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Abstract

An overview of recent analytical developments in the study of epitaxial
growth is presented. Quasistatic equilibrium is established, regularity of
solutions is addressed, and the evolution of epitaxially strained elastic
films is treated using minimizing movements.

1 Introduction

In this paper, we give a brief overview of recent analytical developments in the
study of the deposition of a crystalline film onto a substrate, with the atoms
of the film occupying the substrate’s natural lattice positions. This process is
called epitaxial growth. Here we are interested in heteroepitaxy, that is, epitaxy
when the film and the substrate have different crystalline structures. At the on-
set of the deposition, the film’s atoms tend to align themselves with those of the
substrate because the energy gain associated with the chemical bonding effect is
greater than the film’s strain due to the mismatch between the lattice parame-
ters. As the film continues to grow, the stored strain energy per unit area of the
interface increases with the film thickness, rendering the film’s flat layer mor-
phologically unstable or metastable after the thickness reaches a critical value.
As aresult, the film’s free surface becomes corrugated, and the material agglom-
erates into clusters or isolated islands on the substrate. The formation of islands
in systems such as In-GaAs/GaAs or SiGe/Si has essential high-end technology
applications, such as modern semiconductor electronic and optoelectronic de-
vices (quantum dots laser). The Stranski-Krastanow (SK) growth mode occurs
when the islands are separated by a thin wetting layer, while the Volmer-Weber
(VW) growth mode refers to the case when the substrate is exposed between
islands.

In what follows, we adopt the variational model considered by Spencer in
[41] (see also [36], [42], and the references contained therein). To be precise, the
free energy functional associated with the physical system is given by

i W(E(u)) dx + A (v) dH>. (1)



Here h : Q — [0, 00) is the function whose graph I'j, describes the profile of the
film, assumed to be Q-periodic, with Q := (0,0)? C R2, for some b > 0, €, is
the region occupied by the film, i.e., writing = (z,y, 2),

Q= {(2,y,2) € @ xR: 0 < 2 < h(x,y)},

u : ), — R® is displacement of the material, E(u) := 3(Du + DTu) is the
symmetric part of Du. Also, the elastic energy density W : ngxn‘f — [0, 4+00) is
a positive definite quadratic form

W(A) := %(CA DA,

with C a positive definite fourth-order tensor, so that W(A) > 0 for all A €
M273\ {0}, ¢ : R® — [0, 00) is an anisotropic surface energy density evaluated
at the unit normal v to 'y, and H? denotes the two-dimensional Hausdorff
measure. We suppose that i is positively one-homogeneous and of class C?

away from the origin, so that, in particular,

Vel <wie)<clel  forall g R,

for some constant ¢ > 0.

The substrate and the film admit different natural states corresponding to
the mismatch between their respective crystalline structures. To be precise,
a natural state for the substrate is given by w = 0, while a natural state
for the film is given by uw = Agx for some nonzero 3 x 3 matrix Ag. Our
models will reflect this mismatch, either by setting the elastic bulk energy as
Jo, W (E (u) (x) — Eo(z)) dz, where

A0+Ag .f
E ) T if 2 >0, 9
o(x) { 0 ifz<o, @)

or by imposing the Dirichlet boundary condition u(z,y,0) = Ag(z,y,0).

In the two-dimensional static case, existence of equilibrium solutions and
their qualitative properties, including regularity, were studied in [3], [4], [10],
[15], [16], [17], [20], [24], [26], [29] and [33]. The variational techniques and
analytical arguments developed in these papers have been used to treat other
materials phenomena, such as voids and cavities in elastic solids [8], [19].

The scaling regimes of the minimal energy in epitaxial growth were identi-
fied in [2], [30] in terms of the parameters of the problem. The shape of the
islands under the constraint of faceted profiles was addressed in [25]. A varia-
tional model, which takes into account the formation of misfit dislocations, was
introduced in [23].

The effect of atoms freely diffusing on the surface (called adatoms) was
studied in [9], where the model involves only surface energies.

A discrete-to-continuum analysis for free-boundary problems related to crys-
talline films deposited on substrates was undertaken in [35], [38].



The three-dimensional static case was studied by [5], [12] in the case in which
the symmetrized gradient E(u) is replaced by the gradient (see also [4]). More
recently, new developments in the theory of GSBD, i.e., generalized special
functions of bounded deformation (see [13], [14], and the references therein)
have led to considerable progress on the relaxation of the functional (1) in the
three dimensional case (see [13]). The regularity of equilibrium solutions remains
an open problem. A local minimality sufficiency criterion, based on the strict
positivity of the second variation, was established in [4], based on the work [29].

To study the morphological evolution of anisotropic epitaxially strained
films, we assume that the surface evolves by surface diffusion under the influ-
ence of a chemical potential u. To be precise, according to the Einstein-Nernst
relation, the evolution is governed by the volume preserving equation

V=CAup, (3)

where C' > 0, V denotes the normal velocity of the evolving interface I', A,
stands for the tangential laplacian, and the chemical potential p is given by
the first variation of the underlying free-energy functional. In our context, this
becomes (assuming C' = 1)

V = Ar[dive (DY () + W (E(w)] (4)

where divp stands for the tangential divergence along I'y,(. ), and u(-,t) is the
elastic equilibrium in {2y, 4), i.e., the minimizer of the elastic energy under the
prescribed periodicity and boundary conditions (see (7) below).
If the surface energy density v is highly anisotropic, there may be directions
v for which
D*y(v)[r,7] >0 forallT Lv, T#0

fails, see for instance [18], [40]. In this case, the evolution equation (4) is back-
ward parabolic, and to overcome the ill-posedness of the problem we consider
the following singular perturbation of the surface energy

[ (v Sy ane

where p > 2, H stands for the sum k1 + ko of the principal curvatures of I'y,
and ¢ is a small positive constant (see [18], [31], [32]). The restriction p > 2 in
R3 is motivated by the fact that the profile h of the film will belong to W?2?(Q),

where @ C R?, so that W?2P(Q) is continuously embedded into o (Q). This
regularity is strongly used to prove existence of solutions. In contrast, in R? we
can assume p > 2 since W22((0,b)) is embedded in C+1([0,8]).

The regularized free-energy functional becomes

W(E(uw)) dz + /

Iy

(o) +1HI7) e, (5)
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and (3) is replaced by
V = Ar|dive (Dv(v)) + W(B(w) — e (Ac(HP~2H) (6)
p—2 2, 2 Lo
— |H] H(;@l tedoH ))]

Coupling this evolution equation on the profile of the film with the elastic
equilibrium elliptic system holding in the film, and parametrizing I" using A :
R? x [0, Tp] — (0,00) we obtain the following Cauchy system of equations with
initial and natural boundary conditions:

1 0h .

35 = Ar | dve(DU) + W(BwW)

—5<Ap(\H|p‘2H) - |H|p_2H<Ii% +r2 1H2))] in R? x (0, Tp)
p

divCE(u) =0 in Qy,

h(-,t) and Du(-,t) are @-periodic,

h(-,0) = ho,

(7)
where J := /14 |Dh|? and hy € HZ, (R?) is a Q-periodic function.

One can find in the literature sixth-order evolution equations of this type
(see, e.g., [31] for the case without elasticity, see [40] for the evolution of voids
in elastically stressed materials, and [6], [39]).

We use the gradient flow structure of (7) with respect to a suitable H~!-
metric (see, e.g., [7]) to solve the equation via a minimizing movement scheme
(see [1]), i.e., we discretize the problem in time and solve suitable minimum
incremental problems.

If instead of H~! we used the gradient flow with respect to an L?-metric, we
would obtain a fourth order evolution equation describing motion by evaporation-
condensation (see [7], [31], and [37]).

The short time existence of solutions to (7) established in [22] is the first
such result for geometric surface diffusion equations with elasticity in three-
dimensions. In the recent paper [28] (see also [27] for the two-dimensional
case), the authors proved short-time existence of a smooth solution without the
additional curvature regularization. They also showed asymptotic stability of
strictly stable stationary sets.

The results summarized in this paper can be found in [20], [21], [22].

2 2D Quasistatic Equilibrium of Epitaxially Strained
Elastic Films

In the following sections we assume self-similarity with respect to a planar axis
and reduce the context to a two-dimensional framework. To be precise, we



assume that the material occupies the infinite strip
Qp={z=(z,y): 0<z<by<h(z)} (8)

where h : [0,b] — [0,00) is a Lipschitz function representing the free profile of
the film, which occupies the open set

QF =, n{y >0} 9)

The line y = 0 corresponds to the film/substrate interface.
We assume that the mismatch strain corresponding to different natural states
of the material in the substrate and in the film, respectively, is represented by

Ey ify>0,

Bt ={ 5 {20 (10)

with E # 0 > 0. We will assume that the film and the substrate share material
properties, with homogeneous elasticity positive definite fourth-order tensor C.
Hence, bearing in mind the mismatch, the elastic energy per unit area is given

by W (E — Eq (y)), where
1
W (E) := §E -ClE] (11)
for all symmetric matrices E # 0.

In turn the interfacial energy density v has a step discontinuity at y = 0,
ie.,

— Yhlm if Yy > 0,
where the property
Ysub > Yfilm > 0 (13)

will favor the SK growth mode over the VW mode. For the case Ysup < Yfilm,
and for different crystalline materials stress tensors C for the substrate and for
the film, we refer to [15], [16].

The total energy of the system is given by

F (u,h) = A W (E (u) — Ey) de + g P ds, (14)

where I'j, represents the free surface of the film, that is,
Ty =00, N ((0,b) x R). (15)

Since the functional F is not lower semicontinuous, and thus, in general, does
not admit minimizers, we are led to study its relaxation. Let

X = {(u,h) : h:[0,b] = [0,00) Lipschitz,

b
/ hdr=d, wue€ ngc(ﬂh;RQ)}
0



and

Xo :{(u, h): h:[0,b] = [0,00) lower semicontinuous,
b
var 5 h < 00, / hdr=d, wue¢ Hlloc(Qh;RQ)},
0

where var 3 h stands for the pointwise variation of the function h. Note that
lengthT';, coincides with the pointwise variation of the function = € [0,b] —
(z,h(x)) and so

vario, ) h <lengthT'y, <b-+ varo,p h. (16)

For (u,h) € X define

g (’LL, h) = ; W (E (u) (ZB) — E, (y)) dx + Yaim length T'y,. (17)

Theorem 1 (Existence) The following equalities hold

inf F(u,h)= inf G(u,h)= min G (u,h).
(u,h)eX (u,h)eX (u,h)EXo

We refer to [20] for a proof.
Next we study regularity properties of minimizers of G in Xy. As it is
customary in constrained variational problems, in order to have more flexibility

in the choice of test functions we prove that the volume constraint fob h(z)dx =d
can be replaced by a volume penalization.

Theorem 2 (Volume Penalization) Let (ug, ho) € Xo be a minimizer of the

functional G defined in (17) with fob ho(z) dz = d. Then there exists ko € N such
that for every integer k > ko, (uo, ho) is a minimizer of the penalized functional

b
/ hdx—d
0

G (u, h) == W (E (u) — Ey) dx + vaim length Ty, + &
Qp

(18)

over all (u, h) € Xj.

Proof. An argument similar to that of the proof of Theorem 1 guarantees that
for every k € N there exists a minimimizer (v, fi) of Gi. If fob fx dx = d for all
k sufficiently large, then

G (uo, ho) < G (Vk, fr) = Gk (Vi fr) < Gk (w0, ho) = G (uo, ho) < o0,

and so (ug, ho) is a minimizer of Gy.

Assume now that there is a subsequence, not relabeled, such that fé) fr dx #

d for all k. If .

| fide>d (19)



for countably many k, define
hk = Inin{fk, tk},

where ¢, > 0 has been chosen so that fob hy dxr = d. Note that lengthT',, <
lengthI'¢, . Indeed, for every partition zo =0 < --- <z, = b, we have that

(hi(w:) = hi(i-1))® < (frl(xi) — ful@iz1))?
for all i = 1,...,n. Hence,
G (vi, hi) = Gk (v, hi) < Gr (Vg, fr) s

which is a contradiction. Therefore, for all k sufficiently large

b
/fkd:c<d.
0

Gk (Vk, fr) < Gr (uo, ho) = G (uo, ho) < 00, (20)

it follows from (18) and (20) that f(f fr dx — das k — oo and that sup;, length 'y, <
oo. In turn, by (16 ), || f||,, < ¢ for some constant ¢ independent of k.

Let k1 be so large that f(f fi dz > 4 for all k > k1. Then

Since

_ d
fob i, dx

and the function hy(z) := tx fr(x), € (0,b), satisfies

b
/ hy dz =d.
0

Consider a partition 0 = z¢p < -+ < xy = b. Then

iy : S (072)

14

> V(@i = 2io1)? + (b (@) — hie(wi-1))?

=1

4
= \/(wi — i) + G (fr(@) — frl(@io1))?
i=1

I
<ty Z V(@i —xi1)? + (fe(i) = frlwio1))?
i=1
< tglengthT'y, |
where we used the fact that ¢ > 1. Hence,

lengthI'y, <t lengthl'y,,



and so, by (20),
~aiim length Ty, — vam length Ty, < (t — 1)yam length Ty, < (8 — 1)Gk (v, fr)
< (tx — 1)G (uo, ho) -
We deduce that
“aiim length Ty, < vgim length Ty, + (tx — 1)G (uo, ho) - (21)
For (z,y") € Qp, define

wi(ed)i= (0 (L) owe (2 L))

By a change of variables and (10), we have

[ W(EB ) - Bo ) dety' = - [ WE@) @) - B ) do,

where E(v;)(x) is the 2 X 2 matrix whose entries are

E11(vi)(x) = Evi(vi)(x), Eu(vi)(z) = %Elz(vk)(l‘), (22)

Eqg(vi)(x) = tll%E22(vk)($)-
Observe that
(IE(vr) = Eo| + | E(v) — Eol)[E(vr) - B(v)
< ety ~ 1) (IE(vr) ~ Bo| + |E(vr) — Bol ) [E(vy)]
< c(ty = D(|E(vi)| + | Eo|)(|E(wr) - Eol + |Eol)  (23)
< elty — 1)(|E(vy) — Bo| + | Eol)*

Since W(E) is a positive definite quadratic form over the 2 x 2 symmetric
matrices (see (11)), we have that

(W(E) - W(E1)| < c(|E|+ |E7]) |E - E\
for all 2 x 2 symmetric matrices E and E;. Hence by (10), (23), and (22),

. W(E(wi)(z,y') — Eo (y)) da’ — . W(E(vi)(x) — Eo (y)) da

_ L[ [WE@I@) - Bew) - WBm) @ - Ba)] d (20)
kJay,

<c [ (1Blow) = Bol +1B(v0) - Bol) (Bor) - Bw.)]) do

< efty — 1) /Q (1B (i) — Bo| + | By|)? da

< ety = 1)(Gr (vi, fi) + | Eof?) < e(ti —1)(G (w0, ho) + | Eof*),



where ¢ depends only on the ellipticity constants of W and sup,, || fx|l.- By
(20), (21), and (24), we have that

G (w0, ho) < G (wi, h) < G (i fi) + (te = 1) [(c+ 1)G (w0, ho) + el Eol?]
b
= Gi (v fi) + (b = 1) [(e+ 1)G (o, o) + | Bal?| & (d— [ dx>
0
. b
= G0 (01 )+ (b = 1) (0 )0 (o) + el Bof?] = (0 =k [ fo

< G (ug, ho) + (ti, — 1) {(c +1)G (uo, ho) + ¢|Eo|? — kcﬂ :

Thus, if

k> {(c +1)G (ug, ho) + C|E0|2} +1,

we get a contradiction, and this completes the proof. m
To prove the regularity of the free boundary we use the following internal
sphere condition.

ISHILN

Theorem 3 (Internal Sphere’s Condition) Let (ug,hg) € Xo be a mini-
mizer of the functional G defined in (17). Then there exists o > 0 with
the property that for every zo € L'y, there exists an open ball B(xo,rq), with
B(xg,r0) N ((0,0) x R) C Qp,, such that

8B(w0, 7"0) N fho = {Z()}.
This result was first proved in a slightly different context by Chambolle and

Larsen [11], (see also [8] and [20]). The argument is entirely two-dimensional
and its extension to three dimensions is open.

Remark 4 By Theorem 3 there exists rq > 0 with the property that for every
2o € Ty, there exists an open ball B(xg,70), with B(xo,r9)N((0,b) x R) C Qy,,,
such that

6B(9c0,r0) n Fho = {Zo}.

Note that if vg € 0B(0,1) is the outward unit normal to B(xg,ro) at zg, then
xy = zg — roVo. Thus, the set

N., :={v € 0B(0,1): B(zo —rov,79) N ((0,b) x R) C Qp,} (25)
18 nonempty.

In the next theorem we prove that hy admits a left and right derivative at
all but countably many points.

Theorem 5 (Left and Right Derivatives of h) Let (uo, ho) € Xo be a min-
imizer of the functional G defined in (17). Then Ty, admits a left and a right
tangent at every point z not of the form z = (x, ho(x)) with x € S, where

S = {x € (0,0) : ho (x) < limin ho(t)}. (26)



Define B
Peusps i= {2 € [, : teg € N} (27)

and
Tonts = {(:c, y): @€ (0,6) NS, ho (v) <y < liminf ho(t)} . (28)
where N, is the set defined in (25) and S is the set defined in (26).

Theorem 6 (Cusps and Cuts) Let (ug, hg) € Xo be a minimizer of the func-
tional G defined in (17). Then the sets Teysps and Tews contain finitely many
(possibly degenerate) vertical segments.

Remark 7 If —e; € N,,, then since B((xo + r0,%0),70) N ((0,0) x R) C Qp,
and hg is lower semicontinuous, for all x > x¢ sufficiently close to xy, we have
that

ho(z) > yo + /73 — (z — (0 + 70))?,

and so

ho(x) — yo < 2rg — (z — )
r — X - VI — X
+

as © — xg . By Theorem 5 it follows that T, admits a right vertical tangent
at zg. Similarly, if ey € Ny, then for x < xo, then I'n, admits a left vertical
tangent at zo. In particular, if e; € Ny, and ho is continuous at xo, then

— 0

(ho)~(z0) = =00,  (ho) () = oo. (29)

The next theorem shows that, except for cut and cusp points, I'y,, is locally
Lipschitz.

Theorem 8 Let (ug, ho) € Xo be a minimizer of the functional G defined in
(17). If zo € Ty \ (Teuts U Teusps), then 'y, is Lipschitz in a neighborhood of

zZ0-

In order to improve the regularity results for A we restrict our attention to
the linearly isotropic case in which

1
W (E) = SA[tr (E)* + ptr (E?), (30)
where A and p are the (constant) Lamé moduli with

w>0, pu+A>0. (31)

Note that in this range, the quadratic form W is coercive. We also assume that
the matrix FE¢ in (10) takes the form

Fo ( ‘o 8) (32)



for some ey > 0, which measures the mismatch between the lattices of the two
materials.

Since hg is now Lipschitz with left and right derivatives at all but a finite
number of points, we can now obtain classical decay estimates for the solution
ug. In turn, these will exclude corners in the graph I'y,, of hg.

Theorem 9 (Decay Estimate) Assume (30) and (32). Let (uo, ho) € Xo be

a minimizer of the functional G defined in (17). Assume that I'y, has a corner
at some point zg € I'ny \ (Dcusps U Tcuts). Then there exist a constant ¢ > 0, a

radius ro, and an exponent 3 < a <1 such that

/ Vuol? dz < or®® (33)
B(ZO,’I”)QQhO

for all 0 < r < rp.

Using the previous decay estimate, it can be shown that for (ug, ) € X the
Mt |
upper boundary I'y, is of class C" away from I'cysps U Iouts-

Theorem 10 (C* Regularity of I') Assume (30) and (32). Let (ug,ho) €
Xo be a minimizer of the functional G defined in (17). Then Tpy\ (Teusps U Tcuts)
is of class C".

Theorem 10 can be significantly improved. Indeed, using another blow-up
argument it is possible to show that 'y, \ (Feusps U Leuts) is of class C1 for all
0<ac< % In turn, this implies that wug is of class C1# for some B > 0 away
from the z-axis and from I'cysps U I'cuts. Using a classical bootstrap argument,
one can then obtain C'* regularity and then use results of Koch, Morini and
the second author [34] to prove analyticity of T's, \ (Feusps U leuts) away from
the z-axis. We refer to [20] for more details.

3 Evolution of Epitaxially Strained Elastic Films:
The 2D Case

The evolution of epitaxially strained elastic films depends strongly on the pos-
sible anisotropy of the surface energy density. For this reason in (17) we replace
the isotropic surface energy ~aim lengthI'y, by

(v)dH',

Ty

where 1 : R? — [0, 00) is a positively one-homogeneous function of class C?
away from the origin. Note that, in particular,

cil€] S v(€) < col€]  forall € € R?, (34)

11



for some c1, co > 0. Also, the mismatch between the substrate and film crys-
talline structures is represented by the Dirichlet condition (see (32))

u(z,0) = (epz,0) for all x € (0,b).

As discussed in the introduction, strong anisotropy of ¥ may lead to the ill-
posedness of the evolution law, and thus we add a higher order regularizing
term. To be precise for € > 0 small the energy under study becomes

T(u,h) = | W(E(w))dz + / (¢(u)+§k2) dHt, (35)

Qp Tn

where k denotes the curvature of I'j, and v is the outer unit normal to €.
We consider periodicity conditions. Hence, given a positive b-periodic func-
tion h : R — [0, +00), with locally finite pointwise variation, we set

QF ={x=(r,y): t€R,0<y<h(z)},
and
F# ={z=(z,y): z€R, y=h(z)}.
Given h € Wﬁ2’2((0,b);R2), where WﬁZ’Q((O,b);Rz) is the space of b periodic

functions in Wf)’cz(R; R?), we denote

X#(Q}HRQ): {U’ € LIQOC(Q#7R2) : 'U/(l',y) = u(l‘+b, y) for (ﬂf,y) € Q#v
E(u)la, € L*(Qn;R?)},
and
X, = {(u, h): he W22((0,b);R%), u € eo(-,0) + LDy (s R?),
and u(x,0) = (egz,0) for all z € R} .

We next introduce the incremental minimum problems used to define the dis-
crete time evolutions. This will lead to the existence of solutions for the evo-
lution equation (41) below via minimizing movements. Let (ug, ho) € X, be
such that

ho >0 (36)

and wo minimizes the elastic energy in Qp, among all u with (u,hg) € Xe,.
Given T > 0, N € N, we set AT := % For i =1,..., N we define inductively
(u; N, hin) as a solution of the minimum problem

min{I(u,h) + ﬁ /Fh. (/Ox(h(c) — hi—1,n(Q)) d<)2d7-[1(aj7y) :

b b
(u,h) € Xey, 1B ]|oo < Ao, / hdx = / ho dzx
0 0

‘/Fhi—

/Ow(h(C) — hi1,n(C)) dCdH () = 0}7 (37)

1,

12



where [|h{]|co < Ao-
Then for x € R and (i — 1)AT <t <iAT,i=1,...,N, we define

hN(J?,t) = hi—l,N( ) + E(t — (Z — 1)AT) (h ($) — hi—l,N(x)) (38)

and we let un(+,t) be the elastic equilibrium corresponding to hy(-,t), i.e., the
minimizer of the elastic energy in Qp . (..+) among all w such that (hy(-,t),u) €
X.,.

We remark the incremental minimum problem can be written as

h—hi_1n

min{z( 2ATH\/HTH P
/0 i = /0 ho dz, /F h /0 <h<<>—hi1,N(<>>d<dﬂl(x,y)=0}.

i—1,N

 (w,h) € Xep, W ]loe < Ao,

We now show that the incremental minimum problem (37) admits a solution.

Theorem 11 For every i = 1,..., N, the minimum problem (37) admits a
solution (u; N, hin) € Xe,

Proof. Let {(un, hy)} C X, be a minimizing sequence for (37). Since fob hy, dx =
2 by de,
b (h//)
o Vit

and ||h],|lco < Ao, it follows that ||hy |22 < C for some constant C' > 0 and for

all n. Then, up to a subsequence (not relabelled), we may assume that h,, — h
weakly in WﬁQ"Q((O, b); R?), and thus strongly in C*(R;R?). As a consequence,

n—oo

/I‘ <¢( )+ k;2> dH! < hmmf/F (w(y) + %ki) dH! (39)
and

/ K 00 = hima (@) ac) " (40)

= Jm /Fh (/Oz(hn(o —hi—1,.n(C)) d§>2 dH*.

-1,N

Finally, since sup,, thn |E(u,)|? dz < oo, reasoning as in [20, Proposition 2.2],
from the C' convergence of {h,} to h and Korn’s inequality we deduce that
there exists u € 1OC(Qf, R?) such that (u,h) € X, and, up to a subsequence,
u, — u weakly in HIOC(Qh#, R?). Therefore, we have that

W(E(u))dz < liminf W (E(u,))dz,

n—oo
Qp Qhn,,

13



which, together with (39) and (40), allows us to conclude that (u,h) is a mini-
mizer. W

Next we show that solutions of the discrete time evolution problems converge
to a function h = h(x,t), which is is a weak solution of the following geometric
evolution equation,

P[5y E () ), W) | @

x

for a short time interval [0, Tp], where 0 < Ty < T', where Ty depends on (uq, hy).
Here J := /1 + (hy)?. Since ||h{llcc < Ao, for all ¢ sufficiently small we have
that || 22| < Ag and so we are allowed to take admissible variations of & to
obtain (41).

Theorem 12 There exist Ty € (0,T] and C > 0 depending only (ho,uo) such
that:

(i) hy — h in C%P([0,Tp); C1([0,b])) for every a € (0,3), and B € (0, (1 —
2a)/32),

(ii) E(un(-,hn)) — E(u(-,h)) in C%8([0,Tp]; C(]0,b])) for every a €
(0,2), and 0 < B < (1 —2a)/32, where u(-,t) is the elastic equilibrium in
Qh(~,t);

and h is a weak solution to (41) with initial data hy. Moreover, if ¥ €
C3(R?\ {0}) then h(-,t) € H3(0,b) for almost every t € [0,To] and h is the
unique solution.

For linearly isotropic energy densities of the form (30), where A and p satisfy
(31), and for sufficiently regular surface energy densities we can prove asymp-
totic stability of the flat configuration ha.. = d/b when d is sufficiently small.
Consider the Grinfeld function K defined by

1
K(y) := =J >0 42
(v) max (ny), =0, (42)

where
y + (3 — 4v,) sinh y cosh y

41— vp)2 +y2 + (3 — 4v,)sinh®y '

and v, is the Poisson modulus of the elastic material, i.e.,

J(y) =

A

= 3o (43)

Vp :

It turns out that K is strictly increasing and continuous, K(y) < Cy, and

lim K(y) =1, for some positive constant C.
Yy—r+00

14



Theorem 13 Assume that W takes the form (30), where A and p satisfy (31),
and that ¢ € C3(R?\ {0}) satisfies 0311(0,1) > 0 and

D*y(&)[r, 7] >0 forallT L& T#0

for every € € S1. Let dipe : (0,00) — (0,00] be defined as dioc(b) := oo if
0< b < ﬂ(zﬂ“’)\)a?ld’(oal)
=73

P gTES and as the solution to

K<27leoc(b)> _ T (2p+N)0%19(0,1) 1
b 4 eulp+AN) b
otherwise. Then, for all d € (0,d)oc(b)) the flat configuration hg,y = d/b is
asymptotically stable, that is, there exists § > 0 such that if hg € Wﬁz’Q((O, b); R?)

with fob hodx = d and ||ho — haat|lwz2 < 6, then the solution h to (41) with
wnitial datum hqg exists for all times and

(44)

[A(+st) = Pfat|[wz2 — 0

ast — 00.

Acknowledgements

The research of I. Fonseca was partially funded by the National Science Founda-
tion under Grants No. DMS-1411646 and DMS-1906238 and the one of G.Leoni
by DMS-1714098.

References

[1] L. Ambrosio. Minimizing movements. Rend. Accad. Naz. Sci. XL Mem.
Mat. Appl.(5), 19:191-246, 1995.

[2] P. Bella, M. Goldman, and B. Zwicknagl. Study of island formation in
epitaxially strained films on unbounded domains. Arch. Ration. Mech.
Anal., 218(1):163-217, 2015.

[3] M. Bonacini. Epitaxially strained elastic films: the case of anisotropic
surface energies. ESAIM Control Optim. Calc. Var., 19(1):167-189, 2013.

[4] M. Bonacini. Stability of equilibrium configurations for elastic films in two
and three dimensions. Adv. Cale. Var., 8(2):117-153, 2015.

[5] A. Braides, A. Chambolle, and M. Solci. A relaxation result for energies de-
fined on pairs set-function and applications. ESAIM: Control, Optimisation
and Calculus of Variations, 13(4):717-734, 2007.

[6] M. Burger, F. Haufler, C. Stocker, and A. Voigt. A level set approach to
anisotropic flows with curvature regularization. Journal of computational
physics, 225(1):183-205, 2007.

15



[7]

8]

[10]

[11]

[12]

[16]

[17]

[18]

J. W. Cahn and J. E. Taylor. Overview no. 113 surface motion by surface
diffusion. Acta metallurgica et materialia, 42(4):1045-1063, 1994.

G. M. Capriani, V. Julin, and G. Pisante. A quantitative second order
minimality criterion for cavities in elastic bodies. SIAM J. Math. Anal.,
45(3):1952-1991, 2013.

M. Caroccia, R. Cristoferi, and L. Dietrich. Equilibria configurations
for epitaxial crystal growth with adatoms. Arch. Ration. Mech. Anal.,
230(3):785-838, 2018.

A. Chambolle and E. Bonnetier. Computing the equilibrium configuration
of epitaxially strained crystalline films. SIAM Journal on Applied Mathe-
matics, 62(4):1093-1121, 2002.

A. Chambolle and C. J. Larsen. ¢* regularity of the free boundary for a
two-dimensional optimal compliance problem. Calculus of Variations and
Partial Differential Equations, 18(1):77-94, 2003.

A. Chambolle and M. Solci. Interaction of a bulk and a surface energy
with a geometrical constraint. SIAM journal on mathematical analysis,
39(1):77-102, 2007.

V. Crismale and M. Friedrich. Equilibrium configurations for epitaxi-
ally strained films and material voids in three-dimensional linear elasticity.
Arch. Ration. Mech. Anal., 237(2):1041-1098, 2020.

G. Dal Maso. Generalised functions of bounded deformation. Journal of
the European Mathematical Society, 15(5):1943-1997, 2013.

E. Davoli and P. Piovano. Analytical validation of the Young-Dupré
law for epitaxially-strained thin films. Math. Models Methods Appl. Sci.,
29(12):2183-2223, 2019.

E. Davoli and P. Piovano. Derivation of a heteroepitaxial thin-film model.
Interfaces Free Bound., 22(1):1-26, 2020.

B. De Maria and N. Fusco. Regularity properties of equilibrium configu-
rations of epitaxially strained elastic films. In Topics in modern regularity
theory, pages 169-204. Springer, 2012.

A. Di Carlo, M. E. Gurtin, and P. Podio-Guidugli. A regularized equation
for anisotropic motion-by-curvature. SIAM Journal on Applied Mathemat-
ics, 52(4):1111-1119, 1992.

I. Fonseca, N. Fusco, G. Leoni, and V. Millot. Material voids in elastic solids
with anisotropic surface energies. J. Math. Pures Appl. (9), 96(6):591-639,
2011.

16



[20]

[21]

[27]

[28]

[29]

I. Fonseca, N. Fusco, G. Leoni, and M. Morini. Equilibrium configurations
of epitaxially strained crystalline films: existence and regularity results.
Archive for rational mechanics and analysis, 186(3):477-537, 2007.

I. Fonseca, N. Fusco, G. Leoni, and M. Morini. Motion of elastic thin
films by anisotropic surface diffusion with curvature regularization. Arch.

Ration. Mech. Anal., 205(2):425-466, 2012.

I. Fonseca, N. Fusco, G. Leoni, and M. Morini. Motion of three-dimensional
elastic films by anisotropic surface diffusion with curvature regularization.
Anal. PDE, 8(2):373-423, 2015.

I. Fonseca, N. Fusco, G. Leoni, and M. Morini. A model for dislocations
in epitaxially strained elastic films. J. Math. Pures Appl. (9), 111:126-160,
2018.

I. Fonseca, G. Leoni, and M. Morini. Equilibria and dislocations in epitaxial
growth. Nonlinear Anal., 154:88-121, 2017.

I. Fonseca, A. Pratelli, and B. Zwicknagl. Shapes of epitaxially grown
quantum dots. Arch. Ration. Mech. Anal., 214(2):359-401, 2014.

N. Fusco. Equilibrium configurations of epitaxially strained thin films. Atti
Accad. Naz. Lincei Rend. Lincei Mat. Appl., 21(3):341-348, 2010.

N. Fusco, V. Julin, and M. Morini. The surface diffusion flow with elasticity
in the plane. Comm. Math. Phys., 362(2):571-607, 2018.

N. Fusco, V. Julin, and M. Morini. The surface diffusion flow with elasticity
in three dimensions. Arch. Ration. Mech. Anal., 237(3):1325-1382, 2020.

N. Fusco and M. Morini. Equilibrium configurations of epitaxially strained
elastic films: second order minimality conditions and qualitative properties
of solutions. Arch. Ration. Mech. Anal., 203(1):247-327, 2012.

M. Goldman and B. Zwicknagl. Scaling law and reduced models for epi-
taxially strained crystalline films. SIAM J. Math. Anal., 46(1):1-24, 2014.

M. E. Gurtin and M. E. Jabbour. Interface evolution in three dimensions
with curvature-dependent energy and surface diffusion: interface-controlled
evolution, phase transitions, epitaxial growth of elastic films. Archive for
rational mechanics and analysis, 163(3):171-208, 2002.

C. Herring. Some theorems on the free energies of crystal surfaces. Physical
review, 82(1):87, 1951.

S. Y. Kholmatov and P. Piovano. A unified model for stress-driven rear-
rangement instabilities. Arch. Ration. Mech. Anal., 238(1):415-488, 2020.

17



[34]

H. Koch, G. Leoni, and M. Morini. On optimal regularity of free bound-
ary problems and a conjecture of de giorgi. Communications on Pure and
Applied Mathematics: A Journal Issued by the Courant Institute of Math-
ematical Sciences, 58(8):1051-1076, 2005.

L. Kreutz and P. Piovano. Microscopic validation of a variational model
of epitaxially strained crystalline film. arXiv preprint arXiv:1902.06561,
2019.

R. Kukta and L. Freund. Minimum energy configuration of epitaxial ma-
terial clusters on a lattice-mismatched substrate. Journal of the Mechanics
and Physics of Solids, 45(11-12):1835-1860, 1997.

P. Piovano. Evolution of elastic thin films with curvature regularization
via minimizing movements. Calc. Var. Partial Differential Equations, 49(1-
2):337-367, 2014.

P. Piovano and I. Velc¢ié. Microscopical justification of solid-state wetting
and dewetting. arXiv preprint arXiv:2010.08787, 2020.

A. Rétz, A. Ribalta, and A. Voigt. Surface evolution of elastically stressed
films under deposition by a diffuse interface model. Journal of Computa-
tional Physics, 214(1):187-208, 2006.

M. Siegel, M. J. Miksis, and P. W. Voorhees. Evolution of material voids
for highly anisotropic surface energy. Journal of the Mechanics and Physics
of Solids, 52(6):1319-1353, 2004.

B. Spencer. Asymptotic derivation of the glued-wetting-layer model and
contact-angle condition for stranski-krastanow islands. Physical Review B,
59(3):2011, 1999.

B. Spencer and J. Tersoff. Equilibrium shapes and properties of epitaxially
strained islands. Physical Review Letters, 79(24):4858, 1997.

18



