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Abstract. In this paper we propose a landmark-based map localization
system for robotic swarms. The proposed system leverages the capa-
bilities of a distributed landmark identification algorithm developed for
robotic swarms presented in [1]. The output of the landmark identifi-
cation consists of a vector of probabilities that each individual robot is
looking at a particular landmark in the environment. In this work, this
vector is used individually by each component of the swarm to feed the
measurement update of a particle filter to estimate the robot location.
The system was tested in simulation to validate its performance.
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1 Introduction

A robotic swarm generally consists of relatively inexpensive autonomous robots
with limited computational, sensing and communication capabilities. In partic-
ular, robots may not have access to global information as their position, the
position of their teammates, and commands of a centralized controller. Never-
theless, from the local behavior of the single robots and their interaction with
the teammates, a global behavior should emerge to collectively perform some de-
sired task [2]. However, many applications proposed in recent years require some
degree of global knowledge, for example search and rescue [3], target search and
tracking [4], information gathering and clean up of toxic spills [5], and even
construction [6]. In these applications, the knowledge of global position would
be beneficial or required for the task execution. Nevertheless, the availability to
GPS may be limited by operational conditions as indoor environment.

Many works have addressed the problem of cooperative localization of a
multi-robot system in a global frame of reference by using relative measure-
ments between robots (e.g., [7]) and/or relative measurements of landmarks in
known locations (e.g., [8]). Reliable relative measurements between robots may
be difficult to achieve in practice in a swarm setup, unless dedicated hardware
is mounted on the robots (e.g., [9]). Moreover, even if some measurement (e.g.,
position, bearing, distance) was available through a general purpose sensors as
a camera, still the problem of associating the measurements to the specific id of
the robot would require dedicated data association algorithms [10].

In this work, we propose a different vision-based approach that takes into
account the challenges and limitations posed by a real robotic swarm. First, the
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robots are equipped with only a general purpose sensor as a camera. Secondly,
we assume no relative measurements are available between robots. Although
cameras would still allow for relative bearing measurements, due to the swarm
setup reliably tagging the robots would not be feasible and we would therefore fall
back into a data association problem. However, uniquely identifiable landmarks
at known locations are available in the environment, although metric information
as relative position or distance from the landmarks is not available. In this setup,
each robot could independently perform a landmark based localization.

Single robot (or single sensor) landmark localization has been addressed
deeply and broadly for many applications in robotics through either artificial
or natural landmarks. An exhaustive review on this topic is outside the scope
of this work, that is more focused on multi-robot landmark localization, and
the following references should be taken as examples of current state of the art.
In [11], authors employ a method that uses a single image from a camera and
a minimum of three feature points to recover the camera’s viewpoint. In [12],
artificial landmarks on the ceiling in an indoor environment are used to localize a
two degrees of freedom camera. In [13], authors create and maintain a sparse set
of landmarks that are based on biologically motivated feature selection. In [14],
the authors use a real-time camera feed from a drone and an AR tag to compute
the position of a drone with respect to a point of origin. In [15], the author uses a
2D bar-code landmark for the self localization of mobile robots. In [16], authors
propose a method for the global localization problem that uses two landmarks
to localize the pose of the robot using bearing angle and distance of landmarks
to calculate a possible area of the location of the robot and the particles. In [17],
the authors present a landmark matching, triangulation, reconstruction and com-
parison algorithm that extracts natural landmarks to estimate the position of a
robot. In [18], the authors propose a method for robot localization based on the
shape and size changes of an object in the robot view as well as trigonometric
concepts. In [19], authors deploy a localization method based on artificial as well
as natural landmarks employing model based object recognition.

In general, many works proposed on this topic focus not only on the es-
timation of the robot position, but also on the selection and identification of
the landmarks (e.g., [20]). Identification algorithms, however, can often provide
wrong results, in particular when many different landmarks are present in the en-
vironment, and computational capabilities are limited. In a recent paper [1], we
have proposed a system for cooperative identification of landmarks in a robotic
swarm, in which the results of single-robot relatively shallow and low-accuracy
Convolutional Neural Networks (CNNs) are shared among a robotic team to
improve the overall accuracy. The system proposed in [1] is an extension of a
previous paper [21] dealing with cooperative object recognition.

In this paper, each robot of the swarm will use the output of the system
proposed in [1] to feed a particle filter and estimate its position. This approach
is considerably different with respect to state-of-the-art landmark-based coop-
erative localization systems in literature. In several papers on cooperative local-
ization (e.g., [22-25]) robots use each others as landmarks to improve odometric
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localization. Other authors [26-28] proposed to use relative position or distance
measurements of the landmarks to compute estimates of the robots location via
geometric considerations and sensor fusion techniques. In [29], each robot main-
tains its landmark-based pose estimate using an Unscented Kalman Filter in a
common map. In a few papers, specific hardware is developed to use radio [30]
or acoustic [9] landmarks and beacons.

None of the above mentioned papers is compatible to our assumptions, due to
the use of relative and /or metric measurements, or additional hardware. Lidar is
often used to address this type of problem, but there are several issues with using
lidar. First, low-cost lidars usually have limited field of view. More expensive
lidars can have up to several tens of meters of field of view but are not compatible
with a swarm setup. Moreover, the use of lidars in localization usually requires a
complete occupancy map of the environment, while we only assume that we know
the coordinates of the landmarks in the world frame. From these considerations,
we decided to use cameras as the only sensor for our localization algorithm,
since for a camera a landmark will be recognizable from multiple distances and
even with the interference of possible foreign smaller objects. To the best of our
knowledge, this paper is the first to address explicitly the problem of vision-based
localization with cooperative landmark identification in robotic swarms.

The rest of the paper is organized as follows. Section 2 will introduce the
problem settings, including the robot model and sensor equipment, the com-
munication graph as well as the formal definition of the localization problem
of the swarm using cooperative place recognition. Section 3, will describe the
methodology used including the system architecture, a recall of the cooperative
landmark identification, as well as a description of the particle filter. In Sec-
tion 4, a description of the simulation platform used to validate the localization
system. Finally Section 5 will conclude the paper.

2 Problem Setting

Let A = {A1, As, ..., A} be a multi-robot system consisting of n agents. The
generic robot A;, i =1,...,n moves in a 3D environment populated with a set
2 = {wy,wa,...,wn} of m objects wy, I = 1,...,m. Its configuration c;(k) =
[ci(k) ¢i(k)]T at time step k in a world frame W = O — XY Z is described by
the position q;(k) = [z;(k) v:(k)]T € R? and orientation ¢;(k) € SO(2) of a
frame attached to a representative point. A; is modeled as a unicycle:

Sl e
i(k) | = [wi(k—1) | + | Tsing; ik )
Zz(k) 3)1(]6 -1 0 T ni(k)

where v;(k) and 7;(k) are the linear and angular velocities respectively, and
T is the duration of the time step. In general, robots are not aware of their
global positions in W, nor they have access to each other’s relative position or
bearing. However, we assume that the robots are able to communicate with each
other within a certain range r. Hence, we define the communication graph as
an ordered pair G(k) = (N, E(k)) consisting of nodes N (the robots) and edges
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E(k). Note that in general the communication graph is time variant. An edge
e = {i,j} is an unordered pair such that if {7, j} € £(k), robots A; and A; can
communicate at time step k. This implies that the underlying communication
graph is undirected, i.e., if A; communicates with A;, then conversely A; can
communicate with 4;. We also will be operating under the assumption that the
communication graph is connected, i.e., there is a path between any two nodes
of the graph. However, it should be noted that if the communication network
gets disconnected, the swarm will continue working as two or more separate
subgroups and will perform the algorithm on the respective sub-networks. It is
outside the scope of this paper to study the problem of controlling the swarm
so that this assumption is verified. However, it can be achieved assuming that
the robots move according to a connectivity maintenance swarming algorithm
as the one proposed in [31].

Each A; is equipped with and odometry module, that provide measurements
u; (k) = [v;(k) 7;(k)]* of the linear and angular velocity at all time steps. Each A;
is also equipped with a camera and gathers images z;(k) of an object w'(k) € £2,
where the superscript 4 identifies the specific object observed by robot A; at time
step k. In general, different robots can potentially observe different objects in the
environment at the same time. In addition, each robot A; will be able to collect
measurements ¢;(k) of its own yaw angle ¢;(k) in the world frame W through
a magnetometer. In the following, we will indicate with Z(k) = {z;(k),i =
1,2,...,n} the set of exteroceptive measurements collected by all the robots at
time step k, and with ®(k) = {¢;(k),i = 1,2, ...,n}. Collectively, we will indicate
with Zg (k) = {Z(k),P(k)} the set of all camera and yaw measurements.

Finally, we define n random variables O%(w, k),i = 1,...,n, one for each A;,
that represents the objects observed by A;,i =1,...,n at time step k:

O'(w, k) = O (k) =1 & Wi(k) =w 2)

Then, the probability p(O(k) = I) = p(O*(k)) is the probability that w’(k) = wj.
The problem that we will address in this work is formally introduced as:

Problem 1. The problem of localizing the agents in the world frame W is
the problem of computing an estimate ¢;(k),i = 1,...,n of their configurations
ci(k),i=1,...,n at each time step k given all exteroceptive and yaw measure-
ments Zg(s),s = 1,...,k and all odometlry measurements u;(s),s =1,...,k at
all time steps up to k.

3 Methodology

3.1 System Architecture

The block scheme of the system running on each robot A; is depicted in Fig. 1.
The image collected by the camera, A;’s measurement z;(k), is passed through
an Al classifier to determine which object A; is observing. The output of the
classifier is the m-vector of probabilities P(z;(k)|O(k)) that A; is observing w;.
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Fig. 1: Block scheme of the system running on robot A;.

This information is then provided to the communication module that broadcast
it to A;’s communication neighbors together with the measured yaw angle ¢; (k).

As all robots do the same, A;’s communication module also receives the prob-
ability vectors P(z,(k)|O"(k)) and the yaw angles ¢y, (k), h =1,...,n, h # i of
all other robots in the swarm. The communication module also implements a
gossiping algorithm so that each robot A; in the team can receive the probabil-
ity vectors and yaw angle measurements of all the robots in the swarm, even the
ones that are not directly communicating with A; itself. With an appropriate
communication protocol, A; also compute an estimate 7/ (k) of the communica-
tion distance between itself and the generic robot A, h =1,...,n, h # i. The
communication distance is the number of communication steps that are needed
for a message sent from robot Ay to reach robot A; at time step k, and is equiv-
alent to the graph length of the shortest path that connects nodes ¢ and h in the
communication graph G(k).

The probability vector computed by the A;’s Al classifier, as well as the ones
received by the other robots are passed to the Weighted Naive Bayesian Classifier
(WNBC) together with the yaw angles ¢;(k), ¢ (k) and the estimated commu-
nication distances 7! (k). This information is used by the WNBC to iteratively
compute P(O%(k)|Zg(k)). A; uses this information computed locally to feed the
measurement update of a particle filter that produces the estimate ¢;(k). The
odometry measurements are used in the time update.

3.2 Cooperative Landmark Identification

This subsection recalls the concepts presented in [1] to perform the instantaneous
cooperative landmark identification needed to feed the particle filters. Since the
algorithm is instantaneous, for the sake of clarity in this section we will drop the
time dependency represented by (k) in all variables. Each robot uses a standard
single-view recognition algorithm, a convolution neural network (CNN) on the
Tensorflow platform. CNN’s are frequently used with image data for recognition
purpose. To set up the individual CNN’s, we have created a training and a
testing dataset on the simulated world that we will be using to demonstrate
our cooperative algorithm. In that world, we have deployed 17 buildings that
are used as landmarks for the localization problem. Each dataset includes tens
of images for each building collected from different points of view. A 5-layered
CNN was learned using the training data set. The low number of layers in the
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relatively shallow CNN was mandated by the limited computational capabilities
of the hardware this algorithm is meant for, the onboard computer of the robots.
Then, we evaluated the single robot recognition capabilities with the testing
dataset, resulting in a single robot correct recognition rate of 77%. The output
of our CNN is a probability vector p(z;|O%), which describes the probability that
the observed object is of a certain known type.

Each A; communicates its computed p(z;|O?) over the network, together with
its measured yaw angle ¢;. This means that the communication neighbors of
R; will receive its measured probabilities and yaw angle. However, every mem-
ber of the team eventually needs to receive p(z;|0O%), i = 1,...,n to compute
P(w® = wj|Zg). Therefore, the robots enact a gossiping algorithm to spread the
information among the team. This means that at a certain point, a generic robot
A; will send to its communication neighbors the data from A; in a message that
we denote as Sf , whose format is:

S7 = [p(z|0)T rd ¢yi]" (3)

where p(z;]O%) and ¢; are the communicated data, and i is the indication of the
owner of the measurements. ] is an estimate of the communication distance
between A; and A;, and is computed by using a counter that is increased every
time that the message is rebounced by a robot to its communication neighbors.

The final goal of 4; is to compute the m-vector of probabilities p(O?|Zg). At
this aim, a distributed Naive Bayes Classifier (NBC) was proposed in [21]. In [1],
a weighting factor was introduced to take into account the possibility that robots
may look at different objects at the same time. In the NBC, the yaw informa-
tion is not used to compute p(0?|Zs) = p(O?|Z), and the probability vectors
computed by all robots converge to the same value p(O*|Z) = p(0’|2),Vi,j =
1,...,n. To compute p(O!|Z), we begin by applying Bayes rule, and p(O?|2)
can be rewritten as: p(O)p(Z]07) "
p(Z)

By recursively applying the definition of conditional probability, the numerator
of the right-hand side of equation (4) can be rewritten as:

p(O)p(Z|0") = p(O")p(zi,i = 1,...,n|O")
= p(OM)p(21|0")p(22|0%, 21) ... p(2a|O%, 21, . . ., 201)

p(0'|Z) =

()

By assuming conditional independence of the measurements z;, equation (5)
can be simplified as:

p(0")p(Z|0") = p(O") Hp(Zlej) (6)

Each A; recursively computes equation (6) by maintaining at all communi-
cation steps b an estimate of P(O!|Z?), where Z} = {z,,Yq € ID?} is the set
of all measurements received by A; up to the communication step b. Every time
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that A; receives a new message Si such that h ¢ ID?, it will update its current
estimate incorporating the new measurements:
i p(OHp(Z?, 2, O p(OHp(Z210)p(21,|O*
p(OIZf,Zh)Z( )(b 10Y) _ p( )(bl )p(21|0") ™
(27, zn) p(Z7)P(zn)

This algorithm relies on the assumption that A; and Aj, are collecting measure-
ments of the same object (w! = w"). In the setting of this work, however, we
have rejected this assumption as it is not compatible with a real world scenario.
Therefore, we define the following random variable

, 1 ifwi=wh
Rz:{ 1T W w (8)

0 otherwise

whose value is 1 if A; and Ay, are collecting measurements of the same object,
and zero otherwise.

Introducing R};, and considering that if R! = 0 the measurement z;, carries
no information on the object observed by robot A;, we can write:

p(O'| 2!, z1,) = p(OY Z2, 21, RY))p(RY) + p(O*| 20, 2, Ry )p(R}) =
= p(O"Z0, zn, R},)p(R},) + p(O'| 2!, R}, )p(R},) = 9)
= p(O"1Z0, zn)p(R},) + p(O'|Z))p(R},).

Introducing equation (7) into (9):
_ p(O)P(Z710")p(2n|O) P(R})

p(O'|Z, 21) = (2 (o) +p(0"|Z))p(R;,) = "o
— (0|2 PEEIE) 0 22y ).
In equation (10) the term p(zp) is a normalization factor o such that
zl: p(O' = llif()zi()zhlf)i =0 _ (11)
therefore:
p(O'Z], z1) = ap(O'| 2] )p(21|O") P(Ry,) + p(O'| 2] )p(Ry,). (12)
Considering that P(RL) =1 — P(R]) (13)

the final step consists in computing the probability P(R}) that w’ = wh. In
general, p(R}) may depend on several factors and we do not have a standard
way to compute it. In this work, we assumed that p(R},) depends on the distance
and the relative orientation between A; and Ay, and that these two factors are
independent from each other. This is based on two considerations. First, the
further apart the robots are, the less likely they are to be observing the same
object. As the robots do not have direct access to their relative distance, they
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can use the estimated communication distance (which also provide an estimate
of their cartesian distance) to compute the following:

1

PRI = —— (14)
T

where H is the average size of the objects in the world. Similarly, if the two
robots look in different directions (i.e., have a relative orientation close to ),
they are unlikely to be watching the same object. The relative orientation can
be computed through the use of the yaw measurements ¢;, ¢, therefore we have

considered i i
p(R} |0, én) = p(Ry[¢i — ¢n) (15)
Finally, equations (14) and (15) can be combined into the following:
p(Ry,) = p(Rj, |61, 6n. ) = p(Rj, |61, $n)p(Rj,|c}) (16)

Note that by applying equation (12) instead of the NBC, each robot will
compute its own personalized vector of probabilities that takes into account the
relevance of other robot measurements to its individual identification process.

3.3 Particle Filter for Localization

Each A; maintains a particle filter to estimate its configuration in the world
frame W. Therefore, the state of each particle is an estimate &2 (k) = [q} ¢]T =
[xz yg d)i]T,p =1,...,4, including position and orientation of the robot in W,
where A is the number of particles maintained. The filter consists in a time
update, performed every time that a new odometry measurement u; (k) is avail-
able, and a measurements update, performed every time that a new probability
vector P(O%(k)|Zs(k)) is computed. Note that the magnetometer readings ¢; (k)
where already used to compute P(O(k)|Zg(k)), so they will not be used in the
particle filter to avoid reusing the same measurements twice.

3.3.1 Time Update
The time update of each particle follows the motion model of the unicycle (1):

oy = ¢y + T(mi(k) + 1))
2 =)y + T(@(k) + 1) cos((6] + d)_1)/2) (17)
yp = yo_y + T(0;(k) +v3) sin((¢), + ¢5_1)/2)

where 1/3 and v9 are samples from the noise affecting the odometry measure-
ments, assumed to be Gaussian with zero mean and known covariance.

3.3.2 Measurement Update

For the measurement update, we use a map of the environment in which the
facade of each building w; observable by the robots is represented as a segment
specified through the coordinates of a starting a/¥ = [V y/V]7 and a final
a}’}/ = [;vlv}/ ylv}/}T point in W. This representation is compact, utilizes very low
memory, and easy to implement as it requires very low information. It is also
easily expandable to more complex environments.
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For each particle §, it is necessary to compute the expected measurement, i.e.,
what building the robot would see if it was in the location of that particle. First,
the segments are rotated and translated in the frame attached to the robot:

a?* :J-E(qz’)i)T(alVK—qi)7 x=s,f,1=1,...,n, (18)

where the superscript § in af* indicates that the point is expressed in the frame
¢ identified by the particle, and R(qbz) is the 2D rotation matrix of an angle cbi.

The segment, now expressed in the frame §, identifies a line in the form
ax + by + ¢ = 0. The coeflicients are computed as:

s s
a = (ylf — Yis)
B s
b= _(zlf — T) (19)
5 (.8 5 5.8 s
c= =z (Yy — Yis) + Yis (@) — 275)

To check if the particle is oriented in the direction of the building, we compute
the intersection of the line ax + by + ¢ = 0 with the line y = 0, obtaining
x = —c/a.

Clearly, if the resulting = < 0, the particle is not oriented towards that
particular building. Moreover, if the point [—c/a 0] is between a;s and a;y, the
particle is oriented towards that [-th building.

At this point, there is still the possibility that the particle is behind the
facade of the building. To check if this is the case, we compute a point [z,, y,]T
along the positive normal of the segment [—(yl‘;f — ) (:l}?f — 29)]7 and we
check that the condition c(ax, + by, + ¢) > 0 is verified. If this is the case,
the particle is oriented towards the [-th building from the correct direction,
therefore we update its weight w of a given particle by multiplying its current
weight w$ | by p(Oi(k) = w!|Zs(k)), that is, the probability that the robot is
oriented towards the I-th building according to the measurements fused through
the weighted Bayes classifier:

wp = wy_y * p(O' (k) = w'| Za (k) (20)

Note that, being a probability, 0 < p(O*(k) = w!|Zs(k)) < 1. Therefore,
the weights of the particles will decrease a little if p(Oi(k) = w!|Zg(k)) ~ 1,
and will decrease by several orders of magnitude if p(O(k) = w!|Zs(k)) — 0.
However, if a particle is not associated to any building, as for example when the
particle is outside the mapped area, following this algorithm it would eventually
have the largest weight. To avoid this paradoxical situation, particles that are
not associated to any building automatically receive very low weights. Moreover,
since misidentifications are still possible, the resampling of the particles is not
performed every measurements update, so that a single misidentification will
not cause the removal of correct particles. The mean of the particles of the filter
running on A; is eventually selected as the estimate:

¢;(k) = means (&l (k)),i =1,...,n. (21)

i
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Fig. 2: Simulated city in Gazebo.
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Fig.3: The estimated robot trajectories (red dashed lines) and the ground truth
data (black solid lines) for all five robots in a typical experiment.

4 Simulations

We have tested the proposed algorithm in simulation using a complex environ-
ment in the Gazebo/ROS framework. In the simulated world, we have placed
five small (~20 ¢m) robots and 17 unique buildings that act as landmarks. A
view of the simulated world is provided in Fig. 2. In a typical simulation, the
robots move in the world roughly in a line formation running the cooperative
localization system. At the same time, ground truth data are collected.

The results of a typical experiment are presented in Figures 3 and 4. Figure 3
reports the estimated robot trajectories (red dashed lines) and the ground truth
data (black solid lines) for all five robots. The plots show how the estimates
correctly track the actual paths of the robots. Figure 4 reports the particle
distribution (red dots) for five time instants at 0%, 25%, 50%, 75% and 100%
of the simulation time for Robot 1. The black solid lines show the ground truth.
From this plot, it is possible to see how the particles are initially scattered and
slowly converges towards the ground truth.
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Fig.4: The particle distribution (red dots) for five time instants at 0%, 25%,
50%, 75% and 100% of the simulation time for Robot 1. The black solid lines
show the ground truth.

5 Conclusions

In this paper, we have presented a landmark-based localization system that uses
the output of a cooperative identification module to feed a set of independent
particle filters. The proposed system achieves a collaborative localization setup
without the need for knowledge, either in the form of an estimate or of a mea-
surement, of relative positions and/or distance. Moreover, this result is obtained
using only a general purpose sensor as a camera, without the need for addi-
tional hardware. These features makes the proposed system particularly suited
for robotic swarms.

In the future, we plan to test the proposed localization system on real robots
with larger data sets. This will also stress out the computational requirements
of the algorithms. We foresee that larger maps may require adjustments in the
measurement update steps to avoid checking all buildings in the maps, but rather
selecting only a few candidate buildings in the proximity of each particle. More-
over, we will study more in depth the problem of particles not associated to any
building, and we are planning to incorporate directly in the CNN’s a case in
which no landmarks are recognized.
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