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ABSTRACT. We consider a homogenization problem associated with quasi-crystalline multiple inte-
grals of the form

ue € L2@R) = [ fa(n 2 ue(e) ) do.

where u, is subject to constant-coefficient linear partial differential constraints. The quasi-crystalline
structure of the underlying composite is encoded in the dependence on the second variable of the
Lagrangian, fr, and is modeled via the cut-and-project scheme that interprets the heterogeneous
microstructure to be homogenized as an irrational subspace of a higher-dimensional space. A key
step in our analysis is the characterization of the quasi-crystalline two-scale limits of sequences of
the vector fields u. that are in the kernel of a given constant-coefficient linear partial differential
operator, A, that is, Aus = 0. Our results provide a generalization of related ones in the literature
concerning the A = curl case to more general differential operators A with constant coefficients, and
without coercivity assumptions on the Lagrangian fg.
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1 INTRODUCTION

The theory of homogenization addresses the description of the macroscopic or effective behavior
of a microscopically heterogeneous system. There are multiple applications in the fields of physics,
mechanics, materials science and other areas of engineering, including problems aimed at the modeling
of composites, stratified or porous media, finely damaged materials, or materials with many holes or
cracks.

From the mathematical viewpoint, homogenization is often associated with the study of the asymp-
totic behavior of oscillating partial differential equations, or of minimization problems deriving from
certain oscillating functionals, depending on one or more small-scale parameters that represent the
length scales of the heterogeneities.

A common assumption in the literature is based on the premise that the heterogeneities are evenly
distributed, leading to the mathematical assumption of periodicity in the so-called fast variable, which
encodes the heterogeneities in the mathematical problem. Even though the study of the effective
behavior of periodically structured heterogeneous media has enabled the study of more complex ones,
it is commonly accepted that periodicity is often not the most suited structural hypothesis. This
fact is at the basis of many recent works devoted to the study of the effective behavior of random
heterogenous materials whose small-length-scale properties are described at a statistical level only.
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Here, we are interested in materials with a quasi-crystalline microstructure characterized by small-
length-scale properties that are neither periodic nor random. Quasicrystals, also known as quasiperi-
odic crystals, are ordered structures that do not share the translational symmetry of traditional crys-
tals [56, 57]. A quasi-crystalline pattern can continuously fill an n-dimensional space, but will never
be translational symmetric in more than n — 1 linearly independent directions.

The discovery of quasicrystals was announced in the early 1980s by two groups of crystallogra-
phers, Schechtman, Blech, Gratias, and Cahn [56] and Levine and Steinhardt [44]. At first, this was
received with scepticism, and even hostility, by the the scientific community as quasicrystals violate
the foundations of classical crystallography. However, in 2011, Shechtman was awarded the Nobel
Prize in Chemistry for this discovery. A striking feature of quasicrystals is that their Bragg diffraction
displays peculiar five-, ten-, or twelve-fold symmetry orders in contrast with the rigid crystallography
of periodic crystals. Moreover, the assembly of quasi-crystalline tiling patterns is nonlocal and exhibit
similar patterns at different scales (self-similarity).

There has been a rich discussion and extensive efforts in various mathematical communities to model
quasicrystals; see [7, 16, 43, 47] and related references. A well-established mathematical approach to
study quasicrystals is based on aperiodic tilings of hyperplanes, in which one aims at finding a set of
geometric shapes, called tiles, paving the Euclidean plane without gaps or overlaps, in a non-periodic
manner only (see Figure 1). A systematic, but not exhaustive, scheme to derive such tilings is via the
cut-and-project method, introduced by de Bruijn [27] and further developed by Duneau and Katz [28],
which extends Penrose’s ideas of aperiodic tilings of the plane [54] to higher dimensions (see [8] for a
more detailed description).

Roughly speaking, m-dimensional quasi-crystalline patterns can be modeled by cutting periodic
tilings in an m-dimensional space, with m > n, through an n-dimensional subspace with irrational
slope. To be precise, given an n-dimensional quasicrystal R and representing by og : R™ = R a
constitutive property of R, we can find m € N, with m > n, a Y™-periodic function ¢ : R™ — R with
Y™ C R™ a parallelotope, and a linear map R : R™ — R™ such that

or(z) = o(Rx). (1.1)

In the homogenization literature, the structural condition (1.1) is referred to as quasi-periodicity
[16, 41]. Here, and in the sequel, we do not distinguish the linear map from its associated matrix in

R™* ™" and denote both by R. For example (see [36]), setting 7 = #, the matrices

V5 0 0] 1 0
V5 . T
1 %2\}?7' 1—17 - 0 1
1 1 T 1 0 1 T
R—R. — VZrT . R=R,;~— , and
5m-sym \/E 1 . \2/5 - m3 2(7_ i 2) -1 T 0
Vot 0 -1
1 0 -2 g 1
V5 — T
|—1 T T 1]
[ 2741 —1 1 T
V6(AT+3)  \/2(7+2)  1/6(7+2)
2741 0 —2
N
6(474+3 2(1+42 6(7+2
R:Rf’)m:: \/(1+) \/(+) \/gr+)

s/6(4§7’+3) 0 V6(T+2)
\/6(417'4-3) V2(r+2)  \/6(r+2)
V6@ +3)  /2(142)  /6(7+2) |

are associated with icosahedral quasi-crystalline patterns exhibiting a pentagonal 5m-symmetry phase,
a cubic m3-symmetry phase, and a rhombohedral trigonal 3m-symmetry phase, respectively, where we
adopted the terminology commonly used for the classification of quasicrystals’ symmetry space groups
(see, for instance, [59]). These icosahedral quasi-crystalline patterns are found in alloys within, for
instance, the Al-Mn-Si, the Al-Li-Cu, and the Al-Cu-Fe ternary systems (see [36]).

In general, there are multiple choices for m, o, and R, which could lead to some ambiguity in our
asymptotic analysis. However, as proved in [8], the homogenization analysis does not depend on R
provided it satisfies the following diophantine condition

R*k # 0 for all k € Z™\{0}, (1.2)
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where R* denotes the transpose of R. This condition implies that some entries of R must be irrational,
which justifies the expression ¢rrational slope used above.
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FIGURE 1. A quasi-crystalline heterogeneous microstructure corresponding to the so-
called “kite and dart” tiling of the plane with five-fold symmetry. Image source:
wikipedia.

Quasi-crystalline composites and alloys have played a central role in materials science and other areas
of engineering [4, 6, 29, 37, 39, 40, 49, 61]. Indeed, Al-Cu-Fe quasi-crystalline materials in polymer-
based composites have significantly shown to improve wear-resistance to volume loss, and a two-fold
increase in the elastic moduli. As we mentioned before, the mathematical study of such quasi-crystalline
composites does not fit within the classical periodic homogenization theory. More appropriate in
the context of quasicrystal composites are almost-periodic and stochastic homogenization, which were
initiated with the works of Papanicolaou and Varadhan [53], Kozlov [41], and Oleinik and Zhikov [52] for
partial differential equations, and Dal Maso and Modica [23] and Braides [9, 10, 11] within a variational
framework; see also [12, 17, 26] and the references therein. However, such approaches do not take full
advantage of the quasi-crystalline feature of the problem, often leading to asymptotic formulas that
pose computational difficulties and are not stable under perturbations. Instead, we adopt and further
develop a homogenization procedure based on the two-scale-cut-and-project convergence introduced
in [8], and recently revisited in [60], which leads to a more tractable (even if higher-dimensional) cell
problem.

In this paper, we initiate a research program devoted to the study of quasi-crystalline homoge-
nization problems involving oscillating integral energies under quasi-crystalline oscillating differential
constraints, in the framework of .A-quasiconvexity. To be precise, we aim at characterizing the asymp-
totic behavior of integral energies of the form

Fo(uz) = /Q (2 ue(a)) e (1.3)

as € — 01, where € > 0, with o > 0, represents the length-scale of the tiles featuring the quasi-
crystalline composite. Moreover, 2 C R™ with, n € N, is an open and bounded set that represents
the container occupied by the composite, and fr is the Lagrangian of the system whose dependence
in the second variable, the fast variable, encodes the quasi-crystalline structure of the composite,
highlighted with the subscript R as in (1.1). Finally, u. is an abstract vector-valued order-parameter
whose physical interpretation might depend on the problem in question. A typical case is that in
which u, is curl-free, u. = Vo, for some potential deformation v.. However, many applications require
that u. instead satisfies other linear partial differential constraints, such as Maxwell’s equations in the
case of electromagnetism, or, in the case of linear elasticity, u. is the symmetric part of a gradient. A
unified abstract approach to several of these constraints is that of A-free fields, as pioneered by Fonseca
and Miiller [33] (see also [20, 21, 55]). To be precise, u. € LP(€2;R?) is subject to quasi-crystalline
oscillating differential constraints such as

- i ) aus . —
Acue = ;AR (E—B)a—xl() — 0 strongly in W~1P(Q;R")

or, in divergence form,

n

d /.. -

Acu, = —(A’ (—)u . ) — 0 strongly in WP (Q; R
elUe ; 8$1 R EB s() gly ( )

with d, | € Nand 1 < p < oo, where for every z € R", A% (z) € Lin(RY% R') features a quasi-crystalline

pattern, and § > 0 is a parameter. For the study of homogenization of integral energies with periodic
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energy densities and under periodically oscillating A-free differential constraints, we refer the reader
to [13, 24, 25, 32, 42, 46].

As in the periodic setting [24, 25], we expect different asymptotic regimes according the ratio between
« and B. As a starting point to this extensive research project, we first focus here on the case where
B = 0 and A% is independent of z, in which case u. is subjected to homogeneous first-order linear
partial differential constraints. Precisely, in this manuscript we address the problem of characterizing
the asymptotic behavior as € — 07 of integral energies of the form

F(u) == /QfR (x §7u(x)) da (1.4)

for u € LP(Q; RY) satisfying Au = 0, where

"L 5 Ou
Au := ZA( )5‘xi
i=1

We refer to Section 2.2 for a rigorous definition of the identity Awu = 0, in which case we say that
the vector field u is A-free (see Definition 2.1). A common assumption within studies involving A-
free vector fields is the constant-rank property, which states that there exists » € N such that for all
w € R™\ {0}, we have

with A® e R™€ for all i € {1,...,n}. (1.5)

rank A(w) = #, (1.6)
where A : R” — R™? denotes the symbol of A, and is defined by

Aw) := iA(i)wi (1.7)

for w € R™. We assume that our operator A satisfies the constant-rank property, and we refer the
reader to [33, 48, 58] for further insights on this property and on A-free fields.

Our asymptotic analysis of the energy integrals in (1.4) under the constraint (1.5) is based on
I’-convergence techniques, whose key point is to find an integral representation to

Fhom(u) := inf { lim(i)rif F.(ue): ue — uin I/’(Q;R‘d)7 Aue = O}. (1.8)
E—r
To state our main theorem regarding this integral representation, we first introduce the hypotheses on
the Lagrangian, fr:Q x R x RY — [0, 00):
(H1) (Quasi-crystallinity:) there exist m € N, with m > n, a matrix R € R™*" satisfying (1.2), and

a continuous function f : Q x R™ x R — [0, 00) such that the function f(x,-, &) is Y™-periodic
for each (z,¢) € Q x RY, with Y™ denoting a paralleletope in R™, and

fr(z,2,8) = f(z, Rz,¢)
for all (z,2,&) € Q x R” x R
(H2) (Growth:) there exist p € (1,00) and C > 0 such that
0< fr(z,2,€) < C(L+[E]7)
for all (z,2,£) € Q x R” x Re.
In the proof of the lower bound for the integral representation of Fjom, we will require, in addition,
(H3) (Convexity:) for all (z,y) € Q x R™, the function & — f(x,y,£) is convex and C*.

We refer the reader to Section 2 for a list of the main notations we use in this manuscript. However,
for the readability of our main results, we clarify upfront that LZE(Y”“; R™) denotes the space of Y™-
periodic functions belonging to L}, (R™). Moreover, given a Lebesgue measurable set B C Rk, with
k € N, we use the notation fB - in place of ﬁ / g+ Where L¥(B) denotes the k-dimensional Lebesgue

measure of B.

Theorem 1.1. Let Q C R™ be an open and bounded set, let fr : Q2 x R" x RY — [0,00) be a function
satisfying (H1)-(H3), let Fhom be the functional introduced in (1.8), and assume that (1.6) holds. Then,
for all

uelUy = {uEL”(Q;Rd):Au:0}, (1.9)
we have

Fhom(u):/ﬂfhom(x7u(x))dx7
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where
fhom(x7£) = inf f($7y7€+v(y))dy
VEV 4 ym
with

Vg = {v € L;(Ym;R‘d): v is Ag~-free in the sense of Definition 3.11 and v(y)dy =0
Yfrﬂ
(1.10)

Remark 1.2 (On the hypotheses of Theorem 1.1). (i) In the homogenization literature, mea-
surability of f with respect to the fast-variable is often preferred over continuity. As we further discuss
in Section 2.1, measurability of fr requires, in general, Borel-measurability of f. A common approach
to deal with lack of continuity is to combine periodicity with Scorza—Dragoni’s type results that, up to
a set of small measure, allow to reduce the problem to the continuity setting. Here, however, we cannot
use such an argument because a set of small m-dimensional Lebesgue measure, the ambient space for
the fast variable in terms of (the periodic function) f, may not have small n-dimensional Lebesgue,
the ambient space for the fast variable in terms of (the quasi-crystalline function) fg. (ii) The non-
convex case raises non-trivial difficulties in the quasi-crystalline setting, and will be the subject of a
forthcoming work.

In the Sobolev setting, homogenization of integral energies of the form (1.4) under non-periodic
assumptions was undertaken in [12, 23, 38] in the A = curl case, assuming coercivity. Within the quasi-
crystalline framework, Theorem 1.1 extends these results to the general A-free setting and without
coercivity. We prove Theorem 1.1 in Section 4; the main tools we use here are based on I'-convergence
and on two-scale convergence adapted to the quasi-crystalline setting, also called two-scale-cut-and-
project convergence. For brevity, and having in mind the relation (1.1), we refer to the two-scale-cut-
and-project convergence as R-two-scale convergence. This notion was introduced in [8] (also see [60])
as an extension of the usual notion of two-scale convergence [1, 51] to enable the study of composites
whose underlying microstructure has a quasi-crystalline feature.

Here, we further extend the study of R-two-scale convergence in two different ways. In [8, 60], the
authors consider sequences in L? and their arguments are based on Fourier analysis relying heavily on
Parseval’s and Plancherel’s identities. Instead, we consider the more general case of LP with p € (1, 00).
Moreover, in [8] the authors characterize the limit, with respect to the R-two-scale convergence, of
bounded sequences in W12, while in [60] the authors characterize the limit associated with bounded
sequences in L? that are divergence-free or curl-free. Here, besides generalizing these results to the LP
case, we provide a unified approach to all these cases by considering bounded sequences in L? that are
A-free, in the spirit of [32] concerning the periodic case.

Next, we state our main result regarding the characterization of the limits of bounded sequences in
LP? that are A-free. We refer the reader to Sections 2.2 and 3.1, where we give a precise meaning to
the expressions “A-free” and “(A, A%.)-free” that we make use in this statement.

Theorem 1.3. Let R € R™" satisfy (1.2). A functionu € LP(QxY™;R?) is the R-two-scale limit of
an A-free sequence {u.}. C LP(Q;RY) if and only if u is (A, A%.)-free in the sense of Definition 5.13;
that is,

Aﬂo =0 and A%*l_n =0 (111)

in the sense of Definition 2.1 and Definition 3.11, respectively, where ug = fym u(-,y)dy and uy :=
u— 710.

We prove Theorem 1.3 in Section 3.1, where we use similar arguments to those in [32] concerning
the periodic case (see [32, Theorem 2.12]). We observe that the sufficient part in Theorem 1.3, which
guarantees that (1.11) fully characterizes the R-two-scale limits, is new in the literature even for p = 2
and A = curl or A = div treated in [8, 60]. Furthermore, in Section 5 we give an alternative proof of
Theorem 1.3 for the A = curl case using arguments based on Fourier analysis that differ from those
in [8, 60] because Parseval’s and Plancherel’s identities do not hold for p # 2. This alternative proof
provides an equivalent alterative characterization for the R-two-scale limit of bounded sequences in
WP and may provide useful arguments to study homogenization problems involving quasi-crystalline
functionals in the A = curl case. This alternative characterization can be stated as follows.

Theorem 1.4. Let R € R™ ™ satisfy (1.2) and let Y™ C R™ be a parallelotope. Then, a function
v € LP(Q x Y™ R") is the R-two-scale limit of a sequence {Vv.}. with {v.}. bounded in W1P(Q) if
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and only if there exist vo € WHP(Q) and v1 € LP(S%;G%) such that
v = Vg + v1,

where
gr, = {w € LI (Y™ R"): oy = MRk for some {Ai}rezn C C with Ao = o} (1.12)

with Wy, := fym w(y)e 2+ v dy, k € Z™, denoting the Fourier coefficients of w.

Remark 1.5. We recall that if u. € LP(Q;R") is curl-free in R™ with Q simply connected, then
there exists v. € WP(Q) such that u. = Vv.. Thus, in terms of the notations in the two previous
results with d = n, we have ug = Vug and u; = v;. In particular, (1.12) provides an alternative
characterization of Ag-- and A%.-free vector fields introduced in Definition 3.11 in the A = curl case
(also see Remark 5.7 for a detailed argumentation).

2 NOTATION AND PRELIMINARIES

Throughout this manuscript, m, n € N are such that m > n, 2 C R" is an open and bounded set,
Y™ is a parallelotope in R™, IT C R" is a parallelotope in R™, d, | € N, and p, p’ € (1, c0) are such that
% + i = 1. Moreover, we assume that ¢ takes values on an arbitrary sequence of positive numbers
that converges to zero.

We use the subscript # within function spaces to highlight an underlying periodicity, in which case
the domain indicates the periodicity cell. For instance, Cx(Y™) = {u € C(R™): u is Y™-periodic}
and LY, (II) = {u € L, .(R"): u is [I-periodic}.

Next, we compile the notation and main properties of the cut-and-project maps R and differential
operators A introduced in the Introduction, and that we make use in the sequel.

2.1 Cut-and-project maps R. In this paper, R : R — R™ is a linear map, whose associated
matrix in R™*" is also denoted by R. We do not distinguish between the transpose matrix and the
adjoint of R, and denote both by R*. We often assume that the criterion (1.2) on R holds, in which
case we refer to it explicitly.

As shown in [8], if g : R™ — R is a Y™-periodic trigonometric polynomial, with Y™ a parallelotope
in R™, then the ergodic mean of g o R, M (g o R), is uniquely defined provided that R satisfies (1.2),
in which case we have

1 ~
M(go R) := lim @y /(T’T)m g(Rx)dz = ][m 9(y)dy.

Throughout this manuscript, we consider functions og as in (1.1). We observe that such definition
raises measurability issues. In fact, we can only guarantee that og in (1.1) is measurable provided that
o is Borel-measurable. We conjecture that there are functions o € L>(R™) for which the corresponding
function og in (1.1) is not measurable. This conjecture is based upon the observation that the pre-
image of a measurable set B C R™ through R, R~!(B), acts as a projection of the set B onto the
lower-dimensional space R"™; moreover, as it is well-know, the projection of a measurable set may not
be measurable. To overcome this issue, we take in (1.1) the Borel representative of o.

2.2 Differential operators A with constant coefficients. We consider homogeneous first-order
linear partial differential operators with constant coefficients, A, that map u : Q@ — R into Au : Q —
R!, of the form

n N .
Au = ;A(z)a—;fi with A®) € R™® for all i € {1,...,n}.
The formal adjoint of A, which we denote by A*, maps v : Q — R into A*v : Q@ — R? and is defined
by

n

Arp = =3 (40)T 20

ox;
i=1 v

We observe that A can be viewed as a bounded, linear operator A : LP(Q;R?) — W—17(Q;R") by
setting

(Au,v) := / u- A*vde
)
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forallu € LP(;R®) and v € Wol’p/(Q; R"). We observe further that if u € C}(Q;R?) and v € CL(;RY),

then
/AU’de:/U'A*UdI'
Q Q

by integration by parts. Similarly, if u € C# (II; R?) and v € C# (IT; RY), then

/Au~vdz:/u~A*vdx.
I I

We assume that A satisfies the constant-rank property, that is, there exists + € N such that for all
w € R™\ {0}, we have rank A(w) = », where A : R" — R denotes the symbol of A, and is defined
by (1.7). As we mentioned in the Introduction, the constant-rank property is a common assumption
within studies involving A-free vector fields. We refer the reader to [33, 48, 58] for further insights on
this property and on A-free fields, whose notion we recall next.

Definition 2.1 (A-free fields). (i) Given u € LP(Q;RY), we say that Au exists in LP(S;RY) if there
exists a function U € LP(Q;RY) such that, for every ¢ € C1(Q;R"), we have

/Qu~A*q$dx:/QU~¢d:c. (2.1)

In this case, we write Au := U. We say that u is A-free, and write Au =0, if (2.1) holds with U = 0.
(it) Givenv € L% (TT; RY), we say that Av exists in LY, (11 RY) if there exists a function V € LY, (11 RY)
such that, for every ¢ € C#(H;R"), we have

/u-A*(pdy:/V~4pdy. (2.2)
o8 I
In this case, we write Av := V. We say that v is A-free, and write Av =0, if (2.2) holds with V = 0.

Remark 2.2 (A applied to vector fields depending on several variables). Whenever a vector
field depends on two or more variables, we index 4 with the underlying variable to which A is being
applied to the vector field. For instance, if u = u(z,y), then A,u refers to A applied to u as a function
of  with y regarded as a fixed parameter. Similarly, A,u refers to A applied to u as a function of y
with x regarded as a fixed parameter.

A crucial result in the variational theory of A-free fields is the following A-free periodic extension
lemma, established in [33, Lemma 2.15]. We make repeated use of a similar statement, also proved
in [32, Lemma 2.8], and hence record it here for the readers’ convenience.

Lemma 2.3 (A-free periodic extension). Let IT C R™ be a parallelotope, let O C II be an open
set, let 1 < p < oo, and assume that A satisfies (1.6). Let {v,} C LP(O;R®) be a p-equiintegrable
sequence in O, with v, — 0 in LP(O;R?) and Av, — 0 in W=1P(O;R"). Then, there exist an A-free
sequence {un} C LY (IT;RY), that is p-equiintegrable in 11, and a positive constat C = C(A) such that

Uy — vy — 0 in LP(O;RY),  u, — 0 in LP(I1\O;RY), ][ U, dy = 0,
I
ltn | e rirey < Cllvnllrosrey for all n € N.

Proof. The proof of this lemma with IT = (0, 1)" can be found in [33, Lemma 2.15] and [32, Lemma 2.8].
The case in which IT is an arbitrary parallelotope follows by an affine change of variables. O

3 CUT-AND-PROJECT-TWO-SCALE CONVERGENCE

The notion of two-scale convergence was first introduced in the L? setting by Nguetseng [51], and
further developed by Allaire [1]. Initially, it was used to provide a mathematical rigorous justification
of the formal asymptotic expansions that are commonly adopted in the study of homogenization
problems. Posteriorly, the notion of two-scale convergence was extended, in particular, to LP, L',
BV, and Besicovitch spaces [3, 15, 17, 31, 45], and also to the multiple-scales case [2, 30, 34], that
enhanced several variational homogenization studies hinged on a I'-convergence approach, such as
[5, 19, 31, 34, 50].
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In this section, we first address the study of the notion of two-scale convergence in the quasi-
crystalline setting, which we refer to as cut-and-project-two-scale convergence (or, for brevity, R-two-
scale convergence), with R as in Section 2.1. We then prove Theorem 1.3.

As we mentioned in the Introduction, the R-two-scale convergence was introduced in [8] (also
see [60]) as an extension of the usual notion of two-scale convergence to enable the study of composites
whose underlying microstructure has a quasi-crystalline feature. Using arguments based on Fourier
analysis, the authors in [8] characterize the limit, with respect to the R-two-scale convergence, of
bounded sequences in W12, while the authors in [60] characterize the limit associated with bounded
sequences in L? that are divergence-free or curl-free. Here, besides generalizing these results to the
LP setting, with 1 < p < oo, we provide a unified approach to all these cases by considering bounded
sequences in LP that are A-free, with A as in Section 2.2. Our arguments are close to those in [32]
concerning the periodic case, and are hinged on properties of A-free vector fields.

We first introduce the definition of R-two-scale convergence in LP(Q;R¥). We make use of the
results in this section with k equal to either 1, d, [, or n.

Definition 3.1 (R-two-scale convergence). We say that a sequence {u.}. C LP(Q;R¥) R-two-
scale converges to a function u € LP( x Y™ R¥) if for all ¢ € L' (Q; Cu(Y™; R¥)) we have

lim ue () - cp(m, %) dx = /Q][m u(z,y) - p(z,y) dedy (3.1)

e—0t Q

R-2sc

and we write U

Remark 3.2 (Uniqueness of R-two-scale limits). There is uniqueness of the R-two-scale limit.

In fact, if {u.}. C LP(;R¥) and u, @ € LP(2 x Y™; R¥) are such that u,. B2se and u, 24w g

then

)

/Q][m(u(az,y) —a(z,y)) - ¢(z,y)dedy =0

for all ¢ € L' (Q; C(Y™; R¥)). Hence, u = @ a.e. in Q x Y™,

Remark 3.3 (On the test functions for R-two-scale convergence). Assume that {u.}. is a
bounded sequence in LP(€2;R¥). Then, {u.}. R-two-scale converges to a function u € LP(Q x Y™; R¥)
if and only if (3.1) holds for all ¢ € C°(€; C3°(Y™;R¥)). To prove this statement, it suffices to use
the density of C2°(Q2; C32 (Y™ R¥)) in LP'(Q; C(Y™; R¥)) and the boundedness of {u.}. in LP(Q; R¥).

The next two propositions characterize the relationship between the R-two-scale limit and the usual
weak and strong limits in LP(Q; R¥). These two results are simple adaptations of [45, Theorems 9 and
10] concerning the periodic case (also see [8, Proposition 2.10] concerning the p = 2 case), which we
include here for completeness.

Proposition 3.4. Assume that {u.}. C LP(;R%) is a sequence that R-two-scale converges to a
function u € LP(Q x Y™;R¥). Then, u. — o weakly in LP(£;R%), where iig(-) := fy,m u(+,y)dy. In
particular, {u.}e is bounded in LP(Q;RY).

Proof. Let ¢ € LP' (€ R¥), and set @(z,y) := ¢(z) for (z,y) € @ x Y™, Then, p € L (Q; Cy (Y™ RY)),
and by (3.1) we have

. . Rz
lim [ w(z) ¢d(z)de = lim [ w(x)- go(x, 7) dz

e=0t Jo e—0t

Q
= /Q ][m u(z,y) - p(r,y) dedy = /Q <][m u(z,y) dy) - $(z) da,

and this concludes the proof. O

Proposition 3.5. Let {u.}. € LP(Q;R%) and u € LP(;RY) be such that ue — w in LP(S;R¥) as

R-2:
e — 0. Then, u. ——=~y
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Proof. Let ¢ € LPI(Q; Cy(Y™;R¥)). Using Hélder S inequality, the convergence u. — u in LP(£;R¥),
and Proposition 3.7 applied to ¢ (x y) u(zx) - @ , we get

limsup’/uE x — dx—/][ oz y)dxdy‘
e—0t ™

< limsup (nus — ul om0l ey
e—0+

/Qu() x— dx—/][m xy)dxdyD

=0. (]

_|_

The proof of the following version of Riemann—Lebesgue’s lemma may be found in [8, Lemma 2.4].
This lemma will be used in the subsequent proposition, which encodes non-trivial examples of sequences
that R-two-scale converge.

Lemma 3.6 (c.f. [8, Lemma 2.4]). Let ¢ € Cx(Y™;R¥), and assume that R satisfies (1.2). Then,
the sequence {¢.}. C L= (4 RY) defined by ¢.(x) := d)(%), x € Q, converges weakly-x in L>=(Q;R¥)
to the constant function ¢ = fym o(y) dy.

As we mentioned above, the next proposition provides non-trivial examples of sequences that R-
two-scale converge; moreover, it will be useful to prove compactness of bounded sequences in LP(Q; R¥)
with respect to the R-two-scale convergence. The proof is similar to that of [45, Lemma 2.5] concerning
the periodic case, which we include here for completeness.

Proposition 3.7. Let ) € LY(Q; Cx(Y™;RY)), and assume that R satisfies (1.2). Then {7,0(-, %)}E
is an equiintegrable sequence in L'(Q;R¥) such that

R-
— < . m. = 3 s d .
Hw(7 € )‘ L1 (;REK) ||¢HL1(Q,C#(Y R /S; ybeu}Prm |w($ y)l . (3 2)
and R
IIJ’
li dx = dxd .
Jig [ 9o )t = [, vl dat 63

Proof. The proof of (3.2) is immediate. Using this estimate (that holds with Q2 replaced by any measur-
able set) and the integrability of the map = € = sup,cyw [¢(z,y)|, we conclude that {1/1(-, RE(') ) }E is
equiintegrable in L' (Q; R¥). Finally, the proof of (3.3) follows along the lines of that of [45, Lemma 2.5],
which we detail next.

Step 1. Assume that 1) is of the form (z,y) = p(x)p(y) with ¢ € LY(Q) and ¢ € Oy (Y™ R¥).
Then, (3.3) follows from Lemma 3.6.

Step 2. Assume that ¢ is of the form ¥(x,y) = i,:l crx A (X)or(y), where j € N, ¢, are distinct
real numbers, A, are mutually disjoint measurable subsets of €2, and ¢ € Cx(Y™;R¥). Then, (3.3)
follows from Step 1.

Step 3. Let ¢ € LY(Q; C(Y™; R¥)). We can find a sequence {t;};en of step functions as in Step 2
such that ¢; — ¢ in LY(Q; Cx(Y™;R¥)) as j — oo. Fix j € N; in view of (3.2), we have

7/)(36 i dx—/ me T y)dxdy'
[ o) o B | [ (e B [ tmran
+ /Q ][w Wj(x,y) —(z,y)|dady

R
< (LI = bslusacaomany +| [ 035 ) dr = [ st asa|

Letting € — 07 and using Step 2 first, and then letting j — oo, we obtain (3.3) from the convergence
¥ — ¢ in LY(Q; Cx(Y™; RY)) as j — oo. O

Corollary 3.8. Let ¢ € LP(;Cx (Y™ R¥)), and assume that R satisfies (1.2). Then, {1{1(07 %)}E
is a p-equiintegrable sequence in LP(Q; R¥) that R-two-scale converges to 1.
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Proof. The p-equiintegrability assertion follows from Proposition 3.7 applied to |¢|P. The R-two-scale
convergence assertion follows from (3.3) with ¢ replaced by ¥, where ¢ € LP' (Q; Cy(Y™; R¥)) is an
arbitrary function. O

Using the previous proposition, we establish next a compactness property with respect to the R-
two-scale convergence. The proof follows along the lines of that of [45, Theorem 14] in the context of
the periodic case, which we include here for completeness..

Proposition 3.9. Let {u.}. C LP(;R¥) be a bounded sequence, and assume that R satisfies (1.2).
R-2sc

Then, there exist a subsequence €' = ¢ and a function uw € LP(2 x Y™ R¥) such that u./

Proof. To simplify the notation, set X := L? (; Cyx(Y™;R¥)), and denote by X’ the dual of X. Let
L. : X — R be the linear map defined, for ¢ € X, by

L.(p):= /Qua(x) . ap(:r, %) dz.

By Holder’s inequality, we have |L.(o)| < c|¢[|x, where ¢ := sup, [[uc||L»(qrx)- Thus, by the Riesz
representation theorem, there exists U. € X’ such that (U., 9)x/ x = L:(p) for all ¢ € X. Next, we
observe that X is separable and [[Us||x/ = sup,cx o<1 [{(Ue, ¥)x7, x| < c. Hence, by the Alaoglu
theorem, there exist a subsequence ¢’ < ¢ and a function U € X’ such that lim./ o+ (Uer, 0) x' x =
(U, ) x+. x for all ¢ € X. Passing the inequality

Rac 7
(ool = ot < o [ oo Z0)[" ac)”

to the limit as ¢/ — 07, and invoking Proposition 3.7 applied to ¢ (z,y) := |@(x,y)[?’, we obtain

woresl<e( [ ol dxdy) S ) R P P C Y

for all ¢ € X. Finally, using the density of X in Lp/(Q x Y™ R¥), U can be continuously extended to
2 (Qx Y™ R¥) with (3.4) valid for all € v (Q2xY™; R¥). Consequently, by the Riesz representation
theorem there exists @ € LP(Q x Y™; R¥) such that, for all ¢ € L (Q x Y™; R¥),

(U, 0)x,x :/Q/mﬂ(%y)wp(x,y) dzdy.

In particular, this last identity holds for all ¢ € X, from which we conclude the proof by taking
w:=L"(Y™) . O

Remark 3.10. As shown in [8, Remark 2.8], Proposition 3.9 may fail if there exists k € Z™\{0} such
that R*k = 0.

3.1 R-two-scale limits of A-free sequences. In this subsection, we characterize the R-two-scale
limits associated with LP-bounded sequences of A-free vector fields, as stated in Theorem 1.3. As
we will show, this characterization is intimately related to the notion of (A, A%.)-free vector fields
introduced below.

Definition 3.11 (Ag+- and Afy.-free fields). We say that v € L%, (Y™ RY) is Ag+-free, and write
Ar-v =0, if for all ) € C’#(Y””;R"), we have

| v Apw)ay =o, (3.5)
where
n m ) 6
s (inNrgp . 9
Ay ;;(A )Rmaym.

We say that w € LP(Q; LY, (Y™ RY)), with w = w(z,y), is Ag.-free, and write Ah.w = 0, if
Ag<w(z,-) =0 for a.e. x € Q.
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Remark 3.12 (On the notion of Ag--free). If v € C;E(Y”“;Rd) satisfies (3.5), then integration
by parts yields

0:/mv(y)‘ Ew(y)dy:—/ ZZ ADY Ry &i( )&y

i=1m=1
S D 3) e w=[ 33 B X)) ay
i=1 m=1 i=1 m=1
for all ¢ € C(Y™;R"). Thus, Ag-v = 0 pointwise in R™, where Ag- := =7 Y7 R;‘mA(i)ayim.

We observe further that, as a consequence of our analysis in the Appendix (see Remark 5.7), in the
A = curl case, in R™, we have that v € L;&(YU“;]R"’) is Ag--free if and only if v € G, where G¥ is
given by (1.12).

Definition 3.13 ((A, A%.)-free fields). Let w € LP(Q;L’;‘;(Y”;Rd)), and define wy € LP(£;RY)
and wy € L”(Q;L;(Y“;Rd)) by setting wy = fyn w(-,y)dy and w0y = w — wy. We say that w is
(A, A%.)-free if

.A’lD() =0 and A%wl =0
in the sense of Definition 2.1 and Definition 3.11, respectively.

The next proposition shows that the R-two-scale limit of an LP-bounded sequence of A-free vector
fields is necessarily (A, A%.)-free. This result is the quasi-periodic counterpart of [32, Proposition 2.11]
concerning the periodic case.

Proposition 3.14. Let {u.}. be a bounded and A-free sequence in LP(2;RY). Assume that there

exists a function u € LP(Q x Y™ RY) such that u. B25¢ < w. Then, u is (A, A%.)-free in the sense of
Definition 3.13.

Proof. Let ¢ € C1(Q;R"). Using the fact that each wu. is A-free first, and invoking (3.1) applied to
= A*p, we get
0= lim [ w.(z) A"¢(z)dr = / ][ u(z,y) - A ¢(z) dedy = / to(z) - A" ¢(x) de, (3.6)
olJym Q

e—=0t Jo
where g := fy., u(-,y) dy. Recalling Definition 2.1, (3.6) shows that Atg = 0 in LP(;R").
Next, we prove that A%.u; = 0 with 4y := u — 4. Let ¢ € C}(Q) and ¢ € C’}#(Y"“;R"), and set
@e(x) = ed(x)y (BE) for x € Q. Then p. € CL(QR") with

Ape(w) = = (A0 Ly

g Ox;
=X @O o 3 [0 3 S ()
=3 G A o 1 S (O B (7).

Hence, arguing as above, we have
0= lim Qus(x)A*gos(z)dx
=iy [t ~< LA () oS e () o

u(,y) >Z i(A“‘))T i (y)) dady
QJym 3y

‘/][ ,ueny) - o) A ly) dedy = = / ][My () At (y) dady,

where in the last equality we used the fact that 4y depends only on x and fym =¥ (y)dy = 0 by the
periodicity of .
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Because (3.7) holds for all ¢ € C(Q) and ¢ € C’# (Y™ R") and C’# (Y™ RY) is separable, we conclude
that A%*ﬁl = 0 in the sense of Definition 3.11. O

The next proposition shows that Proposition 3.14 fully characterizes the R-two-scale limit of an
LP-bounded sequence of A-free vector fields, as we prove that any (A, A%.)-free vector field is attained
as the R-two-scale limit of such a sequence. This result is the quasi-periodic counterpart of [32,
Proposition 2.11] concerning the periodic case. Moreover, as we mentioned in the Introduction, this
result is new in the literature even for p = 2 and A = curl or A = div which were treated in [8, 60].

Proposition 3.15. Let u € LP(£; LZE(Y”“; RY)) be a (A, A%. )-free vector field in the sense of Defini-
tion 3.13, and assume that R satisfies (1.2). Then, there exists a bounded and A-free sequence, {u.}«,

in LP(S;RY) such that u. fR-2sc

Proof. Fix u € LP(S2; LL (Y™, RY)), a (A, A'g.)-free vector field. We have
A’ao =0 and A%*ﬂl =0 (38)

in the sense of Definition 2.1 and Definition 3.11, respectively, where ug := fy,m u(-,y)dy and uy :=
u — Ug. Note that for a.e. z € Q, it holds

/rm uy(x,y)dy = 0. (3.9)

We will proceed in three steps.
Step 1. Assume that iy = 0 and u; € CHR"; C#(Y'"‘;Rd)). In this case, (3.9) holds for all z € Q
and, as observed in Remark 3.12, we have

Apg-u1 = 0 pointwise in Q x R™, where Ag+ = Z Z R}, A(l)—. (3.10)
m

1=1 m=1

For each ¢ > 0, define v. € C}(R") by setting
ve(x) =1y (ac, %) for z € R". (3.11)
By Corollary 3.8 and Proposition 3.4, together with (3.9), we obtain
{v.}. is a p-equiintegrable sequence in LP(Q;RY),
ve s gy, (3.12)
ve — 0 weakly in LP(Q;RY).

On the other hand, in view of (3.10) and recalling Remark 2.2, we have

Ave(z) = (i) (. Rj)

for all z € Q. Because A,u; € CC(R"“;C#(Y”“;R”)), we may invoke Proposition 3.4 and (3.9) once
more to conclude that

Av, — (Aptir)(z,y)dy = A, (f

Uy (z,y) dy) = 0 weakly in LP(Q;R).
Yﬂn

m

Hence,
Av. — 0 in WHP(Q; RY). (3.13)

Let IT C R™ be a parallelotope containing €2. By Lemma 2.3, we can find a p-equiintegrable sequence
in I1, {u.}. C LP(II;RY), and a positive constant depending only on A, C' = C(A), such that

Au. =0 for all € > 0,
ue —ve — 0 in LP(;RY), (3.14)
HuE”L})(H;Rd) < CHUEHLP(Q;]R“’) for all € > 0.

To conclude Step 1, we observe that the second condition in (3.12) and (3.14), together with Proposi-
tion 3.5, yield

u. R-2sc ’ELl. (315)
Step 2. Assume that 4o = 0 and u; € LP(Q; L (Y™; R?)).
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For all y € R™, we extend u1(-,y) by zero outside 2, which we still denote by 1. Let {p;}jen C

C(R"™) and {pf}jeN C CZ(Y™) be sequences of standard, symmetric, mollifiers. For each j € N, we
define

i) = [ [y este ) - ) 'ty
[ [ w@y e -t ) e,

where in the last equality we used the Y ™-periodicity of u; along with the symmetry and Y ™-periodicity
of pf. By standard mollification arguments, we have @; € C2°(R™; Cg° (Y™ RY)) with

%5 || L ;Lo (vonrey) < M@l Lo (s Le (v re)).-
Moreover,

Apg+t; = 0 pointwise in  x R™ and / (-, y)dy =0

by (3.8) and (3.9), together with the Y™-periodicity of 4 and Fubini’s theorem.
By Step 1, for each j € N, we can find a p-equiintegrable sequence in II, {u(j )} C LP(I;RY),
satisfying (3.14)—(3.15) with u. replaced by ud and, recalling (3.11), v, replaced by

; R
v (z) = @; (x, i) for x € R".
€
In particular, we have

: R P
limsuplimsup/ ‘ug)(x)‘pdx <C? limsuplimsup/ ‘ﬂj x,—x dx
Q

j—oo  e—0t j—oo  e—0t

=CP hmsup/][ |t (z,y)|P dedy

J—00

‘Ctm ch CPHUIHLP Q;Lp(Y™:Re))"
This estimate and the separability of LP'(€; Cx(Y™;R?)) allow us to use a diagonalization argument

as in [30, proof of Proposition 1.11 (p.449)] to find a sequence (j.). such that jo — oo as e — 0 and
(Je)

ue = ug "’ satisfies the required properties.
Step 3. We treat the general case.
By Step 2, there exists a bounded and A-free sequence, {u}., in LP(Q; R?) such that u,. B2 .

R-2sc

Defining 1. := ug + u., we have At. = 0 and 4. ug +u1 = u, using (3.8) and Proposition 3.5.

0

Proof of Theorem 1.3. The statement in Theorem 1.3 in an immediate consequence of Propositions 3.14
and 3.15. O

4 T-CONVERGENCE HOMOGENIZATION

In this section, we prove Theorem 1.1. To this end, we first show in Theorem 4.1 below that the
sequence {F.}., with F. given by (1.4), I'-converges to a certain functional, Fyom, with respect to the
weak topology in LP(2;R?), as ¢ — 0*. Then, in Proposition 4.6 below, we establish the integral
representation for this I-limit as stated in Theorem 1.1.

Theorem 4.1. Let Q C R be an open and bounded set, let fr: Q2 x R” x RY — [0,00) be a function
satisfying (H1)-(H3), let F. be the functional introduced in (1.4), and assume that (1.6) holds. Then,
the sequence {F.}. T'-converges on Uy = {u € LP(LRY): Au = 0} as € — 07, with respect to the
weak topology in LP(Q;RY), to the functional Fuom defined, for u € Uy, by
From(w)i= inf [ £ fau(e) + (o) dod,
wWEW 4 ym

where

Wy = {w € LP(y Li(Ym;Rd)):w is (A, A'R.)-free in the sense of Definition 3.13,

wz’th/w w(-y)dy = 0}.

(4.1)
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Precisely, given an arbitrary sequence {&,}nen C R converging to 0, the following pair of statements
holds:
1. (T-liminf inequality) Let {un}nen C U4 be a sequence such that u, — u in LP(S;R®) for some
u € LP(Q;R?). Then, u € Uq and

liminf F. (un) 2 Fhom(u).

n—oo
2. (recovery sequence) For every u € Uy, there exists sequence {un tnen C Ua such that u, — u
in LP(S;R®) and

limsup F;, (tn) < Fhom(u).

n— oo

The proof of Theorem 4.1 is obtained as a consequence of Propositions 4.3 and 4.4 below. We begin
with a lemma that will be used in the subsequent proposition, where we establish the recovery sequence
property, and is a simple adaptation of [32, Proposition 3.5-(i)].

Lemma 4.2. Assume that hypotheses (H1)-(H2) hold. Let {e,}nen C RT be a sequence converging
to 0, and let {un }nen, {Wn tnen C LP(S;RY) be two p-equiintegrable sequences such that lim,, oo ||ty —
wnHLP(Q;R“) =0. Then,

lim 5 [fR(x, %,un(x)) dxr — fR(x, ;,wn(x)ﬂ dzx = 0.

n—oo n

Proof. Fix 7 > 0. We want to show that there exists ng = no(7) € N such that if n > ng, then

’/Q [fR(x’ é’un(x)) do — fR(:E, i,wn(w))} dz

Using the p-equiintegrability of {u,} and {w,}, there exists 6 = §(7) > 0 such that if E C Q is a
measurable set with |E| < 4, then

< T

ilég/E C (24 |un(@)? + Jwy(z)[P) dz < rE (4.2)

Moreover, there exists rs > 0 such that
sup (| {hun| > 13| + [l > 7}]| <. 3)
ne

Let Q5 € Q be such that [Q2\ Q5] < 0. Using the continuity assumption on f and the Y™-periodicity
of f with respect to its second variable, we conclude that f is uniformly continuous on Q5 x R™ x B (0).
Thus, we can find 0 < § < 6 such that, for all z € Q5, y € R™, and &, & € B,,(0) with |§; — & < 4,
we have

-
_ < —.
|f(x7y7€1) f(x7y7§2)‘ 2|Q5| (44)
Finally, by Chebyshev’s inequality, there exists 0 < § < d such that if |v]| Lr(QRe) < 9, then
{|v] > 8}| <. (4.5)

We observe further that because lim,, oo [[tn — wnllLr(q;re) = 0, we can find ng = no(7) € N such that
lun — wn |l Lrrey < é for all n > ny.

Thus, for each n > ng and for A := (Q\ Qs) U {|un| = rs} U {{wn| = rs} U {|un — wy| = 6}, we
conclude from (H2), (H3), and (4.2)—(4.5) that

[ (o Z ) = s )]

< /AC(2+ un ()P + |wn(z)[P) dx—i—‘/ﬂ\A {f(x,lj—:,un(x)) da:—f(x,R—nx,wn(x)ﬂ dz
<g+§éQM\m<r. O

The recovery sequence property in Theorem 4.1 is a simple consequence of the following proposi-
tion. We observe that this result does not require assumption (H3) to hold, and is the quasi-periodic
counterpart of [32, Proposition 2.7] concerning the periodic case.
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Proposition 4.3. Assume that hypotheses (H1)-(H2) hold, and let U be the set introduced in (1.9).
Then, for each 6 > 0, u € Ua, and w € Wy = {w € LP(Q;LZE(Y”“;RG)): w is (A, A%.)-free in
the sense of Definition 5’.13’}, there exists a sequence {uz} C Ua such that ue — u + wo weakly in
LP(S;R®) as e — 0% and, for all k €N,

e—0t

tim [ a(e L @) do < [ f - flonyuto) + (o) dyds + 6 (16)
Q € QJym
where, recalling Definition 3.13, wo = fym w(-,y) dy.

Proof. Fix § > 0, u € Uy, and w € W 4. We will proceed in two steps, first assuming extra regularity
on w, and then treating the general case.

Step 1. Recalling the decomposition w = wy + w; introduced in Definition 3.13, assume that
wy € CH(Q; CL(Y™;RY)).

For k € N and (z,y) € Q x Y™, define

Y(z,y) == f(z,ky,u(z) + w(z,y)) = f(z, Ky, u(z) + Wo(x) + W1 (2,y)).

Using (H1), (H2), the continuity of f, and the regularity of w1, we conclude that ¢ € L'(Q; Cx(Y™)).
Then, by Proposition 3.7, we have

Rz
li —)dz = ;
im Qw(a:, 6 )dx /Q Ym¢(x,y)dxdy,
ie.,
. x
tin, [ g Lwaw) do = [ £ flomy.uo) + i) dda, (4.7)
e—=0t Jo € QJym

where, for x € Q,
R
we(x) := u(z) + wo(z) + wy (x, 796)

Arguing as in Step 1 of the proof of Proposition 3.15 with u; replaced by w; in (3.11), and using
the fact that Au + Awy = 0 by the definition of U4 and W 4, we conclude that (see (3.12)—(3.13))

{w.}. is a p-equiintegrable sequence in LP(2; R?),
we — u + Wy weakly in LP(Q;RY),
Aw. — 0 in WHP(Q; RY).
Then, by Lemma 2.3, we can find a sequence {u.}. C LP(€2;R?) such that
{uc}e is p-equiintegrable,
Au. =0 in LP(;RY),
u. —we — 0 in LP(Q;RY).

In particular, u. — u + wo weakly in LP(€2;R®). Moreover, by Lemma 4.2, we have
x T
li (7776 )d = li (777 € )da
i, J Inl( Soue)) do = Ji, [ faln Cwee) do

which, together with (4.7), concludes Step 1.
Step 2. We treat the general case.
Fix j € N. Arguing as in Step 1 of the proof of Proposition 3.15 with u; replaced by w;, we can

find w; € C*(Q; C#(Y"“;Rd)) such that wy + @; € W4 and |w; — w1||Lp(Q;Lp#(ym;Rd)) < % Then,

extracting a subsequence of {0, };en if necessary, Vitali-Lebesgue theorem and (H1)-(H2) yield
j—o0

lim /Q . f(z, ky, u(x) + wo(z) + w;(z,y)) dydz

= / f(z, ky, u(z) + wo(z) + wy (x,y)) dyda.
QJym

Hence, we can find js € N such that
| 1. 1y ue) + o(e) + i, (o,0) dyde
QJym

< / f(z, ky,u(z) + wo(x) +wi(z,y)) dydz + 6.
QJym
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To conclude, we invoke Step 1 to find a sequence {u.} C U4, that depends on 4, u, and w, such
that u. — u + wo weakly in LP(€;RY) as ¢ — 01 and, for all x € N,

lim ; fr (Jc, g,ue(x)) dzr = /Q . [z, ky, u(z) + wo(x) + Wy, (x,y)) dydz. O

e—0t

Next, we establish the I'-liminf inequality property stated in Theorem 4.1.

Proposition 4.4. Let {e,}nen C RT be a sequence converging to 0, and let {un}neny C U be a
sequence such that u, — wu in LP(Q;R®) for some u € LP(S;R®). Then, under the assumptions of
Theorem 4.1, we have u € U4 and

liminf F. (up) 2 Fhom (). (4.8)

n— oo
Proof. The condition u € U4 follows from the fact that w, € Uy for all n € N together with the
convergence u, — u in LP(Q;R?). Moreover, by Propositions 3.14 and 3.4, and the uniqueness of

R-two-scale limits (see Remark 3.2), we have u, B25¢ « 4 for a vector-field v that is (A, A% )-free in
the sense of Definition 3.13, with [y, v(-,3) dy = u(-). In particular, we have the decomposition

v=u+vy, v E LP(Q;L’%&(Y“;R‘”)), Af.v1 =0, /mvl(-,y)dy:O.

Let {1;}jen C Ce(€;Cx (Y™ R")) be a sequence converging to v in LP(Q x Y™ R?) and pointwise
in Q@ xY™. By (H3), we have, for all n, j € N,

Rz Rz af Rzx Rzx Rx
fnhind > - . .
1o B2 ) > 2 (2 20)) L 3, (0 ) (i 2))
Integrating this estimate over Q and passing to the limit as n — oo, we invoke Proposition 3.7 and
(H2)—-(H3) to infer that

liminf F;  (uy,) = lim inf/ f(a:, @,un(x» dzx
Q

n—oo n— oo n

0
> /Q . flz,y,¥i(z,y)) dedy + /Q][m a—é(m,y,zpj(m?y)) (v, y) — v(2,y)) dzdy

(4.9)
for all j € N. Letting j — oo in this inequality, Fatou’s lemma and (H1) yield
liminf F, (u,) > / flx,y,v(x,y))dyde = / flzyy,u(x) +vi(x,y)) dyde
noreo QJym QJym
> inf / flz,y,u(z) + w(z,y)) dedy = From (u)- O
weW 4 ym

Proof of Theorem 4.1. Proving that both the I'-liminf inequality and the recovery sequence properties
in Theorem 4.1 hold is equivalent to proving that (see [22]) for all u € U 4, we have

Fhom (u) =T- linrr_1>i£f F., (u) =T-limsup F., (u), (4.10)

n—oo

where {€, }nen C R is an arbitrary sequence converging to 0 and

I-liminf F, (u) := inf { lirginf F. (up): up — uin LP(Q;Rd) asn — 00, Au, =0 for all n € N},

n—roo

I-limsup F; (u) := inf { limsup F. (u,): w, — u in LP(Q;R®) as n — oo, Au, =0 for all n € N}.

n—oo n—0o0

Taking the infimum over all admissible sequences on (4.8), we conclude from Proposition 4.4 that
[-lim inf F2, (u) > Fhom (uw)- (4.11)
On the other hand, Proposition 4.3 with kK = 1 and wy = 0 yields

I-limsup F;, (u) < / f(z, ky,u(z) + wyi(x,y)) dydx + 6
QJym

n—oo

for all § > 0 and w; € W4. Hence, taking the infimum over w; € W4, and then letting § — 0, we get
[-limsup F., (u) < Fhom(u). (4.12)

n—oo

Because I'-liminf,, o F:, (u) < I-limsup,,_, ., Fe, (u), we obtain (4.10) from (4.11) and (4.12). O
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Next, we establish an integral representation for the functional Fyeon introduced in Theorem 4.1.
This integral representation is the quasi-periodic counterpart of [32, Corollary 3.2] concerning the peri-
odic case, and its proof make of the following measurable selection criterion, proved in [32, Lemma 3.10]
(also see [18]).

Lemma 4.5. Let Z be a separable metric space, let T be a measurable space, and let T : T — 2%
be a multi-valued function such that (i) for every t € T, Y(t) C Z is nonempty and open, and (i) for
every z € Z, {t € T: z € Y(t)} C T is measurable. Then, T admits a measurable selection; that is,
there exists a measurable function, v : T — Z, such that v(t) € Y(t) for allt € T.

Proposition 4.6. Under the assumptions of Theorem 4.1, for all u € U4, we have

Fhom (1) :/thom(x,u(x))dx, (4.13)
where

fhom(‘r7£) = lean f($7y7£ +U(y>) dy
vEVA Jym

with V4 given by (1.10).

Proof. Let u € Uy. Note that, by (H2), we have

0 < fhom(2,§) < C(1+€]7) (4.14)
for all (z,&) € Q x R. Moreover,
€ Q> from(z, u(x)) (4.15)
is a measurable map. In fact, let V4 be a countable and dense subset of V4 with respect to the (strong)
topology of L’;’E (Y"™™;RY). We observe that such set V4 exists because V4 is a subset of the separable
metric space L;&(Ym;Rd). Then, the continuity of f (see (H1)), Vitali-Lebesgue’s theorem, and (H2)
yield

i f fenu(@) o)y = inf £ fau(o) + o) du,

from which we conclude the measurability of the map in (4.15).
Fix w € W4. For a.e. z € €2, we have w(zx, ) € V4; hence, for a.e. z €

inf f(x,y,u(z) +o(y))dy < f(z,y,u(z) + w(z,y)) dy.
v A Jym Yym

Integrating this estimate over €2, and then taking the infimum over w € W4, we conclude that

/ Jhom (2, u(z)) de < From ().
Q

To prove the converse inequality, we first observe that, by (4.14), we may assume that

from(x,u(z)) € R for all x € Q, (4.16)

without loss of generality. Fix 6 > 0, and consider the multi-valued function Y45 : Q — L% (YR
defined, for x € €, by

Ts(x) := {U eVa: flx,y,u(x) +v(y))dy < from(z,u(z)) + 6}.

Ym
Also, let § € (0,6) be such that

/ OO + [u@)P) dz < 6 (4.17)
E

whenever E C € is a measurable set with £"(E) < &, where C is given by (H2).
By (4.16), we have Ys(z) # 0 for all z € Q. Furthermore, arguing as above, using the continuity of
[, Vitali-Lebesgue’s theorem, and (H2), it can be checked that for each = € Q, L, (Y™; R\ Ys(x) is

a closed subset of L% (Y™; R?). On the other hand, recalling the measurability of the map in (4.15),
we have that

x> h(zx) = . flz,y,u(z) +v(y))dy — from(z,u(z)) — 9

defines a measurable map for each v € L;(Y‘”‘;Rd). Thus, {z € Q: v € Ts(z)} = h~1((—00,0)) is
a measurable set for each v € L;&(Y“;Rd). Consequently, by Lemma 4.5, there exists a measurable
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selection, wgs : Q — L; (Y™ RY), of Ts5. Moreover, by Lusin’s theorem, ws € LP(§s; L;(Y”; RY)) for a
suitable measurable set Qs such that £7(\ Qs) < 4.

Finally, we define ws € W4 by setting ws(z) := ws(z) if © € Qs, and ws(z) := 0 if x € Q\ Qs.
Then, using the definition of From(u), (H2), (4.17), and (4.14), we get

]:hOm(u) < /Q . f(:my,u(w) + 1])5(:1?,:1/)) dedy <6 +/Q . f(ajay?U’(x) + wg(:n,y)) dady

<O+ L) + [ from(,u(e) d,
Q
from which we conclude the desired inequality by letting § — 0. O
Finally, we prove Theorem 1.1.

Proof of Theorem 1.1. Theorem 1.1 is an immediate consequence of Theorem 4.1 (also see (4.10)) and
Proposition 4.6. O

5 THE CURL CASE

In this section, we prove Theorem 1.4 that provides an equivalent alterative characterization for

the R-two-scale limit of bounded sequences in WP, corresponding to .4 = curl in Theorem 1.3. In
R-2sc

this case, by Proposition 3.9 and extracting a subsequence if necessary, we have u. ug and
Vu. 225 1, for some ug € LP(QAxY™) and Uy € LP(Q x Y™;R"™). Next, to study the relationship
between ug and Uy, we use Fourier analysis. As we mentioned before, this is the approach adopted
in [8]; however, the arguments in [8] hinge on the Parseval and Plancherel identities, which are valid in
L?(2) only. Instead, our main tool here relies on the following theorem, which may be found in [35].
For simplicity, we take

Y™ =10,1)",

and we use the Einstein convention on repeated indices.
Theorem 5.1. Let w € L, (Y™), and define!

wy(y) = Y ipe’™FY yev™ NeN,

kez™
[kloo <N

where Wy := [y w(y)e >"* Y dy, k € Z™, are the Fourier coefficients of w. Then,

H sup |wN\HLp(W < Cpmllwl[ ey,

NeEN )
li — my =0 5.1
i flwy = wl[gem) =0, (5.1)
lim wy(y) = w(y) for a.e. y e Y™,
N —oc0
where Cp @5 a positive constant depending on p and m only. Moreover, for all k € Z™,

k] < [JwlTp (ymy- (5.2)

Proof. The proof of (5.1) may be found in [35, Thm. 4.1.8 and Thm. 4.3.16]) (see also [35, Def. 3.2.3]).
To prove (5.2), we use Jensen’s inequality and the equality |e=27*"¥| = 1, k € Z™, to obtain

@ < [ o) P dy = [l . 0
Remark 5.2. Let w € LP(Q; L (Y™)), and define
on(@)i= [ fone.) < w(ey)Pdy, w€ 0, NEN,

where wy (z,y) := Zl kean Wy (2)e*™* Y with g (z) = [y w(z,y)e 2™ ¥ dy, k € Z™. By (5.1), for
Eloo <N

a.e.-x € ), we have

sup |on(+)] < C'pym/ lw(-,y)|Pdy € L*(Q) and lim wvy(z) = 0.
NEN m N—oo

n the literature, wy are called the square partial sums of the Fourier series of w.
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Thus, by the Lebesgue dominated convergence theorem, it follows that wy — w in LP(Q x Y™) as
N — oo.

Next, we study some properties of the space Gf, introduced in (1.12) that will be useful in the sequel.
We first observe that if p = 2, then it can be checked that

G = {w €LL(Y™RY): w(y) = Z A R*ke*™*Y for some { A\ }rezm (0} C C}7
kezm\{0}

and we recover the space introduced in [8].

Lemma 5.3. Assume that R satisfies (1.2). Then, the vector space G introduced in (1.12) is a
closed subspace of LY, (Y™;R").

Proof. Let {w;}jen C G and w € L (Y™;R™) be such that lim; o ||wj —w| Lo (ymgey = 0. We want
to show that w € Gh,.

For each j € N| let w; and Wy, denote the Fourier coefficients of w; and w, respectively. By (5.2),
we have lim;_, |d)i — | =0.

On the other hand, by definition of G5, for each k € Z™ and j € N, there exists )\i € C such that
wk = )\iR*k and )\g = 0. In particular, Wy = 0. Fix kg € Z™\{0}; by (5.2), for all j, 7' € N, we have

XL, = Mo || R ho| = | (M, — M) R ho| = |, — @], | < Ilwj — wj || oo (ymize-

Because R"kg # 0 by (1.2), we conclude that {/\io }jen is a Cauchy sequence in C. Thus, there exists
Ak, € C such that lim;_, o |/\§;0 — Ako| = 0. Consequently, passing the equality wio = )\io R" kg to the
limit as j — oo, we obtain Wy, = Mg, R ko. O

Lemma 5.4. Assume that R satisfies (1.2), and let wy € L4 (Y™;R") be such that

| wolw) - w0y dy =0 (53)

for all ¢ € CF(Y™R") with %er =01 Y™, where l € {1,....,n} and 7 € {1,...,m}. Then,
wo € gg

Proof. By contradiction, assume that wo ¢ G%. Then, using Lemma 5.3, together with (a corollary
to) the Hahn-Banach theorem (see, for instance, [14, Cor. 1.8]), there exists v € L% (Y™; R") such that

| v w)dy=0 (5.4
for all w € G, and
[ o) wnl)dy 2o, (55

We claim that g—;’iRTZ = 0 in the sense of distributions. In fact, let ¢ € C3F(Y™), and set w :=
R*Vy¢. Then, w € L5(Y™R"), 1y = 0, and iy, = 2migp R*k for all k € Z™\{0}. Thus, w € G and
so, by (5.4),

0= [ o) wdy= [ Row)- 900 du,
which shows that 0 = div,(Ruv(y)) = divy(v(y)R") = %Rﬂ in the sense of distributions because
¢ € C(Y™) is arbitrary.

Using standard mollification techniques with a Y™-periodic, smooth kernel, we may construct a
sequence {vp }ren C CF (Y™ R) such that divy (v (y)R*) = 0in Y™ and limp, o0 [[vp — 0| o (yengey =
0. Then, by (5.3) with ¢ = v;, and Lebesgue dominated convergence theorem, we obtain [y, wo(y) -
v(y) dy = 0, which contradicts (5.5). Thus, wy € Gh. O

Proposition 5.5. Let {u.}. C WHP(Q) be a bounded sequence, and assume that R satisfies (1.2).
Then, there exist a subsequence ¢’ < & and functions u € WP (Q) and w € LP(Q;GR) such that

R-2sc

R-2sc
Uy ———— 1y and Vue

Vu+ w.
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Proof. By the reflexibility of W1?(2) and Proposition 3.9, there exist u € WP(Q), ug € LP(Q x Y™),
and Uy € LP(Q x Y™ R") such that, extracting a subsequence if necessary,

ue — u weakly in WHP(Q), u. R-asc ug, and Vu. R2se Uy. (5.6)

By the Rellich-Kondrachov theorem, u. — u in LP(£2). Hence, Proposition 3.5 and the uniqueness

of the R-two-scale limit (see Remark 3.2) yield
U= ug.

We are left to prove that Uy in (5.6) is of the form Uy (z,y) = Vu(x)+w(z,y) for some w € LP(Q; Gr).
Let @ € C2°(€; O (Y™ R™)) be such that %Rﬂ =0inQxY™ le{l,..,n}, 7€{1,..,m} Then,
using integration by parts, the second convergence in (5.6), and the fact that ug = u € WP(Q), we
obtain

Uo(z,y) - ®(z,y) dzdy
Qxym

= lim /VuE )da:
e—0+
. . Rx 1 8@1 Rz
_—81_1)%1+(/Qu5(x)dlvx ( )dx 5/ug( )3y7< . ) ld$>

Rz
=— lim [ wu.(x)div, ® (x, —) de = — / u(x) div, ®(z,y) dedy
€ Qxym

e—0+t Q

= / Vu(z) - ®(z,y) dzdy.
Qxym

Hence,
| W) - Vu(a) - @(a,y) dady =0
QxYym™

for all ® € C2°(Q; C2(Y™; R")) such that %Rﬂ = 0in QxY™. Invoking Lemma 5.4, we conclude for
a.e-z € Q, Up(z,)—Vu(z) € G, which, together with the fact that the map (z,y) — Up(z,y) —Vu(z)
belongs to LP(2 x Y™; R™), concludes the proof. O

The next proposition shows that Proposition 5.5 fully characterizes the R-two-scale limit of bounded
sequences in W1P(Q). To the best of our knowledge, in the framework of R-two-scale convergence,
this result is new in the literature even for p = 2.

Proposition 5.6. Let u € W'P(Q) and w € LP(;G%), and assume that R satisfies (1.2). Then,
there exists a bounded sequence {u.}e C WHP(Q) such that

R-2sc R-2sc

Uy ———u  and Vug

Vu+ w.

Proof. We first consider the case in which w € W'P(Q; Gh).
For each k € Z™, define

W () ::/ w(z,y)e ™ FYdy, xeQ.

Because w € W1P(Q; Gh), we have , € WHP(€;C") with @y = 0; moreover, for a.e-z € (2, we have
Wi (z) = M\ (z) Rk for some \, € WHP(Q; C) with Ao = 0.
For each N € N, let wy € W1P(€); C’;"(Y”- C)) be the function defined by

wn(r,y) = ) 27”/\ k(@)e?™ Y (2,y) € @ X R™.

Note that the function
wy(z,y) = R*Vyin(x,y) Z A (2) R ke?™FY = Z g (x)e*™ Y (z,y) € A x R™,

kezm kezm
[kloo <N [Eloo <N

belongs to W1P(€; CF (Y™ R")) and, by Remark 5.2, satisfies

lim lwn (x,y) — w(z,y)P dedy. (5.7)
N—o0 Qxym
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Finally, for each e, we define wy := Re(wy) and
R
ue N (2) == u(x) + ewy (x, TI), x € Q.
Then, u. vy € WP(Q) with
llue N llzr ) < llullze ) + ellOn e ;o (vm))
and
Ve, Nllr@ire)y < [VUllLe@ire) + EIVa@n || L ;0 (vore)) + 0N Lr @iy (vore)) -
Let ¢ € LP (Q; C(Y™)) and ® € L¥ (Q; C»(Y™;R")). By Proposition 3.7, we have

lim lim usyN(x)go(x, %) dz = lim lim (u(x) +ewy (:c, %))cp(w, %) dz

N—ooe—0t Jo N—ooe—=0t Jq

(5.8)
= / u(@)p(z, y) dedy
Qxym
and, also using (5.7),
. . Rz
1\}51100 slg(l)l+ /Q Ve n(z) - <I>(gc, T) dz
. . _ Rz Rz Rx
= Jim i [ (Vu(e) + oV (e, 7 )+ (7)) @ ) do (5.9)

/QX}/W(Vu(m) +w(z,y)) - ®(z,y)dady.

Due to the separability of L?'(€; Cx (Y™)) and L?' (Q; C(Y™; R™)) and (5.8)-(5.9), we can proceed
as in [30, proof of Prop. 1.11 (p.449)] to find a sequence {N.}. such that N. — oo as ¢ — 0" and
Ue == ue N, € WHP(Q) satisfies

Jim [ d@p(n T )dr= [ ul)plep)dedy
and
El_i)r(r)lJr ; Vi (x) - <I><x, %) dz = /QXYW(Vu(x) +w(z,y)) - (z,y) dedy
for all ¢ € L (Q; Cx(Y™)) and @ € LP (Q; C(Y™; R")); that is,
Ue B2 «w  and Vi B25¢ « Y + w.

The boundedness of . in W1P() follows from Proposition 3.4.
To conclude, we treat the general case in which w € LP(Q;Gh). We claim that there exists a
sequence {wy } yen C WHP(Q; GR) such that

Jim fion = wl o (@uxymn) = 0. (5.10)

Assume that the claim holds. Then, by the previous case, for each N € N, there exists a bounded
sequence {ul}. € W1P(Q) such that

R-2sc

uév u and Vuév R-2sc Vu+ wn (5.11)

as e — 0.
Let o € LP' (€ Cx(Y™)) and ® € LP' (Q; C(Y™; R)). Using (5.11) first, and then (5.10), we obtain

R
lim lim uév(x)go(x, %) dz =/Q y u(z)e(z,y) dedy
<y

N—ooe—=0t Jq

and

lim lim [ Vul(z)- <I><x, %) dz = lim (Vu(z) + wn(z,y)) - D(z,y) dedy

N—o0 e—0+ Q N—o00 Qxym
— / (V) + w(z,y)) - B, ) dady.
Qxym

Finally, arguing as in the previous case, we can find a sequence {N.}. such that N. — co as € — 0T
and 4. := ule € WHP(Q) satisfies the requirements.
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We are left to prove (5.10). As before, for each k € Z™, define
W () ::/ w(z,y)e ™ FYdy, xeQ.

Because w € LP(Q;GR), we have @), € LP(Q;C") with @y = 0; moreover, for a.e-z € Q, we have
Wi (z) = A\() Rk for some A\, € LP(;C) with A\g = 0. Then, for each k € Z™, we can find a
sequence {\, }jen C WHP(Q;C), with A} = 0, such that \], — Ay, in LP(Q; C) as j — oo. In particular,
we have

lim (/ |A£(x)R*k—Ak(x)R*k|pdx>P
Q

j—o0

:jgrgo|R*k|(/Q|A;;(x) —Ak(x)|pdx>; =0. (512

Fix N € N; by (5.12), there exits jy € N such that

3 </QA3;N(x)R*kAk(x)R*Mpdx)p < % (5.13)

kez™
[Floo SN

Defining
oy (z,y) = Z AN ()R ke®>™ Y and wy := Re(wy),

kez™
[kloo <N

we have wy € W1P(§; GF,); moreover, invoking Remark 5.2 and (5.13), we have

p

nmsup< / |wN<x,y>w<x,y>|pdxdy) <nmsup( / wNu,y)w(z,y)wdzdy)
Qxym Qxym

N —oc0 N—o0

<hmsup[( / |wN<x,y>—wN<x,y>|pdxdy)p+< / |wN<x,y>—w<x7y>|pdxdy)p]
Qxym Qxym

N —oc0

, P D 1
= lim sup (/ (NN (z) — Mo (2)) R ke kY dxdy) < limsup — =0,
N—o0 Qxym kezm Nooo N
Floo <N
which concludes the proof of (5.10). d

Remark 5.7. Let 2 C R" be a simply connected, bounded, and open set. Applying Proposition 5.6
to u =0 and w € G, we can find a bounded sequence {u.}. C WP(2) such that

R-2sc

R-2sc
e ——— 0 and Vu,

Then, by Proposition 3.4, we have u. — 0 in W"?(Q) and [, w(y)dy = 0. On the other hand,
using the uniqueness of the R-two-scale limit (see Remark 3.2) and Proposition 3.14 with d = n and
A = curl in R”, we conclude that that w € L% (Y™;R") is Ag--free in the sense of Definition 3.11.
Conversely, if w € L;(YM;R"“) is Ap--free with [, w(y)dy = 0, then by Proposition 3.15 there
R-2sc

exists a bounded and A-free sequence, {u.}c, in LP(2;R™) such that u. u. As we are in the
A = curl case and ) is simply connected, we can find a bounded sequence, {v.}., in W1?(Q2) such
that [, ve(z)dz = 0 and Vv, = u.. Then, by Proposition 3.4, we deduce that v, — 0 in WH?(Q).
Finally, Remark 3.2 and Proposition 5.5 yield w € G&.

Thus, in the A = curl case in R™, we have that w € L;&(Y”;R‘”) is Ag=+-free in the sense of
Definition 3.11 if and only if w € Gh.

To conclude, we observe that Theorem 1.4 is an immediate consequence of the previous results.

Proof of Theorem 1.4. The claim in Theorem 1.4 follows from Propositions 5.5 and 5.6. O
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