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Robust Linear Precoder Design for 3D Massive
MIMO Downlink With A Posteriort Channel Model

An-An Lu"”, Member, IEEE, Xiqi Gao

Abstract—In this paper, we investigate the linear precoder de-
sign for three dimensional (3D) massive multi-input multi-output
(MIMO) downlink with uniform planar array (UPA) and imperfect
channel state information (CSI). We introduce a beam based sta-
tistical channel model (BSCM) by using sampled steering vectors,
and then an a posteriori channel model which includes the chan-
nel aging is established. On the basis of the a posteriori channel
model, we consider the robust precoder design by maximizing
an upper bound of the expected weighted sum-rate under a total
power constraint. We derive two concave minorizing functions of
the objective function. With these minorizing functions and the
minorize-maximization (MM) methodology, we derive two iterative
algorithms that converge to stationary points of the optimization
problem. Simulation results show that the proposed precoders
can achieve a significant performance gain than the widely used
regularized zero forcing (RZF) precoder and the signal to leakage
noise ratio (SLNR) precoder in median to high mobility scenarios.

Index Terms—3D massive multi-input multi-output (MIMO),
uniform planar array (UPA), beam based statistical channel model
(BSCM), minorize-maximization (MM), robust linear precoders,
imperfect CSI.

I. INTRODUCTION

ASSIVE multiple-input multiple-output (MIMO) [1],

[2] is one of the enabling technologies of the fifth gen-
eration (5G) mobile networks. It provides enormous potential
capacity gains by employing a large antenna array at a base
station (BS), and enhances multi-user MIMO (MU-MIMO)
transmissions on the same time and frequency resource signifi-
cantly. With massive antenna arrays at the BS, it is also possible
to achieve high energy efficiency. Furthermore, massive MIMO
is a key technology for many new applications and services.
For example, it improves the reliability and the throughput
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performance for communication with unmanned aerial vehicles
(UAVs) [3], and well suites for mass connectivity which is
very important to support Internet of things (IoT) [4]. There
are several types of antenna array in massive MIMO systems.
Among them, the uniform planar array (UPA) is preferred for
practical wireless communication systems due to its compact
size and three dimensional (3D) coverage ability. In this paper,
we investigate the transmission for massive MIMO downlinks
with UPA.

To alleviate the multi-user interference and improve the sum-
rate performance, the precoders for massive MIMO downlink
should be properly designed. Massive MIMO can be viewed as
an extension of conventional multi-user MIMO. The precoder
design for the conventional MU-MIMO and massive MIMO
has been widely investigated in different forms over the past
years [5]-[15]. The nonlinear precoders such as DPC [6] can
achieve optimal performance, but their complexity is very high
and thus not suitable to massive MIMO. Thus, we focus on
linear precoder designs for massive MIMO in this paper. The
precoder designs often depend on the available channel state
information (CSI) at the BS. If the BS knows perfect CSI of all
user equipments (UEs), the regularized zero forcing (RZF) pre-
coder [5] and the signal to leakage noise ratio (SLNR) precoder
[7] are widely used. Furthermore, the classic iterative weighted
minimum mean square error (WMMSE) precoder [8], [10] is
designed according to the sum-rate maximization criterion.

In practical massive MIMO systems, perfect CSI at the BS are
usually not available due to channel estimation error, channel
aging, etc. In the literature [9], [14], the channel uncertainty
are often constructed as a complex Gaussian random matrix
with independent and identically distributed (i.i.d.), zero mean
and unit variance entries. However, the uncertainty in practical
systems usually deviates from the i.i.d. assumption. To describe
the channel in practical systems more precisely, an a posteriori
channel model, which models the time evolution of channel with
the widely used Gauss-Markov process [16], [17], is proposed
in [18].

In [18], the considered massive MIMO is equipped with a
large uniform linear array (ULA). For such configuration, the
jointly correlated channel model [19]-[21] with the DFT matrix
being the eigenmatrix at the BS side is widely used in the
literature. The model is also known as the beam domain channel
model [12], [19]. However, for practical massive MIMO with
UPA, the number of antennas at each column or each row
is usually limited. Thus, the accuracy of the straightforward
extension of the conventional DFT based channel model is not
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satisfied. To overcome this issue, we introduce a beam based
statistical channel model (BSCM) by using the matrices of
sampled steering vectors. Then, we establish an a posteriori
beam based statistical channel model which includes the channel
aging.

Based on the new a posteriori channel model, we investigate
the robust precoder design for 3D massive MIMO downlink
transmission with imperfect CSI. To avoid complicated expec-
tation operation involved in the expected weighted sum-rate,
we propose to maximize its upper bound under a total power
constraint. In this paper, we apply the minorize maximization
(MM) methodology and derive two iterative algorithms for the
robust precoder design. The proposed algorithms converge to
the stationary points of the considered optimization problem.

The main contribution of this paper is summarized as follows:

1) We propose two concave minorizing functions for the upper
bound of the expected weighted sum-rate. In the minorizing
functions, the precoders of different users are decoupled. The
minorizing functions can be used to apply the MM algorithm,
and are easier to optimize in comparison to the original objective
function.

2) We derive two iterative algorithms for the precoder design
based on the two concave minorizing functions and the MM
algorithm. The proposed precoders are obtained by solving
classic concave optimization problems. Because of the MM
methodology, they converge to the stationary points of the
considered optimization problem.

3) The proposed precoders are designed based on the posterior
beam based statistical channel models for 3D massive MIMO.
Thus, they are robust to imperfect CSI in 3D massive MIMO
systems. In comparison to the widely used precoders relying on
perfect CSI, they can achieve significant performance gain in
high mobility scenarios.

The rest of this paper is organized as follows. The channel
model is proposed in Section II. The designs of robust linear
precoders are presented in Section III. Simulation results are
provided in Section IV. The conclusion is drawn in Section V.

Notations: Throughout this paper, uppercase and lowercase
boldface letters are used for matrices and vectors, respectively.
The superscripts (-)*, (-)7 and (-)# denote the conjugate, trans-
pose and conjugate transpose operations, respectively. E{-}
denotes the mathematical expectation operator. The operators
tr(-) and det(-) represent the matrix trace and determinant,
respectively. The operator ® denotes the Kronecker product.
The Hadamard product of two matrices A and B is represented
by A ® B. The N x N identity matrix is denoted by I .

II. CHANNEL MODEL AND PROBLEM FORMULATION

In this section, we introduce the prior and posterior beam
based statistical channel and formulate the considered problem.

A. System Configuration

In this subsection, we introduce the system configuration of
a 3D massive MIMO system with UPAs equipped in the BS.
We consider a massive MIMO system with block flat fading
channels. The massive MIMO system consists of one BS and K
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Fig. 1. Time subframe structure.
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Fig. 2. 3D Coordinate.

UEs. The BS is equipped with an M, x M, UPA of antennas,
where M, and M, are the numbers of pairs of antennas at
each vertical column and horizontal row, respectively. Thus, the
number of antennas atthe BS is M; = M, M. For simplicity, we
assume that all UEs are equipped with single antenna. We focus
on the case where the massive MIMO system operates in time
division duplexing (TDD) mode. The time subframe structure
is plotted in Fig. 1. We divide the time resources into subframes
and each subframe contains N, blocks. For simplicity, we omit
uplink data transmission, downlink training signal transmission
and other signal transmissions, and assume that there only exists
the uplink training phase and the downlink transmission phase.
At each subframe, the uplink training sequences are sent once
in the first block. The second block to the N;-th block are used
for downlink transmission. The coherence time is related to the
speeds of the users and might be far smaller than the duration of
one subframe, and thus we assume the channel varies from block
to block. We also assume the coherence time is larger than one
block and the channel coefficients remain constant in a block.

B. Beam Based Statistical Channel Model With Sampled
Steering Vectors

In this subsection, we introduce a beam based a priori statisti-
cal channel model. We denote by h#  the channel vector from
the BS to the k-th UE at the nth block of subframe m. For the
BS, we assume there exists a 3D coordinate as plotted in Fig. 2.
The UPA is put on the xz-plane. Let d, and d, be the antenna
spacing of each row and column of the UPA. The steering vector
a;(ug, vy ) for the UPA at the BS side is extended from that for

the ULA as
a(ug, v) = v (ur) ® v (vr) (1)
where

[1€—j27\'Azut ...6_(]\/12_1)j27rAzut]T (2)

1
velue) = 7

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on August 02,2022 at 12:33:37 UTC from IEEE Xplore. Restrictions apply.



7276

1

_ —j2m AL, —(My—1)j27Ayve (T
v (vy) = [1e™7 toee ] 3)
VM,
A, = de’ A, = df, and u; and v; are the directional cosines

with respect to the z axis and x axis, respectively, i.e., we have
uy = cos 0y and vy = sin 6, cos ¢;. In this paper, we assume that
both d,, and d, equal 0.5X1. Then, we obtain that A, = A, = %

Similar to that in [22] for two dimensional narrowband
MIMO, the multipath channel for the considered 3D massive
MIMO from the BS to the k-th user at the n-th block of the m-th
subframe can be represented as

= Z gkmn(utavt)at(uhvt)H

Uy, v EBg

LT @)
where B is the set of directional cosines corresponding to the
multiple wireless paths and g, (ug, vy ) is the fading coefficient
of each path. The channel model provided in (4) is the physical
channel model, where the angle of arrival or departure for each
path is arbitrary. The channel coefficients and the set 5, are
hard to obtain in practice since there are infinitely many possible
ut, ve. Let B be the set of all possible directional cosines, and be
partitioned into the sets B, ;;, which is defined as

By g = {(ur, vo)lll (e, ve) = (g, ven) I

< ”(ut?vt) - (Ut,j’avt,l’)”zavj/ 7£ jv U 7£ l} (5)
where wuy j, v;; represent sampled directional cosines, j =
1,2,...,N;and [ = 1,2,...,N,.

The numbers N, and N, are selected as N, > M, and N, >
M. . Let u; ; and vy ; be uniformly sampled in the range [0 2].
The channel hf in (4) can be approximated as

=2 X

3,5,0 ug,ve€BaN(By 1)

hi ., (©6)

gkmn(uta Ut)at(ut,j» ’Ut,l)H

The sampling of the directional cosines and approximat-
ing the channel by using the sampled steering vectors have
also been used in hybrid analog/digital beamforming (HADB)
mmWave massive MIMO systems [23], [24]. Here, an analytical
statistical channel model is introduced in the following. Let
Gemn (Ut,5,v¢,1) be defined as

Tremn (Ut j,Ve1) = Z Gremn (U, ve).  (7)
w0 €EBaN(Byt,j,1)
The channel model in (6) can be rewritten as
N. N,
Wi, =0 Gemn (g, ven)ae(ue g, ve) . (8)

j=1 l=1

The fading channels are assumed to be wide-sense station-
ary uncorrelated scattering (WSSUS) Rayleigh fading, and
Gromn (U, s vy;) are assumed to be independent complex Gaus-
sian random variables with zero means and different variances.
Let my (uy 5, vy1) be the positive or negative square root of the
variance of G (Ur,j, ve,1) and Wepmp (we ;,ve,) be a Gaussian
random variable with zero mean and unit variance, then we have
that Greomn (W, V1) = mi(Ue,j, Ve ) Whmn (Wt 5, Vi)

In the channel model (8), all users use the same set of sampled
steering vectors. Furthermore, each sampled steering vector
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a;(uy,j,v¢) corresponds to a spatial beam. Thus, the channel
model in (8) is called the BSCM, and the channel coefficients
Gremn (Ut 5, v¢,1) are called the beam domain channel coefficients.
Compared with the physical channel model in (4), the channel
model in (8) only includes the sampled steering vectors.

In the following, the model in (8) is rewritten as a concrete
matrix form. Let N; = N,N, and V be the matrix of trans-
mit steering vectors defined by VH# = VI @ VI ¢ CNexMe,
where

Ve = [va(u), va(uen), - .o, va(uen.)] ©)
Vo= [ve(ve1),va(ven), ..., Va(ven, )] (10)

Then, the channel model in (8) can be rewritten as
Byl = 8k VT (1)

where g is defined as [} ]s = Grmn (Ut j,v¢,1), where
s = JN, 41, and is called the beam domain channel vector.
For convenience, we also define [my];s = my(u, ;,v,;) and
[Whmnlis = Whmn (U j,v11), Where s = jN, +[. Then, we
have g,ﬁfmn = mg ® w,?mn. The vector my, is an 1 x N, de-
terministic vector and Wy, is a complex Gaussian random
vector with independent and identically distributed (i.i.d.), zero
mean and unit variance entries. Let wj, denote the beam domain
channel power matrices as

W = mg © myg (12)

which can be estimated from the samples of the channels ac-
cording to E{[(hZ V) ® (hil V)*]} = w; T, where T, is
defined as

T, = VAV e (VIV). (13)

Unlike the conventional DFT based channel model widely used
in the literature [12], [19], [25], V in (11) is not necessarily a
unitary matrix, and the dimension of the beam domain channel
vector g islarger than the number of antennas. The matrix V
is decided by the number of the antennas and the number of the
sampled steering vectors. When N, = M, and N, = M,, the
matrix V becomes the Kronecker product of two DFT matrices,
the introduced channel model reduces to the DFT based chan-
nel model that straightforwardly extended from ULA to UPA.
However, its accuracy is not good enough when M, and M,
are of moderate sizes. To achieve a good complexity-accuracy
trade-off, the number of sampled steering vectors needs to be
selected properly. For convenience, we define two fine factors

as I, = IJ\Z and F, = Aj\;;

C. A Posteriori Beam Based Statistical Channel Model

The channel model in (11) can be seen as an a priori model
of the channels before the channel estimation. The first order
Gauss-Markov process considers the impacts of channel aging
[16], [17], and can be used to obtain the a posteriori CSI of
ngmn after the channel estimation. Since the obtained channel
estimation is from the first block, we need to estimate g,ﬁfml. For
simplicity, we assume ideal channel estimation in the first block.
After the channel estimation, we obtain the a posteriori CSI of

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on August 02,2022 at 12:33:37 UTC from IEEE Xplore. Restrictions apply.



LU et al.: ROBUST LINEAR PRECODER DESIGN FOR 3D MASSIVE MIMO DOWNLINK WITH A POSTERIORI CHANNEL MODEL

gkmn as

1—a}, (mf ©wi,,)

~H ~H
Eimn — Ykn8kmi + (14)
where ay,, is the temporal correlation coefficient which is related
to the moving speed, and wy,,,,, is a complex Gaussian random
matrix with i.i.d., zero mean and unit variance entries.

Finally, the a posteriori beam based statistical channel model

on the n-th block of the m-th subframe can be written as

by, = g V7 4+ (/1 —af, (mf o wil V¥

7H ~
= hkmn + hH

kmn-*

15)

With (15), the imperfect CSI for each user is modeled as an
a posteriori statistical channel model with both channel mean
and channel variance information. The model can describe the
imperfect CSIobtained by the BS in the practical massive MIMO
systems under various mobile scenarios. When «., is very close
to 1, the coherence time is large, and the model applies to
the quasi-static scenario. When ay,, becomes very small, the
coherence time is small, and the model can be used for high
mobility scenario. By setting the ay,, according the mobility of
UTs, we are able to describe the channel uncertainties in various
channel conditions. Based on the proposed channel model in
(15), we investigate the precoder design robust to the imperfect
CSI at the BS in this work. The proposed posterior channel model
is obtained in the case that the impacts of channel estimation
error are not considered. A similar model can be obtained if we
fit the channel estimation error into the beam based statistical
model when the channel estimates are not sufficiently accurate.

In the literature, there also exists another category of research
solving the channel aging problem by channel prediction [26]—
[28], which can obtain a similar but more accurate channel
model to that in (15). The proposed robust precoding method
in this work is based on knowing the posterior channel mean
and channel covariance matrix. It is not contradict with the
channel prediction. On the contrary, we can view the predicted
channel as the posterior channel mean, and the prediction error
covariance matrix as the posterior channel covariance matrix.
Thus, the proposed method developed in this work can be
combined with the channel prediction to further improve the
sum-rate performance.

D. Problem Formulation

In this subsection, we present the problem formulation of the
robust linear precoder design. We now consider the downlink
transmission for the n-th block on subframe m. For brevity,
we omit the mn in the subscript hereafter. Let x; denote the
transmitted symbol to the k-th UE at the n-th block of subframe
m. The covariance of zy, is one. The received signal y;, at the
k-th UE for a single symbol interval can be written as

K

yk = hi'prak +hi > pirg + 2
1k

(16)

where py, is the M; x 1 precoding vector of the k-th user, and zy,
is a complex Gaussian noise symbol distributed as CA/(0, o2).
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In the literature, an often used method to deal with the im-
perfect CSI is to treat the uncertainty component flf PxT) in
th Prxk as noise [29]. It works well when the uncertainty part
of the channel is relatively small. However, for the considered
channel model, hy, can even be close to zero if severe channel
aging caused by high mobility happens. In such case, treating
the uncertainty component flkH Px T as noise will deteriorate the
system performance severely.

On the basis of the a posteriori channel model, we follow
a different way to design the linear precoder, and consider the
expected rate as the objective. We assume that the UEs obtain the
perfect CSI of their corresponding channel hf’ p;, from the pre-
coding domain training signals. The DL training phase is omitted
in the subframe structure for simplicity. At each UE, we treat the
aggregate interference-plus-noise zj, = h#f Zf; L PiT] + 21 as
Gaussian noise. Let v, denote the variance of z;C we have that

K
v = 0'2 + ZE{thplthk}
£k
We assume the covariance vy, is known at the k-th user. In such

case, the expected rate of the k-th user at subframe m is given
by

a7)

Ry = E{log(1 +v,;1hfpkpfhk)} (18)

where E{-} can be computed according to the a posteriori
channel model provided in (15).

Since the log det(-) is a convex function, we can obtain an
upper bound of the expected rate of each user as

Ri” = log(1 + v 'E{hy/ prpihy}).

Compared with the expected rate, the upper bound is easier to
compute. In this work, we are interested in finding the precoding
vectors pi, P2, - - -, Px that maximize the upper bound of the
weighted sum-rate. The optimization problem can be formulated
as

19)

K

,P) = argmax g wp R
Pl PK

< O
p17p27"'

K
s.t. Ztr(pkpkH ) <1 (20)
k=1
where wy, is the weight to ensure fairness among the users.

III. ROBUST LINEAR PRECODER DESIGN

In this section, we first derive two concave minorizing func-
tions of the objective function. Then, we propose two iterative
algorithms for the precoder design based on the minorizing
functions.

A. Concave Minorizing Functions

Since the precoders of different users are coupled in the
expression of the rate, the upper bound of the expected weighted
sum-rate in (20) is still difficult to be optimized directly. In the
following, we propose two concave minorizing functions for the
objective function.
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We first provide the definition of a minorizing function, which
is usually related to iterative algorithms. Let p(d) , pgd) R, pg?)
be the precoding vectors at the d-th iteration and let

d)y _(d d
denote a real-valued continuous function of the precoders
P1,P2,-..,Px Whose expression depends on the precoding

vectors pg ),pgd), e ,pg) at the d-th iteration. The func-

tion g is called a minorizing function of f at the points
(d) (d) (d)

g(plap27"'

,P3 '»---, Py provided that [30]
d) _(d d
g(pl,pzym,pxlpﬁ i)
Sf(plvp%"'apl() (21)
where the equality holds when we have that py,p2,...,Ppx =
(d) _(d) (d)
P Py .- PK-

Let Ry, be defined as Ry, = E{hkth }+. From this definition
and (17), we obtain that

v =07 +ZE{P hhip}

I#k
K
=02+ > p/'Rupi. 22)
I#k
For convenience, we also define vy,
i, = v, + E{h} pxp{ by }. (23)

Recall that hy, denote the mean of hy,, and flkH denote the random
part of hy,. Then, Ry can be computed by

R, = hih, +E{h;h?}
=hih, + (1 - a2)VALVH (24)

where the second equality is due to ﬁkH =1-0o (m] ®
wi )V from (15), and Ay, is a diagonal matrix defined by
A, = diag(wy,). Hereafter, we use the notation (d) in the super-

script to denote the object with the condition py, p2, ..., Px =
(d), pg e 7p§?). For example, v,(ed) is obtained as
K
v =2+ > (p ") Rip)?. (25)

I#k
We then obtain the minorizing function g, provided in the
following theorem.
Theorem 1: Let g be a function defined as

—cl —|—Zw

(@yH A (D,

+ Zw pHA(d) (d) ZpkHDIE:d)pk (26)

k=1 k=1

where ng)

as

is a constant and the matrices A and Dy, is defined

Ay =v;'Ry. 27
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B; = v, 0, 'Rupipi Re (28)
Ci = (v, — v, )Ry, (29)
K
Dy =wBy + Z w; C;. 30)
I#k
Then, ¢g; is a minorizing function of f at the points
(d) _(d) (d)
p 7p2 PR 7pK .
Proof: The proof is provided in Appendix A. |

The minorizing function g; provided in Theorem 1 is a con-
cave function of the precoders. Furthermore, the precoders of
different users are decoupled in this function. Thus, it is much
easier to optimize than the original objective function. In g,
the matrix Dy, is different for different user, which will cause
high computational complexity when developing algorithms. To
make the optimization problem easier to solve, we present an
alternative minorizing function modified from the minorizing
function g, in the following theorem.

Theorem 2: Let g, be a function defined as

fcz +Zw

CIEINC +Zw PIAD@

K
- pDWp, (31)
k=1
where cgd) is a constant and the matrix D is defined as
K
D = wCy. (32)
k=1
Then, ¢, is a minorizing function of f at the points
(d) (d) (d)
Py s PR
Proof The proof is provided in Appendix B. ]

The minorizing function g, provided in Theorem 2 is simliar
to g;. It is also a concave function of the precoders. Now, D is
the same for all the precoders, which is very useful in reducing
the complexity.

B. Proposed Algorithms

With the proposed two minorizing functions, we are able to
derive algorithms based on the MM algorithm. In the following,
we first introduce the MM algorithm which can be used to obtain
a stationary point of the optimization problem.

Let f denote the objective function kK:l wrRY in the
optimization problem (20), and ¢ is a minorizing function of it.
The MM algorithm is an iterative algorithm. When both ¢ and
f are continuously differentiable with respect to the precoding
vectors, we have

dg
8pz Pk

a5
op;,

k=1,... (33)

—p(® (a)

Pr=Py

In comparison with the original objective function, the surro-
gate function g should be easier to optimize. When a minorizing
function is found, it will be maximized instead of the original

function. The precoders pgdﬂ), pgdﬂ), ceey p(I?H) at the next
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iteration is obtained as the maximal point of g under the con-
straint. From (21), we obtain that

d d d d
77p§(+1))2f(p5 )’pg)7ap([())
(34

f(p§d+1), pngrl)

Based on equations (33) and (34), the sequence will converge
to a stationary point of the original function f. The rigorous
proof of the convergence of the MM algorithms depends on the
condition (21) and can be found in the literature [31], [32].

Based on the minorizing function g; and the MM algorithm,
we obtain a sequence of precoding vectors by

d+1 d+1 d+1
pi Y pi Y T = argmax g1 (p1, P2, -, PK)
Pi1,--.PK
sty t(pgpfl) < 1. (35)

The sequence of the precoders provided by (35) converges to
a stationary point of (20). In the optimization problem (35),
the precoders of different users are decoupled. It makes the
surrogate problem easier to optimize than the original prob-
lem. Furthermore, the surrogate problem is a classic concave
quadratic optimization problem. For such problems, the optimal
solution can be found by using the Lagrange multiplier method.
Let the Lagrangian of the optimization problem (35) be defined

as
1> (36)

where p is the Lagrange multiplier. From the first order optimal
conditions of (36), we obtain that

‘C’(/J’7p17p2a e

K
PK)=—g1+ 1 (Z tr(prpi) —

k=1

py " = (D + i) M A By

(37
The total power Zszl tr(prpi!) is a monotonically decreas-
ing function of u Thus, the optimal p* is easy to obtain. If
p* =0and Y5 tr(p (d“)(p,(cd“))H) < 1, the optimal solu-
tion p(dﬂ) (D ,gd)) w A,(Cd)p,(ﬁd) is already obtained. Other-
wise, we can obtain the optimal multiplier 1* by using a bisection
method.

We now summarize the algorithm for the design of the linear
precoder by using g; as Algorithm 1 on the top of the right col-
umn. Algorithm 1 relies on the posterior beam based statistical
channel model in (15) through the computation of the matrix
R. It can also apply to other channel models by changing the
computation of Ry, accordingly. In Step 4, the matrices Déd) are
different for different users. Thus, we need to perform a matrix
inversion (D,gd) + wu*Ip, )~ for each user. For large M;, the
complexity of the matrix inversion is very high. The complexity
can be reduced if the number of the matrix inversions is reduced.
If the matrices Dgcd) are the same for all the users as that in the
minorizing function g,, we only need one matrix inversion. Thus,
we continue to derive another algorithm based on the minorizing
function g;.
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Algorithm 1

Step 1: Set d = 0. Initialize p( ), pgd), A pg?)
normalize them to satisfy the power constraint.

Step 2: Calculate v,i ) 5L

and

and v, according to

RN T WL
1£k

- (d d d d
3@ = o® 4 ()R, p(@

Step 3: Compute Agcd) and Déd) according to

A = (W DIR,.
B = (o)) Rani (0} R

d d)y— _(d)\—
G = (@) = @) R
K
Did) = ka]gd) + Z wlCl(d)
I#k
Step 4: Update p,(f +1) by

(d+1) (D(d) + it ag,)” 1ka](€d)p](§d)

where p* is computed by the bisection method. Set
d=d+1.

Repeat Step 2 through Step 4 until convergence or until a
pre-set target is reached.

The steps of using the minorizing function g, to obtain a local
optimal solution is the same to that of using g,. For brevity, the
details are omitted here. The solution is given directly as

d+1
p](€+):

(DD + 1 Toy,) APl (38)

Now, only one matrix inversion is needed for the computation
of all the precoders.

For comparison, we write the iterative process of updating the
precoders as

K —1
py Y = (Z wi((0s™) " = @0 7) Ry + u*IMt>
k=1

wi (™) Ryp(?. (39)

The iteration process looks quite simple. The proposed precoder
in (39) is for massive MIMO with single antenna users. A
similar precoder can also be obtained for massive MIMO with
multiple antenna users, however, the rigorous mathematic proof
for its convergence might not be easy to obtain. The weight
Ve = v;l — 13;1 in (39) is very interesting, we discuss it further
in the following. It can be rewritten as

Y = v, ', 'pH Rypr

= o ' (40)
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where 7, = vglpkH R py can be viewed as the signal to in-
terference plus noise ratio (SINR) of the k-th user. From (40),
we obtain that the weight ~y;, is proportional to the SINR and
inversely proportional to the total receive energy vj. Thus, it
represents the sensitivity of the channel of the k-th user to the
interference. If we can know these weights before precoding by
using the machine learning method, we are able to further reduce
the complexity of the proposed precoder.

When the CSI is perfectly known at the BS, the upper bound
of the expected rate used in this subsection will become the exact
rate. In such case, the iterative formula of the precoder obtained
in (39) becomes

—1
py ! = <Z wi((0p”) ™! = (0f”) " hihf! +u*1>

wp (') "hghp(? (41)

which is equivalent to the iterative WMMSE precoder. The
RZF and SLNR precoders are two widely used precoders in the
literature. For the considered massive MIMO, the RZF precoder
is given by [33]

K

—1
=) (Z h,hi + Ko—gl) hy, (42)

k=1

RZF
Pk

where p is the power normalized factor. Let P, denote the power
constraint of the k-th user. The SLNR precoder is given by [7]

PR o max

—1
Zhlhl +—a 21| hehf

Ik

eigenvector 43)

Since the iterative WMMSE precoder can achieve better perfor-
mance than that of the RZF and SLNR precoders, the proposed
precoder is also superior to these two precoders.

For the cases where th are not perfectly known at the BS, the
proposed precoder utilizes both the instantaneous and statistical
CSIto reduce interference, and thus achieves better performance
than the precoders that only use inaccurate instantaneous CSI.
To get more insights, we consider an extreme case when hy
has zero means. In such case, the instantaneous CSI is useless
for the precoder design. Thus, the WMMSE, RZF, and SLNR
precoders that depend on the instantaneous CSI can not work.
For the proposed precoder, A becomes the weighted channel
covariance matrix of the k-th user, and D + pI is dominated
by the weighted channel covariance matrices of the interference
users. Base on the posterior channel model, we can still obtain
the precoders that simultaneously guarantee the gains of the
signal and keep the interference small.

We now summarize the algorithm for the design of precoder
by utilizing gs.

Similarly, Algorithm 2 also relies on the posterior beam based
statistical channel model through the computation of the matrix
R ;. It can also be used in other channel models by changing the
computation of Ry, accordingly.
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Algorithm 2

Step 1: Set d = 0. Initialize p( ), pgd), e p(lg)

normalize them to satisfy the power constraint.
() -(d)

and

Step 2: Calculate v, * and v, according to
_ O' + Z (a) HR kP) (d)
I#k
_(d d d d
v/(f ) :”z(c ) 4 (pl(€ ))HRkP;S ).

Step 3: Compute Aéd) and D4 according to

A(d) _ (’Ul(cd))ile'

Ci¥ = (") = ()R
K

D(d Zw ,(C

=1

Step 4: Update p( +) by

Pz(gdH) =D + M*IM,,)flkagcd)pgcd)

where p/* is computed by the bisection method. Set
d=d+1.
Repeat Step 2 through Step 4 until convergence or until
a pre-set target is reached.

C. Complexity Analysis

For very large M,, the complexity of Algorithm 1 is dom-
inated by the matrix inversion and the product of the matrix
and the vector in Step 4. Since the complexity of the matrix
inversion is M; /2 and the complexity of the product of the
matrix and the vector is K M?, we have the complexity of Step
4is KM; /2 + 2K M}. Thus, the complexity of Algorithm 1
is of order O(K M} /2 + 2K M?) per iteration. The complexity
of Algorithm 2 is also dominated by Step 4. However, only one
matrix inversion is needed for Algorithm 2. Thus, its complexity
is of order O(M3} /2 + 2K M}?) per iteration, which is obviously
lower than that of Algorithm 1. The SLNR precoder and the RZF
precoder has nearly the same complexity since the equivalence
between them under equal power allocation [34]. Thus, we only
present the complexity of the RZF precoder for comparison.
For the RZF precoder, the complexity is O(K?3/2 + 2K>M,),
and we have that the complexity of Algorithm 2 per iteration is
similar to that of the RZF precoder when K is also very large.
For the case where K is not very large, the truncated conjugate
gradient (CG) method or the matrix inversion lemma can be used
to further reduce the complexity of Algorithm 2.

IV. SIMULATION RESULTS

In this section, we provide simulation results to show the
performance of the proposed precoder. We use the widely
used QuaDRiGa channel model [35]. For simplicity, the path
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Fig. 3. The layout of a massive MIMO with M; = 128, M,. = 1, K = 40.

loss model and shadow fading are disabled. We set the cen-
ter frequency to 4.8 GHz. The simulation scenario is set to
“3GPP_38.901_UMa_NLOS”. The total transmit power is set as
P = 1.The type of the antenna array used at the BS is “3gpp-3d”
with D;,, = 1. We consider a massive MIMO with M,; = 128
antennas at the BS, where M, = 16 and M, = 8. The number
of users is set as K = 40, and each user is equipped with single
antenna. We only use the setting Ny > M, in the BS side. The
layout of this massive MIMO system is plotted in Fig. 3, where
the location of the BS is at (0, 0, 25), and the users are randomly
generated in a circle with radius » = 250 m around (0, 0, 0) at
1.5 m height and then move 250 m to the right side of the BS.
For simplicity, the SNR is set as SNR:U%. The lengths of all
the simulated tracks are set to be the same 2 m.

To use the proposed robust precoders, we first compute .,
as the empirical temporal correlation coefficients through

1 abS(tr(hkmihzm(i-&-n)))

M N, £~ \/tr(hkmih;mi)tr(hkm(m)h;m(i+n))
(44)
where hy,,, ;1) denotes the channel whose location is n blocks
after the 7-th block on the m-th subframe, and M, is the number
of used subframes. We then obtain the channel power matrices
wy, from the sample of channel matrices. With the channel power
matrices wj, and the temporal correlation coefficient o, we are
able to perform Algorithms 1 and 2. Fig. 4 plots the sum-rate
performance of Algorithms 1 and 2, the RZF precoder and the
SLNR precoder for the considered massive MIMO downlink.
The length of one subframe is set to 1 ms. The number of
the blocks is set as N, = 7. The imperfect CSI was caused
by channel aging, which was related to the moving speeds of
the users. To show the impact of imperfect CSI, the speed of
the users are set to 30, 120 and 240 km/h. The fine factors of
sampled directional cosines are setas F, = F, = 2. The number
of iterations is 20. We use the RZF precoders as the initial
values of Algorithms 1 and 2. From Fig. 4, we observe that
the performance of Algorithms 1 and 2 are almost the same, and
Algorithm 2 outperforms the RZF precoder and the SLNR pre-
coder significantly at all three cases. The sum-rate of Algorithm
2 is about 1.34 times of that of the RZF precoder at SNR=20 dB

An
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Fig. 4. The sum-rate performance of four precoders for a massive MIMO

downlink with M; = 128, M, =1, K =40,and I, = F, = 2.
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Fig. 5. The sum-rate performance of four precoders over different blocks for
a massive MIMO downlink with My = 128, M,. = 1, K =40, N, =7, and
F,=F,=2.

for the 30kmph case. It increases to 2.01 and 3.07 times of that
of the RZF precoder for the latter two cases. Meanwhile, the
sum-rate of Algorithm 2 is about 1.07, 1.41 and 2.09 times of that
of the SLNR precoder for the 30, 120 and 240 km/h cases. The
results show that the performance gain of robust linear precoders
are more significant in high mobility scenario.

Simulation results provided in Fig. 4 are the sum-rate per-
formance of the considered massive MIMO for each subframe,
where the sum-rates of different blocks have been averaged.
To get more details about the performance of the proposed
precoders, we fix the speed of the users to 120 km/h, and provides
the sum-rate performance of four precoders over different blocks
for the considered massive MIMO downlink in Fig. 5. The
temporal correlation coefficient oy, becomes smaller as the
block number increases. As shown in Fig. 5, the performance
gains of the proposed precoders on each block become more
significant when vy, is smaller or SNR is higher. It shows
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Fig. 6. The sum-rate performance of the low complexity robust linear

precoders with different fine factors for a massive MIMO downlink with
M; =128, M, = 1, K = 40.

the degradations of the proposed precoders are much smaller
compared to the other two precoders as a,, decreases, and they
can solve the problem of channel aging. When the duration of
one subframe becomes higher, the channel aging effect will also
become more severe. The effect of increasing the duration of
one subframe is similar to that of increasing the speeds of the
users simultaneously. Thus, the sum-rate performance of the
proposed precoders on each subframe with higher duration will
be similar to that of the case with higher speed provided in Fig. 4.
In other words, the sum-rate performance of all precoders will
degrade in the case with higher duration, but the degradations of
the proposed precoders are much smaller than that of the SLNR
and RZF precoders, which means the performance gain of the
proposed precoders will also be more significant.

In the previous simulations, we have set the fine factors of
steering vectors at the BS side as F, = F, = 2. To investi-
gate the impacts of the fine factors F, and F,, we simulate
the sum-rate of Algorithm 2 for three cases: case one where
F,=F, =4, case two where F, = F, =2 and case three
where F, = F, = 1. The length of one subframe is still set
to 1 ms. We consider both the moderate and high mobility
scenario. The users’ speed is set to 120 and 240 km/h. Simulation
results of the sum-rates are shown in Fig. 6. It can be observed
that using large F, and F, achieves better performance. The
sum-rate of the F, = F, = 2caseisabout 1.16 times of that with
F, = F, =1 at SNR=20 dB for the moderate speed scenario.
It increases to 1.43 times for the high mobility scenario. Since
the established channel model with F,, = F, = 1 is equivalent
to the beam domain channel model, it shows that the beam
domain channel model is not accurate enough for the considered
massive MIMO with UPA, and the robust precoder designed
by using the beam based statistical channel model is superior.
Furthermore, the sum rate of I, = F, = 1 cases increases more
slowly when SNR is higher. This is because the part of error
caused by the channel model gradually becomes dominant as
the SNR increases. Finally, the performance gain of the robust
precoder with F, = F, = 4 is not significant compared to that
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of F,, = F, = 2. Thus, to achieve a good precoding perfor-
mance, the established beam based statistical channel model
with F,, = F, = 2 is accurate enough.

We then study the convergence behavior of Algorithm 2. The
speed of the users is set to 120 km/h. We still use the RZF
precoders as the initial values. The number of the iterations is
20. Fig. 7 plots the sum-rates of the proposed precoder at each
iteration for three different SNRs. From Fig. 7, we see that the
proposed algorithm for all three cases quickly converges. We
also observe that it takes more iterations to converge as the SNR
increases. At SNR= 0 dB, only 5 iterations are needed for the
convergence, whereas 10 iterations are needed at SNR= 20 dB.
The number of iterations can be further reduced if we use better
initial values such as the precoder from previous subframe.

V. CONCLUSION

In this paper, we investigated the robust linear precoder design
for massive MIMO downlink with UPA and imperfect CSI,
which was represented by an a posteriori beam based statistical
channel model. The posterior channel model is established from
a a priori beam based statistical channel model based on the
matrix of sampled steering vectors. On the basis of the posterior
channel model, the considered optimization problem of robust
precoder design was maximizing an upper bound of the expected
weighted sum-rate under a total power constraint. By deriving
two minorizing functions and using the MM algorithm, we
derived two iterative algorithms to obtain the local optimal pre-
coders. Simulation results showed that the proposed precoders
can achieve significantly performance gain compared to the RZF
precoder and the SLNR precoder.

APPENDIX A
PROOF OF THEOREM 1

Recall that the upper bound of the expected rate can be written
as

Ry =log(1 + v, '"E{hy prp/ hi}). (45)
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Since py, H1, is a scalar, we have thkpk h; = p;, hthpk
Then, we obtain that

R =log(1 + vy, 'pi E{hyh }pr). (46)
Let ¢;, be defined as
er = (1+v;'pYE{hyhy }py) ™" (47)
We then have
R = —log(ep). (48)
Since — log(-) is a convex function, we have that
RiP = —log(e”) = (") (ex — ) (49)

where the equality holds when ej, = e](C )

log(elgC )) + 1, we obtain that

By defining a; =

R}éb > ay, — (egi))_lek. (50)
From Ry, = E{h;h'}, we rewrite ¢}, as
er = (1+ v, ' Py Ripr) " (51)

The function ey, is still complicated since the precoder p;, and
those in vy, are coupled. Thus, we need to find a way to decouple
them. Inspired by [10], we notice that ey, is also the minimum
of the optimization problem

7283
Then, we have that
d)\ — d)\ — d 2
(ef™) e < (ef™) 711 = (8" R)*pi)
(1- (&) R)*pr)’
+ () o (gl ) H gl (56)

where the equality holds when py = p,(fd) and v, = v]id). From
the above equation and (50), we obtain that

R > ay, — (ef™) " + (i) (g™ R, i

d)y\ — 1/2 d
+ () 'plR) gl

d)y—1/.(d 1/2 1/2_(d
(et (&™) R *pipl R} g
— () o) g (57)
where the equality also holds when pj, = p,(C ) and v = v,id).

Substituting the formula of g( )

we have that

into (") (g\”) IR, *py,

e e )R *pr = (o) (P Rypr. (58)

Similarly, we obtain (59), shown at the bottom of the page,
where 5" = o{” 4 (p") ¥ R;,p\"). By computing

H o~ —-1_H —-1_ H H
min(1 — gl Ry *pr)(1 — g/ R, *pr)" + uegllgr.  (52) g 8k = U (1 + v, Py Repr) pi Ripy
8k —1 —-1_H —1
(1 R 60
Thus, for any gj,, we obtain that v (14 v Py Repr) (60)
. we then obtain that
(e")er < (") (1~ gl Ry *pr)(1 — &l Ry ") R,
(e”) " onlgy”) gy
+(el) lungl g (53) ) ) ) )
where the equality holds when = Uk’(”lg ))71( ))HR P( )( v (ch ))HRkpl(c ))71
gl = v.'pIR (1 + v 'R pipf Ry ! = on((0f") " = (0 + (i) " Rup”) )
_ _ _ 1/2
= v (14 vy ' Rypr) "D Ry 54 = (WD) = @ D). 61)
We define According to equations (58), (59), (61), and
d d)\ — d 1/2
)" = @) )Ry K
2 H
1/2_(d), (d 1/2 vy =0, + » p; Ripi (62)
(I+(U](g)) IR/pé)(())HR/) ; l
= (Uéd))71(1 ( (d)) ( (d))HR P(d)) we obtain that
(p") 1R/, 5 R =an— (@) + ) () Rips
(et (i) R *pipf R gl
= i) (i) " Ripipl B2 (0f) T T+ () R Pl (0f)) R TR (b))
= (") (i) " Rypepl Ry (01 + R i (pf) TRy TR, (b))
= (") PR (01 + R plY (i) R, TR (0 () T R
_ (’Ul(Cd)) pkHRllﬂ/lelc/zp(d)( (d) +( (d ))HR1/2R1/2( (d )))_l(péd))HRkpk
= (") ) oI Ripl” (") Ryp (59)
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lpHRkpéd)

<<@><¢)> piRip” (b)) Ry.p1

K
d)\ — (d)N\ —
(") = @) [ o2+ 3 piRup

£k
(63)
Let the matrices A, By and Cy, be defined as
Ay =, 'Ry, (64)
By, = v;, "0, 'Rieprpr Ry, (65)
Cr = (v;' — ;" )Ry, (66)

we then obtain that

R = ax = (ef) " + (0f™) ! = (57) )o?
d d d d
+ ey A + o ALpL” — P B D)
K
d
- pi'cip (67)
I#k
where the equality holds when we have that py,p2,...,px =

(d) (d) (d)

,P5 '»---,P) - For the objective function, we further have
that
K
fo 0y z o) AL Dy + 3 wipff AL
k=1
- ZwkpkHB( "pi — Zwk Z p'C'p1 (68)
k=1 £k
d d )y _(d)—
where i = 53 (ar — ()7 () = (7))
o2). Let the matrix Dy, be defined as
K
D, =w,By + ZwlCl. (69)
I£k

Let g, be a function defined as

gl—c1 +Zw

HA(d Pr + ZwkaA( ) (d)

k=1
K
d
- pi'D"pr. (70)
k=1
Then, we obtain that
I=za (71)
where the equality holds when pi,p2,...,Px =
(d),pgd),...7p(d). Thus, g, is a minorizing function of
f at the points pg )7P§d), .. .,p%).
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APPENDIX B
PROOF OF THEOREM 2

First, we can rewritten g; as

gl—c1 —I—Zw

K
DY AD D 43 wypl AP
k=1

K
— ZpHD(d)pk +3 p (D - D)py.
k=1

(72)

From D = Zk:l wiCy and Dy, = wi By, + Z{;k w;Cy, we
have that

D@ - D = w,Cl?
From (28) and (29), we then have
Ck — Bk = (U

— w,BY. (73)

2= 0 )RE — v 0 'Ryppy Ry,
= v, o 'p Ripi Ry, — v, 0, 'Ry pipi Ry

= v 0, (P RiprI — Rupipy ) Ri (74)

Since Rkpkpk is an rank-1 matrix with eigenvalue p;; HR, Dk,
we have p/RypiI — Rypip is a positive semidefinite ma-

trix. Thus, Cj, — B and D(9) — chd) are also positive semidef-

inite matrices. Then, we obtain the item Zle p (D@ —

Déd) )Pk in (72) is a convex quadratic function of the precoding
vectors. By using the property of convex functions, we obtain
that

K
Zp D(d) Dggd))pk
k=1

K
d d d
> Z(pé ))H(D(d) _ Dl(c ))p;)

d d d
e — (")) D@ - D )p?

+ 3 DD D) (p —p). (79
k=1
where the equality holds when pi,p2,...,Px =
pid),pgd), e ,pg) To get further results, we compute
(D@~ D)p, as
_ vklﬁgl(( ))HR p(d)I Rkp;gd)(P;gd)) )R p(d)
- 0. (76)
Then, we obtain that
K
d
> (D —D)p;
k=1
K
d)y. (d
>3 (py™")" (D@ - DP)pi? (77)

k=1
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the holds
pgd), pgd), R p%). Let g, be defined as

where equality when  pi,p2,---,PK =

K K
="+ Y wi(py”) A pi + > wipf! AL}
k=1

k=1
K
- piDYp; (78)
k=1
where
K
d d d d d
4 = d 13 ()7 (D@ D@D, (79)
k=1
We have g¢g; > g», where the equality holds when
_ L@ _(d) (d) Th : P
P,P2,---,PK =P, »P; ,---,P . Thus, g> is aminorizing

function of g;, and also is a minorzing function of f.
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