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Abstract—In this paper, we investigate designs of linear pre-
coders for vector Gaussian channels via stochastic optimizations
and deep neural networks (DNNs). We assume that the channel
inputs are drawn from practical finite alphabets, and we search for
precoders maximizing the mutual information between channel in-
puts and outputs. Though the problem is generally non-convex, we
prove that when the right singular matrix of precoder is fixed, any
local optima of this problem is a global optima. Based on this fact, an
efficient projected stochastic gradient descent (PSGD) algorithm is
designed to search the optimal precoders. Moreover, to reduce the
complexity of calculating a posterior means involved in gradients
calculation, K-best algorithm is adopted to make approximations of
a posterior means with negligible loss of accuracy. Furthermore, to
avoid explicit calculation of mutual information and its gradients,
DNN-based autoencoders (AEs) are constructed for this precoding
task, and an efficient training algorithm is proposed. We also prove
that the AEs, with ‘softmax’ activation function and ‘categorical
cross entropy’ loss, maximize the mutual information under rea-
sonable assumptions. Then, in order to extend the AE methods
to large scale systems, ‘sigmoid’ activation function and ‘binary
cross entropy’ loss are used such that the size of AEs will not grow
prohibitively large. We prove that this maximizes a lower bound
of the mutual information under reasonable assumptions. Finally,
to make the precoders practical for high speed wireless scenarios,
we propose an offline training paradigm which trains DNNs to
infer optimal precoders given channel state information instead of
training online for every different channel. Simulation results show
that all the proposed methods work well in maximizing mutual
information and improving bit error rate (BER) performance.

Index Terms—MIMO, linear precoders, finite alphabet, deep
neural networks, autoencoders.

I. INTRODUCTION

L INEAR precoding is an important way to improve the
reliability and transmission rate of multiple-input multiple-

output (MIMO) systems, and it has attracted much attention
from researchers for recent decades [1], [2]. Under Gaussian
noise assumption, the capacity of vector Gaussian channels is
achieved with Gaussian channel inputs, and water-filling (WF)
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[3] is the optimal precoding method which maximizes mutual
information and channel capacity. However, Gaussian channel
inputs are rarely used in practical communication systems, in-
stead of which finite alphabet channel inputs, such as quadrature
amplitude modulation (QAM) and phase shift keying (PSK), are
usually adopted. For this reason, more and more work began to
study the precoding problem under the assumptions of finite
alphabet inputs [3]–[9].

In [10], [11], an approximation of mutual information at low
signal-to-noise ratio (SNR) is obtained, which implies that the
optimal precoder is closed to the solution given by WF when
SNR is low. [5] shows by simulations that it is inappropriate
to treat finite alphabet inputs as Gaussian at high SNR in the
precoding problems. It is shown that the WF precoder can even
reduce the amount of mutual information of a system with finite
alphabet inputs. [12] proposes mercury/water-filling (MWF),
which is the optimal power allocation method for parallel addi-
tive white Gaussian noise (AWGN) channels with independent
parallel transceivers and channel inputs. Let H, G denote the
channel matrix and precoding matrix, respectively. For a general
vector Gaussian channel, MWF is equivalent to maximizing the
mutual information I(x;y) with respect to the singular values
ΣG of G, while fixing its left singular matrix UG as the right
singular matrix VH of H, and fixing its right singular matrix
VG as identity matrix I. Apparently, MWF gives up the part of
searching space related to VG, so its performance for general
vector Gaussian channels are not satisfactory as shown in [5].

To design better precoders, some results and methods have
been recently proposed. [13] points out that the W = G is a
sufficient statistic of I(x;y), so it is sufficient to do optimization
with respect to W. [5] proves that I(x;y) is strictly concave
to Σ2

G, and designs block coordinate descent algorithm with
respect to Σ2

G and VG. [14] derives optimality conditions of
G based on manifolds approaches and does optimization with
respect to Σ2

G and VG. [15] proposes to maximize a lower
bound of I to reduce the complexity.

Though the previous works show great performances in the
precoding tasks, designing efficient and flexible algorithms is
still challenging. Since the closed formed expression of I(x;y)
with common finite alphabet inputs has not been found (if exists),
the calculation ofI(x;y) and its gradients relies on Monte-Carlo
methods, which is extremely expensive for large systems. Most
of existing works require accurate gradients information, so the
gradients calculation in their algorithms takes a very long time
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with large systems. Moreover, most of the existing algorithms
are not flexible in time, since the time interval between two
updates of precoder is large due to the gradients calculation in
each iterations.

To the best knowledge of the authors, none of the existing
work considers stochastic nature of the optimization process.
Since Monte-Carlo method is used to calculate mutual informa-
tion and its gradients, the algorithm should be designed in a view
of stochastic optimization. In this paper, we prove that doing
optimization directly with respect to G has similar efficacy with
algorithms in [5]. Then a projected stochastic gradient descent
(PSGD) [16] algorithm is adopted to find optimal precoders
without evaluating I(x;y). Note that, the projection operations
in the PSGD can be easily conducted by dividing G with a
multiple of its Frobenius norm ||G||F , and the algorithm is
guaranteed for convergence.

To calculate stochastic gradients of mutual information, a pos-
terior means conditioned on different received signal samples
are required. However, the complexity of calculating a posterior
mean grows exponentially with the number of transmitting an-
tennas, which makes existing precoding algorithms intractable.
For this reason, K-best [17], [18] algorithm is adopted to get
close approximations of a posterior means with a tolerable
complexity, and simulation results show that this approximation
has negligible performance loss.

With the help of stochastic optimization techniques in train-
ing, deep neural networks (DNNs) show a great success in a vari-
ety of tasks [19], [20]. Among the studies of DNNs, autoencoder
(AE) is one of the most promising topics todate [21]–[25]. It can
automatically design encoders and decoders in pair for the pur-
pose of messages compression and decompression. [26] shows
that AE can also be used in a communication system for reliable
and high rate transceiver designs, and optimal transceiver can
be obtained via training. In this paper, we explore the possibility
of designing linear precoders with AEs. An advantage of the
method is that explicitly computation ofI(x;y) and its gradients
can be completely avoided, and modern software and hardware
technologies help accelerate the training processes [27]. We
show that, under reasonable assumption, training an AE, with
‘softmax’ and ‘categorical cross entropy’ as activation function
and loss, respectively, is equivalent to maximizing the mutual
information I(x;y). For larger MIMO systems, we modify the
AEs by using ‘sigmoid’ and ‘binary cross entropy’ as activation
function and loss, respectively, so the size of AEs will not grow
prohibitively large. We show that training such an AE is equiv-
alent to maximizing a lower bound of the mutual information.
Though greatly improve the efficiency of finding optimal pre-
coders, PSGD and AEs require online training with new gener-
ated samples for every different channel, which is sometimes still
impractical. To make mutual information-driven precoder more
practical, we propose an offline training paradigm, in which
DNNs are trained to infer optimal precoders given channel state
information.

Simulation results show that PSGD, AEs and the proposed
DNN successfully improve the mutual information, and the
proposed DNN significantly reduced the time complexity.

The rest of the paper is organized as follows. Section II gives
the system model and preliminaries of precoded MIMO systems.

Section III shows the theoretical results obtained in this paper.
Section IV shows the PSGD based precoder design. Section V
shows the AE and DNN based precoder design. Section VI
shows the numerical results. Section VII finally concludes this
paper.

II. SYSTEM MODEL AND PRELIMINARIES

Consider a linear precoder involved MIMO transmission pro-
cess described by

y = HGx+ n (1)

where y ∈ C
Nr×1 is the received signal; H ∈ C

Nr×Nt is the
channel matrix; G ∈ C

Nt×Nt is the linear precoding matrix;
x ∈ C

Nt×1 is the transmitted signal with E[xxh] = I where I is
the identity matrix;n ∈ C

Nr×1 is additive white Gaussian noise
(AWGN) with zero mean and covariance σ2I.

In this process, we assume that the entries ofx are drawn from
a constellation W independently, such as phase-shift keying
(PSK) and quadrature amplitude modulation (QAM), so the
alphabet of channel inputs can be expressed as X =WNt . In
this way, every log2 |W| bits are mapped to a symbol inW , and
everyNt log2 |W| bits are mapped to a vector inX . With discrete
finite alphabet X , the mutual information I(x;y) is expressed
as

I(x;y) = Nt log2 |W| −
1

|W|Nt

∑
xa∈X

En

{
log2

∑
xb∈X

e−da,b

}

(2)

where da,b = 1
σ2 (||HG(xa − xb) + n||2 − ||n||2).

The task of designing the precoding matrix G to maximize
the mutual information I(x;y) (minimize minus mutual infor-
mation) can be formulated as

min
G
−I(x;HGx+ n)

s.t. Tr{GhG} ≤ Nt (3)

where the constraint is used to limit the average energy of
channel inputs. We further define two important identities: con-
ditional minimum mean square error (MMSE) matrix

Φ(y) = E[(x− E[x|y])(x− E[x|y])h|y] (4)

and MMSE matrix

Φ = E[Φ(y)]. (5)

Denote the the singular value decomposition (SVD) of H and
G as H = UHΣHVh

H and G = UGΣGVh
G, respectively. [5,

Thm 1] proves that W = GhHhHG is a sufficient statistic of
I(x;HGx+ n), and the the problem (3) is equivalent to

min
VG,ΣG

−I(x;ΣHΣGVh
Gx+ n)

s.t. VG ∈ o(Nt)

ΣG ∈ d(Nt)

Tr{Σ2
G} ≤ Nt (6)

by letting UG = Vh
G without loss of generality. According to

[5, Thm 2], I(x;y) is concave to Σ2
G, and the feasible set of
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Σ2
G is convex, so gradient descent converges to the optimal

Σ2
G with a fixed VG. Based on this fact, [5] proposes a block

coordinates descent algorithm with respect to Σ2
G and VG to

solve the following the equivalent problem

min
VG,Σ2

G

−I(x;ΣHΣGVh
Gx+ n)

s.t. VG ∈ o(Nt)

Σ2
G ∈ d(Nt)

Σ2
G � 0

Tr{Σ2
G} ≤ Nt (7)

where o(Nt) is the set of Nt dimensional unit matrices; d(Nt)
is the set of Nt dimensional diagonal matrices.

III. THEORETICAL RESULTS

In this section, we will show that maximizing I(x;y) with
respect to G directly has similar efficacy with maximizing
I(x;y) along Σ2

G and VG. Denote the eigenvalue decomposi-
tion (EVD) of Φ as Φ = UΦΣΦU

h
Φ, the following proposition

shows the structure of optimal G:
Proposition 1: Let G be a critical point of problem described

in eq. (3), then

UG = VHΠ1Ī1 (8)

where Π1 is any permutation matrix and Ī1 is any matrix in a
form of

Ī1 =

⎡
⎢⎣e

jθ1 0 0

0 ejθ2 0

0 0 ejθ3

⎤
⎥⎦ (9)

where θ1, θ2 and θ3 are arbitrary real number. Additionally, we
have

VG = UΦΠ2Ī2 (10)

where Π2 and Ī2 have similar definition with Π1 and Ī1,
respectively.

Proof: The proof is similar to that of [14, Thm 2], and we
omit details here for brevity.

We next show a simple verification to the Proposition 1. Let
the covariance matrix of n be Qn = σ2I, according to [28], the
derivative of I is

∇GI(x;HGx+ n) =
1

σ2
HhHGΦ. (11)

A necessary condition for G to be critical point of problem (3)
is

1

σ2
HhHGΦ = λG (12)

where λ > 0 is Lagrangian multiplier. (It can be easily verified
that λ �= 0 since the constraint must be active in this problem.)
Plug in the decomposition of H, G and Φ to eq. (12) and make
an arrangement, we have

1

σ2
Uh

GVHΣ2
HVh

HUGΣGVh
GUΦΣΦU

h
ΦVG=λΣG. (13)

According to eq. (13), the left hand side (LHS) of it needs to be
diagonal. Now let us plug in the results in Proposition 1 to check
their correctness. Plug in eq. (8) and (10) to eq. (13), we obtain

1

σ2
Īh1Π

h
1Σ

2
HΠ1Ī1ΣGĪh2Π

h
2ΣΦΠ2Ī2 = λΣG. (14)

Denote Σ̃2
H = Īh1Π

h
1Σ

2
HΠ1Ī1, Σ̃Φ = Īh2Π

h
2ΣΦΠ2Ī2, and it is

easy to observe that Σ̃2
H and Σ̃Φ are diagonal, then eq. (14) can

be simplified to

1

σ2
Σ̃2

HΣGΣ̃Φ = λΣG (15)

whose LHS turns out to be diagonal. In this way, we checked
the results in Proposition 1 make sense.

Next we provide a relationship between ΣG and I(x;y) via
the following theorem.

Corollary 1: For the model in eq. (6), let VG be fixed, then
any local minima of the problem

min
ΣG

−I(x;ΣHΣGVh
Gx+ n)

s.t. ΣG ∈ d(Nt)

Tr{Σ2
G} ≤ Nt (16)

is a global minima. Furthermore, if det(Σ2
H) > 0, then the only

global maximum is ΣG = 0, and other critical points (only
including saddle points and local minima) are on the boundary
Tr{Σ2

G} = Nt.
Proof: See Appendix. �
This result is an extension of [5, Thm 2]. It reveals the

symmetry of objective landscape in problem (3) and relationship
between local minimas.

Corollary 2: Under the model expressed in eq. (6), G is a
local minima of problem (3) if and only if G is a local minima
of problem (7).

Proof: Apply Proposition 1 and Corollary 1, the results in
straight forward. Details are omitted here for brevity. �

According to Corollary 1 and Proposition 1, if the gradient
descent algorithm is designed properly such that it can escape
saddle points efficiently, then at any local minimaG� of problem
(3), Σ�

G is the global minima when the right singular matrix is
fixed as V�

G.

IV. PRECODER DESIGN VIA PROJECTED STOCHASTIC

GRADIENT DESCENT

In this section, we design efficient projected stochastic gra-
dient descent (PSGD) algorithms to solve the problem (3). In
the algorithms, we update G directly in each iteration instead of
updating UG, ΣG and VG separately. This design is motivated
by Corollary 2 and the fact that PSGD escapes saddle points
efficiently. Besides, the projection operations involved in the
algorithms are simple, so negligible additional complexity is
introduced.
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Algorithm 1: PSGD Precoding.
1: Initialization: Initialize G0 as a complex value matrix
2: for t← 1 to itermax do
3: Generate B independent samples {yj ,xj}Bj=1

through eq. (1) with Gt−1
4: Ωt =

1
σ2H

hHG 1
B

∑B
j=1(x

j − E[x|yj ])(xj − E[x|yj ])h

5: Pt = Gt−1 + μ√
t
Ωt

6: Gt =
√
NtPt/||Pt||F

7: P̄t =
1
tGt +

t−1
t Gt−1

8: end for
9: Ḡitermax =

√
NtP̄itermax/||P̄itermax||F

10: Output: Ḡitermax

A. Projected Stochastic Gradient Descent

Notice that the MMSE matrix Φ can be written as

Φ = Ex,y

[
(x− E[x|y])(x− E[x|y])h]

= I− Ey

[
E[x|y]E[x|y]h] . (17)

Given a batch ofB independent samples {xj ,yj}Bj=1 generated
by the model in eq. (1), a noise gradient Ω can be calculated
according to eq. (11) as

Ω =
1

σ2
HhHG

1

B

B∑
j=1

(xj − E[x|yj ])(xj − E[x|yj ])h. (18)

One can easily verify that E[Ω] = ∇GI(x;HGx+ n), and
E[x|y] is calculated as

E[x|y] =
∑
xa∈X

xae
−||y−HGxa||2/σ2∑

xb∈X e
−||y−HGxb||2/σ2 . (19)

Let itermax denote the maximum number of iterations, and μ
denote the initial step size. The PSGD algorithm is summarized
as follows.

In the algorithm, || ∗ ||F refers to as Frobenius norm, which is
defined as ||G||F =

√
Tr{GhG}. Note that P̄T is the average

ofGt the in the formerT iterates, and step size μ√
t

decreases with
iterations index t. This two tricks help reduce the fluctuation of
iterates around the local solutions.

Since the norm of each entry of Φ is bounded (becauseW is
bounded), the gradient 1

σ2H
hHGΦ is bound, so the variance

of stochastic gradient is bounded. Therefore according to [16],
when Ḡt is in a region with local convexity, convergence is
guaranteed.

It is point out that this method works with any finite alpha-
bet X (not necessarily WNt ) with arbitrarily probability mass
distribution.

B. Simplified PSGD

In Algorithm 1, calculating E[x|y] is very expensive in large
systems, because it involves enumeration of all possible trans-
mitted signals in X , whose size |X | = |W|Nt grows exponen-
tially withNt. For this reason, K-best [17] algorithm is adopted

Algorithm 2: K-Best a Posterior Mean Calculation.
1: Initialization: Initialize a tree root and set D0 = 0 for

all paths.
2: for i← 1 to Nt do
3: Extend each reserved path with all elements inW .
4: Calculate Di for each path according to eq. (21).
5: Reserve K paths with smallest Di.
6: end for
7: Let {x̂k}Kk=1 and {Dk,Nt

}Kk=1 be the paths and their
corresponding cost at the Nt-th level.

8: Output: x̂ =
∑K

k=1 x̂ke
−Dk,Nt

/σ2

∑K
k=1 e

−Dk,Nt
/σ2

to find close approximations of E[x|y] with an affordable
complexity.

Denote the QR decomposition of HG as HG = QR, where
Q ∈ C

Nr×Nt consists of columns of a unit matrix, and R ∈
C

Nt×Nt is a lower triangular matrix. Then eq. (1) can be rewrit-
ten as

z = Rx+ ñ (20)

where z = Qhy and ñ = Qhn. By the definition of Q, the
covariance matrix of ñ is also σ2I. The K-best algorithm is a
width-first pruned tree search process. At each level of the tree,
only K paths with the smallest cost are reserved. When the tree
is extended to the next level, each one of the K reserved paths
at the current level are extended to |W| new paths, so there are
totally K|W| paths at the next level. Then only K paths with
smallest cost among all K|W| paths are reserved. After that the
tree can be extended again similarly. Denote the cost a path x at
the i-th level as Di, then we have

Di = Di−1 +

∣∣∣∣∣z(i)−
i∑

l=1

R(i, l)x(l)

∣∣∣∣∣
2

(21)

where R(i, l) refers to the entry of R at the i-th row and l-th
column, and the same rule can be extended to other variables.
Note that at the i-th level, the summation in eq. (21) stopped at
l = i instead ofNt, becauseR is lower triangular. The algorithm
is summarized as follows:

Fig. 1 shows an example of this tree search process withW =
{−1,+1} andK = 4. The tree is first extended to 2 and 4 paths
at the first and second level, respectively. The 4 paths at the
second level are extended to 8 paths at the third level, but only
the 4 paths with the smallest cost are reserved at the third level,
and others are pruned. Similar things happen when it is extended
to other levels. The main idea of this algorithm is to enumerate
only K most likely channel inputs instead of all elements in X
when calculating the E[x|y].

V. PRECODER DESIGN VIA DEEP NEURAL NETWORKS

In this section, we first explore the possibility of finding the
optimal precoders with autoencoders (AEs) based on deep neural
networks (DNNs). The benefits of using AEs are as follows: first,
after training the AE, it can obtain not only optimal precoders
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Fig. 1. An example of K-best algorithm with K = 4 and W = {−1,+1}.
The 1-st level reserved paths are [−1] and [+1]; the 2-nd level reserved paths
are [−1,−1], [−1,+1], [+1,−1] and [+1,+1]; the 3-rd level reserved paths
are [−1,−1,+1], [+1,−1,−1], [+1,+1,−1] and [+1,+1,+1]; the 4-th level
reserved paths are [−1,−1,+1,−1], [+1,+1,−1,−1], [+1,+1,+1,−1] and
[+1,+1,+1,+1], which are marked with bold blue line.

Fig. 2. Structure of DNN-based AE for precoding. The trainable parameters
are G and Θ, where Θ refers to all the weights and biases in layers at the right
hand side (receiver side) of the AE.

but also optimal receivers; second, the explicit calculation of
MMSE matrixΦ is avoided; third, increasing number of modern
technologies can be used to accelerate the training process. Note
that theX can be any finite set (not necessarilyWNt ), and noise
is not required to be Gaussian in this method. After that, we
design an offline training paradigm which trains DNNs to infer
optimal precoder given channel state information. This method
significantly reduces the time complexity of precoding and is
more practical for high speed wireless scenarios.

Fig. 2 shows the structure of a DNN-based AE. As the input of
AE, x is first multiplied with precoding matrix G, which can be
viewed as a group of trainable weights of a layer without bias and
activation function. Then this temporary result Gx is multiplied
with channel H, which is non-trainable and then added with
Gaussian noise. The receiver in this AE consists of multiple
dense layers, and a particular activation function is implemented
at the output layer to give the corresponding type of estimations
of x. To simplify the analysis of DNNs’ behaviours, we made
the following assumption.

Assumption 1: Let f(y;Θ) be the parameterized function at
the receiver of the AE, where Θ are the trainable parameters
(weights and biases) at the receiver. Let f�(y) be the function
that minimize the loss given H and G. We assume that the
distance between f(y;Θ�) and f�(y) can be arbitrarily small,
where Θ� are the parameters obtained after training.

In this assumption, the ‘loss’ and ‘distance’ are not defined
specifically. We assume that it holds for any losses and distances
used in the following discussions. The assumption is based on

Algorithm 3: Training the Autoencoder.
1: Initialization: Randomly initialize Θ and G such that

Tr{GhG} ≤ 1.
2: for i← 1 to itermax do
3: Generate B independent samples {xj}Bj=1.
4: Update Θ and G with one Adam step.
5: Update G with

√
NtG/||G||F

6: Generate B independent samples {xj}Bj=1.
7: Update G with one SGD step.
8: Update G with

√
NtG/||G||F

9: end for
10: Output: G

the fact that the regression capability of DNNs is strong, and the
regression error can be negligibly small.

A. Autoencoder Maximizing Mutual Information

The following proposition is proposed to show the equiv-
alence between training the AE and maximizing the mutual
information I(x;y).

Proposition 2: Suppose Assumption 1 holds. Let the activa-
tion function of the output layer be ‘softmax’ and loss function
be ‘categorical cross entropy’, then training the AE is nearly
same with maximizing the mutual information I(x;y).

Proof: See Appendix. �
To maximize the mutual information, the activation function

of the output layer is chosen as ‘softmax’ and loss function is
chosen as ‘categorical cross entropy’. The training algorithm is
summarized as follows Algorithm 3.

In the algorithm, the target is chosen as the one-hot represen-
tation of x. Note that in each iteration, we update G with an
additional SGD step after an Adam [29] step. The network is
trained in this way due to the fact that training former layers of
AEs requires more efforts.

B. Large Size Precoder Design via Autoencoder

When ‘softmax’ and ‘categorical cross entropy’ are adopted,
the sizes of layers in the AE grow exponentially with the number
of transmitting antennas Nt, which is very expensive in large
systems. For this reason, ‘sigmoid’ and ‘binary cross entropy’
are chosen as activation function and loss in this subsection,
respectively, so the sizes of layers will only grow linearly with
Nt. Let the vectorb ∈ BNt log2 |W|×1 denote the binary messages
corresponding to x. We use b as target and train the AE with Al-
gorithm 3. The following proposition points out the relationship
between training this AE and maximizing mutual information
I(x;y).

Proposition 3: Suppose Assumption 1 holds. Let the activa-
tion function of the output layer be ‘sigmoid’ and loss function
be ‘binary cross entropy’, then training the AE is nearly same
with maximizing the following lower bound of I(x;y)

I(x;y) ≥ H(x)−
Nt log2 |W|∑

i=1

H(b(i)|y) (22)
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Fig. 3. Paradigm of training a DNN offline to infer optimal precoder given
channel matrix H and σ2. The precoder is parameterized with DNN, whose
weights are denote as ω.

where b(i) refers to the i-th entry of vector b.
Proof: See Appendix. �

C. Learn How to Precode via Deep Nerual Networks

In previous subsections, we investigated the possibility of
learning precoding matrices G with AE. Although it works
theoretically, for every channel matrix H and noise variance
σ2, AEs need to be trained online with new samples related to
H and σ2, which makes it impractical in high speed wireless
scenarios.

To make the precoder keep up with the changes of channel
environments, we propose a novel offline training paradigm in
which DNNs are trained to infer optimal G from H and σ2.
In this paradigm, the precoder G is parameterized with a DNN
followed by a normalization layer to ensure ||G||2F = Nt. The
inputs of the DNN are H and σ2, and we denote function of
DNN as G = l(H, σ2;ω), where ω refers to as all the weights
in this DNN. In each update of the training process,H, σ2,x and
n are generated as training samples, in which n ∼ CN(0, σ2I)
and x are drawn from a constellation set. Then y = HGx+ n
is calculated and sent to an maximum a posterior probability
(MAP) detector together with H, G and σ2. The MAP detector
then calculates the a posterior distribution of x, and the results
are used to calculate categorical cross entropy loss. Based on
the loss, weights ω is updated through back propagation. The
paradigm is shown in Fig. 3.

The principles of this design are explained here. According
to the proof of Proposition 2, training such a network with
the paradigm described above is equivalent to the following
optimization problem

max
ω

Eσ2EHI(x;Hl(H, σ2;ω)x+ n|H, σ2). (23)

Note that eq. (23) is upper bound by

Eσ2EH max
ω
I(x;Hl(H, σ2;ω)x+ n|H, σ2)

≤ Eσ2EH max
G:||G||2F=Nt

I(x;HGx+ n|H, σ2) (24)

so the training process encourage l(H, σ2;ω) to approach
argmaxG:||G||2F=Nt

I(x;HGx+ n|H, σ2), and the distribu-
tion of H and σ2 during training can be set arbitrary as long
as their sample spaces are large enough.

During the training, H is diagonal with normalized power
||H||2F = Nt. To obtain precoder for a general H after training,
its singular value matrix ΣH is used as a input of the network.
Then the desired precoder will be obtained by multiplying the
output of the network with VH on the left hand side.

VI. NUMERIC RESULTS

In this section, we will compare the performances of different
linear precoding methods in terms of mutual informationI(x;y)
between channel inputs and outputs. We will also show the
influence of precoder on bit error rate (BER) for MIMO systems
and the convergence of proposed algorithms.

Fig. 4(a) shows the mutual information with different pre-

codering schemes under channel H1 =

⎡
⎢⎣
2 1

1 1

⎤
⎥⎦, and SNR is

defined asSNR = Tr{HhH}
Ntσ2 . In this figure we make the following

observations: 1) When the channel inputs are Gaussian, the WF
improves the mutual information; 2) When QPSK is adopted,
our PSGD algorithm improves the mutual information; 3) At
low SNR regions, the problems of designing precoders with
finite alphabets inputs can be approximated and reduced to WF
problems based on the following approximation in [11] and
Taylor expansion ln(1 + x) = x+ o(x);

I(x;y) = σ−2Tr{GhHhHG}+ o(σ−2). (25)

4) When we have the wrong assumption of channel inputs,
the precoder can reduce the amount mutual information.
As the star marked magenta curve suggests, WF precoders
reduce the amount of mutual information when QPSK is adopted
as channel inputs. Fig. 4(b) shows the comparison under channel
H2, where

H2 =

⎡
⎢⎣ 1 0.5j 0.3

−0.5j 1.5 −0.1j
0.3 0.1j 0.5

⎤
⎥⎦ . (26)

In Fig. 4(b), similar observations can be made.
In Fig. 5, we compare the performances of different precoding

methods including PSGD, AE with softmax activation (AE
softmax), AE with sigmoid activation (AE sigmoid), proposed
DNN and mercury/waterfilling (MWF). As shown in the figure,
PSGD, AE softmax, AE sigmoid and proposed DNN have al-
most same performance. PSGD, AE softmax and proposed DNN
perform slightly better than AE sigmoid because AE sigmoid
maximizes the lower bound of mutual information instead of
mutual information itself. MWF is the optimal power allocation
method for parallel AWGN channels, but it is sub-optimal for
vector Gaussian channels, since MWF is only a special case in
which UG = VH and VG = I, and I(x;y) is only optimized
with respect to Σ2

G. As suggested by eq. (25), all methods have
similar optimal performance at low SNR region. However, at
high SNR regime, MWF performs much worse than the other
methods since it gives up the part of feasible set corresponding
to VG. The receivers in AEs are parameterized with a 3-layer
DNN with size 128 in this experiment. The networks are trained
according to Algorithm 3, in which the itermax is set as 10,000,
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Fig. 4. Mutual information for Gaussian and QPSK channel inputs. The WF and PSGD improve the mutual information for Gaussian and QPSK channel inputs,
respectively. However, WF reduce the amount of mutual information when QPSK inputs are assumed.

Fig. 5. Precoding performances of proposed methods and MWF. All the proposed methods show successes in improving mutual information, while MFW fails
to improve it at high SNR regime. Compared with other proposed methods, AE sigmoid has a small performance between due to the mismatch between training
loss and exact mutual information.

and the batch sizeB = 32. The learning rate for Adam step and
SGD step are set as 10−3 and 10−4, respectively.

Fig. 6 shows the performance of precoder under different
modulation schemes. It can be observed that different channel
inputs achieve nearly same amount of mutual information at
low SNR region, which verifies the eq. (25) again. At high
SNR, the amount of mutual information differs a lot under
different modulation schemes. Note that the higher the order
of modulation, the higher the SNR is required to get close to
their corresponding maxima of mutual information. As we can
observe, BPSK, QPSK and 16-QAM get close to their maxima
at 1, 10 and 20 dB, respectively.

Fig. 7 shows the average convergence of PSGD with random
initialization. The vertical error bar refers to as the standard

deviation of the mutual information at the corresponding iter-
ation. According to the figure, the algorithm converges at the
first 50 iterations under different initial values. After that, the
standard deviation decrease with the number of iterations. In the
simulations, the batch size is set as B = 32, and the initial step
size is set as μ = 0.1. It can be observed that our work takes
more iterations than exiting works [5], however each iteration
of our work is much simpler. Existing works, requiring accurate
gradient information or evaluations of I(x;y), need hundreds
of samples of {x,y} and their corresponding a posterior means
at each iteration. While in our work, only B = 32 samples of
a posterior means are required at each iteration. The overall
complexity of our algorithm and existing ones are similar, but
less work at each iteration makes our algorithm more flexible.
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Fig. 6. Comparison of percoder performances with different modulation
schemes under channel H1.

Fig. 7. Convergence of PSGD with different channels and channel inputs at
different SNRs.

Fig. 8 shows the average convergence of the training algo-
rithm for different AEs. The vertical error bar is the standard
deviation at the corresponding iteration. As we can observed,
the algorithms converge quickly at the first 500 iterations, and
then the deviation decreases gradually as iteration number in-
creases. It can be seen that performance of AEs with ‘softmax’
and ‘sigmoid’ might have a small performance gap, since AE
sigmoid maximize a lower bound of mutual information instead
of itself.

Fig. 9 shows the coded BER performance of proposed meth-
ods under H3 and BPSK modulation, where H3 is a 10× 10
diagonal matrix with 1, 2, ...,10 being diagonal entries. In the
simulation, the (648,486) LDPC code in IEEE 802.11 is adopted
for error correction, and MAP is used for detection (if not speci-
fied). According to the figure, we made following observations:

Fig. 8. Convergence of AE with different channels and channel inputs at
different SNRs.

Fig. 9. Coded BER performance of proposed methods under channel H3 and
BPSK modulation.

1) The BER performance is very poor when there is no preocder
or WF is applied; 2) All the proposed methods have huge per-
formance gain; 3) Belief propagation (BP) detection has a small
performance loss compared with MAP detection; 4) PSGD,
simplified PSGD and AE softmax precoders have nearly same
performance; 5) AE sigmoid has the best performance among all
the precoding methods. For the last observation, we provide the
following explanation. According to eq. (22), using ‘sigmoid’
and ‘binary cross entropy’ results in minimizing the summation
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Fig. 10. Convergence of AE with sigmoid for large scale system.

of conditional entropy of bits, i.e.
∑Nt log2 |W|

i=1 H(b(i)|y), which
coincides with the metric of BER. In this simulation, AEs consist
of two hidden layers with size 512, and they are trained at SNR
2 dB.

Fig. 10 shows the convergence of Algorithm 3 under channel
H3 and H4 with ‘sigmoid’, where H4 is a 32× 32 diagonal
matrix with 1.1, 1.2, 1.3, ...,4.2 being diagonal entries. Since the
exact lower bound in eq. (22) is computationally prohibitive, we
use the binary cross entropy loss as a metric of convergence,
which is calculated by taking the average of the loss of multiple
batch of data in all former iterations. As shown in the Appendix
C, the binary cross entropy is lower bounded by the term∑Nt log2 |W|

i=1 H(b(i)|y) in eq. (22), so subtracting binary cross
entropy from source entropy gives a lower bound of mutual
information. In the figure, we can observe that the average binary
cross entropy decreases gradually as the number of iterations
increase, and the algorithm converges well in different cases. We
also noticed that more iterations are needed for the convergence
in large systems.

Fig. 11 shows the coded BER performance of no precoder,
AE sigmoid and WF under H4. In the simulation, BP is adopted
for detection, since the complexity of MAP is not affordable
for channel matrix with such size. The precoder for QPSK is
obtained by training AE at 8 dB, and that for BPSK is trained at
5 dB. It can be observed that AE sigmoid can achieve significant
performance gain compared with no precoders and WF. It can
also be observed that precoder for BPSK can achieve more gain
than that for QPSK.

Fig. 12 shows the relationship between achieved mutual infor-
mation and σmin(H) of 2× 2 H, where σmin(H) is the smaller
singular value ofH. Without loss of generality,H is diagonal and
it is normalized to satisfy ||H||2F = Nt. In the figure, Nt = 2,
so the range of σmin(H) is 0 to 1. SNR is set as 6 dB and QPSK
modulation is assumed. From Fig. 12, we observe that 1) the
mutual information is higher and more stable after precoding; 2)
the smallest value of mutual information after precoding appears
around σmin(H) = 0.4 instead of σmin(H) = 0. For the second
observation, we provide the following explanation. Based on

Fig. 11. Coded BER with different precoding strategies under H4.

Fig. 12. Achieved mutual information vs. σmin(H). H is diagonal and it is
normalized to satisfy ||H||2F = Nt without loss of generality.

the proof of Corollary 1, when σmin(H) is small enough, the
optimal precoder will not allocate power to the sub-channel
corresponding to σmin(H). In other word, the power of the
sub-channel is wasted. From Fig. 12, we infer that whenσmin(H)
is around 0.4, the precoder waste the largest amount of power
of H, so we obtain a small value of mutual information.

In Table I, we make a comparison among the proposed meth-
ods, [5] and [15]. The code is written in Python 3.6 and is run
on intel i7-8700 CPU. From the table, we make the following
observations: 1) [5] achieves the optimal values of mutual in-
formation but spends much more time than other methods; 2)
[15] achieves sub optimal values and it is much faster than [5]; 3)
PSGD achieves optimal values and takes much less time than [5];
4) AEs achieve near optimal values with executing time less than
[5] but more than PSGD; 5) In the cases corresponding to the first
two columns, [15] is faster than PSGD and AE softmax, but it is
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TABLE I
COMPARISON AMONG PROPOSED METHODS AND EXISTING WORKS: MUTUAL INFORMATION/EXECUTING TIME

reversed in the third case; 6) The proposed DNN, introduced in
Section V-C, achieves optimal values in all cases, and run faster
than all other methods.

In [15], the complexity of evaluating lower bounds of I is
O(|X |2), while the complexity of calculating E[x|y] in PSGD is
O(|X |). Besides, the power allocation used in [15] is determined
by exhaustive search, whose complexity is exponential to Nt.
Therefore as Nt increases, the complexity of [15] grows faster,
which results in a longer executing time in the third case in Ta-
ble I. The proposed DNN calculates the precoder by evaluating
the explicit function G = l(H, σ2;ω), so it is faster than other
iterative methods.

VII. CONCLUSION

In this paper, we considered the problem of finding linear
precoders that maximize the mutual information with finite
alphabet channel inputs. We proved that if the right singular
matrix of the precoder is fixed, then any local optimal of this
problem is a global optimal. Based on this result, a flexible PSGD
algorithm and its simplified version were proposed to solve
this problem. Moreover, motivated by modern technologies for
training accelerations of DNNs, AE based precoding methods
were proposed, which works for MIMO systems with tens of
antennas. To make the precoder practical for high speed wire-
less scenarios, a novel offline training paradigm of DNNs was
proposed, in which DNNs are trained to infer optimal precoder
given channel state information. Simulation results showed that
all the proposed methods performed well in terms of both mutual
information and BER performance, and the proposed DNN
significantly reduced the time complexity of precoding.

APPENDIX A
APPENDIX PROOF OF COROLLARY 1

Let pi be the i-th diagonal element of Σ2
G. Then the problem

of maximizing I(x;y) with respect to Σ2
G can be reformulated

as

min
p1,p2,...,pNt

− I(x;y)

s.t. ∀i, pi ≥ 0

Nt∑
i=1

pi ≤ Nt. (27)

Then according to [5, Thm 2], the gradient of I(x;y) with
respect to pi can be written as

∂I
∂pi

= ψiγi (28)

where ψi refers to as the i-th diagonal element of Vh
GΦVG

(which is still a function of p1, p2, ..., pNt
), and γi is the i-th

diagonal element of Σ2
H. Since −I(x;y) is a convex function

of p1, p2, ..., pNt
according to [5, Thm 2] and the constraints of

problem (27) is convex, the following Karush − Kuhn−Tucker
(KKT) conditions are sufficient and necessary for optimal solu-
tions of eq. (27):⎧⎨

⎩
∀i,−ψiγi + λ− λi = 0
∀i, pi ≥ 0, λi ≥ 0, λipi = 0∑Nt

i=1 pi ≤ Nt, λ ≥ 0, λ(
∑Nt

i=1 pi −Nt) = 0.
(29)

Notice the fact that ψi > 0 for all i and there exists at least a
γi > 0, eq. (29) is equivalent to⎧⎨

⎩
∀pi > 0, ψiγi = λ

∀pi = 0, ψiγi ≤ λ∑Nt

i=1 pi = Nt, λ > 0.
(30)

Denote gi as the i-th diagonal element of ΣG, then the
problem (16) can be reformulated as

min
g1,g2,...,gNt

−I(x;y)

s.t.

Nt∑
i=1

g2i ≤ Nt (31)

and the Lagrangian of eq. (31) is given as

L(−I, η) = −I + η

(
Nt∑
i=1

g2i −Nt

)
. (32)

Apply chain rule of derivative to eq. (28) with pi = g2i , the
derivative of I(x;y) with respect to gi is given as

∂I
∂gi

= 2giψiγi. (33)

We list the following KKT conditions, which are sufficient and
necessary for critical points of eq. (31):{∀i,−2giψiγi + 2ηgi = 0∑Nt

i=1 g
2
i ≤ Nt, η ≥ 0, η(

∑Nt

i=1 g
2
i −Nt) = 0

(34)
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in which the first line is equivalent to

∀i, gi = 0 or ψiγi = η. (35)

If η = 0, then for any γi > 0, gi = 0, and this gives the global
maximum with I = 0. For the case η > 0, eq. (34) is equivalent
to {∀i, gi = 0 or ψiγi = η∑Nt

i=1 g
2
i = Nt, η > 0.

(36)

For any i = 1, 2, ..., Nt, the second order derivative ofL(−I, η)
with respect to gi is given by

∂2L(−I, η)
∂g2i

= 2

(
η − ∂I

∂pi

)
− 2g2i

∂2I
∂p2i

(37)

which is the i-th diagonal element of the Hessian of L(−I, η).
Let ḡ1, ḡ2, ..., ḡNt

satisfy eq. (35) but violate eq. (30) with
corresponding ψ̄1, ψ̄2, ..., ψ̄Nt

and η̄, then there exists an index
m, such that ḡm = 0 and ψmγm > η. Then we have

∂2L(−I, η̄)
∂ḡ2m

= 2(η̄ − ψ̄mγm) < 0 (38)

which means the Hessian at the point ḡ1, ḡ2, ..., ḡNt
, η̄ is not

positive semi-definite, so the ḡ1, ḡ2, ..., ḡNt
is not a local mini-

mum. Therefore any local minimum has to satisfies eq. (30), so
any local minimum is global minimum.

If γi > 0 for all i, then the only global maximum is gi = 0
for all i. If, in addition, there exists an index n such that ḡn > 0,
then

∂2L(−I, η̄)
∂ḡ2n

= −2g2n
∂2I
∂p2n

> 0 (39)

where ∂2I
∂p2

n
< 0 due to concavity of I with respect to p1, ..., pNt

.
Therefore in this case, the ḡ1, ḡ2, ..., ḡNt

is neither a local mini-
mum nor a local maximum, so it is a saddle point.

APPENDIX B
APPENDIX PROOF OF PROPOSITION 2

In this section, we useX to denote the random variable, and let
xa enumerate samples space X for a = 1, 2, ..., |W|Nt . Similar
notation is applied to Y.

With one-hot encoding, the target value is ea = onehot(xa)
if xa is generated as sample, where ea is the a-th column of
an identity matrix. If the loss is chosen as ‘categorical cross
entropy’, then training the autoencoder is equivalent to solve
the following problem:

min
G,Θ

EX,Y[− log2 (f(Y;Θ))T onehot(X)]

s.t. Tr{GhG} ≤ Nt. (40)

Note that the above objection function

EX,Y[− log2(f(Y;Θ))T onehot(X)]

= EY

[
−
∑
a

pr(X = xa|Y) log2(f(Y;Θ))T onehot(xa)

]

= EY

[
−
∑
a

pr(X = xa|Y) log2(f(Y;Θ)a)

]
(41)

where f(Y;Θ)a refers to the a-th entry of f(Y;Θ). Note that∑
a f(Y;Θ)a = 1 always holds, so f(Y;Θ) returns a distribu-

tion. By the non-negativity of Kullback Leibler divergence (KL
divergence), we have

EY[−
∑
a

pr(X = xa|Y) log2(f(Y;Θ)a)]

≥ EY[−
∑
a

pr(X = xa|Y) log2 pr(X = xa|Y)]

≡ H(X|Y). (42)

Suppose the Assumption 1 holds and the ‘distance’ is chosen as
KL divergence, then for any G, we can obtain a parameter Θ�

via training such that

EX,Y[− log2(f(Y;Θ�))T onehot(X)] = H(X|Y) + ε (43)

where ε > 0 is a small training error. Then we have

min
Tr{GhG}≤Nt

min
Θ

EX,Y[− log2(f(Y;Θ))T onehot(X)]

≤ min
Tr{GhG}≤Nt

EX,Y[− log2(f(Y;Θ�))T onehot(X)]

= min
Tr{GhG}≤Nt

H(X|Y) + ε. (44)

Therefore problem (40) is equivalent to

min
G
H(X|Y) + ε(G)

s.t. Tr{GhG} ≤ Nt (45)

where ε(G) can be viewed as function of G with very small
value. Since I(X;Y) = H(X)−H(X|Y), the problem (45)
is equivalent to maximizing mutual information.

APPENDIX C
APPENDIX PROOF OF PROPOSITION 3

In this section, we use notation rules same with that in last
section. We further denote random variable B = bin(X), where
bin(X) returns the binary representation ofX. Ifxa is generated
as sample, the target isba = bin(xa), whereba is the binary rep-
resentation of (a− 1). With ‘sigmoid’ being activation function,
training the AE is equivalent to solving the following problem:

min
G,Θ

EX,Y[− log2(f(Y;Θ))T bin(X)

− log2(1− f(Y;Θ))T (1− bin(X))]

s.t. Tr{GhG} ≤ Nt (46)

where 1 refers to an vector with all entries being 1. Make an
arrangement of the objective function, we obtain eq. (47), shown
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EX,Y[− log2(f(Y;Θ))T bin(X)− log2(1− f(Y;Θ))T (1− bin(X))]

= EB,Y

⎡
⎣Nt log2 |W|∑

i=1

− log2(f(Y;Θ)i)B(i)− log2(1− f(Y;Θ)i)(1−B(i))

⎤
⎦

= EYEB(1),B(2),...|Y

⎡
⎣Nt log2 |W|∑

i=1

− log2(f(Y;Θ)i)B(i)− log2(1− f(Y;Θ)i)(1−B(i))

⎤
⎦

= EY

⎡
⎣Nt log2 |W|∑

i=1

− log2(f(Y;Θ)i)pr(B(i) = 1|Y)− log2(1− f(Y;Θ)i)pr(B(i) = 0|Y)

⎤
⎦

≤ EY

⎡
⎣Nt log2 |W|∑

i=1

− log2(pr(B(i) = 1|Y))pr(B(i) = 1|Y)− log2(pr(B(i) = 0|Y))pr(B(i) = 0|Y)

⎤
⎦

≡
Nt log2 |W|∑

i=1

H(B(i)|Y). (47)

min
Tr{GhG}≤Nt

min
Θ

EX,Y

[− log2(f(Y;Θ))T bin(X)− log2(1− f(Y;Θ))T (1− bin(X))
]

≤ min
Tr{GhG}≤Nt

EX,Y

[− log2(f(Y;Θ�))T bin(X)− log2(1− f(Y;Θ�))T (1− bin(X))
]

= min
Tr{GhG}≤Nt

Nt log2 |W|∑
i=1

H(B(i)|Y) + ε(G). (49)

at the top of this page. By Assumption 1, we can obtain a Θ�

via training such that

EX,Y[− log2(f(Y;Θ�))T bin(X)

− log2(1− f(Y;Θ�))T (1− bin(X))]

=

Nt log2 |W|∑
i=1

H(B(i)|Y) + ε (48)

where ε > 0 is a small training error. Then we have eq. (49),
shown at the top of this page, and the problem (46) is equivalent
to

min
G

Nt log2 |W|∑
i=1

H(B(i)|Y) + ε(G)

s.t. Tr{GhG} ≤ Nt (50)

where ε(G) > 0 is small value and it is a function of G. By
inequality of entropy, we have

H(B|Y) ≤
Nt log2 |W|∑

i=1

H(B(i)|Y). (51)

Notice the fact thatH(B|Y) = H(X|Y), we have

I(X;Y) ≥ H(X)−
Nt log2 |W|∑

i=1

H(B(i)|Y). (52)
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