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1 Introduction

One of the curious features of the Standard Model (SM) of particle physics is the repetition

of families. That is, the matter content of the SM comprises three copies of fermions car-

rying identical SM gauge quantum numbers. While the number of generations is generally

arbitrary in field theoretic extensions of the SM, such as a Grand Unified Theory (GUT), in

string theory it can be thought of as a prediction of any specific model or compactification.

Hence, the number of generations is often used as one of the first selection filters applied

in a search for promising string models. It is the purpose of this study to point out that

non-perturbative field theoretic dynamics may modify the number of effective generations

in the process of renormalization group (RG) flow. Thus, some additional care is required

when counting the number of generations in candidates for ultraviolet (UV) completions

of the SM, in particular in string models.

In this paper, we will concentrate on supersymmetric models both because it is con-

venient in the context of string model building and because the relevant non-perturbative

dynamics is under qualitative and often quantitative control in such theories. As shown by

Seiberg [1], non-perturbative effects can have a dramatic impact on gauge theories. In par-

ticular, due to confinement and duality, the degrees of freedom appropriate for describing
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infrared (IR) physics often differ considerably from the UV degrees of freedom. Through-

out this paper, aiming at preserving the chirality of the SM (or its GUT completion), we

consider confinement without chiral symmetry breaking (so-called s-confinement [2, 3]).

Since the low-energy degrees of freedom in these models are composites of the elementary

fields, they usually transform in different representations of the unbroken global symme-

try. When a subgroup of such global symmetry is identified with a GUT or the SM gauge

group, a new, composite, chiral generation may emerge in the IR or, alternatively, an ex-

isting chiral generation may become massive. The first of these phenomena was initially

used in [4, 5] to construct realistic extensions of the minimal supersymmetric Standard

Model with some of the third generation quarks and Higgs bosons arising as composites

of strong dynamics. In this approach, which we will refer to as the Nelson-Strassler (NS)

mechanism, the RG flow leads to the appearance of light chiral composites in the IR thus

increasing the effective number of chiral generations. The NS mechanism may be modified

in several fairly obvious ways. For example, some of the composites may acquire masses

by mixing with elementary chiral fields, modifying the spectrum of light fields in the IR in

nontrivial ways. When all of the composites acquire mass, the model is in the second regime

which attracted attention more recently [6]. We will refer to the second phenomenon as

the Razamat-Tong (RT) mechanism. Here all of the composites of strong dynamics acquire

masses by partnering with elementary degrees of freedom and thus reduce the number of

effective generations in the IR. As we will argue, these two mechanisms can be continuously

connected by introducing mass terms for vector-like elementary fields, which are allowed

to mix with the composites. When masses of vector-like fields are small while the mixing

between elementary fields and composites is of order one, the theory flows to the RT limit

where all the light fields are elementary. On the other hand, in the limit of large mass the

vector-like elementary fields decouple, leaving massless composites behind. In this case,

the theory flows to the NS limit where some light fields are composites. By varying the

mass terms, one can interpolate between the two limits, and for intermediate values of

the mass term some IR degrees of freedom will be partially composite. Furthermore, one

has freedom to decouple any number of composites. In general, however, non-perturbative

dynamics affects RG flow and modifies the effective number of chiral generations in the IR.

We will refer to these phenomena as generation flow.

It is then natural to ask whether generation flow can occur in scenarios where the

number of generations is predicted from other data. This is particularly relevant for string

model building (cf. e.g. [7] for a review), where one obtains the SM generations from

string compactifications. We will argue that generation flow indeed occurs in some globally

consistent string models. In these constructions, the true number of generations in the IR

description can differ from the tree-level value that one obtains at the compactification

scale. Hence, a search for 3-generation models in string theory has to go beyond the

tree-level analysis.

This paper is organized as follows. In section 2, we will review the RT mechanism

of gapped chiral fermions. In section 3, we construct models exhibiting generation flow

towards a 3-generation theory with (a GUT completion of) the SM gauge group in the IR.

Our first example is a 4 3 model based on the RT mechanism where all the IR degrees of

freedom are elementary. We then construct a generalization of the 4 3 model where some
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of the third generation fields are composite. We point out that our construction is analogous

to the NS mechanism [4, 5]. This motivates us to build a 2 3 model with an upward

generation flow. Furthermore, we discuss the stability of the chirally symmetric vacua

in s-confining models under the deformations which induce generation flow. While such

deformations may generally destabilize the vacua by non-perturbative dynamics (see [8]

for a more detailed discussion), we argue that the chirally symmetric vacua survive in

our models. In section 4, we collect evidence for the existence of string models exhibiting

generation flow by presenting explicit examples. Finally, section 5 contains our conclusions.

2 s-confinement and gapped chiral fermions

We begin by briefly reviewing dynamics of supersymmetric gapped fermion models intro-

duced in [6]. In the following we will take the approach of [8] to building models of chiral

gapped fermions. This approach starts with SUSY QCD models that exhibit confinement

without chiral symmetry breaking on smooth moduli space [1].1 For our purposes it is con-

venient to restrict attention to s-confinement in SU(2)s SUSY QCD with six chiral doublet

superfields and thus SU(6) chiral global symmetry. We review the dynamics of this model

in the subsection 2.1. In the subsection 2.2, we discuss the deformation of the SUSY QCD

required to arrive at mass gap models of [6].

2.1 s-confining SU(2)s model

The model outlined above possesses SU(6) × SU(2)s symmetry, where SU(6) is a chiral

global symmetry while SU(2)s is a strongly interacting s-confining gauge group. For future

convenience we will assign quark superfields to (6, 2) representation of the symmetry group.

The theory possesses a set of classical D-flat directions which can be parameterized either

in terms of squark vacuum expectation values (VEVs) or in terms of gauge invariant mesons

which are classically defined as Mij ∼ QiQj/Λ, where we suppressed contraction of SU(2)s-

color indices and the dynamical scale of the quantum theory Λ is introduced on dimensional

grounds. The mesons M transform in the conjugate antisymmetric representation of the

global SU(6) symmetry 15. However, since quark VEVs satisfy a set of algebraic identities,

not all meson VEVs are independent. These classical constraints imply a set of relations

between the mesons,

εi1...i6Mi3i4
Mi5i6

= 0 . (2.1)

One may implement these constraints in the composite description of the theory by pos-

tulating a dynamical superpotential

Ws = εi1...i6Mi1i2
Mi3i4

Mi5i6
≡ Pf(M) . (2.2)

The moduli space parameterized by mesons M together with the superpotential (2.2)

coincides with the classical moduli space of the theory parameterized by quark VEVs

satisfying D-flatness conditions. It was shown in [1] that the classical moduli space of

1This dynamics is usually referred to as s-confinement. See [3] for a complete classification of such

theories.
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vacua remains unmodified quantum mechanically and the IR physics is described in terms of

weakly interacting mesons with the superpotential (2.2). While the chiral global symmetry

of this model is broken at a generic point on the moduli space, the chiral symmetry remains

unbroken at the origin where the theory exhibits confinement without chiral symmetry

breaking. This is precisely the vacuum we are interested in.

2.2 Mass gap model

For phenomenological purposes we are interested in gauging SU(6) global symmetry of the

s-confining model discussed in the previous subsection (more precisely we are interested in

gauging a subgroup of SU(6), such as a GUT SU(5) or the SM group SU(3)×SU(2)×U(1)).

To this end, one must introduce a set of spectator fields charged under SU(6) but not

SU(2)s (so that the s-confining dynamics remains unaffected) to ensure a cancellation of

the cubic SU(6) anomaly. This can be achieved, for example, by introducing spectators that

transform in representations of SU(6) conjugate to those of elementary fields, i.e. by adding

two spectators with quantum numbers given by (6, 1). Alternatively, one can introduce

a single spectator S in an SU(6) representation conjugate to the one of the mesons, i.e.

transforming as (15, 1). In the former case, the theory remains chiral both in the UV and

IR. This is because SU(2)s is not yet confined in the UV and the matter fields transform in

chiral representations of the full SU(6) × SU(2)s symmetry, while the representations of IR

degrees of freedom are chiral under SU(6). However, in the latter case, the chiral properties

of the model change as the theory flows from the UV to the IR. While the UV theory is

clearly chiral, the IR degrees of freedom, the mesons M and spectators S, transform in

conjugate representations and thus form a single vector-like representation. By choosing

to cancel anomalies with the spectator S in the antisymmetric representation, we will be

able to construct a model flows from a gapless, chiral phase in the UV to a gapped phase

in the IR.

Since the matter content in the IR is non-chiral, a mass term, SM , is allowed in the

IR superpotential. In terms of the UV degrees of freedom, this mass term corresponds

to a marginal operator, SQ2. Thus, we deform the s-confining model by a tree-level

superpotential

W = ySQ2 = cΛSM , (2.3)

where the numerical coefficient c represents both an arbitrary Yukawa coupling y of the UV

theory and the fact that the mass scale generated by confinement is not directly calculable.

At this point one might be tempted to conclude that a mass gap develops in the

chirally symmetric vacuum at the origin, while the rest of the moduli space is lifted by the

equations of motion for S and M . However, while ultimately correct, this conclusion is

somewhat premature. Indeed, while lifting SU(2)s D-flat directions, the deformation (2.3)

introduces new classical flat directions, those parameterized by SU(2)s singlets S. Since

any VEVs for S would break the chiral symmetry, it is important to verify that the non-

perturbative dynamical superpotential (2.2) does not destabilize these directions. A careful

analysis [8] of the full superpotential in (2.2) and (2.3) demonstrates that SU(2)s dynamics
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generates an effective superpotential for gauge singlets S stabilizing them at the origin.2

While referring the reader to [8] for the full analysis, we present a simple argument here.

Consider the theory at large S where all quark superfields become heavy. In this region

of the moduli space the low-energy physics is described in terms of a pure super-Yang-

Mills (SYM) SU(2)s theory with dynamical scale given by Λ6
L = Pf(S) Λ3. The dynamics

of the low-energy SYM in turn generates a gaugino condensate implying the existence of

an effective superpotential

Wdyn = Λ3
L =

(

Λ3 Pf(S)
)1/2

. (2.4)

It is easy to see that this superpotential stabilizes S near the origin.

The main lesson we learn from this example is a possibility that the RG flow may change

the chiral properties of the theory and, in particular, may change the number of chiral

generations. Here we define a chiral generation as a field transforming in an antisymmetric

representation of the chiral symmetry accompanied by an appropriate number of fields in

an antifundamental representation as required by anomaly cancellation conditions. Then

the net number of generations is given by a difference between number of fields in an

antisymmetric representation and in a conjugate antisymmetric representation, ν = n −

n . For example, in our example with SU(6) chiral symmetry the number of generations

is given by n15 − n
15

. This definition is chosen such that it can be used throughout this

study, and coincides with what one calls a generation in SU(5) GUTs. From the SU(6)

perspective, our UV model is a one-generation model containing an antisymmetric, 15,

and two antifundamental, 6, of SU(6). On the other hand, the IR theory has no massless

chiral superfields even while the chiral symmetry remains unbroken.

While the construction of [6] decreases the number of chiral generations in the IR,

we will show in the following section that non-perturbative dynamics may also lead to an

increase in the number of chiral generations. As we will see, the existence of generation

flow offers immense opportunities for model building both in field theory (section 3) and

string theory (section 4).

3 Generation flows in GUTs

The supersymmetric gapped fermion model reviewed in the previous section is based on

an SU(2)s s-confining theory with SU(6) global symmetry. Generalizations to s-confining

Sp(2N) with SU(2N + 4) global symmetry are straightforward [6].3 However, for phe-

nomenological purposes one is interested in similar models with SU(5) or SU(3) × SU(2) ×

U(1) global symmetry which can then be identified with the GUT or the SM gauge group.

As shown in [6], this can be easily achieved simply by considering the model of section 2.2

and identifying GUT or SM gauge group with an appropriate subgroup of SU(6).

For example, to construct a one-generation SU(5) × SU(2)s theory which behaves as

a pure SYM SU(5) in the IR, one decomposes elementary fields of the model under SU(5)

2We stress that this conclusion is model dependent, and there exist models where the S = 0 vacuum at

the origin is destabilized, resulting in chiral symmetry breaking.
3See also discussion in [8].
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as follows

S : (15, 1) → T : (10, 1) ⊕ F : (5, 1) , Q : (6, 2) → F
′

: (5, 2) ⊕ φ : (1, 2) . (3.1)

The tree-level superpotential (2.3) and dynamical superpotential (2.2) can be easily writ-

ten in the SU(5) language. One can verify that the UV description corresponds to a

one-generation model complemented by a single vector-like flavor in a fundamental repre-

sentation. As we learned in section 2, the s-confining dynamics leads to a unique ground

state with an unbroken chiral symmetry and no light matter fields.

We are now ready to generalize the mass gap construction of RT [6] to obtain models

where the number of chiral generations is changed through renormalization group flow but

remains nonzero both in the UV and the IR. As we will see shortly, the RG flow may lead

both to an increase and a decrease in the effective number of chiral generations. The latter

can be achieved in two ways. In the first approach, as in the model of section 2, some of the

chiral elementary fields acquire masses by partnering with the chiral composites generated

by confining dynamics. As a result, all the massless degrees of freedom in the IR are

elementary fields of the theory. Just like in the model of section 2, the chirally symmetric

vacuum is a unique ground state of this theory. The second approach is reminiscent of the

construction first introduced in [4, 5]. In this approach, some of the massless fields in the

IR are composites even as other composites may become massive. Generically, models in

this class retain the quantum moduli space and only one vacuum on this moduli space is

chirally symmetric. Since IR degrees of freedom, including the massless composites, are to

be identified with the SM multiplets, the motion along this moduli space is equivalent to

motion along D-flat directions of a GUT or the SM. Note that the mechanism utilized in

the second approach may also lead to an increase in the effective number of generations.

3.1 4 3 generation flow

We can now detail our general observations by building an explicit model of downward

generation flow. Let us start with a more straightforward example, where the number of

chiral generations decreases in the IR while all the composites are heavy. In particular, we

construct a 4 3 model, i.e. a model containing 4 generations in the UV and 3 generations in

the IR. The matter fields of the model and their quantum numbers are presented in table 1a.

Note that this matter content comprises the fields appearing in (3.1) complemented by three

chiral flavors of SU(5) i.e. three copies of T ⊕ F . Thus, this is a four-generation model. It

is easy to see that SU(2)s dynamics is not affected by the introduction of additional chiral

multiplets as long as one linear combination of the Ti’s has the Yukawa coupling with F
′

and

φ that is implied by the superpotential (2.3). Indeed, at low energies SU(2)s charged fields

confine into T ∼ F
′

F
′

/Λ and F ∼ F
′

φ/Λ. The transformation properties of the IR degrees

of freedom are given in table 1b. Finally, in the IR the superpotential (2.3) behaves like a

mass term pairing composites F and T with F and one copy of T , respectively. Repeating

the analysis of section 2.2 one concludes that the classical flat directions parameterized by

F and T are stabilized non-perturbatively.

Let us consider a generalization by noting that the symmetries of the model allow a

mass term for the vector-like pair F ⊕ F . With this mass term, the full UV superpotential
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# irrep label

4 (10, 1) T

2
(

5, 1
)

F

1
(

5, 2
)

F
′

1 (1, 2) φ

1 (5, 1) F

1
(

5, 1
)

F

(a) Unconfined spectrum.

# irrep label

4 (10, 1) T

4
(

5, 1
)

F , F

1
(

10, 1
)

T

1 (5, 1) F

(b) Confined spectrum.

Table 1. Summary of the SU(5) × SU(2)s quantum numbers of the chiral superfield content of

the 4 3 model. The vector-like pair at the bottom of table 1a can be decoupled, resulting in a

separate 4 3 model.

becomes

W = y1TF
′

F
′

+ y2FF
′

φ + mFF . (3.2)

Note that the additional mass term and y1 6= y2 explicitly break the SU(6) symmetry.

Neither F nor F are charged under SU(2)s, thus the confined spectrum of the model

(table 1b) does not change. In the IR, the superpotential becomes

W = T T F + c1ΛT T + c2ΛF F + mF F , (3.3)

where the first term is the s-confining superpotential eq. (2.2). A simple analysis shows that

in the presence of the mass term the model possesses a quantum moduli space satisfying

the condition

c2ΛF + mF = 0 . (3.4)

While at a generic point on the moduli space the chiral SU(5) symmetry is broken, the

s-confining vacuum where one generation acquires a mass survives at F = F = 0. This

leaves three light generations, two made up entirely of elementary fields and another where

the 5 is made up of a linear combination of F and F . This lays out two interesting limits.

In the limit m → 0, the light generations are entirely composed of elementary fields, F = 0,

and the chirally symmetric vacuum is stabilized as in section 2.2. We refer to this as the

RT limit because all composite fields decouple. In the limit m → ∞, one of the three

light generations has a composite 5. We refer to this limit as the NS limit due to the

appearance of light composite fields. At finite mass, there is a flat direction which can be

parameterized by F . For the purposes of phenomenology, F would play the role of a SM

multiplet; motion along the moduli space of this model corresponds to motion along D-flat

directions of a GUT (or the SM).

3.2 2 3 generation flow

The NS limit of the model discussed above resulted in a theory with a composite 5 while

the number of 10’s (i.e. number of generations) was smaller in the IR. On the other
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# irrep label

2 (10, 1) T

4
(

5, 1
)

F

1 (5, 2) F ′

1 (1, 2) φ

(a) Unconfined spectrum.

# irrep label

3 (10, 1) T, T

3
(

5, 1
)

F

1
(

5, 1
)

F

1 (5, 1) F

(b) Confined spectrum.

Table 2. Summary of the SU(5) × SU(2)s quantum numbers of the chiral superfield content of the

2 3 model.

hand, original models of [4, 5] had a composite 10 in the IR thus increasing the number of

generations. That construction can be interpreted as an upward generation flow. Let us

discuss a variation of that model where the starting point of RG flow contains two chiral

generations while the end point in the IR has three chiral generations, i.e. a 2 3 model.

Once again we consider a model with the symmetry group SU(5) × SU(2)s, whose

matter content and charges are given in table 2a. The tree-level superpotential in terms of

the UV degrees of freedom is

W = yF F ′φ . (3.5)

When the non-perturbative dynamics is included, the IR superpotential becomes

W = T T F + cΛF F , (3.6)

where T ∼ F ′F ′/Λ and F ∼ F ′φ/Λ.

It is convenient to analyze the behavior of this superpotential by going along a flat

direction parameterized by F . Without loss of generality we can assume that the VEV of

F lives in a single component, say F 5. At large VEV, the global symmetry is broken from

SU(5) to SU(4), and one pair of doublets, the one corresponding to the F5 meson, becomes

heavy and can be integrated out. Along this flat direction the superpotential becomes

W = F5(Pf ′ T + F 5) , (3.7)

where prime on the Pfaffian indicates that it is taken only over the light mesons comprising

a 6-plet of the remaining SU(4) symmetry. Note that at this stage F5 is not a dynamical

field since it is a meson made out of heavy doublets. At the same time, the F 5 VEV

remains arbitrary albeit related to the T VEVs by the F5 equation of motion,

Pf ′ T + F 5 = 0 . (3.8)

Upon a careful inspection of (3.7) and (3.8), one notices that they correspond to the su-

perpotential and one of the equations of motion of a four-doublet theory with a deformed

moduli space, a dynamical scale Λ6
L = F 5Λ5, and the meson F5 playing a role of Lagrange

multiplier. We see that for each nonvanishing value of F 5 the effective theory possesses a

quantum deformed moduli space, i.e. it exhibits confinement with chiral symmetry break-

ing. Furthermore, the scale of chiral symmetry breaking is parameterized by F 5. While the
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effective description in terms of four-doublet theory is only valid at large F 5, the solution of

the F5 equation of motion is valid everywhere on the quantum moduli space up to a SU(5)

symmetry transformation. In particular, the chirally symmetric vacuum Pf ′ T = F 5 = 0

belongs to the quantum moduli space.

Note that the models introduced in this section differ in their quantum moduli spaces

and their low-energy spectra. In the RT limit of the 4 3 model, there is a unique, s-

confining vacuum. All composite degrees of freedom become massive via the RT mech-

anism, and there are three light generations made out of the elementary fields. In the

2 3 model and the NS limit of the 4 3 model, there remains a quantum moduli space of

vacua parameterized by the VEV of F (or equivalently F ), respectively, which includes the

chirally symmetric vacuum. In the 2 3 model, one of the three light generations contains

a composite 10, while at finite mass, the 4 3 model has a 5 which is partially composite

and partially elementary.

In the following sections, we will show how these models can arise naturally in string

model building, providing examples of phenomenologically viable string models which

would have previously been ruled out by the tree-level analysis of the models.

4 Generation flow in string models

Given the possibility of generation flow discussed in sections 2 and 3, we will now turn

our attention to string model building. Why can generation flow be relevant for string

models? In string phenomenology, one tries to connect string theory to the real world (cf.

e.g. [7]). In practice, this often amounts to searching for a string compactification which

reproduces the SM in its low-energy limit. When constructing a string model, one chooses

a framework, such as one of the perturbative string theories, and compactifies it down to

four dimensions. The step of compactification consists of making an assumption on the

geometry of compact dimensions (in principle one also must show that the emerging setup

is stable, i.e. string moduli describing the size and shape of compact space are stabilized).

However, attempts to build realistic models often fail already at an earlier stage because the

zero-modes do not comprise the SM matter. This could mean that one has chiral exotics, or

just not the right number of generations. It is the latter possibility where generation flow,

as discussed in section 3, can be important.4 In practice, when determining the number

of generations, one looks at the tree-level predictions. However, as discussed in sections 2

and 3, the number of generations obtained this way may differ from the true number of

chiral generations in the low-energy effective theory.5 It is therefore interesting to study

the question to which extent models of the type discussed earlier can be obtained from

string theory.

4It is conceivable that more generally chiral exotics can be removed along the lines of section 2 (cf. [9]

for an example). It will be interesting to work out the detailed conditions for this to happen.
5It is known that chirality-changing phase transitions can occur in string compactifications [10–12]. In

this work we focus on generation flow that can be understood in terms of field-theoretic supersymmetric

gauge dynamics with an s-confining SU(2)s as in sections 2 and 3. It will be interesting to see whether

there is a deeper relation between these phenomena.
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It is not the purpose of the present paper to construct a fully realistic model exhibiting

generation flow. Rather, we will collect evidence for the existence of such models. To keep

our discussion simple, and in order to relate our findings to section 3, we will look for

SU(5) models rather than models with SM gauge group. However, we expect that the

results carry over to models with the SM gauge group after compactification.

4.1 Model scan

In what follows, we focus on orbifold compactifications of the (E8 ×E′

8) heterotic string [13,

14], which can be efficiently constructed with the orbifolder [15]. We will collect evidence

for the existence of globally consistent string compactifications that have either two or four

generations of SM matter at tree level, but in fact have three generations in their low-

energy effective description. That is, we will present evidence for the existence of stringy

versions of the 4 3 and 2 3 models discussed in section 3.

The orbifolder allows us to compute a 4D model from certain input data, which

comprises the geometry of the orbifold and the so-called gauge embedding. The latter

essentially describes how the geometric operations of the 6D space-like compact dimensions

act on the E8 × E′

8 lattice. This determines not only what the residual gauge symmetry

of the model is but also the spectrum. In more detail, the orbifolder provides us with

the continuous and discrete gauge symmetries after compactification as well as the chiral

spectrum of the model.

By using the orbifolder, we obtained a large sample of supersymmetric heterotic

orbifold models with the following properties:

• orbifold geometry Z2 × Z4 (1,1) (see [16] for the notation, and [17] for details of the

geometry);

• 4D gauge group G4D ⊃ SU(5) × SU(2)s (where we labeled the second factor “s” to

indicate that this SU(2) plays the same role as in our earlier discussion in sections 2

and 3);

• the SU(5) and SU(2)s gauge groups emerge each from a different E8 factor of the

original heterotic string;

• a net number of n SU(5) GUT generations, with no representation (10, 2) least one

representation (5, 2) or (5, 2);

• at least one “flavon” field transforming as (1, 2); other fields of this type could in

principle be decoupled from low energies;

• a (large) number of SU(5) × SU(2)s singlets;

• additional non-Abelian gauge factors under which the SU(5) charged fields are sin-

glets; and

• additional U(1) factors which can be broken along D-flat directions without breaking

SU(5) × SU(2)s.
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4 3 model

# irrep label

4 (10, 1) T

4
(

5, 1
)

F

7
(

5, 1
)

F

9 (5, 1) F

1
(

5, 2
)

F
′

170 (1, 1) N

27 (1, 2) φ

(a) The first block contains four chiral gen-

erations of SU(5) matter.

2 3 model

# irrep label

2 (10, 1) T

2
(

5, 1
)

F

10
(

5, 1
)

F

8 (5, 1) F

1 (5, 2) F ′

240 (1, 1) N

41 (1, 2) φ

(b) The first block represents two chiral

families of an SU(5) GUT.

Table 3. Summary of the SU(5) × SU(2)s quantum numbers of the (left-chiral) massless matter

spectra of heterotic orbifold models with (a) 4 3 and (b) 2 3 SU(5) generation flow. These models

have (a) four and (b) two chiral generations at tree level, respectively, but three chiral generations

in the low-energy effective description due to SU(2)s strong dynamics. The second (third) block of

each table consists of states that are vector-like (invariant) under SU(5).

Our scan yielded several models in which s-confinement can change the number of chiral

representations.

4.2 Models

Rather than providing the reader with an extensive survey, we focus on two sample models

defined in the appendix. In more detail, we discuss

• a 4 3 model (cf. table 3a) in which the 4th chiral generation acquires a mass and

decouples through, and

• a 2 3 model (cf. table 3b) in which the 3rd chiral generation emerges from states

that are vector-like under SU(5) through a variant of the RT effect, in which a chiral

10 ⊕ 5 arises as a composite of (5, 2) ⊕ (1, 2) ⊕ 2(5, 1)

Both models have the virtue that the SU(5) and SU(2)s factors come from different E8’s.

Consequently, SU(2)s can naturally be more strongly coupled than SU(5) (cf. e.g. [18]).

A stringy 4 3 model. The model defined by the parameters provided in eq. (A.1)

results in the 4D gauge group G4D = SU(5) × SU(2)s × [SU(2)5 × U(1)6]. The gauge

factors in the brackets can be broken along D-flat directions. Since the Lagrange density is

invariant under complexified gauge transformation, we can infer that nontrivial solutions to

the F -term equations preserve supersymmetry [19, 20]. We are then left with Gunbroken =

SU(5) × SU(2)s.

Before discussing the 4 3 properties of this model, let us comment on the possibility

to break SU(2)s along D-flat directions. In this case, we will obtain a vacuum with 4
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generations of an SU(5) GUT, i.e. 4 copies of 10 ⊕ 5 while the other states are now vector-

like and pick up masses proportional to the VEVs of the SU(5) singlets that got switched

on. According to the usual string phenomenology practices, we would thus label this model

an unrealistic 4-generation model, not worth being considered further.

On the other hand, if we leave SU(2)s unbroken, in a generic vacuum we obtain in

an intermediate step a model with 4 copies of (10, 1), 2 copies of
(

5, 1
)

, a
(

5, 2
)

and a

(1, 2). Since string selection rules do not forbid the corresponding couplings, the other

states of table 3a acquire masses proportional to the VEVs of the SU(5) × SU(2)s singlets.

Conceivably, there also exist special string vacua that can allow for an extra massless vector-

like pair (5, 1) ⊕ (5, 1). This brings us to either of the 4 3 models discussed in section 3,

and summarized in table 1a. As we have seen there, due to the SU(2)s strong dynamics,
(

5, 2
)

and (1, 2) condense together to build a 5 and condensates of
(

5, 2
)

yield an SU(5)

antigeneration 10. Since there are no string selection rules prohibiting the couplings, we

thus expect this antigeneration to pair up with a linear combination of the 4 generations,

and we are left with a 3-generation model at low energies.

An important condition for the strong SU(2)s dynamics to play out as described is

that SU(2)s is much more strongly coupled than SU(5). Since these two gauge factors

originate from different E8’s, it is plausible that this happens [18, 21, 22]. However, a

detailed computation of the string thresholds is beyond the scope of this study.

A stringy 2 3 model. The model defined by the parameters provided in eq. (A.2)

results in the 4D gauge group G4D = SU(5) × SU(2)s × [SU(2)2 × U(1)9]. As in the

previous model, the gauge factors in parentheses can be spontaneously broken along D-flat

directions while preserving supersymmetry. The corresponding massless spectrum after

compactification is summarized in table 3b, where we only display the quantum numbers

with respect to SU(5) × SU(2)s. After switching on the VEVs of SU(5) × SU(2)s singlets,

we are left with 2 copies of (10, 1), 4 copies of (5, 1), and 1 instance of (5, 2) and (1, 2),

reproducing the spectrum of the 2 3 model presented in table 2a.

If we also break SU(2)s along D-flat directions, we obtain a vacuum with an SU(5)

GUT symmetry and two generations of 10⊕5. In the traditional approach, we would thus

label the model as an unrealistic 2-generation model that is to be discarded.

However, this conclusion changes if we look at vacua where SU(2)s confines. In this

case, according to our discussion of the 2 3 model in section 3, we can obtain a third

generation from SU(2)s strong dynamics. In particular, the (5, 2) builds a condensate that

behaves as the 10-plet of a third generation of an SU(5) GUT. This means that this model

admits 3-generation vacua and cannot be ruled out immediately.

4.3 Discussion

The examples discussed in this section represent evidence for the existence of globally con-

sistent string models with generation flow. In order to keep the discussion simple, we have

focused on SU(5) models. However, we expect that qualitatively similar models with the

SM gauge symmetry and matter content at low energies exist. We have verified that one

can break extra gauge factors and decouple exotics by switching on VEVs along D-flat
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directions. We are thus guaranteed [19, 20] that there are supersymmetric configurations

that have the features we describe. While we did verify that there are no symmetries pro-

hibiting the required couplings, we did not compute their coefficients, nor did we explicitly

verify that all directions/moduli are stabilized.

Our findings lead to the following picture. In string models, one can readily count the

net number of generations at the tree-level. However, some models may have vacua where

the true number of chiral generations differs from the tree-level prediction. This means

that model scans in the past may have missed interesting, possibly realistic models. It will

be interesting to study such constructions in more detail.

As a side remark, let us note that the matter content as well as the gauge and contin-

uous symmetries of the RT-like model discussed in section 2 fit into a 27-plet of E6. This

is evident from the branching (cf. e.g. [23])

E6 → SU(6) × SU(2)s (4.1a)

→ SU(5) × SU(2)s × U(1) , (4.1b)

27 → (6, 2) ⊕ (15, 1) (4.1c)

→ (5, 2)1 ⊕ (1, 2)−5 ⊕ (10, 1)−2 ⊕ (5, 1)4 . (4.1d)

That is, while the representation content of the model may at first sight look a bit peculiar,

it turns out to fit in a single chiral representation of an exceptional group. In fact, E6 is the

only exceptional group admitting complex representations, and the 27-plet is its smallest

representation. From this perspective it is not too surprising that variants of this model

can be obtained from string theory. Note, however, that in the models which we presented,

SU(5) and SU(2)s stem from different E8 groups, which favors the possibility that SU(2)s

becomes strongly coupled while SU(5) does not.

5 Summary

We have studied the effects of non-perturbative s-confining dynamics on the effective num-

ber of chiral generations in supersymmetric models of particle physics. We emphasized

that this number can flow either upward or downward because confinement may result in

the appearance of chiral composites. In turn, these composites may either serve as new

light chiral generations or lift existing chiral generations by partnering with other chiral

fields in mass terms. We referred to these phenomena as generation flow.

Our focus was on 4 3 and 2 3 generation flow, such that in the IR there are three

generations of (a GUT completion of) the SM. We analyzed the non-perturbative dy-

namics and verified that in our models the s-confining vacuum is not destabilized by the

non-perturbative dynamics driving the generation flow. We stress that this conclusion is

model dependent.

As we have shown, there is strong evidence that generation flow arises in globally

consistent string compactifications. In particular, we have constructed explicit 4 3 and

2 3 models resulting from orbifold compactifications of the heterotic string. Therefore,

more care than previously appreciated has to be taken when scanning for realistic string
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models. There can be models which appear to yield an unrealistic number of genera-

tions but are saved by generation flow. Furthermore, the strong dynamics that reduces

the number of generations may be exploited to decouple chiral exotics of string models.

Hence, the phenomenological viability of string compactifications with such exotics should

be further investigated.
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A Orbifold model definitions

In the bosonic formulation, a Z2 ×Z4 (1,1) heterotic orbifold compactification is defined by

the shifts V1 and V2 of order 2 and 4, respectively, as well as six discrete Wilson lines Wa,

a = 1, . . . , 6 of order 2. These Wilson lines are restricted to satisfy W1 = W2 and W5 = W6

to be compatible with the Z2 ×Z4 point group of the compactification.6 These parameters

can be used as input in the orbifolder [15] to obtain the corresponding massless spectrum

and compute the superpotential of the associated low-energy effective field theory.

A.1 Details of the 4 3 heterotic orbifold model

One heterotic orbifold model with geometry Z2 × Z4 (1,1) which yields 4 3 generations

via the RT scheme is defined by the following shifts and Wilson lines (with W4 = 0):

V1 =

(

−
7

4
, −

1

4
, −

1

4
, −

1

4
, −

1

4
, −

1

4
,
1

4
,
7

4

)

, (0, 0, 0, 0, 0, 0, 0, 0) , (A.1a)

V2 =

(

3

8
,
1

8
,
1

8
,
1

8
,
3

8
,
9

8
, −

3

8
, −

3

8

)

,

(

−1, 0, 0, 0,
1

4
,
1

4
,
1

4
,
3

4

)

, (A.1b)

W1 = W2 = (0, 0, 0, 0, 0, 0, 0, 0),

(

−1, −1,
1

2
,
3

2
, −

1

2
, 0,

1

2
, 0

)

, (A.1c)

W3 = (0, 0, 0, 0, 0, 0, 0, 0),

(

−
5

4
, −

5

4
,
1

4
,
3

4
,
3

4
,
7

4
, −

3

4
,
7

4

)

, (A.1d)

W5 = W6 =

(

−1, −1, 0, 1,
3

2
,
1

2
,
1

2
,
3

2

)

, (0, 0, 0, 0, 0, 0, 0, 0) . (A.1e)

The effective massless matter spectrum before decoupling of vector-like representations and

SU(2)s confinement, obtained by the orbifolder is summarized in table 3a.

6See e.g. [24–26] for reviews on orbifold compactifications, and [17, section 4] for more details on this

specific orbifold geometry.
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A.2 Details of the 2 3 heterotic orbifold model

The orbifold parameters that define the Z2 × Z4 (1,1) heterotic orbifold model presented

in section 4.2 are

V1 =

(

−
1

4
, −

1

4
,
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,
9

4

)

, (0, 0, 0, 0, 0, 0, 0, 2) , (A.2a)

V2 =

(

1

8
,
9

8
, −

7

8
, −

1

8
, −

1

8
, −

1

8
,
9

8
,
7

8

)

,

(

−
1

2
, 0, 0, 0,

1

4
,
1

4
,
3

4
, −

3

4

)

, (A.2b)

W1 = W2 = (1, 0, −2, −1, 0, 1, −1, −2),

(

1

4
, −

3

4
, −

1

4
,
7

4
, −

3

4
,
3

4
, −

5

4
,
5

4

)

, (A.2c)

W3 =

(

−
5

4
,
5

4
,
5

4
, −

7

4
, −

5

4
, −

5

4
,
1

4
, −

5

4

)

,

(

7

4
,
5

4
,
7

4
,
7

4
,
5

4
,
9

4
, −

1

4
,
9

4

)

, (A.2d)

W5 = W6 =

(

−2, −
1

2
, 0, 1, −

1

2
, 1,

1

2
,
3

2

)

,

(

−
7

4
, −

1

4
, −

5

4
, −

5

4
,
7

4
,
1

4
, −

3

4
, −

7

4

)

, (A.2e)

and W4 = 0. Using these parameters as input of the orbifolder, one finds the massless

matter spectrum before decoupling of vector-like representations and SU(2)s confinement

shown in table 3b.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] N. Seiberg, Exact results on the space of vacua of four-dimensional SUSY gauge theories,

Phys. Rev. D 49 (1994) 6857 [hep-th/9402044] [INSPIRE].

[2] C. Csáki, M. Schmaltz and W. Skiba, A Systematic approach to confinement in N = 1

supersymmetric gauge theories, Phys. Rev. Lett. 78 (1997) 799 [hep-th/9610139] [INSPIRE].

[3] C. Csáki, M. Schmaltz and W. Skiba, Confinement in N = 1 SUSY gauge theories and model

building tools, Phys. Rev. D 55 (1997) 7840 [hep-th/9612207] [INSPIRE].

[4] M.J. Strassler, Generating a fermion mass hierarchy in a composite supersymmetric standard

model, Phys. Lett. B 376 (1996) 119 [hep-ph/9510342] [INSPIRE].

[5] A.E. Nelson and M.J. Strassler, A Realistic supersymmetric model with composite quarks,

Phys. Rev. D 56 (1997) 4226 [hep-ph/9607362] [INSPIRE].

[6] S.S. Razamat and D. Tong, Gapped Chiral Fermions, Phys. Rev. X 11 (2021) 011063

[arXiv:2009.05037] [INSPIRE].

[7] L.E. Ibáñez and A.M. Uranga, String theory and particle physics: An introduction to string

phenomenology, Cambridge University Press (2012) [DOI].

[8] S. Ramos-Sánchez, M. Ratz, Y. Shirman, S. Shukla and M. Waterbury, in preparation.

[9] P. Dimopoulos, G.K. Leontaris and N.D. Tracas, Supercompositeness inspired from

superstrings, Z. Phys. C 76 (1997) 327 [hep-ph/9604265] [INSPIRE].

[10] S. Kachru and E. Silverstein, Chirality changing phase transitions in 4-D string vacua, Nucl.

Phys. B 504 (1997) 272 [hep-th/9704185] [INSPIRE].

– 15 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.49.6857
https://arxiv.org/abs/hep-th/9402044
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9402044
https://doi.org/10.1103/PhysRevLett.78.799
https://arxiv.org/abs/hep-th/9610139
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9610139
https://doi.org/10.1103/PhysRevD.55.7840
https://arxiv.org/abs/hep-th/9612207
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9612207
https://doi.org/10.1016/0370-2693(96)00243-2
https://arxiv.org/abs/hep-ph/9510342
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9510342
https://doi.org/10.1103/PhysRevD.56.4226
https://arxiv.org/abs/hep-ph/9607362
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9607362
https://doi.org/10.1103/PhysRevX.11.011063
https://arxiv.org/abs/2009.05037
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.05037
 https://doi.org/10.1017/CBO9781139018951
https://doi.org/10.1007/s002880050557
https://arxiv.org/abs/hep-ph/9604265
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9604265
https://doi.org/10.1016/S0550-3213(97)00519-1
https://doi.org/10.1016/S0550-3213(97)00519-1
https://arxiv.org/abs/hep-th/9704185
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9704185


J
H
E
P
1
0
(
2
0
2
1
)
1
4
4

[11] M.R. Douglas and C.-g. Zhou, Chirality change in string theory, JHEP 06 (2004) 014

[hep-th/0403018] [INSPIRE].

[12] L.B. Anderson, J. Gray, N. Raghuram and W. Taylor, Matter in transition, JHEP 04 (2016)

080 [arXiv:1512.05791] [INSPIRE].

[13] L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on Orbifolds, Nucl. Phys. B 261

(1985) 678 [INSPIRE].

[14] L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on Orbifolds. 2, Nucl. Phys. B 274

(1986) 285 [INSPIRE].

[15] H.P. Nilles, S. Ramos-Sanchez, P.K.S. Vaudrevange and A. Wingerter, The Orbifolder: A

Tool to study the Low Energy Effective Theory of Heterotic Orbifolds, Comput. Phys.

Commun. 183 (2012) 1363 [arXiv:1110.5229] [INSPIRE].

[16] M. Fischer, M. Ratz, J. Torrado and P.K.S. Vaudrevange, Classification of symmetric

toroidal orbifolds, JHEP 01 (2013) 084 [arXiv:1209.3906] [INSPIRE].

[17] D.K. Mayorga Pena, H.P. Nilles and P.-K. Oehlmann, A Zip-code for Quarks, Leptons and

Higgs Bosons, JHEP 12 (2012) 024 [arXiv:1209.6041] [INSPIRE].

[18] L.E. Ibáñez and H.P. Nilles, Low-Energy Remnants of Superstring Anomaly Cancellation

Terms, Phys. Lett. B 169 (1986) 354 [INSPIRE].

[19] F. Buccella, J.P. Derendinger, S. Ferrara and C.A. Savoy, Patterns of Symmetry Breaking in

Supersymmetric Gauge Theories, Phys. Lett. B 115 (1982) 375 [INSPIRE].

[20] M.A. Luty and W. Taylor, Varieties of vacua in classical supersymmetric gauge theories,

Phys. Rev. D 53 (1996) 3399 [hep-th/9506098] [INSPIRE].

[21] L.J. Dixon, V. Kaplunovsky and J. Louis, Moduli dependence of string loop corrections to

gauge coupling constants, Nucl. Phys. B 355 (1991) 649 [INSPIRE].

[22] S. Stieberger, (0, 2) heterotic gauge couplings and their M-theory origin, Nucl. Phys. B 541

(1999) 109 [hep-th/9807124] [INSPIRE].

[23] R. Slansky, Group Theory for Unified Model Building, Phys. Rept. 79 (1981) 1 [INSPIRE].

[24] D. Bailin and A. Love, Orbifold compactifications of string theory, Phys. Rept.

315 (1999) 285.

[25] S. Ramos-Sanchez, Towards Low Energy Physics from the Heterotic String, Fortsch. Phys.

10 (2009) 907 [arXiv:0812.3560] [INSPIRE].

[26] P.K.S. Vaudrevange, Grand Unification in the Heterotic Brane World, Ph.D. thesis, Bonn

University (2008) arXiv:0812.3503 [INSPIRE].

– 16 –

https://doi.org/10.1088/1126-6708/2004/06/014
https://arxiv.org/abs/hep-th/0403018
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0403018
https://doi.org/10.1007/JHEP04(2016)080
https://doi.org/10.1007/JHEP04(2016)080
https://arxiv.org/abs/1512.05791
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.05791
https://doi.org/10.1016/0550-3213(85)90593-0
https://doi.org/10.1016/0550-3213(85)90593-0
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB261%2C678%22
https://doi.org/10.1016/0550-3213(86)90287-7
https://doi.org/10.1016/0550-3213(86)90287-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB274%2C285%22
https://doi.org/10.1016/j.cpc.2012.01.026
https://doi.org/10.1016/j.cpc.2012.01.026
https://arxiv.org/abs/1110.5229
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1110.5229
https://doi.org/10.1007/JHEP01(2013)084
https://arxiv.org/abs/1209.3906
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.3906
https://doi.org/10.1007/JHEP12(2012)024
https://arxiv.org/abs/1209.6041
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.6041
https://doi.org/10.1016/0370-2693(86)90371-0
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB169%2C354%22
https://doi.org/10.1016/0370-2693(82)90521-4
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB115%2C375%22
https://doi.org/10.1103/PhysRevD.53.3399
https://arxiv.org/abs/hep-th/9506098
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9506098
https://doi.org/10.1016/0550-3213(91)90490-O
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB355%2C649%22
https://doi.org/10.1016/S0550-3213(98)00770-6
https://doi.org/10.1016/S0550-3213(98)00770-6
https://arxiv.org/abs/hep-th/9807124
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9807124
https://doi.org/10.1016/0370-1573(81)90092-2
https://inspirehep.net/search?p=find+%22Phys.Rept%2C79%2C1%22
https://doi.org/10.1016/s0370-1573(98)00126-4
https://doi.org/10.1016/s0370-1573(98)00126-4
https://doi.org/10.1002/prop.200900073
https://doi.org/10.1002/prop.200900073
https://arxiv.org/abs/0812.3560
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0812.3560
https://arxiv.org/abs/0812.3503
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0812.3503

	Introduction
	s-confinement and gapped chiral fermions
	s-confining SU(2)(s) model
	Mass gap model

	Generation flows in GUTs
	4 -> 3 generation flow
	2 -> 3 generation flow

	Generation flow in string models
	Model scan
	Models
	Discussion

	Summary
	Orbifold model definitions
	Details of the 4 -> 3 heterotic orbifold model
	Details of the 2 -> 3 heterotic orbifold model


