
HawkEye: User-Guided Enumeration of Scenarios

Allison Sullivan

University of Texas at Arlington

Arlington, TX USA

allison.sullivan@uta.edu

Abstract—Writing declarative models has numerous benefits,
ranging from automated reasoning and correction of design-
level properties before systems are built, to automated testing
and debugging of their implementations after they are built.
Alloy is a declarative modeling language that is well suited
for verifying object-oriented designs. A key strength of Alloy
is its scenario-finding toolset the Analyzer, which outputs all
valid scenarios that adhere to the model’s constraints up to
a user-provided scope. However, in order for scenario-finding
toolsets to be useful and not an undue burden, scenario-finding
toolsets need to generate a relatively small but valuable collection
of scenarios. This paper outlines Hawkeye, a novel interactive
enumeration technique for the Analyzer that empowers the
user to select which elements of a scenario the user wants to
keep the same or differ in the next enumeration. Experimental
results show that our technique can modify scenario enumeration
without significant overhead on the size and complexity of the
underlying SAT problem. Moreover, we highlight Hawkeye’s
ability to help users explore faulty models. Hawkeye is available
at: https://github.com/alloy-hawkeye/Hawkeye.git

Index Terms—Alloy, Scenario Finding, SAT Solver

I. INTRODUCTION

As software failures become increasingly costly, there is

a growing need to leverage software models to improve the

quality of software systems. Alloy is a first-order relational

modeling language that is actively used in industry and re-

search [18], [17], [27], [21], [10]. A key strength of Alloy

is the ability to develop models in the Analyzer, a scenario

enumeration toolset that lets users explore behavior enabled

by their models. To achieve this, the Analyzer translates Alloy

models into KodKod [33] formulas and invokes off-the-shelf

Boolean satisfiability (SAT) solvers to search for scenarios,

which are assignments to the sets of the model such that all

executed formulas hold. As output, the Analyzer produces a

collection of scenarios the user can iterate over.

While scenario enumeration is a highly useful application

of formal methods from validating software designs [23], [31],

[32], [25], [13] to program synthesis for security analysis of

hardware [34], its effectiveness relies heavily on the quality

and number of scenarios enumerated. In order to not hinder the

applications which leverage these scenarios, scenario finding

toolsets need to balance the number of the scenarios generated

with the breadth of behavior covered by the scenarios. Creating

too many similar scenarios can lead to verification technique

that uses these scenarios to overlook important system func-

tionality or for synthesis techniques to overfit to a narrow set

of behavior. On the other hand, creating too many scenarios

can significantly inflate the runtime of these techniques, often

making the search space infeasible.

Alloy’s enumeration is by design robust: Alloy produces a

collection of scenarios that covers all valid behavior within a

user provided scope. To help control the number of scenarios,

during execution, the Analyzer appends symmetry breaking

predicates to the execution, which remove many, but not al-

ways all, isomorphic scenarios. Despite using symmetry break-

ing constraints, the Analyzer frequently discover hundreds or

even thousands of scenarios per executed command, which a

user has to investigate one by one. Moreover, Alloy’s discovery

of scenarios is dictated by the order the SAT solver finds them,

which can be random, can change between executions and can

enumerate largely redundant scenarios back-to-back.

Specifically, in Alloy, scenario enumeration is provided

by KodKod [33], which uses enumerating SAT solvers [8],

[4], [28], [12], [16]. When the user desires another scenario,

Kodkod follows the standard practice in modern SAT solvers

for enumeration and adds a new clause to the propositional

formula in conjunctive normal form (CNF) such that any

new solution found to the SAT problem will differ from the

previous solution for at least one primary boolean variable.

While this enumeration strategy will avoid finding duplicate

scenarios, it provides no assurances on how the next scenario

will differ other than the fact that the scenario will be different.

As a result, it is possible the next scenario enumerated could

depict the smallest or largest change from the current scenario.

All told, Alloy’s default enumeration leaves a high burden on

the user to try to find valuable scenarios.

In this paper, we present Hawkeye, a scenario enumerator

for Alloy that looks to empower the user to help guide

the enumeration process. Hawkeye is comprised of two key

features. First, Hawkeye allows the user to interactively specify

what elements of the current scenario the user wants to see

stay the same in the next scenario. This allows the user to

view scenarios that are extensions of or tangibly related to

their current scenario. Second, Hawkeye allows the user to

specify what in the current scenario should change for the

next scenario enumerated. This functionality allows the user

to guide the enumeration away from an unhelpful scenario

and towards a potentially more valuable scenario. To give the

user flexibility in expressing enumeration criteria, Hawkeye

supports two levels of granularity: a high-level selection where

users outline changes to make to the sets of the model and

a low-level selection where users outlines changes to make

to the individual atoms of the model. Additionally, Hawkeye



allows users to mix both the level of granularity and type of

enumeration constraints provided, empowering the user to fine

tune which scenario is enumerated next.

In this paper, we make the following contributions:

• User-Directed Enumeration. We present a technique

that empowers users to direct scenario enumeration by

allowing users to specify what elements of the current

scenario they want to preserve or differ.

• Open Source. We release our enumeration framework

as an open-source extension of the latest stable release

of the Analyzer. This allows users to gradually explore

our new enumeration technique while still adhering to

the original workflow of the Analyzer. Hawkeye can be

found at https://github.com/alloy-hawkeye/Hawkeye.git.

• Evaluation. We present an experimental evaluation using

a variety of subject models used to evaluate recent

advancements to Alloy. We evaluate the overhead of

Hawkeye’s enumeration and the impact different types

of user specified constraints have on the search space.

• Case Study. We explore how Hawkeye can help users

find faults in real world faulty models in comparison to

using Alloy’s default enumeration.

II. WORKED EXAMPLE

This section presents a small but representative example of

an Alloy model to introduce some key concepts of Alloy, the

Analyzer’s enumeration, and our technique Hawkeye.

A. Alloy and the Analyzer

To highlight how modeling in Alloy works, Figure 1 (a)

depicts a model of a singly-linked list. Signature paragraphs

and the relations declared within introduce atoms and their

relationships (lines 1 - 2). Line 1 introduces List as a named

set of atoms and declares header as a binary relation that

conveys the idea that each List atom points to zero or one

(‘lone’) header node. Line 2 introduces Node as a named

set of atoms and defines the binary relation link, which

asserts that every node will either point to nothing or point

to a subsequent node. Predicate paragraphs introduce named

first order logic formulas that can be invoked elsewhere (lines

3 - 6). The Acyclic predicate uses disjunction (‘or’) and

existential quantification (‘some’) to express the idea “either

the list empty or some node is the list terminates the list.”

Commands indicate which formulas to invoke and and upper

bound on what scope to explore (line 7). The command in

Figure 1 (a) instructs the Analyzer to search for a scenario

using exactly 1 List atom and at most 3 Node atoms such

that the Acyclic predicate evaluates to true.

B. Default Scenario Enumeration

Figure 1 (b), (c) and (d) displays the first three scenarios

found by the Analyzer in both the graphical and textual

formats available to the user. Scenarios in Alloy are created

by making assignments to the sets in the model, where each

signature and relation is represented as their own set. In this

paper, we refer to the elements within a set as atoms. For

example, in Figure 1 (b), List is a set and L0 is a list atom.

A user can step through all the scenarios found by the SAT

solver, inspecting them for correctness.

In Alloy, when the user desires another scenario, Alloy’s

backend KodKod adds a new clause to the propositional

formula such that any new solution will differ from the prior

solutions. While this encoding practice prevents duplicate sce-

narios, it does not guarantee that the next scenario enumerated

will be in any way related to or markedly different than the

current scenario. For instance, the three scenarios in Figure 1

all represent an empty list. The difference in behavior that

these scenarios depict all involve the various behavior allowed

by nodes disconnected from the list, whose acyclicity we do

not care about. As a collection, these scenarios are not likely

to be of high value to the user. However, in the Analyzer,

there is no way for a user to express that they now want to see

behavior for nodes within the list. Instead, a user has to exit the

enumeration, append constraints to the model that force there

to be at least one node in a list, and re-execute the command.

C. User-Guided Scenario Enumeration

Hawkeye empowers the users to express elements of the

current scenario that they want to see stay the same or change.

In particular, Hawkeye allows users to select specific sets,

which represent the different signatures and relations, and/or

specific atoms, which are the individual elements populating

the sets, to keep the same or differ. To illustrate how Hawkeye

works and its benefits, we highlight how a series of actions

in Hawkeye can help the user explore the solution space for

the singly linked list model in Figure 1. For the scenario

in Figure 1 (b), we can guide Hawkeye to generate a more

valuable scenario by actively telling Hawkeye to populate the

list. To do this, the user can select to change the relation

header, which will force header to not be empty, meaning

there will be at least one node in the list. This selection

results in the scenario in Figure 2 (a). From there, we can

instruct Hawkeye to keep the header relation but generate a

scenario with a different link to target exploring a larger list.

This produces the scenario in Figure 2 (b), which captures

an unexpected behavior allowed by our model where a node

not in the list (N1) can point to a node in the list (N0). This

behavior is now revealed early to the user, and the user can

evaluate if this should be valid or not.

To continue to explore the search space, we can repeatedly

ask Hawkeye to keep the sets header and Node the same.

This results in the scenarios displayed in Figure 2 (c), (d)

and (e). If the user tries to apply the same criteria again to

the scenario in Figure 2 (e), she will be told that there are

no more scenarios. Therefore, after enumerating these five

scenarios, the user now knows that she has investigated all

possible behaviors allowed by her model for a list with a

header node and two node atoms. In contrast, using Alloy’s

default enumeration, the scenarios in Figure 2 appear as the

7th, 10th, 9th, 4th, and 12th scenarios respectively. While this

collection of scenarios is not too far spread out, the scenarios

in between all vary from scenarios with 1 node to scenarios



(a) (b) (c) (d)

1. one sig List { header: lone Node }

2. sig Node { link: lone Node }

3. pred Acyclic {

4. all l : List {

5. no l.header or

6. some n : l.header.*link | no n.link }}

7. run {Acyclic} for 3 but exactly 1 Node

L0

N0 link

L0

N0 N1 link

L0

N0 N1
link

link

List = {L0}

Node = {N0}

header = {}

link = {N0->N0}

List = {L0}

Node = {N0, N1}

header = {}

link = {N0->N0}

List = {L0}

Node = {N0, N1}

header = {}

link = {N0->N1, N1->N1}

Fig. 1: Alloy model of a singly-linked list and a corresponding scenario.

(a) (b) (c) (d) (e)

L0

N0

header

L0

N0 N1

header

link

L0

N0 N1

header

L0

N0 N1

header

link

L0

N0 N1

header

link

Generated by asking Hawk-

eye to change Figure 1 (b)’s

header.

Generated by asking Hawkeye

to keep Figure 2 (a)’s header

but change Figure 2 (a) link.

Generated by asking Hawkeye

to keep Figure 2 (b)’s header

and Node.

Generated by asking Hawkeye

to keep Figure 2 (c)’s header

and Node.

Generated by asking Hawkeye

to keep Figure 2 (d)’s header

and Node.

Fig. 2: User-Guided Enumeration using Hawkeye.

with 3 nodes, making the connection between the scenarios

hard to piece together. Additionally, after enumerating Figure 2

(e) as the 12th scenario, the user still has to enumerate 38

additional scenarios before confirming that the scenarios in

Figure 2 (b) - (e) are the only valid scenarios for a list with a

header node and two node atoms.

Hawkeye is designed to allow users to interact with the

enumeration engine in order to streamline the generation

of valuable scenarios. As illustrated, a user can go from a

scenario that is not interesting to them, such as Figure 1 (b)

where the list is empty, to a more useful scenario, such as

Figure 2 (a), by using Hawkeye to guarantee that the next

scenario enumerated will populate the list. Furthermore, by

subsequently utilizing Hawkeye to outline portions of the

scenario to retain, users can explore closely related scenarios

back-to-back instead of using the SAT solver’s discovery order.

This allows a user to spot interesting behavior in the current

scenario and then immediately choose to enumerate all the

other scenarios under which that same behavior can arise.

III. TECHNIQUE

In this section, we describe Hawkeye’s encoding to enforce

the user’s guidance (Section III-A) and how we apply this

encoded during the enumeration (Section III-B).

A. Encoding

In Alloy, scenarios are produced by KodKod, which gen-

erates a DIMACS formatted CNF formula equivalent to the

invoked constraints and uses a back-end SAT solver to find a

satisfying solution. KodKod then translates this solution into

a scenario. Specifically, KodKod creates a list of all possible

atom assignments that can populate a set and ties those to

unique integer values, e.g. {L0->N0, 1} for the header

relation. These integers are the primary variables that make

up the CNF formula passed to the SAT solver. While solving

the CNF formula, the SAT solver determines if each primary

variable should be positive (true) or negative (false). A positive

assignment means the atom is in the scenario, e.g. “1” means

L0->N0 is in the header relation while “-1” means L0->N0

is not in header. To enumerate a new scenario, KodKod

instructs the SAT solver to find another satisfying assignment

to the variables with an additional CNF clause that asserts

that any new assignment found must differ from all previously

discovered assignments by at least one primary variable.

Hawkeye augments Alloy’s default enumeration by creating

new CNF clauses that encode the user’s guidance and must

also be satisfied for the next solution found. Hawkeye supports

two different encodings. First, to keep elements of the scenario

constant, Hawkeye appends a CNF clause that requires the

relevant primary variables to retain the same truth value for

the next solution. Users can elect to keep specific atoms the

same or to keep entire signatures and relations the same.

Atoms are individually represented by a primary variable v.

Hawkeye appends a CNF clause that asserts v if v is true for

the current scenario and −v if v is false, forcing v to stay

the same truth value. Signatures and relations are represented

by a collection of primary variables. In this case, Hawkeye

appends a sequence of CNF clauses that asserts each primary

variable mapped to the targeted signature or relation stays the

same. To illustrate, consider the scenario in Figure 2 (b) and

the following mapping of atoms to integers for the header

relation: {L0->N0, 1}, {L0->N1, 2} and {L0->N2, 3}. Adding

the CNF clause {1} keeps N0 as L0’s header while adding the

clauses {1}, {−2}, {−3} keeps the entire header relation the

same for the next scenario enumerated.

Second, to force elements of the scenario to change, Hawk-

eye appends a CNF clause that asserts the next scenario must



Algorithm 1: User-directed scenario enumeration.

Input: Kodkod solver solver, Previous scenarios prev, Set of
relations sameSet, Set of relations diffSet, Set of
atoms sameAtoms, Set of atoms diffAtoms.

Output: The next scenario with respect to the user-provided
constraints on consistency and variance.

1 newClauses = {} // set of new clauses for users choice
2 sameVars = {sameAtoms} // set of unique ids for variables
3 foreach ρ ∈ sameSet do
4 sameVars = sameVars ∪ primaryVariables(ρ)

5 diffVars = {} // map of rels to unique ids for variables
6 foreach ρ ∈ diffSet do
7 diffVars.get(ρ).add(primaryVariables(ρ))

8 // Add user specified constraints - same, diff-atoms
9 for i ← 1 to solver.numPrimaryVars do

10 if i ∈ sameVars then
11 newClauses.add(solver.valueOf(i))

12 if i ∈ diffAtoms then
13 newClauses.add(solver.valueOf(i) ? -i : i)

14 // Add user specified constraints - diff-sets
15 foreach ρ ∈ diffVars do
16 c = new int[diffVars.get(ρ).size()]
17 for i ← 1 to solver.numPrimaryVars do
18 if i ∈ diffVars.get(ρ) then
19 c[j] = solver.valueOf(i) ? -i : i
20 j++

21 newClauses.add(c)

22 solver.cnfClear(); // Clear out the cnf clauses stored
23 // Add cnf clauses to prevent duplicates
24 for i ← 1 to prev.size() do
25 solver.addClause(prev.get(i))

26 // Add cnf clauses for the users constraints
27 for i ← 1 to newClauses.size() do
28 solver.addClause(newClauses.get(i))

29 solution = solver.solve()
30 if solution == null then return // no (new) solution found
31 // generate clause to prevent duplicate of new sol.
32 neg = new int[numPrimaryVars.size()]
33 int j = 0
34 for i ← 1 to solver.numPrimaryVars do
35 neg[j] = solution.valueOf(i) ? -i : i
36 j++

37 prev.add(neg)
38 output(solution)

differ by at least one of the relevant primary variables. Again,

users can assert differences at an individual atom level or at

a signature and relation level. To encode changing an atom,

Hawkeye appends a CNF clause that asserts −v if v is true

for the current scenario and v if v is false, flipping v’s truth

value. For example, adding the CNF clause {−1} ensures the

scenario after Figure 2 (b) will not have N0 as L0’s header. For

each targeted signature or relation, Hawkeye appends a clause

that requires the solutions to differ with respect to at least one

of the primary variables that correspond to that signature or

relation. This “at least one” encoding follows the same format

as traditional enumeration; however, it is expressed over a

restricted subset of the primary variables instead of across

all primary variables. If multiple signatures and relations are

targeted, then Hawkeye appends a separate “at least one”

clause for each. Importantly, appending a separate clause

ensures that each selected set changes. To illustrate, the clause

{−1 2 3}, which is interpreted as “-1 or 2 or 3,” is used to

ensure the next header assignment differs from Figure 2 (b).

B. User-Directed Enumeration

Algorithm 1 depicts Hawkeye’s user-directed enumeration

strategy. Hawkeye’s enumeration algorithm’s takes four dif-

ferent inputs to capture the user’s guidance: (1) sameSet

which are sets in the model the user wants to hold constant,

(2) diffSet which are sets in the model the user wants to

change, (3) sameAtoms which are atoms in the scenario the

user wants to hold constant and (4) diffAtoms which are

the atoms in the scenario the user wants to change. Users can

provide all these different inputs for any given enumeration

and is not restricted to one. Hawkeye’s enumeration algorithm

also takes two inputs that reflect the current enumeration

problem: (1) solver, which is the KodKod instance depicting

the current enumeration and (2) prev, which is a set of CNF

clauses that are used to guarantee a new solution found by the

SAT solver differs from any previous solution.

To start, Hawkeye builds a collection of primary variables

that need to be kept constant (sameVars) and a collection of

primary variables that need to change (diffVars) based on

the user’s input. If the user specified an atom, then Hawkeye’s

internal mapping has already connected the given atom to its

primary variable (line 2). However, if a user selects a set,

Hawkeye first collects all primary variables that represent the

set. For sets that need to change, we use a map to store

this information so we can appropriately append a separate

CNF clause for each set. With the relevant primary variables

collected, lines 9 - 13 and lines 15 - 21 implement the encoding

outlined in Section III-A to enforce the user’s guidance. If

the user does not provide any guidance information, then no

additional clauses are generated and Hawkeye’s enumeration

algorithm simply performs Alloy’s default enumeration.

The remainder of the algorithm generates (1) the new

scenario and (2) a new clause to ensure this scenario is

not found again. On line 22, we clear out the current CNF

clauses. By clearing out the CNF clauses, Hawkeye discards

the user-specified requirements from the previous enumeration,

ensuring that guidance is provide scenario-by-scenario and

not applied across the entire enumeration. Then, we add back

clauses to define the new enumeration. Specifically, we append

(1) the CNF clauses the encode that new solution must differ

from all previous solutions, which are stored in prev (lines

24 - 25) and (2) the CNF clauses that encoded the user’s

guidance (lines 27 - 28). If the solver successfully finds a

new solution, we generate the CNF clause needed to ensure

any future solution varies from the newly discovered one and

append this clause to prev (lines 32 - 37). Lastly, the new

scenario is displayed to the user or the user is informed that

there are now more scenarios.



Fig. 3: Hawkeye User Interface

Fig. 4: Hawkeye Framework Overview

IV. IMPLEMENTATION

Hawkeye is implemented as an extension to the Analyzer

v.5.0.1, the latest stable release of the Analyzer [1]. Impor-

tantly, since Hawkeye extends the main IDE for Alloy, users

can maintain their current workflow while slowly exploring

the new functionality Hawkeye provides.

Hawkeye extends the Analyzer’s enumerator interface,

VizGUI, as depicted in Figure 3 to collect the user’s guidance.

This interface is intended to be robust as it allows users to mix

and match both the granularity and the type of enumeration

change in one location. In particular, for each signature in the

model, Hawkeye’s interfaces lists the name of the signature

and every atom of that type present in the scenario. These

atoms are presented as an indented list and are unselectable

until the user selects “Select Individual Atoms” at the signature

level. This design choice is intended to prevent malicious

input, as a user can either select an action for an entire

signature or for individual atoms of that signature but not both.

In addition, if a signature is abstract, the user is notified that

they are not allowed to provide constraints for the signature.

After displaying a signature and all of its atoms, Hawkeye’s

interface lists all of the relations defined by that signature and

gives the same high-level or low-level selection options. Once

all the information related to one signature has been displayed,

the next signature is listed. The order in which signatures and

relations are displayed is intended to be easy to follow, as the

order replicates the order of declaration in the model.

To process the user’s input, Hawkeye augments the enu-

meration workflow in the Analyzer, as seen in red in Fig-

ure 4. Hawkeye extends the communication pipeline between

VizGUI and the different translation processes that occur

during enumeration. Specifically, during execution, an Alloy

model first gets translated into a KodKod model which then

gets translated into a boolean logic formula in CNF format.

Information is stored in one direct for this process; however,

Hawkeye needs to seamlessly translate artifacts from Alloy to

their CNF primary variables and from the primary variables

back to Alloy. To that end, Hawkeye builds and maintains

a mapping between the primary variables that make up the

CNF encoding and their corresponding KodKod tuples and

from the KodKod tuples to the Alloy atoms they depict.

This mapping information is utilize to streamline Hawkeye’s

performance and interfaces. For instance, when a user selects

an atom to reason over, Hawkeye can quickly access the

atom’s primary variable mapping to generate an appropriate

CNF clause. Additionally, Hawkeye uses the mapping between

KodKod tuples and Alloy atoms to populate the list of atoms

to display for the user interface. Hawkeye also augments

KodKod’s enumerator to implement Algorithm 1. As output,

the user is either presented with a new scenario that adheres

to their preferences in the Analyzer’s enumerator interface,

or if the call to the SAT solver was unsatisfiable, the user is

informed that no such scenario exist.

V. EVALUATION

We evaluate Hawkeye over a benchmark of Alloy models

collected from recent advancements made to Alloy [22], [35].

The models are a combination of models from the Analyzer’s

example set (addr, gene), models of protocols (abc, bempl,

grade), models of data structures (arr, btree, ctree, dll,

graph fsm, sll) and models of logic puzzles (nqueens). All

experiments are performed on Windows 10 with 2.4GHz Intel

Xeon CPU and 16 GB memory.

In this section, we address the following research questions:

• RQ1: What is the overhead of Hawkeye’s enumeration

strategy?

• RQ2: What impact do the different types of enumeration

requests have on the valid scenario space?

A. Set Up

1) Baseline: We collect an initial set of results using

the default enumeration strategy of the Analyzer, which we

consider as a baseline for scenario enumeration performance.



TABLE I: Baseline results from the Analyzer.

Model #PVrs #Clss #Clse #Scr Tavg Ttot Scp

addr 45 1551 1718 167 0.93 161 3

arr 67 1210 4981 3771 0.48 1855 3

bempl 38 500 1533 1033 0.42 424 3

btree 140 3318 4135 817 1.10 915 3

cd 29 3749 4013 264 3.06 824 5

ctree 40 1308 1780 472 0.92 440 5

digraph 20 202 6545 6343 0.34 2239 3

dll 72 4530 5227 679 0.85 601 3

fsm 40 1499 8020 6521 0.26 1734 5

gene 86 4474 4538 64 2.66 174 6

grade 48 604 3730 3126 0.33 1074 3

nqueens 330 34670 34728 58 35.37 2098 10

sll 15 302 352 50 0.75 44 3

To collect the results, we automatically enumerate all solutions

in the Analyzer and add in a monitor to collect performance

metrics related to size and time. To establish our baseline,

Table I depicts the Analyzer’s default enumeration perfor-

mance. Column Model reflects the name of the model under

evaluation. Columns #PVrs, #Clss, #Clse show the number

of primary variables, the number of clauses used to find the

first solution, and the number of clauses used to find the

last solution respectively. These columns together convey the

size of the problem passed to the SAT solver. To capture

attributes of the search, column #Scr depicts the number of

scenarios found, column Tavg shows the average time to find

a scenario, column Ttot depicts the total time to find all

scenarios and column Scp is the scope. All times displayed in

all tables are in milliseconds. Columms #Clss and #Clse are

presented separately so that we can see how the number of

clauses scales as we enumerate scenarios. In the Analyzer’s

standard enumeration, the number of clauses grows linearly

with the number of scenarios found, as one clause is always

to prevent finding a duplicate of the current solution. The

number of primary variables and scope do not change across

all experiments, so they are presented once in Table I and not

repeated.

2) Configurations: Our experiments explore four different

configurations of Hawkeye:

• same-set: We randomly select a set from the model to

keep the same throughout the whole enumeration.

• diff-set: We re-use the set from the ‘same-set’ configu-

ration but force the set to change throughout the whole

enumeration.

• same-atom: We randomly select an atom from the first

scenario enumerated to hold constant throughout the

whole enumeration.

• diff-atom: Throughout the whole enumeration, we ran-

domly select an atom from the current scenario to change

for the next scenario.

As with our baseline, we automatically enumerate all so-

lutions and collect various performance metrics. Importantly,

these configurations are set up to evaluate the overhead of

the different encodings Hawkeye provides, which capture all

the different ways users can give guidance. The results for

the four different configurations can be seen in the following

tables: Table II, which shows Hawkeye’s performance for the

same-set configuration, Table III, which shows Hawkeye’s

performance for the diff-set configuration, Table IV, which

shows Hawkeye’s performance for the same-atom configu-

ration, and Table V, which shows Hawkeye’s performance

for the diff-atom configuration. For Tables II and III, column

Set communicates which set of the model was held constant

across the enumeration. Similarly, for Table IV, column Atom

displays the atom that was held constant.

B. RQ1: Overhead

We asses the overhead of Hawkeye’s enumeration strategy

by considering two metrics. First, we look at how Hawkeye’s

encoding increases the size of the underlying SAT problem.

Second, we look at the impact Hawkeye’s changes to the SAT

problem have on the runtime.

1) Size of SAT Problem: For the underlying SAT problem,

the number of primary variables does not change as we search

for new scenarios but the number of clauses does change.

Based on Hawkeye’s design, which does not retain clauses

generated to meet the user’s guidance, Hawkeye should not

negatively impact how the number of CNF clauses grows.

This is supported by comparing the increase in the number

of clauses, captured by #Clss and #Clse, to the number of

scenarios found, captured by #Scr. For Tables III, IV, V, we

expect Hawkeye’s encoding under these configurations to add

one permanent clause to prevent duplicates and one temporary

clause to capture the user’s guidance, which #Clse confirms.

For Table II, Hawkeye’s encoding will add an additional clause

for every primary variable tied to the set being held constant.

This results in a larger difference between the growth in

clauses and the number of scenarios found. However, this

amount is not significant compared to the total number of

clauses and by design, these clauses are not preserved.

2) Complexity of SAT Problem: While the size of the SAT

problem is not greatly impacted, as long as a user adds

guidance, Hawkeye’s encoding does add further constraints

that any new scenario must now also satisfy, which restricts the

valid space for the next scenario and should increase the search

time. To measure the impact this can have on the complexity

of the SAT problem, we measure the time it takes to find a

new scenario, referred to as the average solve time, captured

by column Tavg .

As seen in Tables II, III, IV, and V, the average solve time

increases for all configurations compared to the baseline, as ex-

pected. Usually, this increase in average solve time is nominal,

with most average solve times increasing by less than 10 mil-

liseconds. The largest increase in average solve time occurred

for the nqueen’s model across all four configurations. This

increase ranges from 113.03 milliseconds, a 3.2x increase,

under the ‘same-set’ configuration to 349.13 milliseconds, a

9.9x increase, under the ‘same-atom’ configuration. Even then,

the user is not likely to notice a 300 milliseconds delay to

view a scenario. As a result, when a user gives guidance using

Hawkeye’s interface, she will often not notice an impact in the

time Hawkeye takes to display the next scenario.



TABLE II: Hawkeye result for the ‘same-set’ config.

Model #Clss #Clse #Scr Tavg Ttot Set

addr 1551 1618 40 2.68 312 listed

arr 1210 1460 247 2.31 1408 Element

bempl 500 607 104 1.58 486 Researcher

btree 3318 3951 624 21.05 15531 left

cd 3749 4013 264 9.12 3343 Class

ctree 1308 1421 103 2.74 664 color

digraph 202 216 10 1.63 64 Node

dll 4530 4659 120 5.81 1232 nxt

fsm 1499 1580 76 2.19 457 State

gene 4474 4520 10 10.81 278 spouse

grade 604 1191 578 1.70 1989 asc_with

nqueens 34670 34684 4 148.4 965 Queen

sll 302 315 10 2.72 103 Node

TABLE III: Hawkeye results for the ‘diff-set’ config.

Model #Clss #Clse #Scr Tavg Ttot Set

addr 1551 1719 167 2.21 931 listed

arr 1210 4369 3158 9.60 39313 Element

bempl 500 1513 1012 2.83 4162 Researcher

btree 3318 3684 365 10.53 5468 left

cd 3749 3751 1 5.5 29 Class

ctree 1308 1781 472 2.92 2412 color

digraph 202 482 279 0.87 611 Node

dll 4530 4905 374 11.78 5559 nxt

fsm 1499 1652 152 1.92 812 State

gene 4474 4537 62 10.20 1448 spouse

grade 604 3684 3079 7.66 30821 asc_with

nqueens 34670 34699 28 156.31 5442 Queen

sll 302 324 21 1.50 134 Node

However, the increase in average solve time can be notice-

able when we consider the impact an increase in average solve

time can have on the total runtime. Hawkeye often produces a

longer total runtime (Ttot) than the baseline despite Hawkeye

enumerating less scenarios, as seen in all configurations except

‘diff-atom.’ For example, the fsm model in the ‘same-atom’

configuration saw the largest magnitude increase in average

solve time at a 56.5x increase, which resulted in a 39.8x in-

crease in total runtime. As a result, Hawkeye takes one minute

longer than the baseline to enumerate 2611 less scenarios.

The tradeoff being that Hawkeye exchanges runtime for the

knowledge that the 3,910 scenarios Hawkeye enumerates in

this configuration show all the different behavior allowed by

a specific atom.

In general, adding clauses to guide enumeration restricts

the number of valid scenarios for that next enumeration. As

a result, Hawkeye often increases the time to find a new

scenario, which, in turn, increases the time to enumerate

all scenarios. However, given Hawkeye’s interactive nature,

the user will likely not notice the impact when enumerating

a single scenario. Additionally, while the total runtime is

impacted, all experiments finish in under 2 minutes, which

is still fast and such a small overhead should not deter users

from adopting Hawkeye.

C. RQ2: Valid Scenario Space

We expect the type and level of change the user is looking to

make with respect to the current scenario to reduces the num-

ber of possible valid scenarios to be found. To measure this

impact, we look at the total number of scenarios enumerated.

TABLE IV: Hawkeye results for the ‘same-atom’ config.

Model #Clss #Clse #Scr Tavg Ttot Atom

addr 1551 1674 122 3.24 887 Name1

arr 1210 2639 1428 9.54 17357 >5

bempl 500 742 241 2.14 1155 Researcher0->Key0

btree 3318 4119 800 34.80 31898 Node1

cd 3749 3940 191 8.73 2640 Class1

ctree 1308 1607 298 4.19 2229 Node2->Node1

digraph 202 2488 2285 5.96 15812 Node0->Node1

dll 4530 5208 678 22.9 16706 Node0

fsm 1499 5410 3910 14.94 68999 State1->State2

gene 4474 4513 38 12.31 987 Man0->Eve0

grade 604 2044 1439 5.74 11184 Class2->Student0

nqueens 34670 34715 44 384.5 18992 Queen4->5

sll 302 349 46 1.7 322 Node1

TABLE V: Hawkeye results for the ‘diff-atom’ config.

Model #Clss #Clse #Scr Tavg Ttot

addr 1551 1573 21 2.96 208

arr 1210 1270 59 2.35 453

bempl 500 555 54 1.53 337

btree 3318 3325 6 4.0 156

cd 3749 3754 4 9.2 113

ctree 1308 1313 4 4.0 57

digraph 202 204 1 2.5 11

dll 4530 4535 4 6.4 165

fsm 1499 1501 1 5.5 23

gene 4474 4476 1 22.0 82

grade 604 654 49 1.74 372

nqueens 34670 34675 4 171.4 1101

sll 302 308 5 1.67 34

When we compare the number of scenarios found from the

‘same-set’ and ‘diff-set’ configurations, which reason over an

identical set, we can see that the ‘same-set’ configuration fre-

quently finds less scenarios. Conceptually, when a user asks to

keep a portion of a scenario the same, the user is significantly

restricting the space of valid scenarios because only scenarios

that extend the selected behavior can be generated. Meanwhile,

if the user asks to change a portion of a scenario, the user

has restricted the space of valid scenarios, but the restriction

expresses that the scenario should take any variety of other

behavior instead. This latter restriction is usually not as limited

of a perspective as the prior restriction.

This relationship is inverted at the atom level. Notably,

guidance related to atoms that should differ can result in the

user making a choice that severely limits the number of pos-

sible scenarios, including the possibility of directly violating

constraints of the model, which results in no new scenario.

As Table V shows, the configuration ‘diff-atom’ often results

in a small number of scenarios. In this configuration, the

models with low scenario counts have multiplicity constraints

that restrict the size of some signatures. The early termination

of these models occurred when the atom selected to change

violated a multiplicity constraint, resulting in an unsatisfiable

call. In contrast, guidance related to atoms that should stay

constant may not noticeably reduce the valid scenario space.

For instance, under the ‘same-atom’ configuration, dll enumer-

ates one less scenario than the baseline because the selected

atom, Node0, is in every scenario except one.

In general, asking Hawkeye to keep a set the same often

reduces the number of valid scenarios more than changing a

set. Meanwhile, asking Hawkeye to keep an atom constant may



not impact the possible next scenario significantly while asking

to change a specific atom can lead to an early termination.

D. Threats to Validity

Our evaluation is designed to evaluate the overhead of

Hawkeye’s different encoding which capture all the different

unique ways the user can influence enumeration. As a result,

our evaluation does not capture the interactive nature of

Hawkeye in three main ways. First, the times reported are

just the time to find the solutions, but Hawkeye does expect

the user to inspect a scenario and decide on any enumeration

constraints to apply for the next scenario. Second, a user

may ask Hawkeye to generate a new scenario with a mix of

both granularity levels and types of enumeration constraints.

Third, our configurations were held constant over an entire

enumeration; however, this is not required by Hawkeye and a

user my change their guidance form one enumeration to the

next. Therefore, our results may not generalize to the way

users choose to interact with Hawkeye.

VI. CASE STUDY

Hawkeye is designed with the idea that by giving users

an active roll in the enumeration and not relying simply

on the order of discovery by the SAT solvers, users will

engage more with Alloy’s enumerator as they benefit from

exploring more valuable scenarios. This is motivated by Al-

loy’s incremental development life-cycle where a user writes

a constraint, executes a command to exercise the constraint,

enumerates a few scenarios to make sure the constraint seems

correct and then the user repeats this process with a new

constraint. When checking for correctness, Alloy user can

find two basic kinds of faults: (1) overconstraint, where the

formula rules out valuations that the user wanted to allow and

(2) underconstraint, where the formula allows valuations that

the user wanted to rule out.

Alloy’s default enumeration makes detecting faults difficult:

the user either needs to enumerate all scenarios, which can

number in the thousands, to notice one is missing or the

user needs to randomly enumerates an unexpected scenario.

Additionally, since Alloy’s default enumeration can sometimes

be very random and other times very redundant, users can

be deterred from exploring enough scenarios to adequately

have confidence in the correctness of their models. In this

section, we explore how users can interact with Hawkeye to

reveal faults in real world faulty models. Moreover, we show

how the interactive nature of Hawkeye’s enumeration can help

users diagnose the fault. We focus on faults written by new

Alloy users who are likely to benefit from Hawkeye’s ability to

allow users to actively check for and explore specific behavior,

something new users lament about learning Alloy [5].

1) Overconstrained Faults: Overconstrained faults are of-

ten revealed when a user enumerates scenarios and fails to see

a particular scenario. Using Alloy’s default enumeration, we

can see from Table I that this might mean the user needs to

look at just 50 scenarios or as many as 6,000 scenarios. Using

Hawkeye, the user is likely to investigate significantly less

scenarios to discover the absence of a scenario. To illustrate,

considering the following real-world overconstrained model:

1. sig List { header: lone Node }

2.

3. sig Node {

4. link: lone Node,

5. elem: one Int }

6.

7. pred Sorted(l: List) {

8. all n: l.header.*link | n.elem <= n.link.elem }

9. run {Sorted[List]} for 3 but exactly 1 List

This model is from a graduate student assignment [36]. The

predicate Sorted is supposed to outline that for all nodes in

the list, the nodes appear in ascending order based on their

elem value. The user accidentally restricted the valid behavior

of Sorted. Specifically, the subformula in the quantified

formula requires every node in the list to have a populated

link relation in order for the formula to be true. As a result,

the Analyzer will never generate a list that contains a Node

atom with an empty link relation, even though a node without

a link can still appear in a valid sorted lists.

The first scenario enumerated by Hawkeye is the following:

L0

N0

7

header

link

elem

The user can immediately use this scenario to reveal the

overconstrained fault. Based on this scenario, the user may

want to quickly confirm that the link does not need to be

present. If the user asks Hawkeye to keep header, Node and

elem the same while changing link, then the user will then

be told there are no valid scenarios. Since the user targeted

a specific change and discovered it was infeasible, the user

gains the additional information that their constraints seem

to prevent nodes from having an empty link relation. Using

Alloy’s default enumeration, there are 113,188 scenarios for

this command. The user will need to inspect enough of these

scenarios to feel confident that the scenarios being generated

never allow a node to have an empty link relation. In the worst

case, the user will inspect all of them.

Due to the elem relation, the number of scenarios generated

for this model is particularly large. The scope for integers

in Alloy is a bit-width, meaning that for a scope of 3, a

node’s elem can range from -8 to 7. This results is a lot

of redundancy in scenarios. For instance, for the scenario

outlined above, Alloy will enumerate 15 lists that have the

same structure as this scenario but each scenario will have

a different value populating the elem relation. While these

scenarios contain the same high-level structure, these scenarios

are non-isomorphic with respect to the identity of atoms

(i.e. elem=N0->7, elem=N0->6). Therefore, Alloy’s default

symmetry breaking will preserve all 15. Yet, exploring all

15 of these scenarios may not be of high value to the user

depending on the constraints being evaluated. Using Hawkeye,



(a) (b) (c)

1. one sig FSM { start: set State, stop: set State }

2. sig State { tsn: set State }

3. fact OneStartAndStop {

4. some s1: State | s1 in FSM.start

5. all s1, s2: State {

6. s1 = FSM.start and s2 = FSM.start => s1 = s2 }

7. some s1: State | s1 in FSM.stop

8. all s1, s2: State {

9. s1 = FSM.stop and s2 = FSM.stop => s1 = s2 }

10. }

11. run {} for 5

FSM0

S0

start stop

FSM0

S0 S1

start

stop stop

tsn

Fig. 5: Revealing Underconstrained Faults Using Hawkeye.

(a) (b) (c) (d) (e) (f) (g)

FSM0

S0

start stop

FSM0

S0

start stop

tsn

FSM0

S0

S1

start stop

FSM0

S0

S1

start stop

tsn

FSM0

S0

S1

start stop

tsn

FSM0

S0

S1

start stop

tsn

tsn

FSM0

S0 S1

start

stop stop

tsn

Fig. 6: Revealing Underconstrained Faults Using the Analyzer

users can elect to skip these largely redundant scenarios as

desired. As a result, efficiently navigating scenarios which

utilize integers is another strength of Hawkeye.

2) Underconstrained Faults: Underconstained faults are

revealed when a user enumerates scenarios and notices that

the behavior displayed is incorrect. Using Alloy’s default

enumeration, how many scenarios a user needs to inspect

is random, as the faulty behavior can be revealed at any

point. Moreover, the user needs to be able to identify that

the behavior shown in the scenario is in fact faulty. Using

Hawkeye, the user may target behavior that leads to them

accidentally revealing a fault. In the process, the user may

end up exploring more or less scenarios than Alloy’s default

enumeration. However, because the user is seeking out specific

behavior in the scenario, the user is likely notice quickly if any

faulty behavior unexpectedly occurs.

To illustrate, consider the real-world faulty model in Fig-

ure 5 (a), which is also from a new Alloy user [36]. The

user is trying to specify that for a finite state machine, there

is only one start and one stop state. However, the constraints

written allow for multiple start and stop states. Specifically, for

the start state, the use of “some” instead of “one” on line 4

allows for there to be more that one start state. The user then

adds lines 5-6 to try and say that if any two State atoms

are equal to the start state, then they are the same State.

Unfortunately, if there is more the one start state, then the

formula “s1 = FSM.start” is false. As a result, the user’s

implication formula is true but not for the user’s intended

reason, which is what allows for erroneous behavior to be

generated. The same holds for stop.

Figure 5 (b) shows the first scenario displayed to the

user. Based on this behavior, the user may ask Hawkeye to

enumerate a scenario with a different State and tsn sets

to view a larger, more populated finite state machine. This

produces the scenario in Figure 5 (c) which displays the faulty

behavior. Therefore, using Hawkeye, we can reveal this faulty

behavior in one enumeration. The user was expecting to see

more state transitions, but is instead presented with multiple

stop states. Using Alloy’s enumeration, the user can discover

faulty behavior after the 6th enumeration, as seen in Figure 6.

Due to the order being dependent on the SAT solver, the set of

scenarios may change with other configurations and on other

machines. Once the user has enumerated the first six scenario

in Figure 6 (a) - (f), the user may feel confident enough to

stop enumeration. In particular, the scenarios in Figure 6 (a) -

(f) show valid behavior for scenarios with multiple states and

a variety of state transitions. Therefore, the user may not have

any motivation to continue enumeration to Figure 6 (g).

VII. RELATED WORK

Our technique is closely related to techniques which looks

to reduce the number of scenarios enumerated by the Ana-

lyzer. One traditional approach is symmetry breaking, where

constraints are added to the formula to remove isomorphic so-

lutions, which are solutions that share the same shape [3], [29],

[14]. Beyond symmetry breaking, several past projects im-

prove scenario enumeration by trying to narrow what scenarios

are generated using a specific criteria, e.g., minimality [23],

field exhaustiveness [24], and coverage [32], [25]. All of these

techniques reduce the number of scenarios by applying some

criteria across the entire enumeration. However, the order of

scenarios generated is still dictated by the SAT solver’s order

of discovery. Our approach is orthogonal to these techniques

and can work in tandem with their enumeration strategies to

take advantage of their reduction in the scenario search space

while Hawkeye provides guidance to the order of enumeration.



Another closely related to our work is Seabs, a recent

enhancement to Alloy which introduces support for abstract

functions [30]. Abstract functions allows users to define data

abstractions that specify how scenarios must differ for an

executed command. Although abstract functions also enable

users to provide information to guide enumeration, abstract

functions are a universal goal that impacts the entire collection

of scenarios that gets generated and can support broader goals

than Hawkeye such as enumerating different transitive closures

over an expression [34]. In contrast, our enumeration technique

enables users to make on-the-fly decisions that can change

from one scenario to the next. Moreover, Hawkeye allows

users to express both what elements of a scenario to preserve

and discard while abstract functions only allow users to outline

how scenarios should differ.

In general, beyond Alloy, researchers have focused on

improving scenario enumeration strategies, .e.g. dedicated

search [2], mixing of generators and solvers [11], [15], solver-

aided languages [26], and sampling [20], [7]. We believe

that improvements to the scenarios that get generated by

the Analyzer could be refined by some of these approaches,

and further combined with Hawkeye. Additionally, researchers

have developed novel verification efforts which utilize scenario

enumerating toolsets, e.g. automated test input generation [19],

and model counting for reliability analysis [9]. In future work,

we plan to explore how Hawkeye’s enumeration strategy can

benefit the broader adoption of these automated verification

efforts by allowing the user to explore and have some control

over the scenarios used. In particular, TestEra and Korat, which

already utilizes elements of Alloy [19], [6].

VIII. CONCLUSION

Scenario finding toolsets are only valuable if they can

generate a feasible number of important scenarios for the user.

While the Analyzer produces a robust, exhaustively bounded

collection of scenarios, users do not currently have native

support within the Analyzer to guide enumeration outside of

providing a bound on the universe of discourse. To address

this limitation, we introduce Hawkeye, a tool for user-directed

enumeration of Alloy scenarios. Hawkeye empowers users to

take control of what scenario the Analyzer generates next,

allowing users to quickly build a collection of scenarios that is

highly valuable to them. Specifically, users can control whether

they view a new scenario that is closely related to or vastly

different from the current scenario. Our evaluation of Hawkeye

shows that the change in enumeration has a minimal overhead.

Additionally, we highlight an important use case of Hawkeye:

helping users discover if their model is faulty.
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