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ABSTRACT

Writing declarative models has numerous benefits, ranging from
automated reasoning and correction of design-level properties be-
fore systems are built, to automated testing and debugging of their
implementations after they are built. Alloy is a declarative modeling
language that is well suited for verifying system designs. While Al-
loy comes deployed in the Analyzer, an automated scenario-finding
tool set, writing correct models remains a difficult and error-prone
task. ASketch is a synthesis framework that helps users build their
Alloy models. ASketch takes as an input a partial Alloy models
with holes and an AUnit test suite. As output, ASketch returns a
completed model that passes all tests. ASketch’s initial evaluation
reveals ASketch to be a promising approach to synthesize Alloy
models. In this paper, we present and explore SketchGen?, an ap-
proach that looks to broaden the adoption of ASketch by increasing
the automation of the inputs needed for the sketching process. Ex-
perimental results show SketchGen? is effective at producing both
expressions and test suites for synthesis.
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1 INTRODUCTION

As software pervades our society and lives, and software failures
become increasingly costly, there is a growing need to leverage soft-
ware models to improve the quality of software systems. Alloy [13]
is a well-known modeling language that has been used in both
academic and industrial settings [9, 14, 24, 50]. Alloy models are
declarative and consist of relational, first-order logic formulas. Two
key strengths of Alloy are its expressive notation, with support for
operators like transitive closure, that allows for succinctly writing
complex structural properties, and the Analyzer, its automated anal-
ysis engine that uses off-the-shelf SAT solvers to reason over proper-
ties with respect to a user-defined scope, i.e., bound on the universe
of discourse. The Analyzer finds instances, which are assignments
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to the sets and relations of the model, such that the invoked formu-
las are true. The instances discovered by the Analyzer have been
used to validate software designs [14, 26, 29, 39, 40], to test and
debug code [10, 11, 15, 23], to repair program states [30, 49] and to
synthesize security attacks for hardware architectures [4, 42, 43].

In the end, Alloy models can only help improve system reliability
if they are themselves correct. Unfortunately, writing correct Alloy
models is hard, especially for beginning users but even for advanced
users. In particular, reasoning about the correctness of constraints
in the presence of nested formulas and quantification requires much
care. Therefore, to help users write correct models from the start,
prior work introduces ASketch, an automated sketching framework
for Alloy [48]. ASketch takes as input: (1) a partial model with user
specified holes, (2) a generator which outlines the valid substitutions
into each hole and (3) a test suite which outlines the expected
behavior of the model. As output, ASketch produces a completed
model that passes all tests. Specifically, ASketch builds an Alloy
meta-model that encodes all the possible candidate models and the
test suite and then uses Alloy’s SAT backend to find a solution.

ASketch’s initial evaluation revealed ASketch to be a promising
start towards building correct from construction models, which in
turn, can lead to correct from construction systems. However, there
are a few barriers that limit the adoption of ASketch. First, ASketch
requires guidance from the user to handle expression holes by
having the user provide a regular expression that is used to generate
all possible substitutions into the hole. However, users relying on
ASketch may not be able to form a regular expression that both
adheres to Alloy’s grammar rules and is robust enough to contain at
least one solution. Second, ASketch utilizes user provided test suites
to outline the expected behavior of the model. As the complexity
of the sketch increases, so does the need for a more expansive test
suite. Unfortunately, the two automated test generation techniques
for Alloy are white box and rely on information about the formula
itself in order to produce tests. Therefore, these techniques can not
be used to create tests for ASketch.

In this paper, we present SketchGen?, a framework that looks
to tackle these problems and further automated the sketching pro-
cess. Specifically, SketchGen? automatically creates two inputs for
ASketch. First, SketchGen? leverages RexGen [47], a generator for
semantically non-equivalent relational expressions, to generate
candidates to fill expression holes. Second, while generating expres-
sions, SketchGen? builds up a test suite intended for use by ASketch.
To achieve this, SketchGen? interweaves two of RexGen’s expres-
sion generation strategies, Modulo-Instance Pruning, which prunes
expressions that are equivalent with respect to a test suite, and Dy-
namic Pruning, which prunes expressions that are equivalent with
respect to a scope. SketchGen? mitigates the trade-offs between the
two strategies by incrementally building a test suite that ensures
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one sig List { header: lone Node }
sig Node { link: lone Node }
pred Acyclic() {
n: Node | n =>n

}

:= {| all|no|some|lone|one |}

= {| =lin|!=|!in |}

:= {| (List.header|n).(~?)(x[*)1link |}

Hole ‘e’ Generator Values

List.header.xlink n.xlink
List.header.alink n.alink
List.header.~xlink n.~xlink
List.header.~slink n.~alink

Figure 1: ASketch Input for a Singly-Linked List

the collection of expressions produced by Modulo-Instance Prun-
ing equals that of Dynamic Pruning. Our experimental evaluations
show that SketchGen? is effective at generating inputs for sketching
models and is well-suited to strengthen an initial, small test suite.
This paper makes the following contributions:
Expression Generation for Sketching: We introduce a new
framework for efficiently generating all non-equivalent expres-
sions up to a given bound, which leverages Dynamic Pruning and
Modulo-Instance Pruning from RexGen.
Test Generation for Sketching: We introduce a new AUnit test
input generation technique that can work in a sketching environ-
ment.
Experiments: We present an experimental evaluation with small,
but intricate Alloy formulas. We demonstrate how SketchGen? mit-
igates scalability concerns compared to directly using RexGen as
input to ASketch.
Open Source: We release a prototype of SketchGen? and a our
collection of model sketches so researchers can use them in the
future. The repo is available at https://SketchGen.github.io.

2 BACKGROUND

In this section, we present an example sketch to introduce key
concepts of Alloy, ASketch and RexGen.

2.1 ASketch

To illustrate how ASketch works, consider the sketch of a singly-
linked acyclic list model in Figure 1. In Alloy, the signature (sig)
declaration introduces a named set of atoms, which creates a user-
defined type. Therefore, the signature List introduces a named set
of list atoms and the addition of the keyword one restricts this set
to be a singleton set, i.e. there is always exactly one List atom. A
signature may optionally declare fields. List introduces the field
header as a binary relation of the type List X Node. The addition of
the keyword lone makes header a partial function, i.e., each List
atom maps to at most one Node atom. Likewise, the signature Node
establishes a named set of node atoms and introduces the field 1ink
as a partial function of type NodeXNode. The predicate (pred) Acyclic
introduces a named formula which can be invoked elsewhere.
The body of the Acyclic predicate is a formula sketch with three
different kinds of holes: \Q, q\ (quantifier hole), \C0, co\ (comparison
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operator hole), and \E, e\ (expression hole). ASketch extends the
Alloy grammar [41] with these holes. Each hole states the syntactic
kind of the hole followed by an identifier, e.g., E followed by e.
Each identifier refers to a regular expression (within {| |},
following [34]). To illustrate, in this example, the generator for ‘e’ is
a regular expression that encodes eight different Alloy expressions,
outlined in the bottom of Figure 1. The variable n is introduced by
the quantifier (to be sketched) and is of type Node.

For this example, the goal of ASketch is to find a substitution into
each hole in the sketch, such that the formula ends up representing
the concept: “any node in the list is not reachable from itself” To
determine if this behavior is met, ASketch uses AUnit test suites as
a way to relay expectations. An AUnit test consists of two compo-
nents: (1) a valuation, which is an assignment to all the sets and
relations of the model, and (2) a label, which indicates whether the
associated valuation should be allowed (valid) or prevented (invalid)
by a given Alloy command. Figure 2 graphically illustrates five test
valuations for our singly linked list model. Three valuations—T0,
T1, and T4—are valid and two valuations—T2 and T3—are invalid
with respect to the to be sketched Acyclic constraint. ASketch de-
termines that a given candidate model, a complete model being
evaluated as a potential solution, is correct if the candidate model
passes all tests.

Consider using ASketch to complete all five holes. The two ex-
pression holes \E, e\ use the same regular expression to create the
fragment space, which expands into 8 unique expressions. For the
operator holes, the fragments depicted capture all possible substi-
tutions allowed by the Alloy grammar. In particular, there are five
quantifiers for \Q, q\ (all, no, some, lone, and one) and four compari-
son operators for \CO, co\ (=, in, !=, and !in). In total, there are 5, 120
(5 % 4 % 8 X 4 x 8) candidate Alloy models. To run this example, we
use 12 test cases to outline expected behavior (5 shown in Figure 2
plus 7 more generated by SketchGen? and shown in Figure 3). To
complete the sketch, ASketch takes less than 1 second when solving
the entire Alloy meta-model that encodes all 5,120 possible models
and 12 test cases at once. Here is a solution ASketch finds:

all n: Node | n in List.header.xlink => n !in n.*link

The Alloy keyword ‘all’ represents universal quantification, ‘in’
represents the subset, the operator ‘.’ represents relational join, the
operator ‘*’ represents reflexive transitive closure, and the operator
‘a” represents transitive closure. Thus, this universally quantified
formula states that “for all nodes, if a node is in the list, then that
node is not reachable from itself following one or more traversals
down its link relation.”

2.2 Challenge: Automatically Generating
Expressions for ASketch

Using only a regular expression to fill expression holes is a tradeoff.
The regular expression helps keep the search space of possible
sketches tractable. However, not only does the regular expression
need to generate valid Alloy expressions, it also needs to generate an
Alloy expression that can successfully complete the sketch. This can
be a high burden for a new Alloy user, who is more likely to adopt
ASketch. Currently the task of providing an expression fragment
list can be automated using RexGen [47]. RexGen is a generator that
produces relational expressions up to a user provided bound on



Towards Automated Input Generation for Sketching Alloy Models

T0 T1 T2
Lo Lo Lo
header header
A 2 L 4
No No ;D link
valid valid invalid
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T3 T4
Lo Lo
header header
A\ 4 \ 2
No N1 No N1 link
link :D
invalid valid

Figure 2: Five test valuations shown graphically: T0, T1, and T4 are valid, while T2 and T3 are invalid for acyclicity. L0 is the list

atom; NO and N1 are node atoms.

the cost of the expression. Expression generation happens bottom
up starting with a cost of 1 and building to larger costs. To avoid
generating lists that are too large to be useful, RexGen offers three
automatic pruning modes: (1) Static Pruning directly prunes from
generation many equivalent expressions based on a suite of known
equivalence rules; (2) Dynamic Pruning uses the Analyzer during
generation to prune equivalent expressions; and (3) Modulo-Instance
Pruning allows the user to provide AUnit test cases, and prunes an
expression if it is equivalent to some generated expression with
respect to all given test cases (even if not equivalent over some
other unseen test cases [2]).

As an example, consider using the different pruning methods to
determine whether to keep or prune the following expressions for
hole e: header. s1link and header.s~1link. Static Pruning would gen-
erate and keep both expressions, as there is no known equivalence
rule, such as commutativity, that would eliminate one expression
with respect to the other. Dynamic Pruning would use the following
Alloy command to determine if the two expressions are equivalent:

check { header.*link = header.*~link } for 3

In this case, the Analyzer would find a counterexample; therefore,
Dynamic Pruning would view the two expressions as not equivalent
and keep both. If we consider the five test cases in Figure 2, Modulo-
Instance Pruning would evaluate both expressions across all five
tests resulting in the following values:

Expression To Ti1 T2 T3 T4
header. link 0 0 {Lo->No}  {L0->NO,L0->N1} 0
header.~1link 0 0 {Lo->No}  {L0->NO, L0->N1} 0

Thus, Modulo-Instance Pruning would view these two expressions
as equivalent, prune the higher cost expression (header. a~1ink) and
keep the lower cost expression (header. a1ink).

For our singly-linked list model, if the user invokes RexGen to
generate expressions up to a cost of 6, which is need to produce the
expression List.header.*link from the oracle solution, RexGen gen-
erates 214 expressions with Static Pruning, 107 with Dynamic Prun-
ing, and 107 with Modulo-Instance Pruning (using all 12 test cases).
For this model and corresponding test suite, the lists produced by
Dynamic Pruning and Modulo-Instance Pruning are equivalent due
to the strength of the test suite, although this is not guaranteed.
The generation time for Static Pruning is less than 1 second, for
Dynamic Pruning is 34 seconds, and for Modulo-Instance Pruning
is 5 seconds. To solve the sketch using these expressions, ASketch
takes 145 seconds using Static Pruning and takes 9 seconds using
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both Dynamic Pruning and Modulo-Instance Pruning. All together,
this produces a total runtime (expression generation + sketching) of
146 seconds, 43 seconds, and 13 seconds for Static Pruning, Dynamic
Pruning and Modulo-Instance Pruning respectively.

As sketches become more complex, using RexGen to fill expres-
sion holes for ASketch becomes difficult. While Dynamic Pruning
creates an optimal list of expressions, Dynamic Pruning is time
intensive. Specifically, Dynamic Pruning requires multiple invoca-
tions of a SAT solver to resolve all of the Alloy “check” commands
needed to determine if an generated expression should be kept.
Accordingly, previous experiments [47] have shown that Dynamic
Pruning takes on average 2288.4x longer than Static Pruning and
31.0x longer than Modulo-Instance Pruning. However, these same
experiments show that Static Pruning generates a list that is 1.5x
larger than Dynamic Pruning and 2.7X larger than Modulo-Instance
Pruning. The size of the expression list can have an exponential
impact on the search space when more than one expression hole is
present in the sketch. As an example, consider our example singly-
linked list model. Static Pruning creates a search space of over 3.6
million candidate models while Dynamic Pruning creates a search
space of just 915,920 candidate models, which is 4X reduction in size.
With all these tradeoffs taken into account, Modulo-Instance Pruning
is often used as a compromise between the other two generation
strategies. Yet, Modulo-Instance Pruning has its own tradeoff: if the
test suite is not robust enough, the set of expressions produced will
aggressively over prune non-equivalent expressions.

2.3 Challenge: Quality of the Test Suite

As with any synthesis technique that is based on test suites, ASketch
is dependent on the quality of the test suite used to outline expected
behavior. If the test suite is too weak, ASketch can find a plausible
solution, a completed model that passes all tests but does not match
the end user’s expectation. A user would ideally want to run ASketch
with a robust test suite that produces only correct sketches. In
practice, this can be hard. As seen in our evaluation in Section 4.1,
the possible search space of some sketches is immense, e.g. remove
has 5.7 x 10'! candidate models. This can require an extensive test
suite to avoid plausible solutions.

While Alloy’s known test generations cannot work on a sketch,
a key advantage of sketching Alloy models is that we can use the
Alloy language itself to alleviate concerns about plausible solutions
and increase the quality of the test suite. Namely, we can search



FormaliSE’22, May 18-22, 2022, Pittsburgh, PA, USA

for two solutions, and then use the Analyzer to check if the solu-
tions are equivalent. If they are not, the Analyzer will produce a
counterexample, which can then be turned into an additional test
case. However, there are some limitations to this approach. First, it
requires searching for multiple potential solutions, which can signif-
icantly increase the runtime of ASketch. In the worse case, if there is
only one valid solution in the search space, then ASketch would end
up exploring the entire search space, even if the solution was found
in the beginning. Second, there is no clear stopping condition. For
instance, we could check the first X’ solutions, but there is no way
to know in advance what value to set ‘X’ to for every model and this
value can vary significantly depending on the quality of the initial
test suite. Third, ASketch is not well suited for incremental analysis.
When a new test is added, the meta-model is extended to encode
the new test and then the SAT solver is re-invoked. Unfortunately,
the SAT solver does not remember which candidate solutions it had
already eliminated in the previous run. This is crucial, as all the
previously eliminated candidate solutions are still invalid: simply
adding a new test will not make an eliminated candidate solution
now pass the test(s) it previously failed.

SketchGen? is designed to address both of these challenges. By
design, SketchGen? runs a series of smaller dynamic pruning prob-
lems over pre-partitioned sets of expressions, enabling the ap-
proach to avoid Dynamic Pruning’s scalability issues. In addition,
since SketchGen®’s expression list is equivalent to Dynamic Prun-
ing’s, SketchGen® does not overprune expressions the way Modulo-
Instance Pruning can and does not miss equivalences the way
Static Pruning can. While generating expressions, SketchGen? also
strengthens the user’s initial test suite. Importantly, every new
test created by SketchGen? distinguishes between at least two ex-
pressions, which contributes to the ability of the new test case to
eliminate candidate models and reduce the likelihood of discovering
a plausible solution.

3 TECHNIQUE

In this section, we introduce SketchGen?, a framework for automatic
input generation for ASketch. We first present how SketchGen?
intertwines Modulo-Instance Pruning and Dynamic Pruning. Then,
we step over how the impact of creating a new test is resolved.

3.1 Combining Modulo-Instance Pruning and
Dynamic Pruning

A naive approach would require running both Modulo-Instance
Pruning and Dynamic Pruning in their entirety, and then using the
difference in the sets produced to expand the test suite. However,
the motivation behind Modulo-Instance Pruning is to eliminate the
high runtime overhead of Dynamic Pruning. Our key insight is to
first use Modulo-Instance Pruning to partition the space of candidate
expressions into an initial set of equivalence classes. The expres-
sions in each equivalence class may truly be equivalent, or there
may be some test case not currently in the test suite that distin-
guishes their behavior. However, expressions in one equivalence
class are guaranteed to not be equivalent to any expressions in
another equivalence class. Therefore, we can reduce the burden of
Dynamic Pruning by only dynamically checking the equivalence of
expressions placed in the same equivalence class by Modulo-Instance
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Algorithm 1: SketchGen? Expression and Test Generation

Input: Parsed Alloy model module, Map of representative
expression to equivalent expressions equivClasses.
Output: Non-equivalent expression list and an AUnit test suite.

-

// Initialize helper variables
2 int index = 0

w

ArrayList<Expr> toCheck = equivClasses.keySet()
ArrayList<TextCase> newTests = new ArrayList<TestCase>()
5 while index < toCheck.size() do

6 Expr classRep = toCheck.get(index)

'S

7 ArrayList<Expr> exprs = equivClasses.get(classRep)

8 ArrayList<Expr> skip = new ArrayList<Expr>()

9 foreach Expr curr : exprs do

// Did a new test move this expression to diff class?

1 if skip.contains(curr) then break

12 // Check for equivalence dynamically

13 Command equivCheck = genCmd(classRep, curr, module)
14 Ad4Solution sol = module.executeCmd(equivCheck)

15 if sol.satisfiable() // Not equivalent then

16 // Create new test case using counterexample

17 TestCase test = new TestCase(sol, genLabel())

18 newTests.add(test)

19 toCheck.add(curr)

20 equivClasses.put(curr, new ArrayList<Expr>())

21 equivClasses.get(classRep).remove(curr)
22 // Enforce the impact of this test on the current class
23 ArrayList<Expr> temp = new ArrayList<Expr>()
24 temp.addAll(equivClasses.get(classRep)
25 equivClasses.get(classRep).clear()

ArrayList<Expr> classOpt = new ArrayList<Expr>()
classOpt.add(classRep), classOpt.add(curr)

28 foreach Expr expr : temp do

boolean unique = true

26

27

29
30 String resultl = getExprValue(expr,test)
for i « 0 to classOpt.size() do
String result2 =
getExprValue(classOpt.get(i),test)
if resultl.equals(result2)) then
ungqiue = false

31
32

33
34
35 equivClasses.get(classOpt.get(i)).add(expr)
// Flag that this expr moved to a new class
if i > 0 then skip.add(expr)

break

36
37

38

if unique // This expression forms a new class then
toCheck.add(expr)
equivClasses.put(expr, new ArrayList<Expr>)

39
10
a1
142 classOpt.add(expr)

43 // Flag that this expr moved to a new class

44 skip.add(expr)

45 // Enforce the impact of this test on remaining classes
for idx gets index + 1 to toCheck.size() do

L updateEquivClass(equivClasses, toCheck.get(idx))

46
47

48 index++

19 return newTests, equivClasses.keySet()
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Pruning. Moreover, the counterexamples produced when running
these narrower Dynamic Pruning executions can strengthen the
original test suite, so that the test suite is now capable of detecting
the non-equivalence between the two expressions. To illustrate
how this works, Algorithm 1 shows the details of SketchGen?.

To start, SketchGen? executes after a regular Modulo-Instance
Pruning execution of RexGen. As input, SketchGen? takes the parsed
Alloy model (module) and a map outlining the equivalence classes
created by RexGen (equivClasses), which maps a representative
expression to a list of all expressions that are considered equiv-
alent to this representative expression. Next, the first few lines
of the algorithm initialize helper variables: toCheck is a list of all
representative expressions, index tracks which equivalence class is
being evaluated from toCheck, and newTests stores any new tests
generated by SketchGen?.

After initializing the variables, the remainder of the algorithm
looks to implement the narrowed series of Dynamic Pruning ex-
ecutions over the equivalence classes found by Modulo-Instance
Pruning. First, an outer while loop (line 5) iterates until all equiva-
lence classes captured in toCheck have been explored. If the original
test suite is inadequate, and Modulo-Instance Pruning over-pruned
expressions, the list toCheck will get updated with any newly dis-
covered equivalence classes. For each equivalence class, SketchGen?
first creates a series of local variables: classRep stores the repre-
senative expression depicting the current equivalence class, exprs
stores a list of all expressions currently believed to be equivalent to
the representative expression, and skip stores a list of expressions
from the current class that have been moved to a new class due to
the creation of a new test.

Then, the for loop starting on line 9 evaluates each expres-
sion (curr) in the equivalence class, to determine if the expression
is truly equivalent to representative expression (classRep). First,
SketchGen? checks if curr is in skip (line 11). If this check is true,
then a new test has already illustrated curr is not equivalent to
the class representative; therefore, SketchGen? skips evaluating this
expression and moves onto the next expression in the class. If this
check is false, SketchGen? uses the SAT solver to dynamically check
if the two expressions are equivalent with respect to a given scope
(lines 13-14). If the call is unsatisfiable, then the expression remains
pruned. However, if this call to the SAT solver is satisfiable; then,
the two expressions are actually not equivalent. As a result, the
counterexample found by the SAT solver, which highlights the dif-
ference in behavior between the two expressions, gets turned into a
new test case and curr (1) gets moved to its own equivalence class,
(2) gets added to the list of equivalence classes to check and (3) gets
removed from classRep’s equivalence class (lines 21 - 27).

To illustrate, consider the following extended equivalence class
from our example in Section 2: ecj=(header.s1link, {header.~1link,
header.link.link}) where header.link is the representative ex-
pression of ec; and {header.~1link, header.link.alink} is the set
of expressions that are equivalent to the representative expression
across all tests (T0 - T4 from Figure 2). To determine if the the first
expression in the list is equivalent representative expression, we
make the following dynamic check:

check { header.*link = header.*~link } for 3
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The Analyzer produces the following counterexample, displayed
graphically below:

Lo

header

A 4
No

N1 N2

link link

This counterexample depicts a list with 3 nodes and no cycles.
As a result, this counterexample would be labeled valid, turning
this counterexample into test T5 (following the existing tests in
Figure 2). Since this new test case reveals header. s~1link is different
from ec;’s representative expression, the expression header. a~1link
gets placed in its own equivalence class, ecj, and added to the pool
of classes to be checked.

3.2 Impact of New Tests

Since SketchGen? may generate new tests, the equivalence class an
expression belongs to may change as SketchGen? executes, which
is what the remainder of Algorithm 1 focuses on. Specifically,
SketchGen? checks if the remaining expressions in the equivalence
class still hold the same behavior as the representative expres-
sion, classRep, in the presence of the new test. To achieve this,
SketchGen? first gathers all of the expressions in the current equiva-
lence class into a temporary list (temp) (lines 23-24) and then resets
the equivalence class (line 25). The variable classOpt is used to
maintain a list of all the equivalence classes that the expressions
captured in temp can get sorted into and is expanded when a new
equivalence class is discovered.

To redistribute the expressions in temp, SketchGen? loops over
each expression (line 28) to determine if the expression is repre-
sented by an expression in classOpt (lines 31 - 38) or is a new
equivalence class (lines 39 - 44). SketchGen? uses the helper method
getExprValue to determine an expression’s evaluation over a given
test case, which uses Modulo-Instance Pruning’s memoization infras-
tructure to avoid re-evaluating the same expression over the same
test case. If SketchGen? determines that an expression has moved
out of the current equivalence class, the expression gets flagged
(lines 37, 44) so that these expressions are not dynamically checked
due to the outer for loop on line 9, which both avoids an unneces-
sary invocation of the SAT solver and prevents the generation of
duplicate test cases.

To illustrate, for ec;, this means running Modulo-Instance Pruning
to determine what equivalence class - either ec;, ec; or neither —
header.link.alink is in now that T5 needs to be accounted for.
Over T5, the three expressions from ec; resolve to the following:

header.*link = {L@->N@, LO->N1}
header.*~link = {}
header.link.*link = {L@->N0@}

This reveals that “header.link.1link” is not equivalent to either ex-
pression; therefore, header.link.link gets put into its own equiva-
lence class, ecy. If there were any remaining expressions in ec;, then
they would also be checked to see if they belong to one of the three
known equivalence classes (ec;, ecj, or ec) or if the expression is
also different over T5, resulting in another equivalence class.
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Table 1: Basic information of models.

Model | #Sig | #Rel | #PVar | Scope
bempl 6 3 38 5
btree 2 2 24 3
contains 3 3 27 3
di 2 4 72 3
dijkstra 3 1 57 3
fsm 2 3 40 5
grade 5 4 48 4
graph 1 1 30 3
remove 3 6 48 3
sll 2 2 15 3

The new tests do not just impact the current equivalence class,
but also impact all remaining unchecked equivalence classes. There-
fore, lines 46-47 reshape the remaining equivalence classes by in-
voking the helper method updateEquivClasses. The method update
EquivClasses’s implementation is nearly identical to the steps to
re-partition the active equivalence class (lines 23 - 44). The only
difference is that updateEquivClasses does not need to flag any
expressions to skip. While adding tests may change unexplored
equivalence classes, SketchGen® does not need to backtrack and
re-check any previously explored equivalence classes, as those will
have already been shown to be full of equivalent expressions using
Dynamic Pruning. Therefore, updateEquivClasses is only called for
the equivalence classes after the current index location. Once all
equivalence classes are checked, including any newly identified
ones, SketchGen? has produced a set of expressions equivalent to
Dynamic Pruning’s expression list as well as a more robust test suite.
SketchGen?’s output is designed to be integrated with ASketch: the
expressions produced can be directly used as is, while the user does
need to first provide an oracle for the test cases.

4 EVALUATION

We evaluate SketchGen? on 10 Alloy models, previously used to
evaluate ASketch [45]. All experiments were performed on Ubuntu
20.04.2 LTS with 1.8 GHz Intel Core i7-10510U and 16GB of RAM.

4.1 SetUp

The models used in the evaluation include: an access control model
for entering rooms (bempl), a binary tree (btree), list operation
contains (contains), dijkstra’s deadline prevention (deadlock),
a doubly-linked list (dll), a finite state machine (fsm), a process
control model for grading assignments (grade), a connected graph
(graph), list operation remove (remove) and a singly-linked list
(s11). For each model, the authors select a predicate in the model and
abstract the entire formula into a sketch, excluding any attributes
of the formula ASketch does not currently support.Table 1 shows
the basic information of these models. Model is the name. #Sig
is the number of signatures declared in each model. #Rel is the
number of relations declared in each model. #PVar is the number
of primary variables when we run an empty command (run {})
without test-specific constraints; it represents the basic complexity
of signature declarations and constraints that always hold in each
model. Scope shows the upper bound on the universe of discourse.
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In this section, we address the following research questions:
RQ1: How does the size of the starting test suite impact the perfor-
mance of SketchGen??

RQ2: What is the expression generation efficacy of SketchGen??
RQ3: What is the sketch efficacy of SketchGen??
RQ4: What is the quality of test suites produced by SketchGen??

4.2 ROQ1: Test Suite Impact

Table 2 presents SketchGen®’s performance when different sized
test suites are used to start the technique, focusing on time and
the size of the test suites produced, as all result in the same set
of expressions. Details about the list of expressions generated by
SketchGen? can be seen in Table 3. For Table 2, the column Model
shows the model under consideration. One model, deadlock, has
two expression holes, each with a different set of domains, resulting
in two rows in the table. The headings Start X represent the three
different configurations: starting SketchGen? with 1, 5 and 10 test
cases respectively. The test suites all start with the same test cases,
i.e. the first five tests for the Start 10 configuration are the five
tests used for the Start 5 configuration. For each configuration, we
present three pieces of information: the number of tests generated
by SketchGen? (#Gen), the total number of tests, which is the size
of the starting test suite plus the number of generated tests (#Total)
and the execution time in milliseconds (Time).

Since SketchGen? works by first running Modulo-Instance Prun-
ing, our expectation is that starting with too small of an initial test
suite would result in SketchGen? relying more on the expensive dy-
namic equivalence checks and relying less on the cheaper modulo
test checks, inflating the runtime. The results in Table 2 supports
this assumption, although the results reveal that the difference in
runtime between configurations is overall minor. On average, the
Start 1 configuration takes 1.1x longer than both Start 5 and Start
10 configurations. Corresponding, the Start 5 configuration takes
on average 1.03X longer than the Start 10 configuration. Of note,
for 9 of the 11 executions, all three configurations finish within
four seconds of each other. The two exceptions are the two mod-
els which generate the most expressions: btree and remove. For
btree, the three configurations finish within 40 seconds of each
other, with the Start 5 configuration being the fastest. For remove,
the three configurations finish within 10 seconds of each other,
with the Start 10 configuration being the fastest.

In terms of test generation, the Start 1 configuration creates the
most tests. In the worst case, for remove, the Start 1 configuration
generates 5 and 9 more tests than the Start 5 and Start 10 config-
urations, respectively. However, the Start 1 configuration is not
always an increased burden. For deadlock, all three configurations
generate the same number of tests and for btree, both the Start 1
and Start 5 configurations produce two less tests than the the Start
10 configuration. On average, the number of new tests generated
for each configuration is 24 (Start 1), 21 (Start 5) and 19 (Start
10). The decrease in the number of tests generated corresponding
with a larger starting test suite is expected, as having less tests
means that there is likely more undetected equivalences that need
to be accounted for. Of note, the average number of new tests cre-
ated for all configurations is similar to Alloy’s coverage-based and
mutation-based test generation techniques [40], which also rely
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Table 2: Test suite details for SketchGen?® using different starting test suites.

Model Start 1 Start 5 Start 10
#Gen | #Total | Time #Gen | #Total | Time #Gen | #Total | Time
bempl 10 11 1007 6 11 974 2 12 923
btree 54 55 | 240452 54 59 | 227267 56 66 | 266605
contains 31 32 16070 28 33 17283 26 36 18023
deadlock 3 4 198 3 8 340 3 13 317
deadlock2 5 6 2996 3 8 1831 1 11 2063
dil 26 27 5954 25 30 5599 26 36 6620
fsm 21 22 6026 17 22 5620 15 25 5839
grade 12 13 1440 10 15 3156 8 18 1168
graph 10 11 1992 5 10 1678 2 12 1718
remove 79 80 | 230223 74 79 | 235759 70 80 | 226075
sll 12 13 4910 7 12 4156 3 13 2645

on human oracles, and is small enough that it is feasible for a user
to label the test cases. For the overall test suite, all configurations
result in an average final test suite sizes that are nominally different
from one another: 25 (Start 1), 26 (Start 5) and 29 (Start 10).

While the overhead of all three configurations is similar to each
other, the results in Table 2 point to a few trends. The Start 1
configuration generates the highest number of new tests but often
has the smallest total test suite. At the same time, the Start 1
configuration also frequently takes the longest to run. In contrast,
the Start 10 configuration often generates the least number of new
tests, but also frequently ends up with the largest total test suite.
Meanwhile, the Start 5 configuration generates expressions the
fastest more often than the other two configurations. Given the
higher runtime of the Start 1 configuration and the diminishing
returns of starting with a higher amount of tests, we use the Start
5 configuration in the remainder of our experiments. In terms of
easing the adoption of ASketch, manually creating 5 diverse test
cases requires a small amount of effort from the user but still results
in an efficient SketchGen? execution. At the same time, it is worth
noting that SketchGen? performs well even when starting with only
a single test case. Therefore, a user can feasible utilize SketchGen?
to effectively sketch a model by creating only one test case.

4.3 RQ2: Expression Generation Efficacy

The author’s motivation is to use SketchGen? to generate RexGen’s
Dynamic Pruning list, which is an optimal list to use for sketching
since every expression is non-equivalent up to a given scope. To ex-
plore the efficacy of SketchGen?®’s expression generation capabilities,
Table 3 shows the performance of the different expression gener-
ation techniques and their application to sketching Alloy models.
The column Model shows the model under evaluation. The Expres-
sion Generation columns show information related to expression
generation: Strat conveys the generation strategy, #Expr shows
the number of expressions generated and Time shows the runtime
of the expression generation technique for the appropriate prob-
lem in milliseconds. In our experiments, we generate expressions
up to the minimum cost needed to sketch our oracle solution. For
deadlock, which has two different expression holes, the numbers
are reported in pairs in the table. The remainder of the columns
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outline the sketch environment. Column #Holes shows the number
of holes in the sketch, column Space shows the size of the search
space (number of fragments combinations for all holes), and the
columns #Prim, #Cls and, Time show the number of primary vari-
ables, clauses, and solving time in milliseconds for the meta-model
that solves the sketch, respectively. Lastly, column Total depicts
the total runtime, including both the expression generation time
and the sketching time. Models with (L) timed out trying to solve
the sketch, meaning the models require more than 30 minutes to
sketch. All models that timed out did so when generating the CNF
representation for the SAT problem, resulting in no information
about the size of the meta-model. The test suite used to sketch the
models is generated by SketchGen? using the Start 5 configuration.

To evaluate the tradeoffs between SketchGen?’s expression gen-
eration strategy and RexGen’s Static Pruning and Dynamic Pruning
strategies, the authors focus on the columns under the Expression
Generation header. The design of SketchGen?® targets two main
expression generation goals: producing the same list as Dynamic
Pruning while achieving this list more efficiently. The results in
Table 3 demonstrate how SketchGen? meets both of these goals. In
terms of the size of the expressions generated, SketchGen? generates
on average 2.9x fewer expressions than Static Pruning and does
generates the same number of expressions as Dynamic Pruning.
For remove, SketchGen? see its largest reduction in number of
expressions, generating 6.5X fewer expressions than Static Pruning.

While Static Pruning generates more expressions, because the
pruning is only based on known equivalence rules applied during
formation of expressions, Static Pruning is efficient: all models
generate expressions in less than a second. In contrast, Dynamic
Pruning makes numerous SAT calls to prune expressions and takes
longer: Dynamic Pruning times out trying to generate expressions
for both btree and remove and takes 2.73 minutes to generate
expressions for contains. In comparison, while SketchGen? does
not finish nearly as fast as Static Pruning, SketchGen? does achieve
a speedup over Dynamic Pruning, as desired. On average, excluding
btree and remove which timed out, SketchGen? is 10.7x faster
than Dynamic Pruning and unlike Dynamic Pruning, SketchGen?
does complete both btree and remove. For contains, which took
Dynamic Pruning the longest, SketchGen? runs 2.4 minutes faster,
which is a 9.5x decrease in runtime. In addition, for dll, SketchGen?*
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Table 3: ASketch performance with different expression generation techniques. Times are in ms. L indicates timeout (>30 min).

Expression Generation Sketching
Model #Hol Total
ode Strat #Expr Time oles | Space #Prim | #Cls | Time ota
Static 131 49 68644 681 | 3.1e5 5034 5083
bempl | Dynamic 51 5226 3 7242
SketchGen? 51 974 10404 >z 1.3e5 2016 2990
Static 3473 333 2.7e12 - - 1 1
btree Dynamic - L 6 - - - - -
SketchGen? 1637 227267 2.8e11 - - 1 1
Static 1305 138 6.8¢6 - - I I
contains | Dynamic 238 163891 3 258004
SketchGen? 238 17283 23e> | 1426 | 1.0e6 | 9413 e
Static (17;115) (25;52) 2.8¢5 321 | 27e5 | 10684 | 10761
deadlock | Dynamic (11;29) | (587;5375) 6 8813
45936 229 | 62773 2851
SketchGen? | (11;29) | (340;1831) 1682
Static 182 66 7.2e7 930 | 1.1e6 85064 85130
dil Dynamic 139 86650 5 124123
SketchGen? 139 5599 347 B0 B.6e3 | 3T
Static 297 79 1.1e6 930 | 1.5e6 | 254270 | 254349
fsm Dynamic 150 51504 4 100256
. . 2

SketchGen? 150 5620 27e> | 6361 73e5 | ABTSZ ey
Static 182 66 1.7e10 1288 | 8.8e5 84413 84479
grade Dynamic 64 5340 6 12342
SketchGen? 64 1356 27e8 | 816 | 23e3 | 7002 aay
Static 169 59 1.1e6 433 | 3.7e5 22889 22948
graph Dynamic 102 13759 5 21150
SketchGen? 102 965 3Tes | 297 2065 | Y ey
Static 5746 965 5.7el11 : - 1
remove | Dynamic - L 4 2,069 ) . L
SketchGen® 876 235759 ’ 1
Static 214 70 2.2e6 598 | 5.6e5 | 145388 | 145458
sll Dynamic 107 34203 5 43204
SketchGen? 107 4156 Sded | 348 27es | 9001 e

achieves its largest magnitude speed up over Dynamic Pruning of
47.3%, which translates to a speed up of 81.0 seconds.

Overall, Static Pruning is runtime efficient; however, it produces
notably larger lists compared to the other strategies. While Dynamic
Pruning has a large overhead, SketchGen? successfully generates
the same expressions with a significantly shorter runtime.

4.4 RQ3: Sketch Efficacy

While the results in Section 4.3 show that SketchGen? is preferable
to Dynamic Pruning, this section evaluates whether the tradeoff
regarding size and time between SketchGen? and Static Pruning
is worthwhile when sketching models. Therefore, to evaluate the
efficacy of utilizing the different expression generation strategies to
sketch models, the authors focus on the columns under the Sketch-
ing header in Table 3. Since Dynamic Pruning and SketchGen? use
the same set of expressions, their sketching details are reported
together, with the total time (column Total) being the difference.
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SketchGen®’s reduction in the number of expressions generated
has a clear impact in reducing the size of the search space of candi-
date models. ASketch’s search space when using SketchGen? is on
average 53.5X smaller than when using Static Pruning, with remove
and grade seeing the largest reduction at 282.2X and 261.0X respec-
tively. This large magnintude reductions in search space highlight
how quickly expression holes can inflate the size of the search space.
Consider remove which has the largest reduction in search space.
The sketch for remove includes 3 expression holes. Static Pruning
creates 5,746 different expressions to fill each of the 3 holes while
SketchGen? only creates 876 expressions. Even for the model with
the smallest reduction in search space, dll, reducing the number of
expressions from 182 to 139 across the 3 expression holes in dIl’s
sketch still reduces the search space by 2.1x, which, in turn, results
in a 2.3x reduction in runtime for ASketch.

As seen with dll, given the reduction in the size of the search
space produced by SketchGen?, we expect that using SketchGen®’s
expression list would also results in improved runtime performance
for ASketch, which is supported by our results. Excluding models
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T5 T6 T7 T8
header header header
N0 <— N1 <— N2 No N1 N1 <— N2 NO——|N1
link link E link link - link -
link link
valid valid invalid valid
T9 T10 T11
header header
lmk
NO ——>| N1 NO > N1 N2
- link - link - link -
link
link link
invalid valid invalid

Figure 3: The 7 test cases generated by SketchGen? after starting with the five tests in Figure 2.

that time out, ASketch finds a solution to the sketch on average 6.5x
faster when using SketchGen?’s rather than using Static Pruning.
Models sll and grade see the largest speed up at 16.2x and 12.1x
respectively. Despite reducing the search space, the sketch prob-
lems for btree and remove remain too large to sketch within their
timeout bounds of 30 minutes. However, SketchGen?’s smaller ex-
pression list for contains does result in ASketch finding a solution
in 111 seconds, compared to timing out with Static Pruning.

While running ASketch with SketchGen? instead of Static Pruning
results in better performance, SketchGen? does have a longer ex-
pression generation time. As a result, it is important to consider the
total overall runtime, depicted in column Total. For the models that
do not time out, the overall time is 4.7x faster utilizing SketchGen?
over Static Pruning. Again, models sll and grade see the largest
speed up at 11.1X and 10.5X respectively. The minimum speed up by
SketchGen? is 1.7x, which occurs for the bempl model. Therefore,
when sketching Alloy models, SketchGen?’s smaller list of expres-
sions, which makes the search space more tractable, outweighs its
longer generation time in comparison to Static Pruning.

4.5 RQ4: Test Suite Quality

To consider the quality of the generated test suites, the authors
check whether the solutions found using these test suites were
correct or plausible. We use the Analyzer to determine equivalence
between the solutions found by ASketch and the oracle formulas.
For example, below is the check command for the sll model:

check {
all n: Node | n in List.header.*link => n !in n.link.*link
<=> all n: Node | n in List.header.*link => n !in n.*link
} for 3

For all the models used in our evaluation, we find that all solutions
found when running ASketch for the results in Table 3 are equivalent
to the respective oracle solutions.
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Furthermore, the authors manually inspect the generated test
suites to determine if these test cases are valuable for sketching.
Prior work [38] has shown that there are two important charac-
teristics for a sketching-oriented test suite: (1) the tests should
exercise high formula-level coverage of the final formula, which
helps mitigate concerns about plausible solutions, and (2) each
test case should be able to eliminate unique candidate models in
comparison to the rest of the test suite, which helps improve the
runtime. Figure 3 shows all of the test cases generated by the Start
5 configuration for the singly-linked list model. To achieve high
coverage, it is important for the test suite to not only be comprised
on both invalid and valid tests, but to also explore all the different
ways that valid and invalid behavior can occur. For the tests in
Figure 3, we can see that of the tests depicting invalid list, we are
presented with lists that are invalid due to: (1) a self loop at the start
of the list (T7), (2) two nodes pointing directly back to each other
(T'11), and (3) a larger, more indirect cycle (T'9). For valid behavior,
we can see lists that explore (1) correctly connected nodes (T8),
(2) nodes with cyclic behavior but are disconnected from the list
(T6), (3) empty lists and disconnected nodes (T10) and (4) lists with
no cycles and disconnected nodes (T'5).

The creation of tests that do not contribute any unique infor-
mation for eliminating candidate models can impact ASketch’s per-
formance by both increasing the size of the meta-model as well as
adding redundant constraints that bloat the satisfiability problem.
Unfortunately, our inspection revealed the test suites created by
SketchGen? are not guaranteed to be minimal for sketching pur-
poses. To illustrate, consider the following two tests T1 (Figure 2)
and T8 (Figure 3). Conceptually, test T8’s valuation is an extension
of T1’s valuation. In terms of representing valid behavior of the
Acyclic predicate, both tests represent a scenario in which all the
nodes are in the list and there is no cycle. Rather than having both
tests, it would be more desirable to just have T8. This behavior
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occurs again with T2 and T7, which both depict invalid behavior
where a node in the list has a self loop, and with T3 and T11, which
both depict invalid behavior where two nodes link directly back to
each other. If we rerun SketchGen® with T8, T7, and T11 in place of
T1, T2, and T3, then we do not generate T1, T2, and T3.

While the presence of all six tests will not cause an issue in terms
of the correctness of the sketch, the presence of these tests highlight
that SketchGen?’s resulting test suite can be improved. First, many
of the extended scenarios are built out of our manually created
tests used to initiate SketchGen?. Therefore, we note the importance
of generating larger individual tests before running SketchGen?.
In addition, SketchGen? can be extended to detect if a test case
is an extension of a previous test, and look to see if the smaller
test case can be safely removed. Second, SketchGen? currently uses
the first counterexample produced that explicitly distinguishes be-
tween two non-equivalent expressions. However, SketchGen? does
not currently place any other constraints on this counterexample.
One avenue of future work is to attempt to generate more valu-
able counterexamples by asking Alloy to find either a maximal
counterexample or to generate a counterexample that explicitly
distinguishes between multiple non-equivalent expressions, rather
than distinguishing between two non-equivalent expressions.

5 THREATS TO VALIDITY

There exists a few threats to the validity for the results. For the
SketchGen? configurations, the test cases chosen are from previ-
ous work sketching Alloy models. Therefore, these test cases may
be particularly well suited for SketchGen?, as these tests were de-
signed to evaluate ASketch in the past. Therefore, different starting
test suite may result in a different performance for SketchGen?.
However, our evaluation does highlight that an end user should
target creating a small number of diverse and intricate tests for
their starting test suite to help improve SketchGen?’s performance
and its application to ASketch. For expression generation, RexGen
has several parameters to specify the upper bound on the size of
expressions to generate. For the evaluation models, the authors use
the minimum size of expressions needed to create the known oracle
solution, which ensures that each sketch is solvable. In practice, the
minimum size needed to generate the valid expression is not known
in advance. Lastly, the models are benchmark models used to eval-
uate prior sketching work and largely fall into two categories: data
structures and protocols. The authors’ results may not generalize
to other types of system models. However, these models have fre-
quently been used to evaluate new Alloy techniques [25, 26, 40, 46].

6 RELATED WORK

Input Generation for Constraint Languages. SketchGen? is at
its core an input generation technique for Alloy that automatically
creates AUnit test cases that need to be labeled valid or invalid by
an oracle. Prior work has addressed automated input generation
for Alloy, including coverage-based generation and mutation-based
generation [40]. Testing constraint languages outside of Alloy has
been addressed in previous work. For example, a test framework
was built for the constraint language OPL which focuses on using
an oracle model to derive tests that look for differences in behavior
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based on conformity properties and provides guidance for fault lo-
calization [20, 21]. Moreover, previous work introduced a reduction
of testing UML models to satisfiability checking by encoding the
model and a property of interest, and using SAT [33]. These efforts
have largely focuses on creating testing environments and are not
applied or created for a synthesis environment.

Expression Generation. When generating expressions for pro-
gramming languages, there quickly arises a need to prune the search
space, as the number of expressions often becomes intractable, pre-
venting the use of these expressions to other applications, such
as synthesis. Pruning techniques include determining the indistin-
guishability of expressions modulo a set of inputs [2, 44] and partial
evaluation of incomplete expressions [7]. Additionally, knowledge
about operator properties has also been used to explore equivalent
expressions, either after expression generation [7] or by applying
an automated transformation to the grammar [18]. SketchGen? does
not add to the types of pruning for Alloy expressions, but instead
aims to improve the efficiency of how Alloy expressions can be
pruned through a novel combination of Modulo-Instance Pruning
and Dynamic Pruning.

Program Sketching. The aim of SketchGen? is to provide auto-
mated input generation for sketching. Program sketching [1, 16, 31,
32, 34-37] is a form of program synthesis, which is a mature yet
active research topic [3, 6-8, 12, 17, 19, 22, 27, 31]. Researchers have
proposed program synthesis techniques for a number of languages,
including synthesis of logic programs, e.g., using inductive syn-
thesis based on positive and negative examples [5]. SketchGen? is
designed to work with ASketch, which uses unit tests to outline the
expected behavior. Previous work on program synthesis has also
used user provided tests to synthesize imperative code. SyPet [6]
uses tests and Petri nets to synthesize0 sequences of method invoca-
tions for complex APIs. Test-Driven Synthesis builds a C# program
such that it satisfies all tests [28]. While SketchGen? is not a syn-
thesis technique, SketchGen? is designed to generate test cases that
are valuable for sketching, as each test distinguishes between at
least two expressions which are non-equivalent.

7 CONCLUSION

While software models are a valuable resource to create more re-
liable software systems, models are notoriously difficult to write
correctly. ASketch introduces a framework for partial synthesis of
Alloy models through sketching. Unfortunately, ASketch still re-
quires users to write a valuable regular expression and a robust test
suite in order to generate an Alloy model that matches the user’s
expectation. This paper introduces SketchGen?, which automates a
majority of the input generation needed for ASketch. Experimental
results reveal that SketchGen? is able to efficiently generate a list of
expressions for synthesis while strengthening the user’s test suite
to handle the broad list of expressions produced by SketchGen?.
In particular, we show that the starting with a small collection of
strong tests makes SketchGen? efficient and results in a good test
suite for use by ASketch.
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