1 − 1 ⊗ g, so it factors through R′. Thus to 
prove the injectivity of ι, it suffices to show that the composite R ι−→ R′ → R ⊗At

Bt

is injective. For this, note that At is a finite dimensional Gorenstein algebra, and hence 
injective as an At module [1, Prop 21.5], which means that the At-module map At ↪→ Bt

splits. Tensoring with R, we see that the composition R → R ⊗At
Bt, and hence ι, splits 

as well. So ι is injective. �
�

3. Reducedness of local and graded unramified algebras

In this section, we establish affirmative answers to Question 1 about the reduced-ness 
of formally unramified algebras. We first point out a straightforward result in the local 
case under suitable finiteness conditions:

Theorem 3.1. Let (R, m, k) be a local algebra over a field L. Assume that

(1) R is m-adically separated, meaning that 
⋂

n∈N
mn = 0; and

(2) The field extension given by the composite L → R → k is separable.1

If ΩR/L = 0, then R is a field.

The separability assumption in Theorem 3.1 is necessary, as the following example 
shows:

Example 3.2. Fix L = Fp(x), the function field in the variable x over Fp and let k =
Fp(x

1
p∞ ) be the perfection of L. We will construct a Noetherian local k-algebra which is 

formally unramified over L but which is not reduced.
For f(x) ∈ L, let f ′(x) denote the derivative of f(x) with respect to x. Viewing L

as a subfield of k, we can also view f ′(x) as an element in k. Set A = k[Z]/(Z2), and 
let z be the image of Z ∈ k[Z] in A. Consider the additive map φ : L → A given by 
φ(f(x)) = f(x) + f ′(x)z. It is not hard to verify that φ is a ring homomorphism, using 
the fact that z2 = 0. View A as an L-algebra using this map (note: we are not using the 

1 Recall that algebraic field extension L ⊆ k is separable if the minimal polynomial of any element of k
over L has distinct roots in L. An arbitrary field extension L ⊆ k is separable if for every sub-extension 
L ⊆ L′ ⊆ k with L′ finitely generated over L, L′ admits a transcendence basis {X1, . . . , Xr} over L, such 
that L(X1, . . . , Xr) ⊆ L′ is a separable algebraic extension.
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“obvious” L structure induced by the inclusions L ⊂ k ⊂ A). Clearly A is a non-reduced 
Noetherian local L-algebra.

We now verify that ΩA/L = 0. For this, it suffices to check that the differential da is 
zero in ΩA/L for each a ∈ A. Since k is perfect, we can write a = gp

1 + gp
2z, for some 

g1, g2 ∈ k. So da = gp
2dz. Now, dz is zero since dz = d((x1/p)p + z) = d(φ(x)).

Before proving Theorem 3.1, we point out some consequences.

Corollary 3.3. Fix a perfect2 ground field k.

(i) Let A be a k-algebra with the property that the localization at every maximal ideal 
is Noetherian. If ΩA/k = 0, then A is reduced.

(ii) Let A be a Noetherian k-algebra. If ΩA/k = 0, then A is finite product of perfect 
fields.

Proof of Corollary 3.3. For (i), observe that it is enough to show that the localization 
Am is reduced where m is an arbitrary maximal ideal of A. Since the formation of module 
of Kähler differentials commutes with localization [1, Prop 16.9], we have ΩAm/k = 0. 
By Krull’s intersection theorem, we know 

⋂
n∈N

mnAm = 0, whence Theorem 3.1 implies 

that Am is reduced.
For (ii), note first that Theorem 3.1 implies immediately that the local ring of A at a 

maximal ideal is a field. So every maximal ideal of A is minimal. Since A is Noetherian, A
has only finitely many minimal–and hence maximal– ideals, say m1, . . . , mr. The Chinese 
Remainder Theorem tells us that the canonical map

A →
r∏

i=1
A/mi

is surjective with kernel equal to the nilradical of A. By part (i), A is reduced, and hence 
this map is an isomorphism, and A is a product of fields. It remains only to show that each 
A/mi is perfect. When k has characteristic zero this is immediate. When k has positive 
characteristic, observe that ΩA/k =

⊕r
i=1 Ω(A/mi)/k, so that each Ω( A

mi
)/k = 0. But now 

we can invoke the following lemma to complete the argument: Let k be a perfect field of 
characteristic p > 0, and suppose k ⊆ K is a field extension. For x ∈ K, dx = 0 ∈ ΩK/k

if and only if x has a p-th root in K [3, Tag 031U]. �
Theorem 3.1 follows from the following special case:

2 Recall that the field k is perfect if every field extension is separable. Equivalently, k is perfect if and only 
if either k has characteristic zero or k = kp, where p > 0 is the characteristic of k; see [3, Tag 05DU].
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Lemma 3.4. Let (R, m, k) be a local algebra over a field L such that the field extension 
given by the composite L → R → k is (possibly non-algebraic) separable. If some power 
of m is zero and ΩR/L = 0, then R is a field.

Proof of Lemma. This is slightly subtle since we can not assume the extension L ↪→ k is 
algebraic. Instead the separability hypothesis is used to produce an L algebra inclusion 
k ↪→ R such that the composition L ↪→ R → R/m is an isomorphism as follows. Because, 
some power of m is zero, the local ring (R, m) is complete. Following the proof of Cohen 
structure theorem [3, Tag 0323], we can now find an L-algebra map k → R such that 
the composite k → R → R/m is an isomorphism. In this case, because (R, m) contains 
a copy of its residue field k, we have an isomorphism (see [3, Tag 0B2E])

m/m2 → R/m ⊗R ΩR/k. (3)

Now, since L ⊆ k ⊆ R, our assumption that ΩR/L = 0 implies also ΩR/k = 0. So the 
isomorphism (3) implies that m = m2, and hence m = mn for all natural numbers n. 
Combined with the assumption that some power of m is zero, we conclude that m = 0. 
That is, R is a field. �
Proof of Theorem 3.1. Let R′ = R/m2 and note that R′ satisfies the hypothesis of 
Lemma 3.4. Since R → R′ is surjective, also ΩR/L → ΩR′/L is surjective. So our hy-
pothesis that ΩR/L = 0 implies that also ΩR′/L = 0. Now using Lemma 3.4, we see 
that the maximal ideal of R/m2 is zero. So m = m2 in R, from which it follows that ⋂

n∈N mn = m in R. But now our hypothesis that R is m-adically separated implies that 
m = 0, completing the proof that R is a field. �
Remark 3.5. If an essentially finite type algebra over a field is formally unramified, then 
the algebra is integral over the field [3, Tag 02G3]. One might wonder whether the same 
is true with out the essentially finite type hypothesis. Although in positive characteristic 
this need not be the case, in characteristic zero this turns out to be true (see [6]). Also 
see [7] for examples of unusual behaviour of formally unramified algebras in the non 
finite type setting.

3.1. The graded case

Fix a field k. By “N-graded k-algebra” we mean a k-algebra R whose underlying 
additive group admits a decomposition 

⊕
n∈N Rn with the property that Rn·Rm ⊂ Rm+n

for all m, n ∈ N. Specifically, we do not make the common assumption k ⊂ R0.

Theorem 3.6. Fix a perfect ground field k. Let R be an N-graded k-algebra for which the 
subring R0 is Noetherian. If R is formally unramified over k, then R = R0 and R is 
reduced.
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Remark 3.7. Alternatively, as the proof will show, rather than assuming that k is perfect 
and R0 is Noetherian in Theorem 3.6, we may instead assume (R0, m) is local and m-
adically separated with residue field a separable extension of k or other variants which 
imply that R0 satisfies the hypotheses of Theorem 3.1.

Proof. For t ∈ N, set R≥t to be the ideal generated by homogeneous elements of degree 
t or higher. Fix t ≥ 1 and set R′ = R/R≥t. Note that R′ is N-graded and formally 
unramified over k, where the k-algebra structure on R′ comes via the composition k →
R → R/R≥t = R′. In particular, since k is perfect and R0 is Noetherian, we can apply 
Corollary 3.3 to the t = 1 case to conclude that R0 is a finite product of fields.

We now claim that the inclusion R0 → R/R≥t = R′ is an isomorphism. Once we have 
this for every t ≥ 1, it is clear that R = R0 and that R0 is reduced.

To this end, fix t and consider the graded k-algebra R′ = R/R≥t. To show that 
R0 → R′ is an isomorphism, it suffices to show that for every maximal ideal m of R′, 
the ideal I = R1 ⊕ R2 ⊕ · · · ⊕ Rt−1 of R′ becomes zero after localization at m.

Fix an arbitrary maximal ideal m of R′. Since the elements of I are all nilpotent, I is 
contained in every prime of R′ including m. Of course, m0 = R0 ∩ m is also contained in 
m, and since R0 is product of fields we know that m0 is maximal in R0. It follows that 
our arbitrary ideal m has the form m0 ⊕ I = m0 ⊕ R1 · · · ⊕ Rt−1.

Now to show that the localization Im is zero, it suffices to show that the localization 
Im0 = I ⊗R0 (R0)m0 is zero, since Im can be obtained from Im0 by further localization 
at the multiplicatively closed set R \m ⊃ R0 \m0. For this, tensor over R0 with the field 
(R0)m0 = L0 to produce

(R0)m0 ⊕ (R1)m0 ⊕ . . . ⊕ (Rt−1)m0

which we denote by R′
m0

. Note that R′
m0

is a local algebra over the perfect field k with 
maximal ideal (R1)m0 ⊕ . . . ⊕ (Rt−1)m0 = Im0 . Furthermore, being a localization of the 
formally unramified k-algebra R′, we know also that R′

m0
is formally unramified. Finally, 

because the t-th power of the maximal ideal Im0 is zero, we see that R′
m0

satisfies the 
separation hypothesis of Theorem 3.1. So invoking that theorem, R′

m0
is a field, and its 

maximal ideal Im0 is zero. This completes the proof. �
We wish to give another proof of Theorem 3.6 in the case where k ⊂ R0 using the 

following result about the kernel of the universal derivation for a graded ring.

Proposition 3.8. Let R be an N-graded ring containing a field k.

(i) If k has characteristic zero, then the kernel of the universal derivation d : R →
ΩR/R0 is R0.

(ii) If k has characteristic p > 0, then the kernel of the universal derivation d : R →
ΩR/R0 is contained in the p-th Veronese subring of R:
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ker(d : R → ΩR/R0) ⊆
⊕
j∈N

Rjp.

Proof that Proposition 3.8 implies Theorem 3.6 when k ⊂ R0. Because ΩR/k = 0, we 
immediately know that ΩR/R0 = 0 as well. We claim that this implies that R = R0. 
Indeed, in this case, the universal derivation

R
d−→ ΩR/R0

is zero. So using Proposition 3.8, we see that

(1) In characteristic zero, R0 = R, establishing the claim immediately; whereas
(2) In characteristic p > 0, any non-zero homogeneous element of R has degree a multiple 

of p. But then we can re-grade R, setting its degree j-th piece to be Rjp. With this 
new grading, Theorem 3.8 again implies that the non-zero homogeneous elements of 
R have degree a multiple of p, which of course means their degrees are multiples of 
p2 using the original grading. Again regrading and iterating this procedure, we see 
that any homogeneous element of R must have degree a multiple of pe for all e. This 
forces R = R0.

Finally, since R = R0 is Noetherian and k is perfect, Theorem 3.6 follows immediately 
from Corollary 3.3. �
Remark 3.9. Even if k is not assumed to be contained in R0, Proposition 3.8 can be 
adapted to prove Theorem 3.6 in characteristic p > 0 or in characteristic zero if we 
assume k is algebraic over its prime field.

Indeed, because the multiplicative identity of R must have degree zero, the prime field 
F of k (which is Fp in characteristic p > 0 or Q in characteristic zero) is contained in 
R0. Our assumptions on k imply that Ωk/F is zero [5, Thm 25.3] whereas our hypothesis 
that R is formally unramified over k ensures that ΩR/k is zero. So the exact sequence [1, 
Prop 16.2]

R ⊗k Ωk/F → ΩR/F → ΩR/k → 0

guarantees that also ΩR/F is zero. Since F ⊂ R0, arguing as in (1) and (2), we can 
conclude that R is reduced and concentrated in degree zero from Proposition 3.8.

Remark 3.10. We can use the line of argument sketched in points (1) and (2) above to 
prove the reducedness of a graded algebra, without any Noetherian assumptions, in the 
following context. Suppose that R is an N-graded algebra. If R is formally unramified 
over any field k contained in R0, then R = R0. Thus if we further assume R0 is reduced, 
we get R is also reduced. See also Remark 3.12 for a statement when R does not contain 
a field.
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It remains only to prove Proposition 3.8. For this, we make use of the Euler operator, 
suitably interpreted for a (possibly) infinitely generated polynomial ring over an arbitrary 
ground ring. The next lemma tells us that the Euler operator behaves especially well on 
homogeneous elements.

Lemma 3.11 (Euler’s homogeneous function theorem). Let P = A[{Xα}] be a polynomial 
ring over an arbitrary ground ring A in (possibly infinitely many) variables Xα indexed by 
the set Λ. Assume that P is N-graded, with each Xα homogeneous of non-zero degree and 
elements of the coefficient ring A have degree zero. Then for any homogeneous G ∈ P ,

∑
α∈Λ

deg(Xα) · Xα · ∂G

∂Xα
= deg(G) · G. (4)

Proof. First note that since G involves only finitely many Xα, the sum on the left side 
is finite. To verify Equation (4), it suffices to check the case when G is a monomial in 
Xα, where it follows from a direct calculation. �
Proof of Proposition 3.8. Fix an N-graded algebra R. Note that, considered as a graded 
algebra over the subring R0 of degree zero elements, R can be generated by homogeneous 
elements, say {rα}α∈Λ, of positive degree (where Λ is some arbitrary indexing set). We 
thus have a graded R0-algebra presentation for R

P := R0[{Xα}]α∈Λ
π� R

sending each variable Xα of the polynomial ring P to the correspondingly-indexed ele-
ment rα in our generating set. This presentation preserves degree provided we grade P
so that Xα is assigned degree equal to the degree of rα. Of course π induces an isomor-
phism P/I ∼= R, so we can identify R with P/I as graded rings. For the remainder of 
the argument, we adopt the convention that upper case letters denote elements of P and 
lower case letters are their corresponding images in P/I = R.

Let us now examine the universal derivation d : R → ΩR/R0 . Since ΩR/R0 carries 
an induced grading which makes d degree preserving, the kernel of d is generated by 
homogeneous elements. Let f ∈ R = P/I be a homogeneous element in ker d and let F
be a homogeneous lift to the polynomial ring P .

Because P is a polynomial ring over R0, the module of Kähler differentials ΩP/R0 is a 
free P -module on the generators dXα (where α ranges through Λ). Using the conormal 
exact sequence [1, Prop 16.3],

R ⊗P I
1⊗d−−→ R ⊗P ΩP/R0 → ΩR/R0 → 0,

we see that df = 0 in ΩR/R0 means that we can find homogeneous G1, . . . , Gm ∈ I ⊂ P

and h1, . . . , hm ∈ R and such that
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1 ⊗ dF =
m∑

i=1
hi ⊗ dGi ∈ R ⊗P ΩP/R0

∼=
⊕
α∈Λ

R dXα.

Explicitly, we unravel this by computing in the free module R ⊗ ΩP/R0 that

∑
α∈Λ

∂F

∂Xα
dXα =

m∑
i=1

hi(
∑
α∈Λ

∂Gi

∂Xα
dXα) ∈

⊕
α∈Λ

R dXα, (5)

where the coefficients ∂F
∂Xα

and ∂Gi

∂Xα
should be understood as their natural images in 

P/I = R. Comparing the coefficients of the free generators dXα on either side of Equation 
(5), we see that

∂F

∂Xα
−

m∑
i=1

Hi
∂Gi

∂Xα
∈ I

where each Hi is a lift of hi to P . Multiplying by Xα and summing up to get the Euler 
operator, we have

∑
α∈Λ

deg(Xα) · Xα · ∂F

∂Xα
−

m∑
i=1

Hi(
∑
α∈Λ

deg(Xα) · Xα · ∂Gi

∂Xα
) ∈ I

so that in light of Lemma 3.11, we have that

deg(F ) · F −
m∑

i=1
Hi · (deg(Gi)) · Gi ∈ I.

In particular, since the Gi ∈ I, we see that deg(F )F ∈ I, and we can conclude that

deg(f)f = 0 (6)

in R.
The proof of the proposition now follows easily. In case (i), deg f is a unit in R if it 

is non-zero. So no positive degree f can be in the kernel of d : R → ΩR/R0 . That is, 
ker(d) = R0. In case (ii), any natural numbers coprime to p are units. So we similarly 
conclude that if a non-zero homogeneous element of R is in the kernel of d, then its degree 
must be a multiple of p. That is the kernel of the universal derivation d : R → ΩR/R0 is 
contained in the Veronese subring 

⊕
j∈N Rpj . This completes the proof. �

Remark 3.12. Our proof gives the following (possibly) mixed-characteristic version of 
Proposition 3.8: Let R be an N-graded ring torsion free over Z. Then the kernel of the 
universal derivation d : R → ΩR/R0 is R0. In particular, we can also deduce the following 
version of Theorem 3.6: Let R be an N-graded ring without Z-torsion. If R is formally 
unramified over any subring contained in R0, then R = R0, so R is reduced if R0 is 
reduced.
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4. Some related questions

We end this note by mentioning a related question. The module of Kahler differentials 
ΩA/k is the zeroth cohomology of the cotangent complex LA/k. So a stronger condition 
than assuming that ΩA/k = 0 would be that the entire complex LA/k is exact. The 
following question appears as Question C.3, (ii), in [4], where it is attributed to Bhargav 
Bhatt (also see [8]).

Question 2. Let A be a Q-algebra such that the cotangent complex LA/Q is quasi-
isomorphic to the zero complex. Is A reduced?
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