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Abstract

An overview of recent analytical developments in the study of epitaxial
growth is presented. Quasistatic equilibrium is established, regularity of
solutions is addressed, and the evolution of epitaxially strained elastic
films is treated using minimizing movements.

1 Introduction

In this paper, we give a brief overview of recent analytical developments in the
study of the deposition of a crystalline film onto a substrate, with the atoms
of the film occupying the substrate’s natural lattice positions. This process is
called epitaxial growth. Here we are interested in heteroepitaxy, that is, epitaxy
when the film and the substrate have different crystalline structures. At the on-
set of the deposition, the film’s atoms tend to align themselves with those of the
substrate because the energy gain associated with the chemical bonding effect is
greater than the film’s strain due to the mismatch between the lattice parame-
ters. As the film continues to grow, the stored strain energy per unit area of the
interface increases with the film thickness, rendering the film’s flat layer mor-
phologically unstable or metastable after the thickness reaches a critical value.
As a result, the film’s free surface becomes corrugated, and the material agglom-
erates into clusters or isolated islands on the substrate. The formation of islands
in systems such as In-GaAs/GaAs or SiGe/Si has essential high-end technology
applications, such as modern semiconductor electronic and optoelectronic de-
vices (quantum dots laser). The Stranski-Krastanow (SK) growth mode occurs
when the islands are separated by a thin wetting layer, while the Volmer-Weber
(VW) growth mode refers to the case when the substrate is exposed between
islands.

In what follows, we adopt the variational model considered by Spencer in
[41] (see also [36], [42], and the references contained therein). To be precise, the
free energy functional associated with the physical system is given byZ

Ωh

W (E(u)) dx+

Z
Γh

ψ(ν) dH2. (1)
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Here h : Q→ [0,∞) is the function whose graph Γh describes the profile of the
film, assumed to be Q-periodic, with Q := (0, b)2 ⊂ R2, for some b > 0, Ωh is
the region occupied by the film, i.e., writing x = (x, y, z),

Ωh := {(x, y, z) ∈ Q× R : 0 < z < h(x, y)},

u : Ωh → R3 is displacement of the material, E(u) := 1
2 (Du + DTu) is the

symmetric part of Du. Also, the elastic energy density W : M3×3
sym → [0,+∞) is

a positive definite quadratic form

W (A) :=
1

2
CA : A,

with C a positive definite fourth-order tensor, so that W (A) > 0 for all A ∈
M3×3

sym \ {0}, ψ : R3 → [0,∞) is an anisotropic surface energy density evaluated
at the unit normal ν to Γh, and H2 denotes the two-dimensional Hausdorff
measure. We suppose that ψ is positively one-homogeneous and of class C2

away from the origin, so that, in particular,

1

c
|ξ| ≤ ψ(ξ) ≤ c|ξ| for all ξ ∈ R3,

for some constant c > 0.
The substrate and the film admit different natural states corresponding to

the mismatch between their respective crystalline structures. To be precise,
a natural state for the substrate is given by u ≡ 0, while a natural state
for the film is given by u ≡ A0x for some nonzero 3 × 3 matrix A0. Our
models will reflect this mismatch, either by setting the elastic bulk energy asR

Ωh
W (E (u) (x) −E0(x)) dx, where

E0(x) :=

(
A0+AT

0

2 if z > 0,
0 if z ≤ 0,

(2)

or by imposing the Dirichlet boundary condition u(x, y, 0) ≡ A0(x, y, 0).
In the two-dimensional static case, existence of equilibrium solutions and

their qualitative properties, including regularity, were studied in [3], [4], [10],
[15], [16], [17], [20], [24], [26], [29] and [33]. The variational techniques and
analytical arguments developed in these papers have been used to treat other
materials phenomena, such as voids and cavities in elastic solids [8], [19].

The scaling regimes of the minimal energy in epitaxial growth were identi-
fied in [2], [30] in terms of the parameters of the problem. The shape of the
islands under the constraint of faceted profiles was addressed in [25]. A varia-
tional model, which takes into account the formation of misfit dislocations, was
introduced in [23].

The effect of atoms freely diffusing on the surface (called adatoms) was
studied in [9], where the model involves only surface energies.

A discrete-to-continuum analysis for free-boundary problems related to crys-
talline films deposited on substrates was undertaken in [35], [38].
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The three-dimensional static case was studied by [5], [12] in the case in which
the symmetrized gradient E(u) is replaced by the gradient (see also [4]). More
recently, new developments in the theory of GSBD, i.e., generalized special
functions of bounded deformation (see [13], [14], and the references therein)
have led to considerable progress on the relaxation of the functional (1) in the
three dimensional case (see [13]). The regularity of equilibrium solutions remains
an open problem. A local minimality sufficiency criterion, based on the strict
positivity of the second variation, was established in [4], based on the work [29].

To study the morphological evolution of anisotropic epitaxially strained
films, we assume that the surface evolves by surface diffusion under the influ-
ence of a chemical potential µ. To be precise, according to the Einstein-Nernst
relation, the evolution is governed by the volume preserving equation

V = C∆
Γ
µ , (3)

where C > 0, V denotes the normal velocity of the evolving interface Γ, ∆
Γ

stands for the tangential laplacian, and the chemical potential µ is given by
the first variation of the underlying free-energy functional. In our context, this
becomes (assuming C = 1)

V = ∆Γ divΓ(Dψ(ν)) +W (E(u)) , (4)

where divΓ stands for the tangential divergence along Γh(·,t), and u(·, t) is the
elastic equilibrium in Ωh(·,t), i.e., the minimizer of the elastic energy under the
prescribed periodicity and boundary conditions (see (7) below).

If the surface energy density ψ is highly anisotropic, there may be directions
ν for which

D2ψ(ν)[τ , τ ] > 0 for all τ ⊥ ν, τ 6=0

fails, see for instance [18], [40]. In this case, the evolution equation (4) is back-
ward parabolic, and to overcome the ill-posedness of the problem we consider
the following singular perturbation of the surface energyZ

Γh

ψ(ν) +
ε

p
|H|p dH2,

where p > 2, H stands for the sum κ1 + κ2 of the principal curvatures of Γh,
and ε is a small positive constant (see [18], [31], [32]). The restriction p > 2 in
R3 is motivated by the fact that the profile h of the film will belong to W 2,p(Q),

where Q ⊂ R2, so that W 2,p(Q) is continuously embedded into C1, p−2
p (Q). This

regularity is strongly used to prove existence of solutions. In contrast, in R2 we
can assume p ≥ 2 since W 2,2((0, b)) is embedded in C1,1([0, b]).

The regularized free-energy functional becomesZ
Ωh

W (E(u)) dx+

Z
Γh

ψ(ν) +
ε

p
|H|p dH2, (5)
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and (3) is replaced by

V = ∆Γ divΓ(Dψ(ν)) +W (E(u)) − ε ∆Γ(|H|p−2H) (6)

− |H|p−2H κ2
1 + κ2

2 −
1

p
H2 .

Coupling this evolution equation on the profile of the film with the elastic
equilibrium elliptic system holding in the film, and parametrizing Γ using h :
R2 × [0, T0] → (0,∞) we obtain the following Cauchy system of equations with
initial and natural boundary conditions:

1

J

∂h

∂t
= ∆Γ divΓ(Dψ(ν)) +W (E(u))

−ε ∆Γ(|H|p−2H) − |H|p−2H κ2
1 + κ2

2 −
1

p
H2 in R2 × (0, T0)

divCE(u) = 0 in Ωh,

CE(u)[ν] = 0 on Γh, u(x, y, 0, t) = A0(x, y, 0),

h(·, t) and Du(·, t) are Q-periodic,

h(·, 0) = h0,

(7)
where J :=

p
1 + |Dh|2 and h0 ∈ H2

loc(R2) is a Q-periodic function.
One can find in the literature sixth-order evolution equations of this type

(see, e.g., [31] for the case without elasticity, see [40] for the evolution of voids
in elastically stressed materials, and [6], [39]).

We use the gradient flow structure of (7) with respect to a suitable H−1-
metric (see, e.g., [7]) to solve the equation via a minimizing movement scheme
(see [1]), i.e., we discretize the problem in time and solve suitable minimum
incremental problems.

If instead of H−1 we used the gradient flow with respect to an L2-metric, we
would obtain a fourth order evolution equation describing motion by evaporation-
condensation (see [7], [31], and [37]).

The short time existence of solutions to (7) established in [22] is the first
such result for geometric surface diffusion equations with elasticity in three-
dimensions. In the recent paper [28] (see also [27] for the two-dimensional
case), the authors proved short-time existence of a smooth solution without the
additional curvature regularization. They also showed asymptotic stability of
strictly stable stationary sets.

The results summarized in this paper can be found in [20], [21], [22].

2 2D Quasistatic Equilibrium of Epitaxially Strained
Elastic Films

In the following sections we assume self-similarity with respect to a planar axis
and reduce the context to a two-dimensional framework. To be precise, we
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assume that the material occupies the infinite strip

Ωh := {x = (x, y) : 0 < x < b, y < h (x)} (8)

where h : [0, b] → [0,∞) is a Lipschitz function representing the free profile of
the film, which occupies the open set

Ω+
h := Ωh ∩ {y > 0}. (9)

The line y = 0 corresponds to the film/substrate interface.
We assume that the mismatch strain corresponding to different natural states

of the material in the substrate and in the film, respectively, is represented by

E0 (y) =
Ê0 if y ≥ 0,
0 if y < 0,

(10)

with Ê0 6= 0 > 0. We will assume that the film and the substrate share material
properties, with homogeneous elasticity positive definite fourth-order tensor C.
Hence, bearing in mind the mismatch, the elastic energy per unit area is given
by W (E −E0 (y)), where

W (E) :=
1

2
E · C [E] (11)

for all symmetric matrices E 6= 0.
In turn the interfacial energy density ψ has a step discontinuity at y = 0,

i.e.,

ψ (y) :=
γfilm if y > 0,
γsub if y = 0,

(12)

where the property
γsub ≥ γfilm > 0 (13)

will favor the SK growth mode over the VW mode. For the case γsub < γfilm,
and for different crystalline materials stress tensors C for the substrate and for
the film, we refer to [15], [16].

The total energy of the system is given by

F (u, h) :=

Z
Ωh

W (E (u) −E0) dx+

Z
Γh

ψ ds, (14)

where Γh represents the free surface of the film, that is,

Γh := ∂Ωh ∩ ((0, b) × R) . (15)

Since the functional F is not lower semicontinuous, and thus, in general, does
not admit minimizers, we are led to study its relaxation. Let

X := (u, h) : h : [0, b] → [0,∞) Lipschitz,Z b

0

h dx = d, u ∈ H1
loc(Ωh;R2)
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and

X0 = (u, h) : h : [0, b] → [0,∞) lower semicontinuous,

var[0,b] h <∞,

Z b

0

h dx = d, u ∈ H1
loc(Ωh;R2) ,

where var[0,b] h stands for the pointwise variation of the function h. Note that
length Γh coincides with the pointwise variation of the function x ∈ [0, b] 7→
(x, h(x)) and so

var[0,b] h ≤ length Γh ≤ b+ var[0,b] h. (16)

For (u, h) ∈ X0 define

G (u, h) :=

Z
Ωh

W (E (u) (x) −E0 (y)) dx+ γfilm length Γh. (17)

Theorem 1 (Existence) The following equalities hold

inf
(u,h)∈X

F (u, h) = inf
(u,h)∈X

G (u, h) = min
(u,h)∈X0

G (u, h) .

We refer to [20] for a proof.
Next we study regularity properties of minimizers of G in X0. As it is

customary in constrained variational problems, in order to have more flexibility

in the choice of test functions we prove that the volume constraint
R b

0
h(x) dx = d

can be replaced by a volume penalization.

Theorem 2 (Volume Penalization) Let (u0, h0) ∈ X0 be a minimizer of the

functional G defined in (17) with
R b

0
h0(x) dx = d. Then there exists k0 ∈ N such

that for every integer k ≥ k0, (u0, h0) is a minimizer of the penalized functional

Gk (u, h) :=

Z
Ωh

W (E (u) −E0) dx+ γfilm length Γh + k

Z b

0

h dx− d (18)

over all (u, h) ∈ X0.

Proof. An argument similar to that of the proof of Theorem 1 guarantees that

for every k ∈ N there exists a minimimizer (vk, fk) of Gk. If
R b

0
fk dx = d for all

k sufficiently large, then

G (u0, h0) ≤ G (vk, fk) = Gk (vk, fk) ≤ Gk (u0, h0) = G (u0, h0) <∞,

and so (u0, h0) is a minimizer of Gk.

Assume now that there is a subsequence, not relabeled, such that
R b

0
fk dx 6=

d for all k. If Z b

0

fk dx > d (19)
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for countably many k, define

hk := min{fk, tk},

where tk > 0 has been chosen so that
R b

0
hk dx = d. Note that length Γhk

≤
length Γfk . Indeed, for every partition x0 = 0 < · · · < xn = b, we have that

(hk(xi) − hk(xi−1))2 ≤ (fk(xi) − fk(xi−1))2

for all i = 1, . . . , n. Hence,

G (vk, hk) = Gk (vk, hk) < Gk (vk, fk) ,

which is a contradiction. Therefore, for all k sufficiently largeZ b

0

fk dx < d.

Since
Gk (vk, fk) ≤ Gk (u0, h0) = G (u0, h0) <∞, (20)

it follows from (18) and (20) that
R b

0
fk dx→ d as k → ∞ and that supk length Γfk <

∞. In turn, by (16 ), kfkk∞ ≤ c for some constant c independent of k.

Let k1 be so large that
R b

0
fk dx >

d
2 for all k ≥ k1. Then

tk :=
dR b

0
fk dx

∈ (0, 2)

and the function hk(x) := tkfk(x), x ∈ (0, b), satisfiesZ b

0

hk dx = d.

Consider a partition 0 = x0 < · · · < x‘ = b. Then

‘X
i=1

p
(xi − xi−1)2 + (hk(xi) − hk(xi−1))2

=

‘X
i=1

q
(xi − xi−1)2 + t2k(fk(xi) − fk(xi−1))2

≤ tk

‘X
i=1

p
(xi − xi−1)2 + (fk(xi) − fk(xi−1))2

≤ tk length Γfk ,

where we used the fact that tk > 1. Hence,

length Γhk
≤ tk length Γfk ,
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and so, by (20),

γfilm length Γhk
− γfilm length Γfk ≤ (tk − 1)γfilm length Γfk ≤ (tk − 1)Gk (vk, fk)

≤ (tk − 1)G (u0, h0) .

We deduce that

γfilm length Γhk
≤ γfilm length Γfk + (tk − 1)G (u0, h0) . (21)

For (x, y0) ∈ Ωhk
define

wk(x, y0) := (vk)1 x,
y0

tk
,

1

tk
(vk)2 x,

y0

tk
.

By a change of variables and (10), we haveZ
Ωhk

W (E(wk)(x, y0) −E0 (y0)) dxdy0 =
1

tk

Z
Ωfk

W (eE(vk)(x) −E0 (y)) dx,

where eE(vk)(x) is the 2 × 2 matrix whose entries are

eE11(vk)(x) = E11(vk)(x), eE12(vk)(x) =
1

tk
E12(vk)(x), (22)

eE22(vk)(x) =
1

t2k
E22(vk)(x) .

Observe that

(|eE(vk) −E0| + |E(vk) −E0|)|eE(vk) −E(vk)|

≤ c(tk − 1) |eE(vk) −E0| + |E(vk) −E0| |E(vk)|

≤ c(tk − 1)(|E(vk)| + |E0|)(|E(vk) −E0| + |E0|) (23)

≤ c(tk − 1)(|E(vk) −E0| + |E0|)2.

Since W (E) is a positive definite quadratic form over the 2 × 2 symmetric
matrices (see (11)), we have that

|W (E) −W (E1)| ≤ c (|E| + |E1|) |E −E1|

for all 2 × 2 symmetric matrices E and E1. Hence by (10), (23), and (22),Z
Ωhk

W (E(wk)(x, y0) −E0 (y0)) dx0 −
Z

Ωfk

W (E(vk)(x) −E0 (y)) dx

=
1

tk

Z
Ωfk

h
W (eE(vk)(x) −E0 (y)) −W (E(vk)(x) −E0(y))

i
dx (24)

≤ c

Z
Ωfk

|eE(vk) −E0| + |E(vk) −E0| |eE(vk) −E(vk)| dx

≤ c(tk − 1)

Z
Ωfk

(|E(vk) −E0| + |E0|)2 dx

≤ c(tk − 1)(Gk (vk, fk) + |Ê0|2) ≤ c(tk − 1)(G (u0, h0) + |Ê0|2),
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where c depends only on the ellipticity constants of W and supk kfkk∞. By
(20), (21), and (24), we have that

G (u0, h0) ≤ G (wk, hk) ≤ G (vk, fk) + (tk − 1)
h
(c+ 1)G (u0, h0) + c|Ê0|2

i
= Gk (vk, fk) + (tk − 1)

h
(c+ 1)G (u0, h0) + c|Ê0|2

i
− k

 
d−

Z b

0

fk dx

!

= Gk (vk, fk) + (tk − 1)
h
(c+ 1)G (u0, h0) + c|Ê0|2

i
− (tk − 1)k

Z b

0

fk dx

≤ G (u0, h0) + (tk − 1) (c+ 1)G (u0, h0) + c|Ê0|2 − k
d

2
.

Thus, if

k ≥ 2

d

h
(c+ 1)G (u0, h0) + c|Ê0|2

i
+ 1,

we get a contradiction, and this completes the proof.
To prove the regularity of the free boundary we use the following internal

sphere condition.

Theorem 3 (Internal Sphere’s Condition) Let (u0, h0) ∈ X0 be a mini-
mizer of the functional G defined in (17). Then there exists r0 > 0 with
the property that for every z0 ∈ Γh0

there exists an open ball B(x0, r0), with
B(x0, r0) ∩ ((0, b) × R) ⊆ Ωh0

, such that

∂B(x0, r0) ∩ Γh0
= {z0}.

This result was first proved in a slightly different context by Chambolle and
Larsen [11], (see also [8] and [20]). The argument is entirely two-dimensional
and its extension to three dimensions is open.

Remark 4 By Theorem 3 there exists r0 > 0 with the property that for every
z0 ∈ Γh0 there exists an open ball B(x0, r0), with B(x0, r0)∩((0, b) × R) ⊆ Ωh0 ,
such that

∂B(x0, r0) ∩ Γh0
= {z0}.

Note that if ν0 ∈ ∂B(0, 1) is the outward unit normal to B(x0, r0) at z0, then
x0 = z0 − r0ν0. Thus, the set

Nz0 := {ν ∈ ∂B(0, 1) : B(z0 − r0ν, r0) ∩ ((0, b) × R) ⊆ Ωh0} (25)

is nonempty.

In the next theorem we prove that h0 admits a left and right derivative at
all but countably many points.

Theorem 5 (Left and Right Derivatives of h) Let (u0, h0) ∈ X0 be a min-
imizer of the functional G defined in (17). Then Γh0

admits a left and a right
tangent at every point z not of the form z = (x, h0(x)) with x ∈ S, where

S :=
n
x ∈ (0, b) : h0 (x) < lim inf

t→x
h0(t)

o
. (26)
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Define
Γcusps := z ∈ Γh0 : ±e1 ∈ Nz (27)

and
Γcuts :=

n
(x, y) : x ∈ (0, b) ∩ S, h0 (x) ≤ y ≤ lim inf

t→x
h0(t)

o
, (28)

where Nz is the set defined in (25) and S is the set defined in (26).

Theorem 6 (Cusps and Cuts) Let (u0, h0) ∈ X0 be a minimizer of the func-
tional G defined in (17). Then the sets Γcusps and Γcuts contain finitely many
(possibly degenerate) vertical segments.

Remark 7 If −e1 ∈ Nz0
, then since B((x0 + r0, y0), r0) ∩ ((0, b) × R) ⊆ Ωh0

and h0 is lower semicontinuous, for all x > x0 sufficiently close to x0, we have
that

h0(x) ≥ y0 +
q
r2
0 − (x− (x0 + r0))2,

and so
h0(x) − y0

x− x0
≥
p

2r0 − (x− x0)√
x− x0

→ ∞

as x → x+
0 . By Theorem 5 it follows that Γh0

admits a right vertical tangent
at z0. Similarly, if e1 ∈ Nz0

then for x < x0, then Γh0
admits a left vertical

tangent at z0. In particular, if ±e1 ∈ Nz0 and h0 is continuous at x0, then

(h0)0−(x0) = −∞, (h0)0+(x0) = ∞. (29)

The next theorem shows that, except for cut and cusp points, Γh0 is locally
Lipschitz.

Theorem 8 Let (u0, h0) ∈ X0 be a minimizer of the functional G defined in
(17). If z0 ∈ Γh0

\ (Γcuts ∪ Γcusps), then Γh0
is Lipschitz in a neighborhood of

z0.

In order to improve the regularity results for h we restrict our attention to
the linearly isotropic case in which

W (E) =
1

2
λ [tr (E)]

2
+ µ tr E2 , (30)

where λ and µ are the (constant) Lamé moduli with

µ > 0, µ+ λ > 0. (31)

Note that in this range, the quadratic form W is coercive. We also assume that
the matrix Ê0 in (10) takes the form

Ê0 =
e0 0
0 0

(32)

10



for some e0 > 0, which measures the mismatch between the lattices of the two
materials.

Since h0 is now Lipschitz with left and right derivatives at all but a finite
number of points, we can now obtain classical decay estimates for the solution
u0. In turn, these will exclude corners in the graph Γh0

of h0.

Theorem 9 (Decay Estimate) Assume (30) and (32). Let (u0, h0) ∈ X0 be
a minimizer of the functional G defined in (17). Assume that Γh0

has a corner
at some point z0 ∈ Γh0

\ (Γcusps ∪ Γcuts). Then there exist a constant c > 0, a

radius r0, and an exponent
1

2
< α < 1 such thatZ

B(z0,r)∩Ωh0

|∇u0|2 dx ≤ cr2α (33)

for all 0 < r < r0.

Using the previous decay estimate, it can be shown that for (u0,Ω) ∈ X the
upper boundary Γh0 is of class C1 away from Γcusps ∪ Γcuts.

Theorem 10 (C∞ Regularity of Γ) Assume (30) and (32). Let (u0, h0) ∈
X0 be a minimizer of the functional G defined in (17). Then Γh0\(Γcusps ∪ Γcuts)
is of class C1.

Theorem 10 can be significantly improved. Indeed, using another blow-up
argument it is possible to show that Γh0 \ (Γcusps ∪ Γcuts) is of class C1,α for all
0 < α < 1

2 . In turn, this implies that u0 is of class C1,β for some β > 0 away
from the x-axis and from Γcusps ∪ Γcuts. Using a classical bootstrap argument,
one can then obtain C∞ regularity and then use results of Koch, Morini and
the second author [34] to prove analyticity of Γh0

\ (Γcusps ∪ Γcuts) away from
the x-axis. We refer to [20] for more details.

3 Evolution of Epitaxially Strained Elastic Films:
The 2D Case

The evolution of epitaxially strained elastic films depends strongly on the pos-
sible anisotropy of the surface energy density. For this reason in (17) we replace
the isotropic surface energy γfilm length Γh byZ

Γh

ψ(ν) dH1,

where ψ : R2 → [0,∞) is a positively one-homogeneous function of class C2

away from the origin. Note that, in particular,

c1|ξ| ≤ ψ(ξ) ≤ c2|ξ| for all ξ ∈ R2 , (34)
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for some c1, c2 > 0. Also, the mismatch between the substrate and film crys-
talline structures is represented by the Dirichlet condition (see (32))

u(x, 0) = (e0x, 0) for all x ∈ (0, b).

As discussed in the introduction, strong anisotropy of ψ may lead to the ill-
posedness of the evolution law, and thus we add a higher order regularizing
term. To be precise for ε > 0 small the energy under study becomes

I(u, h) :=

Z
Ωh

W (E(u)) dx+

Z
Γh

ψ(ν) +
ε

2
k2 dH1 , (35)

where k denotes the curvature of Γh and ν is the outer unit normal to Ωh.
We consider periodicity conditions. Hence, given a positive b-periodic func-

tion h : R → [0,+∞), with locally finite pointwise variation, we set

Ω#
h := {x = (x, y) : x ∈ R , 0 < y < h(x)} ,

and
Γ#
h := {x = (x, y) : x ∈ R , y = h(x)} .

Given h ∈ W 2,2
] ((0, b);R2), where W 2,2

] ((0, b);R2) is the space of b periodic

functions in W 2,2
loc (R;R2), we denote

X#(Ωh;R2):= {u ∈ L2
loc(Ω#

h ;R2) : u(x, y) = u(x+b, y) for (x, y) ∈ Ω#
h ,

E(u)|Ωh
∈ L2(Ωh;R2)} ,

and

Xe0 :=
n

(u, h) : h ∈W 2,2
] ((0, b);R2), u ∈ e0(·, 0) + LD#(Ωh;R2) ,

and u(x, 0) = (e0x, 0) for all x ∈ R
o
.

We next introduce the incremental minimum problems used to define the dis-
crete time evolutions. This will lead to the existence of solutions for the evo-
lution equation (41) below via minimizing movements. Let (u0, h0) ∈ Xe0 be
such that

h0 > 0 (36)

and u0 minimizes the elastic energy in Ωh0
among all u with (u, h0) ∈ Xe0 .

Given T > 0, N ∈ N, we set ∆T := T
N . For i = 1, . . . , N we define inductively

(ui,N , hi,N ) as a solution of the minimum problem

min

(
I(u, h) +

1

2∆T

Z
Γhi−1,N

Z x

0

h(ζ) − hi−1,N (ζ) dζ
2

dH1(x, y) :

(u, h) ∈ Xe0 , kh0k∞ ≤ Λ0,

Z b

0

h dx =

Z b

0

h0 dx ,Z
Γhi−1,N

Z x

0

(h(ζ) − hi−1,N (ζ)) dζdH1(x, y) = 0

)
, (37)
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where kh00k∞ < Λ0.
Then for x ∈ R and (i− 1)∆T ≤ t ≤ i∆T , i = 1, . . . , N , we define

hN (x, t) := hi−1,N (x) +
1

∆T
t− (i− 1)∆T hi,N (x) − hi−1,N (x) (38)

and we let uN (·, t) be the elastic equilibrium corresponding to hN (·, t), i.e., the
minimizer of the elastic energy in ΩhN (·,t) among all u such that (hN (·, t),u) ∈
Xe0 .

We remark the incremental minimum problem can be written as

min I(u, h) +
1

2∆T

h− hi−1,Nq
1 + h02i−1,N

2

H−1(Γi−1,N )

: (u, h) ∈ Xe0 , kh0k∞ ≤ Λ0,

Z b

0

h dx =

Z b

0

h0 dx,

Z
Γhi−1,N

Z x

0

(h(ζ) − hi−1,N (ζ)) dζdH1(x, y) = 0

)
.

We now show that the incremental minimum problem (37) admits a solution.

Theorem 11 For every i = 1, . . . , N , the minimum problem (37) admits a
solution (ui,N , hi,N ) ∈ Xe0 .

Proof. Let {(un, hn)} ⊂ Xe0 be a minimizing sequence for (37). Since
R b

0
hn dx =R b

0
h0 dx,

sup
n

Z b

0

(h00n)2p
1 + (h0n)2

dx <∞

and kh0nk∞ ≤ Λ0, it follows that khnkW 2,2 ≤ C for some constant C > 0 and for
all n. Then, up to a subsequence (not relabelled), we may assume that hn * h
weakly in W 2,2

] ((0, b);R2), and thus strongly in C1(R;R2). As a consequence,Z
Γh

ψ(ν) +
ε

2
k2 dH1 ≤ lim inf

n→∞

Z
Γhn

ψ(ν) +
ε

2
k2
n dH1 (39)

and Z
Γhi−1,N

Z x

0

h(ζ) − hi−1,N (ζ) dζ
2

dH1 (40)

= lim
n→∞

Z
Γhi−1,N

Z x

0

hn(ζ) − hi−1,N (ζ) dζ
2

dH1 .

Finally, since supn
R

Ωhn
|E(un)|2 dx <∞, reasoning as in [20, Proposition 2.2],

from the C1 convergence of {hn} to h and Korn’s inequality we deduce that

there exists u ∈ H1
loc(Ω#

h ;R2) such that (u, h) ∈ Xe0 and, up to a subsequence,

un * u weakly in H1
loc(Ω#

h ;R2). Therefore, we have thatZ
Ωh

W (E(u)) dx ≤ lim inf
n→∞

Z
Ωhn

W (E(un)) dx ,

13



which, together with (39) and (40), allows us to conclude that (u, h) is a mini-
mizer.

Next we show that solutions of the discrete time evolution problems converge
to a function h = h(x, t), which is is a weak solution of the following geometric
evolution equation,

∂h

∂t
=

1

J
ε
hxx
J5 xx

+
5ε

2

h2
xx

J7
hx

x
+ ψx(−hx, 1)

x
+W (E(u))

x x

(41)

for a short time interval [0, T0], where 0 < T0 ≤ T , where T0 depends on (u0, h0).
Here J :=

p
1 + (hx)2. Since kh00k∞ < Λ0, for all t sufficiently small we have

that k∂h∂t k∞ < Λ0 and so we are allowed to take admissible variations of h to
obtain (41).

Theorem 12 There exist T0 ∈ (0, T ] and C > 0 depending only (h0,u0) such
that:

(i) hN → h in C0,β([0, T0];C1,α([0, b])) for every α ∈ (0, 1
2 ), and β ∈ (0, (1 −

2α)/32),

(ii) E(uN (·, hN )) → E(u(·, h)) in C0,β([0, T0];C1,α([0, b])) for every α ∈
(0, 1

2 ), and 0 ≤ β < (1 − 2α)/32, where u(·, t) is the elastic equilibrium in
Ωh(·,t),

and h is a weak solution to (41) with initial data h0. Moreover, if ψ ∈
C3(R2 \ {0}) then h(·, t) ∈ H5

#(0, b) for almost every t ∈ [0, T0] and h is the
unique solution.

For linearly isotropic energy densities of the form (30), where λ and µ satisfy
(31), and for sufficiently regular surface energy densities we can prove asymp-
totic stability of the flat configuration hflat ≡ d/b when d is sufficiently small.
Consider the Grinfeld function K defined by

K(y) := max
n∈N

1

n
J(ny), y ≥ 0, (42)

where

J(y) :=
y + (3 − 4νp) sinh y cosh y

4(1 − νp)2 + y2 + (3 − 4νp) sinh2 y
,

and νp is the Poisson modulus of the elastic material, i.e.,

νp :=
λ

2(λ+ µ)
. (43)

It turns out that K is strictly increasing and continuous, K(y) ≤ Cy, and
lim

y→+∞
K(y) = 1, for some positive constant C.

14



Theorem 13 Assume that W takes the form (30), where λ and µ satisfy (31),
and that ψ ∈ C3(R2 \ {0}) satisfies ∂2

11ψ(0, 1) > 0 and

D2ψ(ξ)[τ , τ ] > 0 for all τ ⊥ ξ, τ 6= 0

for every ξ ∈ S1. Let dloc : (0,∞) → (0,∞] be defined as dloc(b) := ∞ if

0 < b ≤ π
4

(2µ+λ)∂2
11ψ(0,1)

e20µ(µ+λ)
, and as the solution to

K
2πdloc(b)

b
=
π

4

(2µ+ λ)∂2
11ψ(0, 1)

e2
0µ(µ+ λ)

1

b
(44)

otherwise. Then, for all d ∈ (0, dloc(b)) the flat configuration hflat ≡ d/b is
asymptotically stable, that is, there exists δ > 0 such that if h0 ∈W 2,2

] ((0, b);R2)

with
R b

0
h0 dx = d and kh0 − hflatkW 2,2 ≤ δ, then the solution h to (41) with

initial datum h0 exists for all times and

kh(·, t) − hflatkW 2,2 → 0

as t→ ∞.
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law for epitaxially-strained thin films. Math. Models Methods Appl. Sci.,
29(12):2183–2223, 2019.

[16] E. Davoli and P. Piovano. Derivation of a heteroepitaxial thin-film model.
Interfaces Free Bound., 22(1):1–26, 2020.

[17] B. De Maria and N. Fusco. Regularity properties of equilibrium configu-
rations of epitaxially strained elastic films. In Topics in modern regularity
theory, pages 169–204. Springer, 2012.

[18] A. Di Carlo, M. E. Gurtin, and P. Podio-Guidugli. A regularized equation
for anisotropic motion-by-curvature. SIAM Journal on Applied Mathemat-
ics, 52(4):1111–1119, 1992.

[19] I. Fonseca, N. Fusco, G. Leoni, and V. Millot. Material voids in elastic solids
with anisotropic surface energies. J. Math. Pures Appl. (9), 96(6):591–639,
2011.

16



[20] I. Fonseca, N. Fusco, G. Leoni, and M. Morini. Equilibrium configurations
of epitaxially strained crystalline films: existence and regularity results.
Archive for rational mechanics and analysis, 186(3):477–537, 2007.

[21] I. Fonseca, N. Fusco, G. Leoni, and M. Morini. Motion of elastic thin
films by anisotropic surface diffusion with curvature regularization. Arch.
Ration. Mech. Anal., 205(2):425–466, 2012.

[22] I. Fonseca, N. Fusco, G. Leoni, and M. Morini. Motion of three-dimensional
elastic films by anisotropic surface diffusion with curvature regularization.
Anal. PDE, 8(2):373–423, 2015.

[23] I. Fonseca, N. Fusco, G. Leoni, and M. Morini. A model for dislocations
in epitaxially strained elastic films. J. Math. Pures Appl. (9), 111:126–160,
2018.

[24] I. Fonseca, G. Leoni, and M. Morini. Equilibria and dislocations in epitaxial
growth. Nonlinear Anal., 154:88–121, 2017.

[25] I. Fonseca, A. Pratelli, and B. Zwicknagl. Shapes of epitaxially grown
quantum dots. Arch. Ration. Mech. Anal., 214(2):359–401, 2014.

[26] N. Fusco. Equilibrium configurations of epitaxially strained thin films. Atti
Accad. Naz. Lincei Rend. Lincei Mat. Appl., 21(3):341–348, 2010.

[27] N. Fusco, V. Julin, and M. Morini. The surface diffusion flow with elasticity
in the plane. Comm. Math. Phys., 362(2):571–607, 2018.

[28] N. Fusco, V. Julin, and M. Morini. The surface diffusion flow with elasticity
in three dimensions. Arch. Ration. Mech. Anal., 237(3):1325–1382, 2020.

[29] N. Fusco and M. Morini. Equilibrium configurations of epitaxially strained
elastic films: second order minimality conditions and qualitative properties
of solutions. Arch. Ration. Mech. Anal., 203(1):247–327, 2012.

[30] M. Goldman and B. Zwicknagl. Scaling law and reduced models for epi-
taxially strained crystalline films. SIAM J. Math. Anal., 46(1):1–24, 2014.

[31] M. E. Gurtin and M. E. Jabbour. Interface evolution in three dimensions
with curvature-dependent energy and surface diffusion: interface-controlled
evolution, phase transitions, epitaxial growth of elastic films. Archive for
rational mechanics and analysis, 163(3):171–208, 2002.

[32] C. Herring. Some theorems on the free energies of crystal surfaces. Physical
review, 82(1):87, 1951.

[33] S. Y. Kholmatov and P. Piovano. A unified model for stress-driven rear-
rangement instabilities. Arch. Ration. Mech. Anal., 238(1):415–488, 2020.

17



[34] H. Koch, G. Leoni, and M. Morini. On optimal regularity of free bound-
ary problems and a conjecture of de giorgi. Communications on Pure and
Applied Mathematics: A Journal Issued by the Courant Institute of Math-
ematical Sciences, 58(8):1051–1076, 2005.

[35] L. Kreutz and P. Piovano. Microscopic validation of a variational model
of epitaxially strained crystalline film. arXiv preprint arXiv:1902.06561,
2019.

[36] R. Kukta and L. Freund. Minimum energy configuration of epitaxial ma-
terial clusters on a lattice-mismatched substrate. Journal of the Mechanics
and Physics of Solids, 45(11-12):1835–1860, 1997.

[37] P. Piovano. Evolution of elastic thin films with curvature regularization
via minimizing movements. Calc. Var. Partial Differential Equations, 49(1-
2):337–367, 2014.
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