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Abstract—Writing declarative models has numerous benefits,
ranging from automated reasoning and correction of design-
level properties before systems are built, to automated testing
and debugging of their implementations after they are built.
Alloy is a declarative modeling language that is well suited
for verifying object-oriented designs. A key strength of Alloy
is its scenario-finding toolset the Analyzer, which outputs all
valid scenarios that adhere to the model’s constraints up to
a user-provided scope. However, in order for scenario-finding
toolsets to be useful and not an undue burden, scenario-finding
toolsets need to generate a relatively small but valuable collection
of scenarios. This paper outlines Hawkeye, a novel interactive
enumeration technique for the Analyzer that empowers the
user to select which elements of a scenario the user wants to
keep the same or differ in the next enumeration. Experimental
results show that our technique can modify scenario enumeration
without significant overhead on the size and complexity of the
underlying SAT problem. Moreover, we highlight Hawkeye’s
ability to help users explore faulty models. Hawkeye is available
at: https://github.com/alloy-hawkeye/Hawkeye.git

Index Terms—Alloy, Scenario Finding, SAT Solver

I. INTRODUCTION

As software failures become increasingly costly, there is
a growing need to leverage software models to improve the
quality of software systems. Alloy is a first-order relational
modeling language that is actively used in industry and re-
search [18], [17], [27], [21], [10]. A key strength of Alloy
is the ability to develop models in the Analyzer, a scenario
enumeration toolset that lets users explore behavior enabled
by their models. To achieve this, the Analyzer translates Alloy
models into KodKod [33] formulas and invokes off-the-shelf
Boolean satisfiability (SAT) solvers to search for scenarios,
which are assignments to the sets of the model such that all
executed formulas hold. As output, the Analyzer produces a
collection of scenarios the user can iterate over.

While scenario enumeration is a highly useful application
of formal methods from validating software designs [23], [31],
[32], [25], [13] to program synthesis for security analysis of
hardware [34], its effectiveness relies heavily on the quality
and number of scenarios enumerated. In order to not hinder the
applications which leverage these scenarios, scenario finding
toolsets need to balance the number of the scenarios generated
with the breadth of behavior covered by the scenarios. Creating
too many similar scenarios can lead to verification technique
that uses these scenarios to overlook important system func-
tionality or for synthesis techniques to overfit to a narrow set
of behavior. On the other hand, creating too many scenarios

can significantly inflate the runtime of these techniques, often
making the search space infeasible.

Alloy’s enumeration is by design robust: Alloy produces a
collection of scenarios that covers all valid behavior within a
user provided scope. To help control the number of scenarios,
during execution, the Analyzer appends symmetry breaking
predicates to the execution, which remove many, but not al-
ways all, isomorphic scenarios. Despite using symmetry break-
ing constraints, the Analyzer frequently discover hundreds or
even thousands of scenarios per executed command, which a
user has to investigate one by one. Moreover, Alloy’s discovery
of scenarios is dictated by the order the SAT solver finds them,
which can be random, can change between executions and can
enumerate largely redundant scenarios back-to-back.

Specifically, in Alloy, scenario enumeration is provided
by KodKod [33], which uses enumerating SAT solvers [8],
[4], [28], [12], [16]. When the user desires another scenario,
Kodkod follows the standard practice in modern SAT solvers
for enumeration and adds a new clause to the propositional
formula in conjunctive normal form (CNF) such that any
new solution found to the SAT problem will differ from the
previous solution for at least one primary boolean variable.
While this enumeration strategy will avoid finding duplicate
scenarios, it provides no assurances on how the next scenario
will differ other than the fact that the scenario will be different.
As a result, it is possible the next scenario enumerated could
depict the smallest or largest change from the current scenario.
All told, Alloy’s default enumeration leaves a high burden on
the user to try to find valuable scenarios.

In this paper, we present Hawkeye, a scenario enumerator
for Alloy that looks to empower the user to help guide
the enumeration process. Hawkeye is comprised of two key
features. First, Hawkeye allows the user to interactively specify
what elements of the current scenario the user wants to see
stay the same in the next scenario. This allows the user to
view scenarios that are extensions of or tangibly related to
their current scenario. Second, Hawkeye allows the user to
specify what in the current scenario should change for the
next scenario enumerated. This functionality allows the user
to guide the enumeration away from an unhelpful scenario
and towards a potentially more valuable scenario. To give the
user flexibility in expressing enumeration criteria, Hawkeye
supports two levels of granularity: a high-level selection where
users outline changes to make to the sets of the model and
a low-level selection where users outlines changes to make
to the individual atoms of the model. Additionally, Hawkeye



allows users to mix both the level of granularity and type of
enumeration constraints provided, empowering the user to fine
tune which scenario is enumerated next.

In this paper, we make the following contributions:

o User-Directed Enumeration. We present a technique
that empowers users to direct scenario enumeration by
allowing users to specify what elements of the current
scenario they want to preserve or differ.

« Open Source. We release our enumeration framework
as an open-source extension of the latest stable release
of the Analyzer. This allows users to gradually explore
our new enumeration technique while still adhering to
the original workflow of the Analyzer. Hawkeye can be
found at https://github.com/alloy-hawkeye/Hawkeye.git.

« Evaluation. We present an experimental evaluation using
a variety of subject models used to evaluate recent
advancements to Alloy. We evaluate the overhead of
Hawkeye’s enumeration and the impact different types
of user specified constraints have on the search space.

« Case Study. We explore how Hawkeye can help users
find faults in real world faulty models in comparison to
using Alloy’s default enumeration.

II. WORKED EXAMPLE

This section presents a small but representative example of
an Alloy model to introduce some key concepts of Alloy, the
Analyzer’s enumeration, and our technique Hawkeye.

A. Alloy and the Analyzer

To highlight how modeling in Alloy works, Figure 1 (a)
depicts a model of a singly-linked list. Signature paragraphs
and the relations declared within introduce atoms and their
relationships (lines 1 - 2). Line 1 introduces List as a named
set of atoms and declares header as a binary relation that
conveys the idea that each List atom points to zero or one
(‘lone’) header node. Line 2 introduces Node as a named
set of atoms and defines the binary relation link, which
asserts that every node will either point to nothing or point
to a subsequent node. Predicate paragraphs introduce named
first order logic formulas that can be invoked elsewhere (lines
3 - 6). The Acyclic predicate uses disjunction (‘or’) and
existential quantification (‘some’) to express the idea “either
the list empty or some node is the list terminates the list.”
Commands indicate which formulas to invoke and and upper
bound on what scope to explore (line 7). The command in
Figure 1 (a) instructs the Analyzer to search for a scenario
using exactly 1 List atom and at most 3 Node atoms such
that the Acyclic predicate evaluates to true.

B. Default Scenario Enumeration

Figure 1 (b), (c) and (d) displays the first three scenarios
found by the Analyzer in both the graphical and textual
formats available to the user. Scenarios in Alloy are created
by making assignments to the sets in the model, where each
signature and relation is represented as their own set. In this
paper, we refer to the elements within a set as atoms. For

example, in Figure 1 (b), List is a set and L0 is a list atom.
A user can step through all the scenarios found by the SAT
solver, inspecting them for correctness.

In Alloy, when the user desires another scenario, Alloy’s
backend KodKod adds a new clause to the propositional
formula such that any new solution will differ from the prior
solutions. While this encoding practice prevents duplicate sce-
narios, it does not guarantee that the next scenario enumerated
will be in any way related to or markedly different than the
current scenario. For instance, the three scenarios in Figure 1
all represent an empty list. The difference in behavior that
these scenarios depict all involve the various behavior allowed
by nodes disconnected from the list, whose acyclicity we do
not care about. As a collection, these scenarios are not likely
to be of high value to the user. However, in the Analyzer,
there is no way for a user to express that they now want to see
behavior for nodes within the list. Instead, a user has to exit the
enumeration, append constraints to the model that force there
to be at least one node in a list, and re-execute the command.

C. User-Guided Scenario Enumeration

Hawkeye empowers the users to express elements of the
current scenario that they want to see stay the same or change.
In particular, Hawkeye allows users to select specific sets,
which represent the different signatures and relations, and/or
specific atoms, which are the individual elements populating
the sets, to keep the same or differ. To illustrate how Hawkeye
works and its benefits, we highlight how a series of actions
in Hawkeye can help the user explore the solution space for
the singly linked list model in Figure 1. For the scenario
in Figure 1 (b), we can guide Hawkeye to generate a more
valuable scenario by actively telling Hawkeye to populate the
list. To do this, the user can select to change the relation
header, which will force header to not be empty, meaning
there will be at least one node in the list. This selection
results in the scenario in Figure 2 (a). From there, we can
instruct Hawkeye to keep the header relation but generate a
scenario with a different 1ink to target exploring a larger list.
This produces the scenario in Figure 2 (b), which captures
an unexpected behavior allowed by our model where a node
not in the list (N1) can point to a node in the list (N0). This
behavior is now revealed early to the user, and the user can
evaluate if this should be valid or not.

To continue to explore the search space, we can repeatedly
ask Hawkeye to keep the sets header and Node the same.
This results in the scenarios displayed in Figure 2 (c), (d)
and (e). If the user tries to apply the same criteria again to
the scenario in Figure 2 (e), she will be told that there are
no more scenarios. Therefore, after enumerating these five
scenarios, the user now knows that she has investigated all
possible behaviors allowed by her model for a list with a
header node and two node atoms. In contrast, using Alloy’s
default enumeration, the scenarios in Figure 2 appear as the
7th, 10th, 9th, 4th, and 12th scenarios respectively. While this
collection of scenarios is not too far spread out, the scenarios
in between all vary from scenarios with 1 node to scenarios
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with 3 nodes, making the connection between the scenarios
hard to piece together. Additionally, after enumerating Figure 2
(e) as the 12th scenario, the user still has to enumerate 38
additional scenarios before confirming that the scenarios in
Figure 2 (b) - (e) are the only valid scenarios for a list with a
header node and two node atoms.

Hawkeye is designed to allow users to interact with the
enumeration engine in order to streamline the generation
of valuable scenarios. As illustrated, a user can go from a
scenario that is not interesting to them, such as Figure 1 (b)
where the list is empty, to a more useful scenario, such as
Figure 2 (a), by using Hawkeye to guarantee that the next
scenario enumerated will populate the list. Furthermore, by
subsequently utilizing Hawkeye to outline portions of the
scenario to retain, users can explore closely related scenarios
back-to-back instead of using the SAT solver’s discovery order.
This allows a user to spot interesting behavior in the current
scenario and then immediately choose to enumerate all the
other scenarios under which that same behavior can arise.

III. TECHNIQUE

In this section, we describe Hawkeye’s encoding to enforce
the user’s guidance (Section III-A) and how we apply this
encoded during the enumeration (Section III-B).

A. Encoding

In Alloy, scenarios are produced by KodKod, which gen-
erates a DIMACS formatted CNF formula equivalent to the
invoked constraints and uses a back-end SAT solver to find a
satisfying solution. KodKod then translates this solution into
a scenario. Specifically, KodKod creates a list of all possible
atom assignments that can populate a set and ties those to
unique integer values, e.g. {1L0->NO, 1} for the header
relation. These integers are the primary variables that make

up the CNF formula passed to the SAT solver. While solving
the CNF formula, the SAT solver determines if each primary
variable should be positive (true) or negative (false). A positive
assignment means the atom is in the scenario, e.g. “1” means
LO->NO is in the header relation while “-1” means L0O->NO
is not in header. To enumerate a new scenario, KodKod
instructs the SAT solver to find another satisfying assignment
to the variables with an additional CNF clause that asserts
that any new assignment found must differ from all previously
discovered assignments by at least one primary variable.

Hawkeye augments Alloy’s default enumeration by creating
new CNF clauses that encode the user’s guidance and must
also be satisfied for the next solution found. Hawkeye supports
two different encodings. First, to keep elements of the scenario
constant, Hawkeye appends a CNF clause that requires the
relevant primary variables to retain the same truth value for
the next solution. Users can elect to keep specific atoms the
same or to keep entire signatures and relations the same.
Atoms are individually represented by a primary variable v.
Hawkeye appends a CNF clause that asserts v if v is true for
the current scenario and —v if v is false, forcing v to stay
the same truth value. Signatures and relations are represented
by a collection of primary variables. In this case, Hawkeye
appends a sequence of CNF clauses that asserts each primary
variable mapped to the targeted signature or relation stays the
same. To illustrate, consider the scenario in Figure 2 (b) and
the following mapping of atoms to integers for the header
relation: {1L.0->N0, 1}, {1.0->N1, 2} and {1.0->N2, 3}. Adding
the CNF clause {1} keeps NO as L0’s header while adding the
clauses {1}, {—2}, {—3} keeps the entire header relation the
same for the next scenario enumerated.

Second, to force elements of the scenario to change, Hawk-
eye appends a CNF clause that asserts the next scenario must



Algorithm 1: User-directed scenario enumeration.

Input: Kodkod solver solver, Previous scenarios prev, Set of
relations sameSet, Set of relations diffSet, Set of
atoms sameAtoms, Set of atoms diffAtoms.

Output: The next scenario with respect to the user-provided

constraints on consistency and variance.

// set of new clauses for users choice
/ set of unique ids for variables

newClauses = {}

sameVars = {sameAtoms}

foreach p € sameSet do
L sameVars = sameVars U primary Variables(p)

diffVars = {} // map of rels to unique ids for variables
foreach p < diffSet do
L diffVars.get(p).add(primary Variables(p))

B W N =

QS »m

8 // Add user specified constraints - same, diff-atoms
9 for i < 1 to solver.numPrimaryVars do

10 if i € sameVars then

1 | newClauses.add(solver.valueOf{(i))

12 if i € diffAtoms then

13 | newClauses.add(solver.valueOf(i) ? -i : i)

14 // Add user specified constraints - diff-sets
15 foreach p € diffVars do
16 ¢ = new int[diffVars.get(p).size()]

17 for i <— 1 to solver.numPrimaryVars do
18 if i € diffVars.get(p) then

19 c[j] = solver.valueOf(i) ? -i : i
20 J+H+

2t | newClauses.add(c)

22 solver.cnfClear(); // Clear out the cnf clauses stored
23 // Add cnf clauses to prevent duplicates

24 for i < 1 to prev.size() do

25 | solver.addClause(prev.get(i))

26 // Add cnf clauses for the users constraints
27 for i < 1 to newClauses.size() do
28 L solver.addClause(newClauses.get(i))

29 solution = solver.solve()
30 if solution == null then return // no (new) solution found
// generate clause to prevent duplicate of new sol.
32 neg = new int{numPrimaryVars.size()]
33 intj =0
34 for i < 1 to solver.numPrimaryVars do
neglj] = solution.valueOf(i) ? -i : i
J++

w
-

w
by

w
]

prev.add(neg)
38 output(solution)

differ by at least one of the relevant primary variables. Again,
users can assert differences at an individual atom level or at
a signature and relation level. To encode changing an atom,
Hawkeye appends a CNF clause that asserts —wv if v is true
for the current scenario and v if v is false, flipping v’s truth
value. For example, adding the CNF clause {—1} ensures the
scenario after Figure 2 (b) will not have N0 as 1.0’s header. For
each targeted signature or relation, Hawkeye appends a clause
that requires the solutions to differ with respect to at least one
of the primary variables that correspond to that signature or
relation. This “at least one” encoding follows the same format
as traditional enumeration; however, it is expressed over a

restricted subset of the primary variables instead of across
all primary variables. If multiple signatures and relations are
targeted, then Hawkeye appends a separate “at least one”
clause for each. Importantly, appending a separate clause
ensures that each selected set changes. To illustrate, the clause
{-=1 2 3}, which is interpreted as “-1 or 2 or 3,” is used to
ensure the next header assignment differs from Figure 2 (b).

B. User-Directed Enumeration

Algorithm 1 depicts Hawkeye’s user-directed enumeration
strategy. Hawkeye’s enumeration algorithm’s takes four dif-
ferent inputs to capture the user’s guidance: (1) sameSet
which are sets in the model the user wants to hold constant,
(2) diffset which are sets in the model the user wants to
change, (3) sameAtoms which are atoms in the scenario the
user wants to hold constant and (4) diffAtoms which are
the atoms in the scenario the user wants to change. Users can
provide all these different inputs for any given enumeration
and is not restricted to one. Hawkeye’s enumeration algorithm
also takes two inputs that reflect the current enumeration
problem: (1) solver, which is the KodKod instance depicting
the current enumeration and (2) prev, which is a set of CNF
clauses that are used to guarantee a new solution found by the
SAT solver differs from any previous solution.

To start, Hawkeye builds a collection of primary variables
that need to be kept constant (sameVars) and a collection of
primary variables that need to change (diffvars) based on
the user’s input. If the user specified an atom, then Hawkeye’s
internal mapping has already connected the given atom to its
primary variable (line 2). However, if a user selects a set,
Hawkeye first collects all primary variables that represent the
set. For sets that need to change, we use a map to store
this information so we can appropriately append a separate
CNF clause for each set. With the relevant primary variables
collected, lines 9 - 13 and lines 15 - 21 implement the encoding
outlined in Section III-A to enforce the user’s guidance. If
the user does not provide any guidance information, then no
additional clauses are generated and Hawkeye’s enumeration
algorithm simply performs Alloy’s default enumeration.

The remainder of the algorithm generates (1) the new
scenario and (2) a new clause to ensure this scenario is
not found again. On line 22, we clear out the current CNF
clauses. By clearing out the CNF clauses, Hawkeye discards
the user-specified requirements from the previous enumeration,
ensuring that guidance is provide scenario-by-scenario and
not applied across the entire enumeration. Then, we add back
clauses to define the new enumeration. Specifically, we append
(1) the CNF clauses the encode that new solution must differ
from all previous solutions, which are stored in prev (lines
24 - 25) and (2) the CNF clauses that encoded the user’s
guidance (lines 27 - 28). If the solver successfully finds a
new solution, we generate the CNF clause needed to ensure
any future solution varies from the newly discovered one and
append this clause to prev (lines 32 - 37). Lastly, the new
scenario is displayed to the user or the user is informed that
there are now more scenarios.
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IV. IMPLEMENTATION

Hawkeye is implemented as an extension to the Analyzer
v.5.0.1, the latest stable release of the Analyzer [1]. Impor-
tantly, since Hawkeye extends the main IDE for Alloy, users
can maintain their current workflow while slowly exploring
the new functionality Hawkeye provides.

Hawkeye extends the Analyzer’s enumerator interface,
VizGUI, as depicted in Figure 3 to collect the user’s guidance.
This interface is intended to be robust as it allows users to mix
and match both the granularity and the type of enumeration
change in one location. In particular, for each signature in the
model, Hawkeye’s interfaces lists the name of the signature
and every atom of that type present in the scenario. These
atoms are presented as an indented list and are unselectable
until the user selects “Select Individual Atoms” at the signature
level. This design choice is intended to prevent malicious
input, as a user can either select an action for an entire
signature or for individual atoms of that signature but not both.
In addition, if a signature is abstract, the user is notified that
they are not allowed to provide constraints for the signature.
After displaying a signature and all of its atoms, Hawkeye’s
interface lists all of the relations defined by that signature and
gives the same high-level or low-level selection options. Once
all the information related to one signature has been displayed,
the next signature is listed. The order in which signatures and
relations are displayed is intended to be easy to follow, as the
order replicates the order of declaration in the model.

To process the user’s input, Hawkeye augments the enu-
meration workflow in the Analyzer, as seen in red in Fig-

ure 4. Hawkeye extends the communication pipeline between
VizGUI and the different translation processes that occur
during enumeration. Specifically, during execution, an Alloy
model first gets translated into a KodKod model which then
gets translated into a boolean logic formula in CNF format.
Information is stored in one direct for this process; however,
Hawkeye needs to seamlessly translate artifacts from Alloy to
their CNF primary variables and from the primary variables
back to Alloy. To that end, Hawkeye builds and maintains
a mapping between the primary variables that make up the
CNF encoding and their corresponding KodKod tuples and
from the KodKod tuples to the Alloy atoms they depict.
This mapping information is utilize to streamline Hawkeye’s
performance and interfaces. For instance, when a user selects
an atom to reason over, Hawkeye can quickly access the
atom’s primary variable mapping to generate an appropriate
CNF clause. Additionally, Hawkeye uses the mapping between
KodKod tuples and Alloy atoms to populate the list of atoms
to display for the user interface. Hawkeye also augments
KodKod’s enumerator to implement Algorithm 1. As output,
the user is either presented with a new scenario that adheres
to their preferences in the Analyzer’s enumerator interface,
or if the call to the SAT solver was unsatisfiable, the user is
informed that no such scenario exist.

V. EVALUATION

We evaluate Hawkeye over a benchmark of Alloy models
collected from recent advancements made to Alloy [22], [35].
The models are a combination of models from the Analyzer’s
example set (addr, gene), models of protocols (abe, bempl,
grade), models of data structures (arr, btree, ctree, dll,
graph fsm, sll) and models of logic puzzles (nqueens). All
experiments are performed on Windows 10 with 2.4GHz Intel
Xeon CPU and 16 GB memory.

In this section, we address the following research questions:

o RQI1: What is the overhead of Hawkeye’s enumeration

strategy?

« RQ2: What impact do the different types of enumeration

requests have on the valid scenario space?

A. Set Up

1) Baseline: We collect an initial set of results using
the default enumeration strategy of the Analyzer, which we
consider as a baseline for scenario enumeration performance.



TABLE I: Baseline results from the Analyzer.

Model  #PVrs #Cls #Cls,. #Ser Taouy Tiot Scp
addr 45 1551 1718 167 0.93 161 3
arr 67 1210 4981 3771 0.48 1855 3
bempl 38 500 1533 1033 0.42 424 3
btree 140 3318 4135 817 1.10 915 3
cd 29 3749 4013 264 3.06 824 5

ctree 40 1308 1780 472 0.92 440 5
digraph 20 202 6545 6343 0.34 2239 3
il 72 4530 5227 679 0.85 601 3

fsm 40 1499 8020 6521 026 1734 5
gene 86 4474 4538 64 2.66 174 6
grade 48 604 3730 3126 0.33 1074 3
nqueens 330 34670 34728 58 3537 2098 10
sl 15 302 352 50 0.75 44 3

To collect the results, we automatically enumerate all solutions
in the Analyzer and add in a monitor to collect performance
metrics related to size and time. To establish our baseline,
Table I depicts the Analyzer’s default enumeration perfor-
mance. Column Model reflects the name of the model under
evaluation. Columns #PVrs, #Cls,, #Cls, show the number
of primary variables, the number of clauses used to find the
first solution, and the number of clauses used to find the
last solution respectively. These columns together convey the
size of the problem passed to the SAT solver. To capture
attributes of the search, column #Scr depicts the number of
scenarios found, column T,,, shows the average time to find
a scenario, column T;,; depicts the total time to find all
scenarios and column Scp is the scope. All times displayed in
all tables are in milliseconds. Columms #Cls, and #Cls,. are
presented separately so that we can see how the number of
clauses scales as we enumerate scenarios. In the Analyzer’s
standard enumeration, the number of clauses grows linearly
with the number of scenarios found, as one clause is always
to prevent finding a duplicate of the current solution. The
number of primary variables and scope do not change across
all experiments, so they are presented once in Table I and not
repeated.

2) Configurations: Our experiments explore four different
configurations of Hawkeye:

« same-set: We randomly select a set from the model to

keep the same throughout the whole enumeration.

o diff-set: We re-use the set from the ‘same-set’ configu-
ration but force the set to change throughout the whole
enumeration.

« same-atom: We randomly select an atom from the first
scenario enumerated to hold constant throughout the
whole enumeration.

o diff-atom: Throughout the whole enumeration, we ran-
domly select an atom from the current scenario to change
for the next scenario.

As with our baseline, we automatically enumerate all so-
lutions and collect various performance metrics. Importantly,
these configurations are set up to evaluate the overhead of
the different encodings Hawkeye provides, which capture all
the different ways users can give guidance. The results for
the four different configurations can be seen in the following
tables: Table II, which shows Hawkeye’s performance for the

same-set configuration, Table III, which shows Hawkeye’s
performance for the diff-set configuration, Table IV, which
shows Hawkeye’s performance for the same-atom configu-
ration, and Table V, which shows Hawkeye’s performance
for the diff-atom configuration. For Tables II and III, column
Set communicates which set of the model was held constant
across the enumeration. Similarly, for Table IV, column Atom
displays the atom that was held constant.

B. RQI: Overhead

We asses the overhead of Hawkeye’s enumeration strategy
by considering two metrics. First, we look at how Hawkeye’s
encoding increases the size of the underlying SAT problem.
Second, we look at the impact Hawkeye’s changes to the SAT
problem have on the runtime.

1) Size of SAT Problem: For the underlying SAT problem,
the number of primary variables does not change as we search
for new scenarios but the number of clauses does change.
Based on Hawkeye’s design, which does not retain clauses
generated to meet the user’s guidance, Hawkeye should not
negatively impact how the number of CNF clauses grows.
This is supported by comparing the increase in the number
of clauses, captured by #Cls,; and #Cls., to the number of
scenarios found, captured by #Scr. For Tables III, IV, V, we
expect Hawkeye’s encoding under these configurations to add
one permanent clause to prevent duplicates and one temporary
clause to capture the user’s guidance, which #Cls,. confirms.
For Table II, Hawkeye’s encoding will add an additional clause
for every primary variable tied to the set being held constant.
This results in a larger difference between the growth in
clauses and the number of scenarios found. However, this
amount is not significant compared to the total number of
clauses and by design, these clauses are not preserved.

2) Complexity of SAT Problem: While the size of the SAT
problem is not greatly impacted, as long as a user adds
guidance, Hawkeye’s encoding does add further constraints
that any new scenario must now also satisfy, which restricts the
valid space for the next scenario and should increase the search
time. To measure the impact this can have on the complexity
of the SAT problem, we measure the time it takes to find a
new scenario, referred to as the average solve time, captured
by column Ty.g.

As seen in Tables II, III, IV, and V, the average solve time
increases for all configurations compared to the baseline, as ex-
pected. Usually, this increase in average solve time is nominal,
with most average solve times increasing by less than 10 mil-
liseconds. The largest increase in average solve time occurred
for the nqueen’s model across all four configurations. This
increase ranges from 113.03 milliseconds, a 3.2x increase,
under the ‘same-set’ configuration to 349.13 milliseconds, a
9.9x increase, under the ‘same-atom’ configuration. Even then,
the user is not likely to notice a 300 milliseconds delay to
view a scenario. As a result, when a user gives guidance using
Hawkeye’s interface, she will often not notice an impact in the
time Hawkeye takes to display the next scenario.



TABLE II: Hawkeye result for the ‘same-set’ config.

Model #Cls #Cls,. #Ser Toug Tiot Set
addr 1551 1618 40 2.68 312 listed
arr 1210 1460 247 2.31 1408 Element
bempl 500 607 104 1.58 486  Researcher
btree 3318 3951 624  21.05 15531 left
cd 3749 4013 264 9.12 3343 Class

ctree 1308 1421 103 2.74 664 color
digraph 202 216 10 1.63 64 Node
dll 4530 4659 120 5.81 1232 nxt

fsm 1499 1580 76 2.19 457 State
gene 4474 4520 10 10.81 278 spouse
grade 604 1191 578 1.70 1989 asc_with
nqueens 34670 34684 4 148.4 965 Queen
sl 302 315 10 2.72 103 Node
TABLE III: Hawkeye results for the ‘diff-set’ config.
Model #Cls #Cls, #Scr Tavg Tiot Set
addr 1551 1719 167 221 931 listed
arr 1210 4369 3158 9.60 39313 Element
bempl 500 1513 1012 2.83 4162  Researcher
btree 3318 3684 365 10.53 5468 left
cd 3749 3751 1 5.5 29 Class
ctree 1308 1781 472 2.92 2412 color
digraph 202 482 279 0.87 611 Node
di 4530 4905 374 11.78 5559 nxt

fsm 1499 1652 152 1.92 812 State
gene 4474 4537 62 10.20 1448 spouse
grade 604 3684 3079 7.66 30821 asc_with
nqueens 34670 34699 28 156.31 5442 Queen
sl 302 324 21 1.50 134 Node

However, the increase in average solve time can be notice-
able when we consider the impact an increase in average solve
time can have on the total runtime. Hawkeye often produces a
longer total runtime (T;,;) than the baseline despite Hawkeye
enumerating less scenarios, as seen in all configurations except
‘diff-atom.” For example, the fsm model in the ‘same-atom’
configuration saw the largest magnitude increase in average
solve time at a 56.5x increase, which resulted in a 39.8x in-
crease in total runtime. As a result, Hawkeye takes one minute
longer than the baseline to enumerate 2611 less scenarios.
The tradeoff being that Hawkeye exchanges runtime for the
knowledge that the 3,910 scenarios Hawkeye enumerates in
this configuration show all the different behavior allowed by
a specific atom.

In general, adding clauses to guide enumeration restricts
the number of valid scenarios for that next enumeration. As
a result, Hawkeye often increases the time to find a new
scenario, which, in turn, increases the time to enumerate
all scenarios. However, given Hawkeye’s interactive nature,
the user will likely not notice the impact when enumerating
a single scenario. Additionally, while the total runtime is
impacted, all experiments finish in under 2 minutes, which
is still fast and such a small overhead should not deter users
from adopting Hawkeye.

C. RQ2: Valid Scenario Space

We expect the type and level of change the user is looking to
make with respect to the current scenario to reduces the num-
ber of possible valid scenarios to be found. To measure this
impact, we look at the total number of scenarios enumerated.

TABLE IV: Hawkeye results for the ‘same-atom’ config.

Model #Cls #Cls,. #Scr Tavg Tiot Atom
addr 1551 1674 122 3.24 887 Namel
arr 1210 2639 1428 9.54 17357 >5
bempl 500 742 241 2.14 1155  Researcher0->Key0
btree 3318 4119 800 3480 31898 Nodel
cd 3749 3940 191 8.73 2640 Class1
ctree 1308 1607 298 4.19 2229 Node2->Nodel

digraph 202 2488 2285 5.96 15812 Node0->Nodel

dll 4530 5208 678 229 16706 Node0

fsm 1499 5410 3910 1494 68999 Statel->State2
gene 4474 4513 38 12.31 987 Man0->Eve0
grade 604 2044 1439 574 11184 Class2->Student0
nqueens 34670 34715 44 3845 18992 Queend->5
sl 302 349 46 1.7 322 Nodel

TABLE V: Hawkeye results for the ‘diff-atom’ config.

Model  #Cls; #Cls. #Ser Taug Tiot
addr 1551 1573 21 2.96 208
arr 1210 1270 59 2.35 453
bempl 500 555 54 1.53 337

btree 3318 3325 6 4.0 156
cd 3749 3754 4 9.2 113

ctree 1308 1313 4 4.0 57
digraph 202 204 1 2.5 11
dll 4530 4535 4 6.4 165

fsm 1499 1501 1 5.5 23
gene 4474 4476 1 22.0 82
grade 604 654 49 1.74 372
nqueens 34670 34675 4 171.4 1101
sl 302 308 5 1.67 34

When we compare the number of scenarios found from the
‘same-set’ and ‘diff-set’ configurations, which reason over an
identical set, we can see that the ‘same-set’ configuration fre-
quently finds less scenarios. Conceptually, when a user asks to
keep a portion of a scenario the same, the user is significantly
restricting the space of valid scenarios because only scenarios
that extend the selected behavior can be generated. Meanwhile,
if the user asks to change a portion of a scenario, the user
has restricted the space of valid scenarios, but the restriction
expresses that the scenario should take any variety of other
behavior instead. This latter restriction is usually not as limited
of a perspective as the prior restriction.

This relationship is inverted at the atom level. Notably,
guidance related to atoms that should differ can result in the
user making a choice that severely limits the number of pos-
sible scenarios, including the possibility of directly violating
constraints of the model, which results in no new scenario.
As Table V shows, the configuration ‘diff-atom’ often results
in a small number of scenarios. In this configuration, the
models with low scenario counts have multiplicity constraints
that restrict the size of some signatures. The early termination
of these models occurred when the atom selected to change
violated a multiplicity constraint, resulting in an unsatisfiable
call. In contrast, guidance related to atoms that should stay
constant may not noticeably reduce the valid scenario space.
For instance, under the ‘same-atom’ configuration, dll enumer-
ates one less scenario than the baseline because the selected
atom, NodeO0, is in every scenario except one.

In general, asking Hawkeye to keep a set the same often
reduces the number of valid scenarios more than changing a
set. Meanwhile, asking Hawkeye to keep an atom constant may



not impact the possible next scenario significantly while asking
to change a specific atom can lead to an early termination.

D. Threats to Validity

Our evaluation is designed to evaluate the overhead of
Hawkeye’s different encoding which capture all the different
unique ways the user can influence enumeration. As a result,
our evaluation does not capture the interactive nature of
Hawkeye in three main ways. First, the times reported are
just the time to find the solutions, but Hawkeye does expect
the user to inspect a scenario and decide on any enumeration
constraints to apply for the next scenario. Second, a user
may ask Hawkeye to generate a new scenario with a mix of
both granularity levels and types of enumeration constraints.
Third, our configurations were held constant over an entire
enumeration; however, this is not required by Hawkeye and a
user my change their guidance form one enumeration to the
next. Therefore, our results may not generalize to the way
users choose to interact with Hawkeye.

VI. CASE STUDY

Hawkeye is designed with the idea that by giving users
an active roll in the enumeration and not relying simply
on the order of discovery by the SAT solvers, users will
engage more with Alloy’s enumerator as they benefit from
exploring more valuable scenarios. This is motivated by Al-
loy’s incremental development life-cycle where a user writes
a constraint, executes a command to exercise the constraint,
enumerates a few scenarios to make sure the constraint seems
correct and then the user repeats this process with a new
constraint. When checking for correctness, Alloy user can
find two basic kinds of faults: (1) overconstraint, where the
formula rules out valuations that the user wanted to allow and
(2) underconstraint, where the formula allows valuations that
the user wanted to rule out.

Alloy’s default enumeration makes detecting faults difficult:
the user either needs to enumerate all scenarios, which can
number in the thousands, to notice one is missing or the
user needs to randomly enumerates an unexpected scenario.
Additionally, since Alloy’s default enumeration can sometimes
be very random and other times very redundant, users can
be deterred from exploring enough scenarios to adequately
have confidence in the correctness of their models. In this
section, we explore how users can interact with Hawkeye to
reveal faults in real world faulty models. Moreover, we show
how the interactive nature of Hawkeye’s enumeration can help
users diagnose the fault. We focus on faults written by new
Alloy users who are likely to benefit from Hawkeye’s ability to
allow users to actively check for and explore specific behavior,
something new users lament about learning Alloy [5].

1) Overconstrained Faults: Overconstrained faults are of-
ten revealed when a user enumerates scenarios and fails to see
a particular scenario. Using Alloy’s default enumeration, we
can see from Table I that this might mean the user needs to
look at just 50 scenarios or as many as 6,000 scenarios. Using
Hawkeye, the user is likely to investigate significantly less

scenarios to discover the absence of a scenario. To illustrate,
considering the following real-world overconstrained model:
. sig List { header: lone Node }

1

2.

3. sig Node {

4 link: lone Node,
5. elem: one Int }
6

7

8

9

: pred Sorted(l: List) {
all n: l.header.xlink | n.elem <= n.link.elem }

. run {Sorted[List]} for 3 but exactly 1 List

This model is from a graduate student assignment [36]. The
predicate Sorted is supposed to outline that for all nodes in
the list, the nodes appear in ascending order based on their
elem value. The user accidentally restricted the valid behavior
of Sorted. Specifically, the subformula in the quantified
formula requires every node in the list to have a populated
link relation in order for the formula to be true. As a result,
the Analyzer will never generate a list that contains a Node
atom with an empty 1ink relation, even though a node without
a link can still appear in a valid sorted lists.

The first scenario enumerated by Hawkeye is the following:

header

The user can immediately use this scenario to reveal the
overconstrained fault. Based on this scenario, the user may
want to quickly confirm that the 1ink does not need to be
present. If the user asks Hawkeye to keep header, Node and
elem the same while changing 1ink, then the user will then
be told there are no valid scenarios. Since the user targeted
a specific change and discovered it was infeasible, the user
gains the additional information that their constraints seem
to prevent nodes from having an empty 1ink relation. Using
Alloy’s default enumeration, there are 113,188 scenarios for
this command. The user will need to inspect enough of these
scenarios to feel confident that the scenarios being generated
never allow a node to have an empty link relation. In the worst
case, the user will inspect all of them.

Due to the elem relation, the number of scenarios generated
for this model is particularly large. The scope for integers
in Alloy is a bit-width, meaning that for a scope of 3, a
node’s elem can range from -8 to 7. This results is a lot
of redundancy in scenarios. For instance, for the scenario
outlined above, Alloy will enumerate 15 lists that have the
same structure as this scenario but each scenario will have
a different value populating the elem relation. While these
scenarios contain the same high-level structure, these scenarios
are non-isomorphic with respect to the identity of atoms
(i.e. elem=N0->7, elem=N0->6). Therefore, Alloy’s default
symmetry breaking will preserve all 15. Yet, exploring all
15 of these scenarios may not be of high value to the user
depending on the constraints being evaluated. Using Hawkeye,



(@)

s2 }

1. one sig FSM { start: set State, stop: set State }
2. sig State { tsn: set State }

3. fact OneStartAndStop {

4., some sl: State | sl in FSM.start

5. all s1, s2: State {

6. sl = FSM.start and s2 = FSM.start => sl
7. some sl: State | sl in FSM.stop

8. all sl1, s2: State {

9. sl = FSM.stop and s2 = FSM.stop => sl =
10. }

11. run {} for 5

(b)

FSM0

start stop

}

Fig. 5: Revealing Underconstrained Faults Using Hawkeye.

(a) (b) (©)

start stop start stop start stop

tsn

Fig. 6: Revealing Underconstrained Faults Using the Analyzer

users can elect to skip these largely redundant scenarios as
desired. As a result, efficiently navigating scenarios which
utilize integers is another strength of Hawkeye.

2) Underconstrained Faults: Underconstained faults are
revealed when a user enumerates scenarios and notices that
the behavior displayed is incorrect. Using Alloy’s default
enumeration, how many scenarios a user needs to inspect
is random, as the faulty behavior can be revealed at any
point. Moreover, the user needs to be able to identify that
the behavior shown in the scenario is in fact faulty. Using
Hawkeye, the user may target behavior that leads to them
accidentally revealing a fault. In the process, the user may
end up exploring more or less scenarios than Alloy’s default
enumeration. However, because the user is seeking out specific
behavior in the scenario, the user is likely notice quickly if any
faulty behavior unexpectedly occurs.

To illustrate, consider the real-world faulty model in Fig-
ure 5 (a), which is also from a new Alloy user [36]. The
user is trying to specify that for a finite state machine, there
is only one start and one stop state. However, the constraints
written allow for multiple start and stop states. Specifically, for
the start state, the use of “some” instead of “one” on line 4
allows for there to be more that one start state. The user then
adds lines 5-6 to try and say that if any two State atoms
are equal to the start state, then they are the same State.
Unfortunately, if there is more the one start state, then the
formula “s1 = FSM.start” is false. As a result, the user’s
implication formula is true but not for the user’s intended
reason, which is what allows for erroneous behavior to be
generated. The same holds for stop.

Figure 5 (b) shows the first scenario displayed to the
user. Based on this behavior, the user may ask Hawkeye to
enumerate a scenario with a different State and tsn sets

to view a larger, more populated finite state machine. This
produces the scenario in Figure 5 (c) which displays the faulty
behavior. Therefore, using Hawkeye, we can reveal this faulty
behavior in one enumeration. The user was expecting to see
more state transitions, but is instead presented with multiple
stop states. Using Alloy’s enumeration, the user can discover
faulty behavior after the 6th enumeration, as seen in Figure 6.
Due to the order being dependent on the SAT solver, the set of
scenarios may change with other configurations and on other
machines. Once the user has enumerated the first six scenario
in Figure 6 (a) - (f), the user may feel confident enough to
stop enumeration. In particular, the scenarios in Figure 6 (a) -
(f) show valid behavior for scenarios with multiple states and
a variety of state transitions. Therefore, the user may not have
any motivation to continue enumeration to Figure 6 (g).

VII. RELATED WORK

Our technique is closely related to techniques which looks
to reduce the number of scenarios enumerated by the Ana-
lyzer. One traditional approach is symmetry breaking, where
constraints are added to the formula to remove isomorphic so-
lutions, which are solutions that share the same shape [3], [29],
[14]. Beyond symmetry breaking, several past projects im-
prove scenario enumeration by trying to narrow what scenarios
are generated using a specific criteria, e.g., minimality [23],
field exhaustiveness [24], and coverage [32], [25]. All of these
techniques reduce the number of scenarios by applying some
criteria across the entire enumeration. However, the order of
scenarios generated is still dictated by the SAT solver’s order
of discovery. Our approach is orthogonal to these techniques
and can work in tandem with their enumeration strategies to
take advantage of their reduction in the scenario search space
while Hawkeye provides guidance to the order of enumeration.



Another closely related to our work is Seabs, a recent
enhancement to Alloy which introduces support for abstract
functions [30]. Abstract functions allows users to define data
abstractions that specify how scenarios must differ for an
executed command. Although abstract functions also enable
users to provide information to guide enumeration, abstract
functions are a universal goal that impacts the entire collection
of scenarios that gets generated and can support broader goals
than Hawkeye such as enumerating different transitive closures
over an expression [34]. In contrast, our enumeration technique
enables users to make on-the-fly decisions that can change
from one scenario to the next. Moreover, Hawkeye allows
users to express both what elements of a scenario to preserve
and discard while abstract functions only allow users to outline
how scenarios should differ.

In general, beyond Alloy, researchers have focused on
improving scenario enumeration strategies, .e.g. dedicated
search [2], mixing of generators and solvers [11], [15], solver-
aided languages [26], and sampling [20], [7]. We believe
that improvements to the scenarios that get generated by
the Analyzer could be refined by some of these approaches,
and further combined with Hawkeye. Additionally, researchers
have developed novel verification efforts which utilize scenario
enumerating toolsets, e.g. automated test input generation [19],
and model counting for reliability analysis [9]. In future work,
we plan to explore how Hawkeye’s enumeration strategy can
benefit the broader adoption of these automated verification
efforts by allowing the user to explore and have some control
over the scenarios used. In particular, TestEra and Korat, which
already utilizes elements of Alloy [19], [6].

VIII. CONCLUSION

Scenario finding toolsets are only valuable if they can
generate a feasible number of important scenarios for the user.
While the Analyzer produces a robust, exhaustively bounded
collection of scenarios, users do not currently have native
support within the Analyzer to guide enumeration outside of
providing a bound on the universe of discourse. To address
this limitation, we introduce Hawkeye, a tool for user-directed
enumeration of Alloy scenarios. Hawkeye empowers users to
take control of what scenario the Analyzer generates next,
allowing users to quickly build a collection of scenarios that is
highly valuable to them. Specifically, users can control whether
they view a new scenario that is closely related to or vastly
different from the current scenario. Our evaluation of Hawkeye
shows that the change in enumeration has a minimal overhead.
Additionally, we highlight an important use case of Hawkeye:
helping users discover if their model is faulty.
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