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Abstract: This paper establishes bounds on the homogenized surface tension for
a heterogeneous Allen-Cahn energy functional in a periodic medium. The approach
is based on relating the homogenized energy to a purely geometric variational
problem involving the large scale behaviour of the signed distance function to a
hyperplane in periodic media. Motivated by this, a homogenization result for the
signed distance function to a hyperplane in both periodic and almost periodic media
is proven.

1. Introduction

1.1. The Setting and Statements of the Main Results. We examine anisotropic
surface tensions arising from the periodic homogenization of energy functionals in
the study of phase transitions. Here, we focus on a subclass of problems presented in
[15] where the authors study inhomogeneous media characterized by a heterogeneous
double-well potential. Precisely, we consider double-well potentials of the form

Ẅ (x,u) = a(x)W (u) ∶= a(x)(1 − u2)2, (1.1)

with a ∶ RN → R continuous, strictly positive, and TN -periodic, where TN denotes
the standard N−dimensional torus. In [15], the authors addressed the Γ-limit of the
gradient regularized problem with energy Fε ∶H1(Ω) → [0,∞], defined by

Fε(u) ∶= S
Ω

1

ε
a

x

ε
W (u) + ε

2
S∇uS2 dx. (1.2)

Their result pertained to a more general class of potentials Ẅ (x,u), but the work
presented here relies critically on the product structure (1.1). The Γ-limit obtained
in [15] has the typical form of the weighted perimeter functional

F0(u) ∶=
⎧⎪⎪⎨⎪⎪⎩
∫∂∗{u=−1}∩Ω σ(ν{u=−1}(x))dHN−1(x) if u ∈ BV (Ω;{−1,1}),
+∞ otherwise,

where ν{u=−1} denotes the measure-theoretic external unit normal to the reduced

boundary of the level set {u = −1}, and the anisotropic surface tension σ ∶ SN−1 →
[0,∞) is defined by a cell formula governed by a variational problem (see (1.4)).

In homogenization, the first step is to find σ, which characterizes the effective
“homogenized” behavior of the system. A natural follow-up question is to obtain
further refined information which clarifies the asymptotic cell formula: this a
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posteriori investigation seeks to understand a number of issues, such as bounds
on the homogenized coefficients, regularity, and ellipticity of the effective surface
tension σ. This paper is concerned with the first of these: bounds on the effective,
anisotropic surface tension σ obtained from the analysis in [15, 16], which we achieve
via comparison with a novel “geodesic” formula. These bounds are written in
terms of a metric which takes into account the heterogeneities of the underlying
media. With regards to some of the other properties posed above (i.e. regularity),
we mention the works of [11, 21] which contain very interesting results in these
directions.

To state and then motivate our results, we need to first recall the effective surface
energy density σ ∶ SN−1 → (0,∞) which was introduced in [15]. To this end, we
introduce some notation.

Let N ⩾ 2 denote the spatial dimension, and let {e1, e2,⋯, eN} be the standard
orthonormal basis of RN .

● Cubes: With respect to this basis, let Q ∶= (−1
2
, 1

2
)N be the unit cube in

RN centered at the origin, and for each ν ∈ SN−1, let Qν be a unit cube
centered at the origin with two faces orthogonal to ν. Let Σν denote the
plane through the origin with normal ν, and we set ◻ν ∶= Σν ∩ Qν , an
(N − 1)−dimensional unit cube in the plane Σν .
● Half-Spaces: For each ν ∈ SN−1, we define Hν ∶= {x ⋅ ν > 0}. This is the

“positive” open half-space in the direction ν.
● Sequences: In what follows, when we write T → ∞, we understand an

arbitrary sequence {Tm}m∈N, with Tm →∞ as m→∞.
The following hypotheses (H1)-(H4) are used in the sequel:

(H1) a ∶ RN → (0,∞) is TN -periodic, i.e., a(x + kei) = a(x) for all x ∈ RN ,
k ∈ Z, i ∈ {1,⋯,N}.

(H2) There exist Θ > θ > 0, such that for all x ∈ RN , θ ⩽ a(x) ⩽ Θ.

(H3) Ω ⊆ RN is a Lipschitz domain.

(H4) a is continuous.

Let
C(TQν) ∶= u ∈H1 (TQν) ∶ u = ρ ∗ u0,ν on ∂(TQν) , (1.3)

with

u0,ν(y) ∶=
⎧⎪⎪⎨⎪⎪⎩

−1 if x ⋅ ν ⩽ 0,

1 if x ⋅ ν > 0,

and ρ ∈ C∞c (B(0,1)), with 0 ⩽ ρ ⩽ 1, and ∫RN ρ(x)dx = 1. Following [15], we define

σ ∶ SN−1 → (0,∞) by the cell formula

σ(ν) ∶= lim
T→∞

1

TN−1
inf S

TQν
a(y)W (u) + 1

2
S∇uS2 dy ∶ u ∈ C(TQν) . (1.4)

We now state the precise result of [15].

Theorem 1.1. ([15, Theorem 1.6], see also [16]). Let {εk}k∈N be a sequence such
that εk → 0+ as k → ∞. Assume that (H1)-(H3) hold, and that the function a is
measurable.

(i) If {uk}k∈N ⊆H1(Ω;R) satisfies

sup
k∈N
Fεk(uk) < +∞,
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then, up to a subsequence (not relabeled), there exists some function u ∈
BV (Ω;{−1,1}) so that uk

L1(Ω)———→ u.

(ii) As k →∞, Fεk
Γ−L1

———→ F0, where

F0(u) =
⎧⎪⎪⎨⎪⎪⎩
∫∂∗A σ(νA(x))dHN−1(x) if u ∈ BV (Ω;{−1,1}),
+∞ otherwise,

(1.5)

for σ ∶ SN−1 → [0,∞) defined by (1.4), A ∶= {u = −1}, and νA(x) is the
measure theoretic external unit normal to the reduced boundary ∂∗A at x.

(iii) σ ∶ SN−1 → [0,∞) defined by (1.4) is continuous, and its one-homogeneous
extension is convex, and hence, locally Lipschitz in RN .

The formula (1.4) for σ embeds a one-parameter family of variational problems,
henceforth called the cell problem. Our first main result consists of anisotropic
bounds on σ in relation to a novel geodesic formula which is expressed by solutions to
an associated Eikonal equation. To formulate our estimates, consider the Riemannian
metric in RN given by the following: for any y0, y1 ∈ RN ,

d√a(y0, y1) ∶= inf
γ
S

1

0

»
a(γ(t))Sγ̇(t)Sdt, (1.6)

where the infimum is taken among Lipschitz curves γ ∶ [0,1] → RN with γ(j) =
yj , j = 0,1. Standard arguments via the Hopf-Rinow theorem entail that RN , with
the d√a metric, is a complete metric space. For any ν ∈ SN−1, recalling that

Σν ∶= {x ∈ RN ∶ x ⋅ ν = 0},

we consider the signed distance function with respect to the d√a metric, to the
plane Σν . Precisely,

hν(y) ∶= sign(y ⋅ ν) inf
z∈Σν

d√a(y, z). (1.7)

It is well known, and recalled in Lemma 2.2 below, that hν is Lipschitz continuous
and satisfies, pointwise a.e., the eikonal equation

S∇hν S =
√
a in RN .

We next present the first main result.

Theorem 1.2. Suppose that (H1)-(H4) hold, and let σ ∶ SN−1 → [0,∞) be the
anisotropic surface energy as in (1.4). Let q ∶ R→ R be defined by

q(z) ∶= tanh(
√

2z), z ∈ R.

For ν ∈ SN−1, define

λ(ν) ∶= lim inf
T→∞

1

TN−1 STQν
a(y)W (q ○ hν) +

1

2
S∇(q ○ hν)S2 dy,

λ(ν) ∶= lim sup
T→∞

1

TN−1 STQν
a(y)W (q ○ hν) +

1

2
S∇(q ○ hν)S2 dy.

(1.8)

There exist Λ0 > 0 universal and λ0 ∶ SN−1 → [0,Λ0] such that

λ(ν) − λ0(ν) ⩽ σ(ν) ⩽ λ(ν). (1.9)
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Remark 1.3. We conjecture that the main result of [15], namely, Theorem 1.1, holds
with an identical cell formula, when a is merely almost periodic, as opposed to
periodic. If this is the case, then our bounds in Theorem 1.2 also apply to the
setting where a is almost periodic.

Remark 1.4. While for simplicity, and in order to focus on the essence of our estimates,
we work with the specific choice of potential in (1.1), we believe that the bounds in

Theorem 1.2 remain valid for more general potentials Ẅ (y, z) ∶= a(y)W (z), where
z is vectorial (i.e., z ∈ Rd for some d ⩾ 1), the potential W is nonnegative, and
vanishes in exactly two points p, q ∈ Rd in a suitably non-degenerate manner (e.g.
minz=p,qD

2W (z)ξ ⋅ ξ ⩾ αSξS2 for all ξ ∈ Rd, for some α > 0).
More generally, a number of more complicated phase transitions problems in the

literature have asymptotic Γ−convergence results that yield anisotropic limiting
surface tensions. These surface tensions are generally described by localization
principles or cell formulas, that are not easy to compute. While convex varia-
tional problems always admit the powerful convex duality principle (and related
calibration-type methods) in order to obtain (sharp) lower bounds, there are no
similar systematic approaches to finding analogous lower bounds in nonconvex
problems. To this end, examining the scope of “equipartition bounds” such as those
in the present paper, in these more complicated settings, remains a very interesting
open direction.

The computation of these bounds depends solely on the large-scale behavior
of the distance functions hν , for which one can readily invoke efficient numerical
algorithms, for example fast marching and sweeping methods [36]. As we explain in
the next subsection, the structure of the new geodesic formula, which is the basis
for our bounds, is an intuitive generalization of the Modica-Mortola framework for
the homogeneous case a ≡ 1.

Motivated by these bounds, we next turn to rigorous analytical results concern-
ing the large-scale behavior of the distance functions hν . Precisely, we seek to
characterize the limit

lim
T→∞

hν(Tx)
T

, x ∈ RN ,

in a suitable topology of functions. Our second main result resolves this question,
by showing that these rescaled functions converge locally uniformly to the signed
distance function in an effectively homogeneous medium.

Theorem 1.5. Suppose (H1)-(H4) hold. For each ν ∈ SN−1, there exists a unique

c(ν) ∈ [
√
θ,
√

Θ] such that for all K ⊆ RN compact, we have

lim
T→∞

sup
x∈K
V 1
T
hν(Tx) − c(ν)(x ⋅ ν)V = 0,

and c(ν) = c(−ν).
From the perspective of geometry, Theorem 1.5 characterizes the large-scale

limiting behaviour of the signed distance function to a hyperplane in a periodic
Riemannian metric that is conformal ot the Euclidean one. We refer to the works of
Bangert [5] and Burago [8], who studied the behaviour of “point-to-point” distances
in periodic metrics, in greater abstraction than what we study here. Under the
same rescaling, they identify the effective “stable norm” Yx−yY∗ which characterizes
the effective distance between x, y ∈ RN . In Remark 5.12, we discuss some open
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directions relating this effectively homogeneous distance function c(ν)(⋅) ⋅ ν with
the stable norm Y ⋅ Y∗ identified in these works.

Theorem 1.5 also implies a homogenization result for the Eikonal equation in half-
spaces. Indeed, it is well known (see for example [28]) that for each fixed ν ∈ SN−1,
for {Tm}m≥0 with Tm → ∞ as m → ∞, the functions km(x) ∶= T −1

m hν(Tmx) and
‘(x) ∶= c(ν)(x ⋅ ν) are the unique viscosity solutions of

⎧⎪⎪⎨⎪⎪⎩

S∇kmS =
»
a(Tmx) in Hν ,

km = 0 on Σν ,
and

⎧⎪⎪⎨⎪⎪⎩

S∇‘S = c(ν) in Hν ,
‘ = 0 on Σν ,

(1.10)

where we recall that Hν = {x ⋅ ν > 0}. We note that although hν is defined on
all of RN , the well-posedness of hν as the unique viscosity solution of (1.10) only
holds true in Hν . Theorem 1.5 shows that viscosity solutions of the PDEs on
the left side of (1.10) converge locally uniformly to the viscosity solution of the
PDE on the right. A stochastic (and possibly viscous) version of these equations
(termed the “planar metric problem”) in RN -stationary and finite range of dependent
media (essentially independent and identically distributed media) was introduced
by Armstrong and Cardaliaguet [2] and studied by others [22, 19] in the context
of stochastic homogenization of geometric flows. In these works, they prove a
similar result holds true almost surely. We will discuss related work and alternative
approaches to what we have taken here in Section 1.3.

Finally, we add that our argument for proving Theorem 1.5 also yields a homoge-
nization result for the planar metric problem in almost periodic media:

Theorem 1.6. Suppose (H2)-(H4) hold, and a ∶ RN → R is a Bohr almost periodic
function (see Definition 5.2 or Definition 5.13). For hν defined by (1.7), there exists

a unique c(ν) ∈ [
√
θ,
√

Θ] such that for all K ⊆ RN compact, we have

lim
T→∞

sup
x∈K
V 1
T
hν(Tx) − c(ν)(x ⋅ ν)V = 0,

and c(ν) = c(−ν).

While we have stated Theorem 1.5 and Theorem 1.6 in terms of the signed
distance function, we note that our approach is also valid in proving homogenization
results for the family of functions uTν as T →∞, where uTν ∶ Hν → R is the unique
viscosity solution of

⎧⎪⎪⎨⎪⎪⎩

H(∇uTν , Tx) = 0 in Hν ,

uTν = 0 on Σν ,

whenever the Hamiltonian H satisfies the following:

● H(⋅, x) is convex, 1-homogeneous, and coercive, i.e.

lim
R→∞

inf H(p, y) ∶ SpS ≥ R,x ∈ RN = +∞.

● H(p, ⋅) is Lipschitz continuous and periodic or almost periodic.

Furthermore, if uTν is in fact defined on all of RN , and uTν = −uT−ν , then one can
obtain a homogenization result on all of RN , using the same arguments as in the
proofs of Theorem 1.5 and Theorem 1.6.
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1.2. Motivation with Connections to the Homogeneous Modica-Mortola
Problem. The homogeneous case of a ≡ 1 reduces to the famous problem in phase
transitions and the calculus of variations. The resulting homogeneous cell problem
in the cell formula (1.4) for σ is

inf S
TQν

W (u) + 1

2
S∇uS2 dy ∶ u ∈ C(TQν) . (1.11)

A classical argument using algebraic manipulations, made famous in the work of
Modica and Mortola [31], yields that as T →∞, the minimizer is the solution to

⎧⎪⎪⎨⎪⎪⎩

1
2
S∇uS2 =W (u) in RN ,

u(y) → ±1 , as y ⋅ ν → ±∞.
(1.12)

It is clear that (1.12) encodes equipartition of energy between the gradient singular
perturbation term and the potential term in the energy, see (1.11). The optimal u
for (1.11) is thus given by

u(y) = q ○ (y ⋅ ν),
where q satisfies the associated Euler-Lagrange ODE,

q′′ =W ′(q) lim
z→±∞

q(z) = ±1, (1.13)

which is translation-invariant. Associated to this continuous symmetry, Noether’s
theorem yields a conservation law. This can be more simply derived, by multiplying
(1.13) by q′, and integrating. We obtain Sq′S2 = 2W (q), a relation which dictates

equipartition of energy. The solution to (1.13) is q(z) = tanh(
√

2z). Note that y ⋅ ν
is precisely the signed distance to the minimizing interface Σν = {x ∈ RN ∶ x ⋅ ν = 0}.
The resulting surface tension is the constant

σ =
√

2S
1

−1

»
W (s)ds.

Turning to the minimizer of the inhomogeneous cell problem

inf S
TQν

a(y)W (u) + 1

2
S∇uS2 dy ∶ u ∈ C(TQν) , (1.14)

one could expect that q ○ (y ⋅ ν) is simply replaced with q ○ hν(y), where the
inhomogeneous distance function hν is defined by (1.7). Indeed, we see that by
definition of hν , we have

1

2
S∇q(hν(y))S2 =

1

2
(q′(hν(y))2S∇hν(y)S2 = a(y)W (q(hν(y)),

in which case q ○ hν achieves equipartition of energy. With this in hand, the cell
formula (1.4) for σ (assuming the limit exists) would take the form

σ(ν) = lim
T→∞

1

TN−1 STQν
a(y)W (q ○ hν) +

1

2
S∇(q ○ hν)S2 dy. (1.15)

That is, in Theorem 1.2, we might have λ0(ν) = 0 with σ(ν) = λ(ν) = λ(ν). This is
false, at least for rational directions ν, and we address why in the following subsection.
Moreover, it is never the case that q ○ hν is a minimizer of the inhomogeneous cell
problem (1.14) for any T < ∞. What Theorem 1.2 shows, however, is that this
simple explicit formula yields upper and lower bounds for σ. Moreover, we make
the case that on large scales as T →∞, the minimizer of (1.14) is close to q ○hν (see
Proposition 3.4 in comparison with (2.3)).
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In the theory of homogenization, questions about bounds on the effective coef-
ficients have a rather long and rich history in the context of optimal design (see
[1, 12, 26, 29, 30, 33] among many, many other references). This body of literature
(largely) deals with effective bounds on linear elliptic (systems) of PDE using the
homogenization method. Closer in spirit to our work is the paper [7], where the
authors use nonlinear homogenization to study the so-called “shape memory effect”
in polycrystals: the viewpoint there being that the heterogeneities in the texture
field of the polycrystal within a nonconvex mesoscopic variational theory, upon
nonlinear homogenization, yields a macroscopic theory whose global minimizers
are recoverable strains. This coarse-graining procedure yields valuable bounds on
the possible recoverable strains of the polycrystal– information that is not directly
accessible from the mesoscopic theory.

1.3. Outline of the Proofs and Discussion. Here we outline the proof of Theo-
rem 1.2. We then discuss whether or not it is possible for λ0(ν) = 0 and σ(ν) = λ(ν),
and this leads us to a discussion of Theorem 1.5.

The upper bound in Theorem 1.2 is more or less immediate: it essentially comes
from energy comparison. We do need to alter the boundary conditions in the cell
formula (1.4), and this is achieved by the standard De Giorgi slicing technique, see
Appendix A. This procedure yields that for any ν ∈ SN−1, the surface tension σ(ν),
defined in (1.4), has the alternative representation given by

σ(ν) = lim
T→∞

1

TN−1
inf S

TQν
a(y)W (u) + 1

2
S∇uS2 dy ∶ u = q ○ hν on ∂(TQν) .

(1.16)

Having proven the upper bound in Theorem 1.2, we turn to the lower bound. By the
Direct Method in the Calculus of Variations, for each fixed T there is a minimizer
of the problem inside, which we denote by uT . In other words,

uT ∈ argmin
1

TN−1 STQν
a(y)W (u) + 1

2
S∇uS2 dy ∶ u = q ○ hν on ∂(TQν) .

Define

φ(z) ∶=
√

2S
z

0

»
W (s)ds, z ∈ R.

Consider the function hν introduced in (1.7). It is easily shown (see Lemma 2.2
below) that

S∇hν(y)S =
»
a(y), for a.e. y ∈ RN .
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For any T ≫ 1, completing squares we find

1

TN−1 STQν
a(y)W (uT ) +

1

2
S∇uT S2 dy

=
√

2

TN−1 STQν
∇hν ⋅

»
W (uT )∇uT dy +

1

TN−1 STQν
W∇uT√

2
−
»
W (uT )∇hν W

2

= 1

TN−1 STQν
∇hν ⋅ ∇(φ(uT ))dy +

1

TN−1 STQν
W∇uT√

2
−
»
W (uT )∇hν W

2

≥ 1

TN−1 STQν
∇hν ⋅ ∇(φ(uT ))dy

= 1

TN−1 STQν
∇hν ⋅ ∇(φ(q ○ hν))dy +

1

TN−1 STQν
∇hν ⋅ ∇ (φ(uT ) − φ(q ○ hν)) dy

= 1

TN−1 STQν
a(y)W (q ○ hν) +

1

2
S∇(q ○ hν)S2 dy

+ 1

TN−1 STQν
∇hν ⋅ ∇ (φ(uT ) − φ(q ○ hν)) dy,

(1.17)
where, in the last line, we used the fact that q ○ hν achieves equipartition of energy,
while completing squares one more time. Defining

λ(ν) ∶= lim sup
T→∞

1

TN−1 STQν
a(y)W (q ○ hν) +

1

2
S∇(q ○ hν)S2 dy,

λ(ν) ∶= lim inf
T→∞

1

TN−1 STQν
a(y)W (q ○ hν) +

1

2
S∇(q ○ hν)S2 dy,

the proof of the lower bound in Theorem 1.2 (specifically (1.9)) is now immediate,
provided we can show that

lim sup
T→∞

1

TN−1
VS
TQν
∇hν(y) ⋅ (φ(uT ) − φ(q ○ hν)) dyV =∶ λ0(ν) ≤ Λ0, (1.18)

for some Λ0 > 0. Obtaining this error bound is complicated by the fact that λ0(ν)
couples oscillations and concentrations. In Section 3, we present novel tools and
concentration estimates in order to control λ0(ν), which we briefly summarize here:

(1) We recall that for each T > 1, the function uT ∈H1(TQν) is a minimizer of
the variational problem in (1.16). In Theorem 3.1 below, we show that, as
T →∞, {uT (T ⋅)}T>0 converges to u0,ν strongly in L1(Qν) , where u0,ν is
given by

u0,ν(y) ∶=
1 y ⋅ ν > 0,
−1 y ⋅ ν < 0.

We emphasize that this convergence is not simply along a subsequence, since
the limit is unique. This further implies that φ(q ○ hν(T ⋅)) also converges
in L1(Qν) to the same limit, u0,ν . It follows that

φ(uT (T ⋅)) − φ(q ○ hν(T ⋅)) → 0 (1.19)

in L1(Qν) as T →∞.
(2) For each T ≫ 1, writing uT (y) =∶ tanh(

√
2wT (y)), we show in Lemma 3.2

that

−1 < uT (y) < 1, y ∈ TQν . (1.20)
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We prove in Proposition 3.4 that there exist positive numbers α0, η0 depend-
ing only on ν, θ and Θ, such that

√
Θ(y ⋅ ν) − α0 ⩾ wT (y) ⩾

√
θ(y ⋅ ν) − η0 if wT > 0,

−
√
θ(y ⋅ ν) + η0 ⩾ wT (y) ⩾ −

√
Θ(y ⋅ ν) + α0 if wT (y) < 0.

(1.21)

In particular, this shows that the profiles uT and q○hν , in blown up variables
as in (a) above, converge to the sharp interface limit at the same rate (see
(2.3)).

Naturally, the above mentioned results are proven in order to pass to the limit in
the error term in (1.17). It is easy to see that the topology of convergence in item
(1) is not strong enough to conclude that the asymptotic contribution of this error
term vanishes. However, we are able to put these ingredients together, to obtain
bounds on the error term in (1.17). This is carried out in Section 4.

These results beg the following natural questions:

● Can the error term λ0(ν) = 0, with σ(ν) = λ(ν) = λ(ν)?
● Is it ever the case that the minimizer uT to the cell problem is simply q ○hν?

It turns out that the answer to both of these questions is no, unless a is constant.
In regards to the first question, William Feldman and Peter Morfe [20] have recently
shown the authors the following: if (1.15) holds true for ν ∈ SN−1 a rational direction
(i.e., when ν has rational components), then one can argue that q ○ hν must be a
minimizer on an infinite strip. An analysis of the Euler-Lagrange equations readily
leads to a contradiction in that hν must be harmonic (which is true if and only
if a is constant). When ν ∈ SN−1 is an irrational direction, one can still argue
using techniques from [32] that a must be constant. This implies that, surprisingly,
equipartition of energy does not hold in any direction ν ∈ SN−1, unless a is constant.

An interesting question, which we are unable to resolve here, is the following: for
a given choice of periodic heterogeneities a, is at least one of the bounds in Theorem
1.2 close to being sharp? Naturally, verifying the sharpness of the lower bound in
Theorem 1.2 requires passing to the limit in the term λ0(ν); this in turn requires
convergence of {∇hν(Tm ⋅)}m in suitable topologies. We provide partial progress
in this direction with the second main contribution of this paper in Theorem 1.5:
we show that there exists a unique c(ν) ∈ [

√
θ,
√

Θ] such that , for any sequence
{Tm}m∈N tending to infinity, for the functions km(⋅) ∶= T −1

m hν(Tm ⋅),
{km}m converges locally uniformly in RN to x↦ c(ν)x ⋅ ν.

We prove Theorem 1.5 (and analogously Theorem 1.6) in two steps. In Lemma
5.8, we first show that for every sequence {Tm} tending to infinity, there exists a

subsequence and a function c(ν) ∈ [
√
θ,
√

Θ] such that km(x) → c(ν)x ⋅ ν locally
uniformly in RN . The proof of Lemma 5.8 uses various properties of Bohr almost
periodic functions and ideas which come from the proof of the Stone-Weierstrauss
theorem. Lemma 5.8 also holds true in the almost-periodic setting with essentially
no modifications to the proof. Upon establishing Lemma 5.8, we then argue that
c(ν) must be unique in order to establish convergence of the full sequence.

Our uniqueness argument relies on the existence of correctors in the setting of
periodic (or almost-periodic) Hamilton-Jacobi equations (see Theorem 5.10 and [24,
Theorem 2]). It was pointed out to us that an alternative approach to proving that

{km}m converges locally uniformly in Hν to x↦ c(ν)x ⋅ ν,
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could use the existence of periodic (or almost-periodic) correctors, a comparison
principle on half-spaces (stated in [22], without proof), and the perturbed test
function method of Evans [17]. While this argument may appear more direct
to specialists in homogenization of Hamilton-Jacobi equations, we highlight that
aside from the existence of correctors, the proofs of Theorem 1.5 and Theorem
1.6 are entirely self-contained. Moreover, to our knowledge these results on the
half-plane have not appeared in the extensive homogenization literature 1. Our
results concerning the large scale behavior for hν are contained in Section 5.

2. Basic Properties of hν and Equipartition of Energy

2.1. Existence and Basic Properties of hν . We introduce a Riemannian metric
in RN , which is conformal to the standard Euclidean one. To be precise, given a
Lipschitz curve γ ∶ [0,1] → RN , we define its length to be

L(γ) ∶= S
1

0

»
a(γ(t))Sγ̇(t)Sdt.

Naturally, L(γ) does not depend on the parametrization of γ. We define the distance
between points y1, y2 ∈ RN in the

√
a−metric, by

d√a(y1, y2) ∶= inf
γ(0)=y1,γ(1)=y2

L(γ). (2.1)

The existence of a minimizer, i.e., a geodesic in (2.1), and its regularity, follow by
classical arguments via the Hopf-Rinow theorem, since a is bounded away from
zero by (H2) (for details, see [37, Lemma 2.9]), thereby rendering RN geodesically
complete.

Let ν ∈ SN−1, set Σν ∶= {x ∈ RN ∶ x ⋅ ν = 0}, and define hν ∶ RN → R by

hν(x) ∶=
d√a(x,Σν) if x ⋅ ν ⩾ 0,
−d√a(x,Σν) if x ⋅ ν < 0.

(2.2)

The function hν(x) represents a signed distance function from x to the plane Σν .

Remark 2.1. Observe that, by (2.2), and since Σν = Σ−ν , we have

hν(x) =
⎧⎪⎪⎨⎪⎪⎩

d√a(x,Σν), x ⋅ ν ⩾ 0

−d√a(x,Σν), x ⋅ ν < 0,
and h−ν(x) =

⎧⎪⎪⎨⎪⎪⎩

d√a(x,Σν), x ⋅ (−ν) ⩾ 0,

−d√a(x,Σν), x ⋅ (−ν) < 0,

which imply that

h−ν(x) = −hν(x).
In particular, hν is odd with respect to ν. As hν is a type of signed distance, it in
fact satisfies an Eikonal equation.

Lemma 2.2. The function hν is Lipschitz continuous in RN , with

S∇hν(x)S =
»
a(x) for a.e. x ∈ RN .

Proof. See [37, Lemma 11]. ∎

1Since submitting this paper, Scott Armstrong has informed us that the paper [3] contains the
proof of homogenization of the planar metric problem using comparison principles, in stationary
ergodic media.
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Since S∇hν S =
√
a ∈ [
√
θ,
√

Θ] by (H2), by (2.1) and (2.2) we have

⎧⎪⎪⎨⎪⎪⎩

√
θSx ⋅ νS ⩽ hν(x) ⩽

√
ΘSx ⋅ νS if x ⋅ ν ⩾ 0,

−
√

ΘSx ⋅ νS ⩽ hν(x) ⩽ −
√
θSx ⋅ νS if x ⋅ ν < 0.

(2.3)

2.2. Equipartition of Energy: S∇uS2 = 2a(x)W (u). In this section we use the
Riemannian geometry framework introduced above to find approximate “one-
dimensional” solutions to the degenerate Eikonal equation

S∇uS2
2
= a(x)W (u) (2.4)

in large cubes in RN , in a sense to be made precise. This analysis is crucial in the
proof of Theorem 1.2. Taking inspiration from the cell formula (1.5), for ν ∈ SN−1,
we seek solutions u to (2.4) that “connect” the zeroes of W, i.e., u(x) → ±1 as
x ⋅ ν → ±∞. Consider the ansatz

u(x) ∶= (q ○ hν)(x),
for some q ∶ R→ R to be determined. Inserting this into (2.4), we obtain

1

2
(q′(hν(x))2S∇hν(x)S2 = a(x)W (q(hν(x)).

As S∇hν S =
√
a pointwise a.e. (see Lemma 2.2), the function q must satisfy the

ordinary differential equation

q′ =
√

2
»
W (q). (2.5)

By (2.3), we see that hν(x) → ±∞ as x ⋅ ν → ±∞. In particular, to connect the zeros
of u at ±∞, we require that q(z) → ±1 as z → ±∞. In order to identify this function
q, we consider a suitable initial condition associated to (2.5) in Proposition 2.3.

For convenience, we recall some basic properties of the hyperbolic tangent and
secant functions, tanh and sech, respectively, which will be used throughout the
rest of the paper:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tanh(x) = ex−e−x
ex+e−x is an odd function,

−1 < tanh(x) < 1, for all x ∈ R,

There exists c1, c2 > 0 such that

⎧⎪⎪⎨⎪⎪⎩

limx→∞ S1 − tanh(x)S ≤ c1e−c2SxS,
limx→−∞ S−1 − tanh(x)S ≤ c1e−c2SxS,

1 − tanh2(x) = sech2(x), for all x ∈ R,

S sech(x)S = T2 ex

e2x+1
T ⩽ 2e−SxS is an even function, and 0 ⩽ sech(x) ⩽ 1,∀x ∈ R,

(sech(x))′ = − tanh(x) sech(x), (tanh(x))′ = sech2(x),∀x ∈ R,
sech4(x) is decreasing on (0,∞).

(2.6)

Proposition 2.3. There exists a unique solution to

q′ =
√

2
»
W (q), q(0) = 0. (2.7)

Moreover, there exist c1, c2 > 0 such that
⎧⎪⎪⎨⎪⎪⎩

q(z) ⩾ 1 − c1e−c2SzS if z > 0,

q(z) ⩽ −1 + c1e−c2SzS if z < 0.
(2.8)

In particular, q(z) → ±1 as z → ±∞.
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Proof. It is easy to see that q(z) ∶= tanh(
√

2z) is the unique solution to (2.7). The
exponential bounds (2.8) immediately follow from (2.6). ∎

3. Properties of minimizers in the cell problem

By Lemma A.1, which enables the use of new boundary conditions involving
q ○ hν , we have

σ(ν) = lim
T→∞

1

TN−1
inf S

TQν
a(y)W (u) + 1

2
S∇uS2 dy ∶

u ∈H1(TQν), uS∂TQν = q ○ hν

= lim
T→∞

inf S
Qν

Ta(Tx)W (V ) + 1

T

S∇V S2
2

dx ∶

V ∈H1(Qν), V S∂Qν = q ○ hν(T ⋅) . (3.1)

In the remainder of this section, we suppress the subscript m for notational ease,
with the understanding that when we let T → ∞ in the end, we do so along this
particular subsequence Tm →∞.

We introduce the function vT ∈H1(Qν) satisfying

vT ∈ argmin ET (V ) ∶= S
Qν

Ta(Tx)W (V ) + 1

T

S∇V S2
2

dx ∶ V S∂Qν = q ○ hν(Tx)¡ .

(3.2)

Since q ○ hν(T ⋅) is an admissible competitor in the variational problem (3.1), we
may assume that

S
Qν

Ta(Tx)W (vT ) +
1

T

S∇vT S2
2

dx

⩽ S
Qν

Ta(Tx)W (q ○ hν(Tx)) +
1

T

S∇q ○ hν(Tx)S2
2

dx

⩽ O(1)

(3.3)

as T →∞.

Lemma 3.1. Let vT ∶ Qν → R satisfy (3.2). There exists a subsequence, not
relabeled, such that

vT → u0 in L1(Qν), (3.4)

where, we recall, u0 ∶ RN → R is defined by

u0(x) ∶=
1 x ⋅ ν > 0,
−1 x ⋅ ν < 0.

Proof. Since vT satisfies (3.2), it verifies the uniform energy bound (3.3). As a is
bounded away from zero, this estimate yields, via a standard compactness argument
using the Modica-Mortola inequality, that {vT } is precompact in L1(Qν) (see [23] or
[37]). Let U be an L1 cluster point of {vT }T . By (3.1), the energies of the minimizers
vT converge to σ(ν).

We recall that σ(ν) is the limiting energy corresponding to u0, and we claim that
U = u0. We extend vT to all of RN by setting vT (x) ∶= q ○ hν(Tx) for x ~∈ Qν and,
likewise, we extend U to all of RN by setting U = u0 outside Qν . Let τ > 0 be fixed,
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and we work in the dilated cube (1 + τ)Qν . We label the restrictions of vT and U

to (1 + τ)Qν by ṽT , Ũ , respectively. By [18, Theorem 5.8], Ũ ∈ BV ((1 + τ)Qν). We
note that by the aforementioned compactness arguments,

ṽT → Ũ in L1((1 + τ)Qν) as T →∞, (3.5)

DṽT ⇀DŨ weakly-* in the sense of measures as T →∞, (3.6)

for all τ > 0. Since U is piecewise constant, ∇Ũ = 0, and we find that dDŨ =
2νŨ dHN−1⌊JŨ , where JŨ is the jump set of Ũ and νŨ = dDŨ

d SDŨ S on JŨ (see [27]). We

claim that

S
JŨ∩Qν

dDŨ = 2ν. (3.7)

By (3.6), for every φ ∈ Cc((1 + τ)Qν) and for every unit vector e ∈ SN−1, we have

S
(1+τ)Qν

φe ⋅ ∇ṽT dx = S
(1+τ)Qν

φe ⋅ dDṽT → S
(1+τ)Qν

φe ⋅ dDŨ as T →∞.
(3.8)

In particular, let φ ∈ C∞c ((1 + τ)Qν) be such that φ ≡ 1 on Qν , 0 ⩽ φ ⩽ 1, and
φ ≡ 0 on (1 + τ)Qν (1 + τ~2)Qν . If e ∈ {ν1,⋯, νN}, we then have that as T →∞,

S
(1+τ~2)Qν Qν

φe ⋅ ∇ṽT dx + S
Qν
e ⋅ ∇ṽT dx→ S

(1+τ~2)Qν Qν
φe ⋅DŨ + S

Qν

e ⋅ dDŨ.

As ṽT ≡ qT ○ hν(T ) and Ũ = u0 outside Qν , we find that the first and the third
terms in the previous display are O(τN−1). It remains to evaluate the limit of the
second term as T →∞ . With the choice e = νN = ν, by the fundamental theorem of
Calculus, we find that, as T →∞,

S
Qν
ν ⋅ ∇ṽT dx→ 2, as T →∞,

because q ○ hν(T ⋅) is exponentially close to 1 and −1 respectively, on the top and

bottom faces of Qν , i.e., {x ∈ Qν ∶ x ⋅ ν = ±1
2
}. It follows that

S
Qν

ν ⋅ dDŨ = 2 +O(τN−1).

Finally, for the lateral directions e = ν1,⋯, νN−1, we have,

S
Qν
e ⋅ DṽT dx = S

Qν∩ x⋅e= 1
2

q ○ hν(Tx)dHN−1(x)

− S
Qν∩ x⋅e=− 1

2

q ○ hν(Tx)dHN−1(x)

———→
T→∞ SQν∩ x⋅e= 1

2

u0 dHN−1(x) − S
Qν∩ x⋅e=− 1

2

u0 dHN−1(x) = 0,

We deduce that

S
Qν

dDŨ =
N

Q
i=1
S
Qν

dDŨ ⋅ νi νi = 2ν +O(τN−1). (3.9)

Since SDŨ S = 2HN−1⌊JŨ , it follows that

JŨ ∩Qν = JU ∪ {x ∈ ∂Qν ∶ trace(U)(x) ≠ u0(x)} =∶KU . (3.10)

and the set KU on the right hand side is independent of τ > 0. Indeed, note that the
extension Ũ of U does not depend on τ, and we now call it U0. The Radon-Nikodym
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derivative dDU0

dSDU0S is equal to νU on JU , and it is equal to the normal to the boundary

of Qν , ν∂Qν , on KU JU . Now (3.9) reduces to

S
KU

dDU0 = 2ν +O(τN−1).

Letting τ → 0+ we deduce that

S
KU

DU0 = 2ν. (3.11)

By Theorem 1.1 on (1 + τ)Qν for each fixed τ, then sending τ → 0+, and then using
Jensen’s inequality owing to the convexity of the one-homogeneous extension of σ,
σ̃, we have

σ(ν) = lim
τ→0+

lim inf
T→∞

ET (ṽT ; (1 + τ)Qν)

⩾ lim sup
τ→0

S
JŨ∩(1+τ)Qν

σ νŨ dHN−1 ⩾ lim sup
τ→0

S
JŨ∩Qν

σ νŨ dHN−1

= S
KU

σ
dDU0

d SDU0S dHN−1

= S
KU

σ̃
dDU0

dSDU0SH
N−1(KU)

dHN−1

HN−1(KU)

⩾ σ̃ S
KU

dDU0

dSDU0SH
N−1(KU)

dHN−1

HN−1(KU)
.

(3.12)

But SDU0S⌊KU = 2HN−1⌊KU , and we find by the one-homogeneity of σ̃ that

σ̃ S
KU

dDU0

dSDU0S H
N−1(KU) =

1

2
σ̃ S

KU
dDU0 . (3.13)

Again using the one-homogeneity of σ̃, the equality (3.11) implies that the right hand
side of (3.13) evaluates to 1

2
σ̃(2ν) = σ̃(ν) = σ(ν). In turn, plugging this into the

chain of inequalities in (3.12), we learn that we must have equalities throughout. But

equality holds in Jensen if and only if dDU0

dSDU0S ⌊KU is a constant. This immediately

implies that HN−1 (x ∈ ∂Qν ∶ trace(U) ≠ u0) = 0, and thus that U inherits the trace
u0 from the sequence {vT }. Furthermore, we conclude KU = JU up to a set of HN−1

null measure, and so, U ≡ u0 in Qν , yielding (3.4).
∎

For what follows, we need finer, quantitative versions of the foregoing convergence
result and, in particular, of the convergence of the functions uT . The remainder of
this section is devoted to obtaining these estimates. The next preparatory lemma is
an immediate consequence of the maximum principle.

Lemma 3.2. Let uT be a minimizer to (1.16). Then

−1 < uT (y) < 1, y ∈ TQν .

Proof. For each T , as uT is a minimizer of the energy

S
TQν

a(y)W (u) + 1

2
S∇uS2 dy,
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subject to Dirichlet boundary conditions uT = q ○ hν along ∂(TQν), it follows by
standard arguments that uT is a classical solution of the associated Euler-Lagrange
equations

⎧⎪⎪⎨⎪⎪⎩

∆u = a(y)W ′(u) = −4a(y)u(1 − u2) y ∈ TQν ,
u(y) = q ○ hν(y), y ∈ ∂(TQν).

(3.14)

We know that for any T < ∞, supy∈∂(TQν) Sq ○ hν S < 1. Suppose, by way of contradic-
tion, that there exists y0 ∈ TQν such that

uT (y0) = max
y∈TQν

uT (y) > 1.

Then ∆uT (y0) ⩽ 0, while W ′(uT (y0)) > 0, and a(y0) ≥ θ > 0, yielding a contradiction.
It follows that uT (y) ≤ 1 for every y ∈ TQν . A similar argument shows that
uT (y) ≥ −1 for every y ∈ TQν . Finally, a standard argument (as in the proof of
the strong maximum principle) using the Hopf lemma yields the desired strict
inequalities. ∎

Define

wT ∶=
1√
2

tanh−1 uT . (3.15)

By Lemma 3.2, wT ∶ TQν → (−∞,∞) is of class C∞(TQν). Further, wT is a classical
solution to the PDE

⎧⎪⎪⎨⎪⎪⎩

∆wT (y) = 4√
2

tanh(
√

2wT (y)) S∇wT (y)S2 − a(y) , y ∈ TQν ,
wT (y) = hν(y) y ∈ ∂(TQν).

(3.16)

In the remainder of this section we obtain fine properties of the function wT ,
specifically in Proposition 3.4 below. A crucial ingredient in the argument is the
following result due to L. Caffarelli and A. Cordoba [9, Theorem 2].

Proposition 3.3. Consider the functions uT ∶ TQν → R. Then, as T → ∞, for
each µ ∈ (−1,1) the level sets {x ∈ TQν ∶ uT (x) = µ} are at a uniformly bounded
distance from Σν ∩ TQν . To be precise, for each µ ∈ (−1,1) there exists a constant
η(µ, ν) > 0, only depending on µ and ν, and independent of T ≫ 1, such that

{y ∈ TQν ∶ uT (x) = µ} ⊂ {y ∈ TQν ∶ Sy ⋅ νS < η(µ, ν)}. (3.17)

Equipped with the foregoing proposition, we are ready to prove the proof the
main result of this section, namely, that the functions wT defined in (3.15) are
essentially linear.

Proposition 3.4. Let wT be as in (3.15), let T ≫ 1, and define the constants

η0 ∶=
√
θη(0, ν) > 0, and α0 ∶=

√
Θη(0, ν) > 0, where η(0, ν) is obtained from

Proposition 3.3 corresponding to the level set µ = 0. Then, for all T ≫ 1, the
following hold:

√
Θ(y ⋅ ν) − α0 ≥ wT (y) ≥

√
θ(y ⋅ ν) − η0 if wT (y) > 0,

−
√
θ(y ⋅ ν) + η0 ≥ wT (y) ≥ −

√
Θ(y ⋅ ν) + α0 if wT (y) < 0.

(3.18)

Proof. Owing to the continuity of wT , the sets

Ω± ∶= {y ∈ TQν ∶ wT (y) ≷ 0}
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are open. We show the lower bound in the first statement in (3.18). Define the

function ζT ∶ Ω+ → R by the formula

ζT (y) ∶=
y ⋅ ν

wT (y) + η0
, y ∈ Ω+.

Being a continuous function on the compact set Ω±, it achieves its maximum. The
assertion in the first inequality of (3.18) is that the maximum value of this function

is no more than 1√
θ
. Suppose, by contradiction, this were false. Let y0 ∈ Ω+ be a

point at which ζT achieves its maximum, and

ζT (y0) >
1√
θ
. (3.19)

There are three possibilities, which we will now argue can never occur:

(1) y0 ∈ Ω+ ∩ ∂(TQν) ∶ by virtue of (2.3), along ∂(TQν) we know that wT (y) =
hν(y) ⩾

√
θ(y ⋅ ν) . This implies that wT (y) + η0 >

√
θ(y ⋅ ν) for every

y ∈ ∂(TQν) ∩ Ω+. Thus, under the contradiction hypothesis (3.19), ζT
cannot attain its maximum here.

(2) y0 ∈ Ω+ ∶ in this case, y0 would be an interior maximum point of ζT , and so,

∇ζT (y0) = 0, ∆ζT (y0) ⩽ 0. (3.20)

Towards ruling out this case, we derive the PDE satisfied by ζT . From the
definition of ζT , we note that at any y ∈ Ω+,

ν = (wT (y) + η0)∇ζT (y) + ζT (y)∇wT (y). (3.21)

Taking divergence of this relation and applying (3.16), we find that at any
y ∈ Ω+,

0 = 2∇ζT (y) ⋅ ∇wT (y) + (wT (y) + η0)∆ζT (y) + ζT (y)∆wT (y)
= 2∇ζT (y) ⋅ ∇wT (y) + (wT (y) + η0)∆ζT (y)

+ 4√
2
ζT (y) tanh(

√
2wT (y)) S∇wT (y)S2 − a(y) .

(3.22)

In order to evaluate (3.22) at y = y0, we note that from (3.21) and (3.20),
we have

ν = ζT (y0)∇wT (y0).

By the contradiction hypothesis (3.19), this yields

S∇wT (y0)S =
1

ζT (y0)
<
√
θ. (3.23)

Moreover, the contradiction hypothesis (3.19) also guarantees that y0 ⋅ ν > 0,
since y0 ∈ Ω+. Inserting this into (3.22) at y = y0, and applying (3.20),
(3.23), and a ≥ θ, we have

0 =∆ζT (y0) +
4√
2
ζT (y0)

tanh(
√

2wT (y0))
wT (y0) + η0

1

ζ2
T (y0)

− a(y0)

< 4√
2
(y0 ⋅ ν) tanh(

√
2wT (y0))(θ − θ),

which yields a contradiction.
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(3) y0 ∈ TQν ∩ {wT = 0} ∶ finally, if this were to hold, we would have wT (y0) = 0,

so that

ζT (y0) =
y0 ⋅ ν
η0
> 1√

θ
,

i.e., y0 ⋅ν > η0√
θ
= η(0, ν). But wT (y0) = 0 implies that uT (y0) = tanh(wT (y0))

is 0, and by Proposition 3.3 we must have Sy0 ⋅ νS ⩽ η(0, ν), provided T ≫ 1.
We again conclude in a contradiction.

This implies that the contradiction hypothesis (3.19) cannot hold, and the proof of
the lower bound in the first equation in (3.18) is complete. The proof of the other
inequalities is similar, with only minor differences. ∎

Having proven Proposition 3.4, we are able to get fine exponential decay estimates
for the function uT and its derivatives, away from the interface Σν .

Proposition 3.5. For C = 4e2
√

2η0 and c = 2
√

2
√
θ, for all T sufficiently large,

1 − u2
T (y) ⩽ Ce−cSy⋅νS, y ∈ TQν . (3.24)

Moreover, there exists a universal constant C1 > 0 such that for all T ≫ 1,

S∇uT (y)S ⩽ C1e
−cSy⋅νS (3.25)

Proof. The first inequality is immediate by noting that 1 − u2
T = 1 − tanh2(

√
2wT ) =

sech2(
√

2wT ), and wT satisfies the estimates in Proposition 3.4, and (2.6). For the
second, by the Euler-Lagrange equations we know that

S∆uT (y)S = Sa(y)W ′(uT )S = S4a(y)uT (1 − u2
T )S ⩽ Ce−cSy⋅νS y ∈ TQν .

Rescaling, by setting y = Tx and defining vT (x) ∶= uT (Tx), we find that

S∆vT (x)S = T 2a(Tx)SW ′(vT (x))S ⩽ CT 2e−cT Sx⋅νS, x ∈ Qν
Elliptic estimates yield

S∇vT (x)S ⩽ C1Te
−cT Sx⋅νS.

Scaling back, one recovers (3.25). ∎

4. Bounds on the Error Term

Recall the remainder term λ0 introduced in (1.18). The main result of this section
is next.

Proposition 4.1. There exists a constant Λ0 > 0 such that

λ0(ν) ⩽ Λ0 for all ν ∈ SN−1. (4.1)

Proof. We know that S∇hν(y)S ⩽
√

Θ. Moreover, from Proposition 3.4 and 3.5 we
have that

S∇φ(uT (y))S = Sφ′(uT (y))∇uT (y)S =
√

2(1 − u2
T (y))S∇uT (y)S ⩽ Ce−cSy⋅νS,

and, similarly,

S∇φ(q ○ hν)S =
√

2(1 − tanh2(
√

2hν))S∇hν S ⩽ Ce−cSy⋅νS.
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Then, for λ0(ν) defined by (1.18),

λ0(ν) = lim sup
T→∞

1

TN−1
VS
TQν
∇(φ(uT (y)) − φ(q ○ hν)) ⋅ ∇hν V

⩽
√

Θ lim sup
T→∞

1

TN−1 STQν
Ce−cSy⋅νS dy

⩽ C
√

ΘS
∞

−∞
e−cSsS ds = C

√
Θ√
θe
=∶ Λ0,

where, we recall from Proposition 3.5 that c = 4
√
θ. ∎

Proof of Theorem 1.2. As discussed in the introduction, the proof of Theorem 1.2
is an immediate consequence of (4.1). ∎

5. The Proof of Theorem 1.5 and Theorem 1.6

We begin by summarizing several properties of hν that will be needed in the
proof of Theorem 1.5.

Lemma 5.1. Let ν ∈ SN−1 ∩QN . There exist T0 ∈ N and unit vectors {νi}N−1
i=1 ⊆

SN−1 ∩ QN such that {ν1,⋯, νN−1, νN ∶= ν} form an orthonormal basis for RN .
Moreover, the coefficient a is T0 periodic in the directions {νi}Ni=1, and hν is T0

periodic in the directions {νi}N−1
i=1 .

Proof. By an appeal to [15, Proposition 3.5], there exist ν1,⋯, νN−1 ∈ QN ∩ SN−1

and T0 ∈ N such that {νi}Ni=1 is an orthonormal basis of RN , and a is T0−periodic
in each of the directions {νi}Ni=1. We prove the periodicity of hν in the directions

{νi}N−1
i=1 . We fix x ∈ RN , and show that for any i ∈ {1,⋯,N − 1},

hν(x + kT0νi) = hν(x), for all k ∈ Z.
We note that if x ⋅ ν = 0, then the estimate is automatic since both sides of
the equation are 0. Without loss of generality, we may assume that x ⋅ ν > 0
and k ⩾ 0. Let y ∈ Σν and γ ∶ [0,1] → RN be such that γ(0) = x, γ(1) = y,
and ∫

1
0

»
a(γ(t))Sγ̇(t)Sdt = hν(x). The existence of such a geodesic follows by

classical arguments. For each νi, i = 1, . . . ,N − 1, we define γ̃ ∶ [0,1] → RN by
γ̃(t) ∶= γ(t) + kT0νi. Since νi ⊥ ν, we have γ̃(1) ⋅ ν = γ(1) ⋅ ν + kT0νi ⋅ ν = y ⋅ ν = 0,
which implies γ̃(1) ∈ Σν . We also note that γ̃(0) = x + kT0νi. Hence, by the T0

periodicity of a with respect to νi, we have

hν(x + kT0νi) = d√a(x + kT0νi,Σν) ⩽ d√a(x + kT0νi, y + kT0νi)

⩽ S
1

0

»
a(γ̃(t))S ˙̃γ(t)Sdt = S

1

0

»
a(γ(t) + kT0νi)Sγ̇(t)Sdt

= S
1

0

»
a(γ(t))Sγ̇(t)Sdt = d√a(x, y) = hν(x).

The reverse inequality follows by a symmetric argument. ∎

We now make a slight digression to almost periodic functions, which will play an
important role in the characterization of the asymptotic behaviour of hν (see Lemma
5.8). When ν ∈ SN−1 ∩QN , we know from Lemma 5.1 that there is an orthonormal
basis {ν1,⋯, νN ∶= ν} ⊆ SN−1 ∩QN , and T0 = T0(ν) ∈ N, such that hν is T0−periodic
in the transverse directions {νi}N−1

i=1 . This periodicity yields an averaging property
which we will exploit in the proof of Lemma 5.8. When ν ∈ SN−1 QN , it turns out
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that an averaging property still holds, using the theory of Bohr almost periodic
functions. For the convenience of the reader, we recall the basic notions of the
theory of Bohr almost periodic functions, referring to [6] for details.

Definition 5.2. A continuous bounded function g ∶ Rd → R is said to be Bohr
almost periodic if for every η > 0, there exists an η−almost period τ > 0 such that for
any α ∈ Rd, there exists ζ ∈ α + τ∎d with

sup
x∈Rd
Sg(x + ζ) − g(x)S ⩽ η, (5.1)

where ∎d is any d-dimensional unit cube.

Remark 5.3. In the sequel, we use almost periodicity primarily with d = N − 1.
Continuous periodic functions are examples of Bohr almost periodic functions (by
choosing τ larger than the period, since then (5.1) holds with η = 0).

An important feature of Bohr almost periodic functions, which we will use in the
proof of Lemma 5.8, is the existence of the so-called mean value. To be precise, if f
is a Bohr almost periodic function, then the limit

µ(f) ∶= lim
T→∞

1

T d
S
T∎d

f(y)dy = lim
T→∞S∎d

f(Ty)dy (5.2)

exists and is finite.

Remark 5.4. In what follows, We will use the definition of Bohr almost periodicity
with various choices of the unit cube ∎d, as it turns out that the definition, and the
mean value defined above, are independent of the choice of the unit cube ∎d. To
be precise, let {Vk}∞k=1 ⊆ RN be a sequence of bounded domains with Ld(Vk) → ∞
as k →∞, and let {V hk } denote the set of points in Vk at distance not exceeding h
from the boundary ∂Vk. If ∂Vk is regular enough such that there exists a sequence

(hk)∞k=1 with hk → 0 and limk→∞
Ld(V hk

k
)

Ld(Vk) = 0, then the limit in (5.2) is equal to

µ(f) = lim
k→∞

 
Vk

f(y)dy.

For a proof of this assertion, see [38, Proposition 1.9].

It is well known that f is Bohr almost periodic if and only if f has a uniformly
convergent Bochner-Fourier series (see [6]). In particular, if f is Bohr almost-
periodic, then there exist an at most countable set Λ ⊆ Rd of “frequencies”, and a
square-summable sequence {fλ}λ∈Λ ⊆ C of “Fourier modes”, such that

f(x) = Q
λ∈Λ

fλe
iλ⋅x for x ∈ Rd, (5.3)

and the sum on the right is uniform and absolute. The coefficients fλ are given by
fλ ∶= µ(fe−iλ⋅(⋅)) for µ as in (5.2), and Λ ⊆ Rd is the at most countable set for which
fλ ≠ 0. In particular, this implies that if f is Bohr almost periodic, and

µ(f(⋅)e−iλ⋅(⋅)) = 0 for every λ ∈ Rd, (5.4)

then f ≡ 0.
We will also use the notion of two-scale convegence for Bohr almost periodic

functions [10, Definition 4.1, Proposition 4.6]. We introduce the space B1 as the
closure of Bohr almost periodic functions with respect to the semi-norm

[f] ∶= lim
T→∞

1

T d
S
T∎d
Sf(y)Sdy = µ(Sf S).
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Definition 5.5. Let Ω ⊆ Rd be open. We say that a sequence {uη} ⊆ L1
loc(Ω) Bohr

two-scale converges to u ∈ L1
loc(Ω;B1) if for every bounded function g ∶ Ω ×Rd → R

that is continuous in the first variable and Bohr almost periodic in the second
variable, we have

lim
η→0
S

Ω
uη(x)g x,

x

η
dx = S

Ω
µ(u(x, ⋅)g(x, ⋅))dx.

Remark 5.6. It is proven in [10, Proposition 4.6] that if f is a Bohr almost periodic
function, and Tm →∞ is a sequence of positive numbers, then fm(⋅) ∶= f(Tm ⋅) Bohr
two-scale converge to µ(f) in any bounded open set Ω ⊆ Rd.

We next show that for each ν ∈ SN−1, the function x↦ hν(x)
x⋅ν satisfy Bohr almost

periodicity as functions of the orthogonal directions.

Lemma 5.7. Let ν ∈ SN−1, and write x ∈ RN as x = x′ + (x ⋅ ν)ν ∼ (x′, x ⋅ ν). The

functions x′ ∈ Σν ↦ a(x′, s) and x′ ∈ Σν ↦ hν(x′,s)
s

are Bohr-almost periodic for
every s ∈ R ∖ {0}, uniformly in s. To be precise, for every η > 0 there exists τ > 0,
independent of s, such that for any α ∈ Σν , there exists ζ ∈ α + (τQν ∩Σν) such that

sup
x′∈Σν

Sa(x′ + ζ, s) − a(x′, s)S ⩽ η, (5.5)

and

sup
x′∈Σν

Whν(x
′ + ζ, s)
s

− hν(x
′, s)
s

W ⩽ Θ

θ
η. (5.6)

Proof. We recall ◻ν ∶= Qν ∩Σν , and throughout the proof of the Lemma we use this
choice of an (N −1)−dimensional unit cube ∎N−1 from the definition of Bohr-almost
periodicity.

By a mollification, if needed, we may assume a is smooth. This represents no loss
of generality since Bohr almost periodic functions are closed under uniform limits.
As a is TN−periodic and smooth, it admits an absolutely and uniformly convergent
Fourier series

a(x) = Q
k∈ZN

ake
2πik⋅x, x ∈ RN .

Upon a rotation, we may express x = (x′, x⋅ν) and k = (k′, k⋅ν), and take the sum over
another countable family ΛN which is isomorphic to ZN . We let xN = x⋅ν = s ∈ R∖{0}
be fixed. Defining bk ∶= ake2πi(k⋅ν)s = ake2πikNxN , we find that Sbk S = Sak S, and we
have

a(x′, s) = Q
k′∈ΛN−1

Q
k∈ΛN ∶
k=(k′,⋅)

bk e2πik′⋅x′ , x′ ∈ Σν .

Since the series on the right converges uniformly and absolutely, it follows that
a(⋅, s) is Bohr almost periodic. In particular, for each η > 0 there exists τ > 0 such
that for every α ∈ Σν , there exists ζ ∈ α + τ◻ν satisfying

sup
x′∈Σν

Sa(x′ + ζ, s) − a(x′, s)S ⩽ η,

and this proves (5.5). The property of almost periodicity is preserved under compo-
sition with uniformly continuous functions. As a consequence, for each η > 0 there
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exists τ > 0 such that for all α ∈ Σν , there exists ζ ∈ α + τ◻ν with

sup
x′∈Σν

S
»
a(x′ + ζ, s) −

»
a(x′, s)S ⩽ η. (5.7)

The proof of almost periodicity of hν(⋅,s)
s

follows a similar argument as the proof

of Lemma 5.1. Fix x ∈ RN and, without loss of generality, assume that x ⋅ ν > 0. Let

y ∈ Σν and γ ∶ [0, 1] → RN be such that γ(0) = x, γ(1) = y and ∫
1

0

»
a(γ(t))Sγ̇(t)Sdt =

hν(x). Let ζ ∈ Σν , and we define γ̃ ∶ [0,1] → RN by γ̃(t) ∶= γ(t) + ζ. Note that as
ζ ⊥ ν, we have γ̃(1) ⋅ ν = γ(1) ⋅ ν + ζ ⋅ ν = y ⋅ ν = 0, so that γ̃(1) ∈ Σν . Moreover,
γ̃(0) = x + ζ, and so

hν(x + ζ) ≤ d√a(x + ζ, y)

⩽ S
1

0

»
a(γ̃(t))S ˙̃γ(t)Sdt

= S
1

0

»
a(γ(t))Sγ̇(t)Sdt + S

1

0

»
a(γ(t) + ζ) −

»
a(γ(t)) Sγ̇(t)Sdt

= hν(x) + S
1

0

»
a(γ(t) + ζ) −

»
a(γ(t)) Sγ̇(t)Sdt.

Choose ζ ∈ Σν as in (5.7), and conclude that

Shν(x + ζ) − hν(x)S ⩽ ηS
1

0
Sγ̇(t)Sdt ⩽ η√

θ
S

1

0

»
a(γ(t))Sγ̇(t)Sdt

⩽ η√
θ

√
ΘSx ⋅ νS, (5.8)

where in the last inequality we have used the definition of γ(t) and its relation to
hν(x), as well as (2.3). The inequality (5.6) now follows upon diving (5.8) through
by Sx ⋅ νS, and noting that ζ ⋅ ν = 0.

∎

The next lemma is crucial for the proof of Theorem 1.5, and requires various
properties of hν which we have previously established.

Lemma 5.8. Fix ν ∈ SN−1, and let {Tm}m∈N ⊆ (0,∞) with Tm → ∞ as m → ∞.
For m ∈ N, consider the functions km ∶ RN → R defined as

km(⋅) ∶=
1

Tm
hν(Tm ⋅). (5.9)

There exist a constant c(ν) ∈ [
√
θ,
√

Θ] and a subsequence of {Tm}m∈N (which we
do not relabel) such that for any compact set K ⊆ RN ∖Σν , and for every α > 0,
there exists M =M(α,K) ∈ N such that if m ⩾M , then

Tkm(z) − c(ν)z ⋅ νT ⩽ αSz ⋅ νS for all z ∈K. (5.10)

Proof. We show that {km}m∈N is uniformly bounded and uniformly Lipschitz, from
which we obtain local uniform convergence (up to a subsequence) in a strong
(uniform) topology. We further use averaging associated to weak convergence
arguments to identify the limit in a weak topology. Carrying out this program
involves some ideas using polynomial approximation which might be of independent
interest in this context. We break up the proof in several steps.
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Step A: We show that there exists a Lipschitz continuous function k ∶ RN → R
and a subsequence of {km} (which we do not relabel) such that for any compact
K ⊆ RN ∖Σν and for every α > 0, there exists M =M(α,K) ∈ N such that, if m ⩾M ,

Skm(z) − k(z)S ⩽ αSz ⋅ νS for all z ∈K. (5.11)

As ν is fixed, we define zN ∶= z ⋅ ν and write z = (z′, zN) = (z′, z ⋅ ν) throughout the
rest of the proof. By (2.3), for z ∈ RN ∖Σν we have

Wkm(z)
zN

W = V 1

TmzN
hν(Tmz)V ≤ W

√
ΘTmzN
TmzN

W =
√

Θ. (5.12)

By Lemma 2.2 and (H2), km is Lipschitz with

Y∇kmYL∞ = Y∇hνYL∞ ⩽
√

Θ. (5.13)

Combining (5.12) and (5.13), we deduce that for a point of differentiability z ∈
RN ∖Σν ,

W∇ km(z)
zN

W = W∇ km(z)
z ⋅ ν W

= W∇km(z)(z ⋅ ν) − km(z)ν(z ⋅ ν)2 W

≤ 2
√

Θ

Sz ⋅ νS =
2
√

Θ

SzN S
. (5.14)

In view of (5.12) and (5.14), the Arzelà-Ascoli theorem yields that there exist
a subsequence of {km} (not relabeled) and a continuous function q̃ ∶ RN ∖Σν → R
such that, for every compact set K ⊆ RN ∖Σν ,

lim
m→∞

sup
z∈K
Wkm(z)
zN

− q̃(z)W = 0. (5.15)

Defining now

k(z) ∶=
⎧⎪⎪⎨⎪⎪⎩

q̃(z)zN for z ∈ RN ∖Σν ,

0 for z ∈ Σν ,

we see that (5.11) follows from (5.15).
Step B: Fix R > 1. We argue that hν can be approximated on RN−1×[−R,R] by

a polynomial in the last variable. In particular, we will show that this polynomial
belongs to the class

A ∶=
⎧⎪⎪⎨⎪⎪⎩
g(z′, zN) ∶=

p

Q
j=0

bj(z′)zjN ∶ p ∈ N, bj ∈ AP (R
N−1)

⎫⎪⎪⎬⎪⎪⎭
,

where AP (RN−1) is the set of Bohr almost periodic functions in RN−1. In what
follows, we write z ∈ RN as z = (z′, zN) with z′ ∈ Σν ∼ RN−1, and SzN S ⩽ R. Let
f ∶ RN−1 × [0,1] → R be defined by

f(z′, zN) ∶= hν (z′,2RzN −R) .

Fix z′ ∈ RN−1 such that (z′,0) ∈ Σν , and consider the functions zN → f(z′, zN).
Throughout the rest of Step B, we allow C = C(N,θ,Θ) in every step. Define
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f̃ ∶ RN−1 × [0,1] → R, by

f̃(z′, zN) ∶ = f(z′, zN) − f(z′,0) − zN (f(z′,1) − f(z′,0))
= hν(z′,2RzN −R) − hν(z′,−R) − zN(hν(z′,R) − hν(z′,−R)). (5.16)

We have that f̃(z′, 0) = f̃(z′, 1) = 0, and we can extend this function to all of RN by

setting f̃ = 0 off of RN−1 × [0,1].
We now proceed nearly identically to the proof of the Stone-Weierstrass Theorem

(see [35, Page 160]). For j ∈ N0, we define the functions gj ∶ RN → R as

gj(z′, zN) ∶= Cj S
1

−1
f̃(z′, zN + t)(1 − t2)j dt, (5.17)

where Cj are chosen so that

S
1

−1
Cj(1 − t2)j dt = 1, (5.18)

and, as shown in [35],

SCj S ≤ C
»
j. (5.19)

Since f̃ ≡ 0 in RN−1 × (R [0,1]), we have that for any z′ ∈ RN−1 and zN ∈ [0,1],

gj(z′, zN) = Cj S
1−zN

−zN
f̃(z′, zN + t)(1 − t2)j dt = Cj S

1

0
f̃(z′, t)(1 − (t − zN)2)j dt,

which is a polynomial in zN with continuous coefficients depending on z′. Recall

that by Lemma 5.7, hν(⋅,s)
s

is Bohr almost periodic, uniformly, for all s ≠ 0. In
particular, this implies that hν(⋅, s) is Bohr almost periodic (the case s = 0 being

trivial since hν(⋅,0) = 0). Note that for every zN ∈ [0,1], f̃(⋅, zN) defined by (5.16)
is a linear combination of Bohr almost periodic functions, which is still Bohr almost
periodic. We infer that gj(⋅, zN), whose coefficients are given by integration in the
Nth variable of Bohr almost periodic functions (which does not affect the first N − 1
variables), is Bohr almost periodic for every zN ∈ [0,1].

For z ∈ RN−1 × [0,1], we define

M(z) =M(z′, zN) ∶= max
t∈[−1,1]

Sf̃(z′, zN + t)S.

By (5.16) and the Lipschitz continuity of hν (Lemma 2.2 and (H2)), we have

M(z) = max
t∈[−1,1]

Shν(z′,2R(zN + t) −R) − hν(z′,R)

− (zN + t)(hν(z′,R) − hν(z′,−R))S
≤ max
t∈[−1,1]

√
Θ S2R(zN + t − 1)S + SzN + tS2

√
ΘR

= CR (zN + 1) . (5.20)

Fix η > 0. Note that by Lemma 2.2, f (and hence f̃) is Lipschitz continuous and,

in particular, f (and hence f̃) is uniformly continuous. Hence, choose δ ∈ (0, 1) such

that for any x, y ∈ RN with Sx − yS ≤ δ, we have Sf̃(x) − f̃(y)S ≤ η
2
.
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By (5.17), (5.18), the uniform continuity of f̃ , (5.20), and (5.19), we find that at
z ∈ RN−1 × [0,1],

Sf̃(z) − gj(z)S = VCj S
1

−1
f̃(z′, zN) − f̃(z′, zN + t) (1 − t2)j dtV

≤ Cj S
(−1,1)∖(−δ,δ)

Tf̃(z′, zN + t) − f̃(z′, zN)T (1 − t2)j dt

+Cj S
δ

−δ
Tf̃(z′, zN + t) − f̃(z′, zN)T 1 − t2 j

dt

≤ Cj S
(−1,1)∖(−δ,δ)

2M(z)(1 − t2)j dt +Cj S
δ

−δ

η

2
(1 − t2)j dt

≤ CM(z)
»
j(1 − δ2)j + η

2

≤ CR
»
j(1 − δ2)j (zN + 1) + η

2
.

Taking j sufficiently large, using the fact that R > 1, and that

lim
j→∞

»
j(1 − δ2)j = 0,

we can find gη ∈ A such that, for all z ∈ RN−1 × [0,1],

Sf̃(z) − gη(z)S ≤ Rη(zN + 1).

By (5.16), this implies that for all z ∈ RN−1 × [0,1],

Shν(z′,2RzN −R) − hν(z′,−R) − zN(hν(z′,R) − hν(z′,−R)) − gη(z)S
≤ Rη(zN + 1).

Combining the constant term and the linear term in zN into the polynomial gη(z),
we deduce that there is a polynomial gη,R ∈ A such that

Thν(z′,2RzN −R) − gη,R(z)T ≤ Rη(zN + 1) for all z ∈ RN−1 × [0,1].

By the affine transformation in the Nth variable (zN ↦ 1
2R
(zN +R)), we obtain a

polynomial g̃η,R ∈ A such that

Thν (z) − g̃η,R(z)T ≤
η

2
(zN + 3R) for all z ∈ RN−1 × [−R,R]. (5.21)

Step C. In this step, we argue that the linear growth of hν at infinity implies that
we may restrict to polynomial approximations that are linear in zN . Our strategy to
make this reduction will be to obtain a single “infinite polynomial” which pointwise

approximates the bounded function z ∈ RN Σν ↦ hν(z)
zN

(rather than on sets of the

form RN−1 × [−R,R], in which the coefficients of the polynomial approximation
might depend on R).

To this end, let {τm}m denote an increasing sequence of positive numbers with
τm →∞ as m→∞. We define

A−1 ∶=
⎧⎪⎪⎨⎪⎪⎩
g(z′, zN) ∶=

p

Q
j=−1

b̃j(z′)zjN ∶ p ∈ N, b̃j ∈ AP (R
N−1)

⎫⎪⎪⎬⎪⎪⎭
.
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Fix η > 0. On the compact interval [−τm,− 1
τm
] ∪ [ 1

τm
, τm], let pm ∈ A−1 as in Step B

be chosen such that

Whν(z
′, zN)
zN

− pm(z)W ⩽
η

2m
z ∈ RN−1 × −τm,−

1

τm

1

τm
, τm . (5.22)

We set q0 ∶= p1, and qm ∶= pm+1 − pm, for m ∈ N. Then

pm+1(z) =
m

Q
n=0

qn(z),

and thus, pointwise, we have

hν(z)
zN

=
∞
Q
n=0

qn(z) +O(η), z ∈ RN−1 × (R ∖ 0) . (5.23)

Next, we show that on sets of the form RN−1 × [c, d],0 < c < d < ∞, the series in
(5.23) converges uniformly and absolutely. Indeed, if [c, d] ⊂ (0,∞), then for all m
sufficiently large and for all z ∈ RN−1 × [c, d], we have by (5.22)

Whν(z)
zN

− pm(z)W ⩽
η

2m
,

and so,

Sqm(z)S ⩽ Wpm+1(z) −
hν(z)
zN
W + Whν(z)

zN
− pm(z)W ⩽

η

2m
+ η

2m+1
.

It follows that there exists M ∈ N large so that
∞
Q
m=M

Sqm(z)S ⩽ 2
∞
Q
m=M

η

2m
⩽ Cη,

and thus the series ∑∞m=0 qm(z) converges uniformly and absolutely to z ↦ hν(z)
zN

on the set RN−1 × [c, d]. As {pm}m ⊂ A−1, we have also {qm}m ⊂ A−1. Collecting
powers of zN and rearranging, using the absolute summability we may rewrite the
series in (5.23) as

hν(z)
zN

=
∞
Q
j=−1

b̃j(z′)zjN +O(η),

where the coefficients b̃j are Bohr almost periodic, and therefore, bounded. Testing

this with z = Tmζ, for ζ ∈ Qν with ζN = 1, we get

hν(Tmζ)
Tm

=
∞
Q
j=−1

b̃j(Tmζ ′)T jm +O(η).

We claim that each of the terms

sup
m
S̃bj(Tmζ ′)T jmS ⩽ Cj , (5.24)

for some constant Cj > 0, for every j ⩾ 1. To see this, as the infinite series above
is convergent for each m, there exists J0(m) such that for all j ⩾ J0(m), we have

S̃bj(Tmζ ′)T jmS ⩽ 1, and T∑j⩾J0(m) b̃j(Tmζ ′)T jmT ⩽ 1. It follows by the triangle inequality
that

sup
m

RRRRRRRRRRRR
Q

j⩽J0(m)
b̃j(Tmζ ′)T jm

RRRRRRRRRRRR
⩽ C. (5.25)
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As the coefficients b̃j are bounded, by Bohr almost periodicity, (5.25) implies the
claim in (5.24).

Having proven the claim in (5.24), it follows that the b̃j are Bohr almost periodic

functions that decay at infinity. From this, we claim that each of the b̃j must vanish

identically. Indeed, for any j ⩾ 1, since S̃bj(Tmζ ′)S ⩽ Cj

T jm
, squaring, and integrating

over the cube ◻ν = Σν ∩Qν , and then sending m→∞, we find that

µ(̃b2j) = lim
m→∞S◻ν

S̃bj(Tmζ ′)S2 dζ ′ = 0,

which, together with (5.4), implies that b̃j ≡ 0 for all j ≥ 1. In particular, we may
reduce (5.21) to a linear approximation, so that for every η > 0 and R > 1 there exist
Bohr almost periodic functions bη0 , b

η
1 with

Shν(z) − bη0(z′) − b
η
1(z′)zN S ⩽ η(SzN S +R), for all z ∈ RN−1 × [−R,R]. (5.26)

Recalling (5.9), by (5.26) we have for z ∈ RN−1 × [−R,R],

Vkm(z) −
1

Tm
bη0(Tmz′) − b

η
1(Tmz′)zN V =

1

Tm
Shν(Tmz) − bη0(Tmz) − b

η
1(Tmz′)TmzN S

⩽ η

Tm
(STmzN S +R) = ηSzN S +

ηR

Tm
. (5.27)

With the choice of z = (z′,0) ∈ Σν in (5.26) and (5.27), respectively, we conclude
that

Sbη0(z′)S ≤ ηR and
1

Tm
Sbη0(Tmz′)S ≤

ηR

Tm
for all z′ ∈ RN−1. (5.28)

From (2.3), (5.26), and (5.28), we see that for zN ∈ (0,R],

bη1(z′) =
1

zN
bη1(z′)zN ≤

1

zN
[hν(z) − bη0(z′) + η(SzN S +R)] ≤

√
Θ + η 1 + 2R

zN
,

and

bη1(z′) =
1

zN
bη1(z′)zN ≥

1

zN
[hν(z) − bη0(z′) − η(SzN S +R)] ≥

√
θ − η 1 + 2R

zN
.

Taking zN = R, we infer that
√
θ − 3η ⩽ bη1(z′) ⩽

√
Θ + 3η. (5.29)

Since bη1 is Bohr uniformly almost periodic, it follows that the limit

b
η

1 ∶= µ(bη1) = lim
T→∞

1

TN−1 ST◻ν
bη1(z′)dz′ = lim

T→∞S◻ν
bη1(Tz′)dz′ (5.30)

exists. From (5.29), it follows that
√
θ − 3η ⩽ bη1 ⩽

√
Θ + 3η. This implies that up to

a subsequence (not relabeled),

b
η

1 ——→
η→0

c(ν) (5.31)

for some c(ν) ∈ [
√
θ,
√

Θ]. Fix α > 0. As the functions bη1(Tm⋅) Bohr two-scale

converge to b
η

1 as m→∞(see Remark 5.6), for any fixed T > 1, using Definition 5.5
in the domain Ω = T◻ν , this entails that for every test function ψ ∶ T ◻ν ×RN → R,
that is continuous in the first variable and Bohr almost periodic in the second
variable, we have

lim
m→∞ST◻ν

bη1(Tmz′)ψ(z′, Tmz′)dz′ = S
T◻ν

µ b
η

1ψ(z′, ⋅) dz′ = b
η

1 S
T◻ν

µ(ψ(z′, ⋅))dz′.
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In what follows, we use this framework with the choice of test functions given by

ψ(z′,w) ∶= e−iχ⋅z′ , for χ ∈ RN−1, which are independent of w. For such a choice,

lim
m→∞ST◻ν

bη1(Tmz′)e−iχ⋅z
′
dz′ = bη1 S

T◻ν
e−iχ⋅z

′
dz′. (5.32)

Step D. To prove (5.10), in view of Step A it remains to show that k(z) = c(ν)z ⋅ν
for all z ∈ RN . We note that this is immediate for all z ∈ Σν , by definition of k(z).
We recall the function z ↦ q̃(z) = k(z)

zN
from Step A, and notice that being the locally

uniform limit of Bohr almost periodic functions, q̃(⋅, zN) is Bohr almost periodic.
Fix R > 0 and also fix SzN S ≤ R, zN ≠ 0. Our strategy is to show that for all χ ∈ RN−1,
we have

µ (q̃(⋅, zN) − c(ν))e−iχ⋅(⋅) = 0, (5.33)

where, as in (5.2), µ denotes the mean value of the almost periodic argument. If we
can verify (5.33), then by (5.4) we deduce that q̃(z′, zN) ≡ c(ν). As zN is arbitrary
on [−R,R] ∖ {0}, we conclude that k(z) = c(ν)z ⋅ ν for all z ∈ RN−1 × [−R,R].

Let α > 0, and for T > 1 fixed let K ∶= T ◻ν ×{zN} be a compact subset of
{z ⋅ ν > 0}, and let M =M(α,K) be as in (5.11). Let m0 ≥M be such that for all
m ≥m0, in view of (5.32),

VS
T◻ν

bη1(Tmz)e−iχ⋅z
′
dz′ − bη1 S

T◻ν
e−iχ⋅z

′
dz′V < α. (5.34)

For m ≥m0, by (5.11), (5.27), (5.28), and (5.34), we have

V 1

TN−1 ST◻ν
(q̃(z′, zN) − c(ν)) e−iχ⋅z

′
dz′V

⩽ W 1

TN−1 ST◻ν
k(z′, zN)

zN
− km(z)

zN
e−iχ⋅z

′
dz′W

+ W 1

TN−1 ST◻ν
km(z)
zN

− 1

Tm

bη0(Tmz′)
zN

− bη1(Tmz′) e−iχ⋅z
′
dz′W

+ W 1

TN−1 ST◻ν
1

Tm

bη0(Tmz′)
zN

e−iχ⋅z
′
dz′W + V 1

TN−1 ST◻ν
bη1(Tmz′) − b

η

1 e−iχ⋅z
′
dz′V

+ Sbη1 − c(ν)S

⩽ α + η

Tm
+ 2ηR

TmSzN S
+ V 1

TN−1 ST◻ν
bη1(Tmz′) − b

η

1 e−iχ⋅z
′
dz′V + Sbη1 − c(ν)S

= α +C η

Tm
+ ηR

TmSzN S
+ α

TN−1
+ Sbη1 − c(ν)S.

We first send m→∞, so that Tm →∞. Then letting T →∞, we obtain that

Uµ q̃(⋅, zN) − c(ν) e−iχ⋅(⋅) U ⩽ α + Sb
η

1 − c(ν)S.

Sending η,α→ 0 completes the proof of (5.33), where we used (5.31).
Step E. The foregoing argument shows that k(z) = c(ν)z ⋅ ν for all z ∈ (RN−1 ×

[−R,R]). As R is arbitrary, and k from Step A is defined in RN (i.e., independently
of any truncation R), we conclude that c(ν) is independent of R and

k(z) = c(ν)z ⋅ ν.
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Thus, for all K ⊆ RN ∖Σν compact,

lim
m→∞

sup
z∈K
Wkm(z)
zN

− c(ν)W = 0,

and this implies (5.10).
∎

For notational convenience, we define H ∶ RN ×RN → R by

H(p, y) ∶= 1»
a(y)

SpS.

With this notation, (1.10) yields that, in the viscosity sense,

⎧⎪⎪⎨⎪⎪⎩

H(∇km, Tmx) = 1 in Hν ,

km(x) = 0 on Σν .

We also point out that H(⋅, y) is uniformly Lipschitz continuous. Indeed, by (H2),
we have

SH(p, y) −H(q, y)S = 1»
a(y)

Sp − qS ≤ 1√
θ
Sp − qS. (5.35)

Throughout the rest of the paper, we take all equalities and inequalities of PDEs
to be in the viscosity sense, and refer the reader to [14, 13] for an overview of
viscosity solutions.

We next present a comparison principle which is specifically tailored for the proof
of Theorem 1.5. A more general version of this result is stated in [22, Lemma 3.3]
without proof (although the proof essentially follows the same lines as [4, Lemma
3.1].) For completeness, we provide a self-contained proof of the result we need here:

Lemma 5.9. Let η > 0, and let u, v ∈ C(RN) satisfy

⎧⎪⎪⎨⎪⎪⎩

H(ν +∇u, y) <H(ν +∇v, y) − η√
θ

in Hν ,
u(y) ≤ v(y) on Σν ,

(5.36)

with

lim inf
SyS→∞

v(y) − u(y)
SyS ≥ −η. (5.37)

Then

u(y) ≤ v(y) in Hν .

Proof. Due to the strict inequality in (5.36), there exists ε > 0 so that

H(ν +∇u, y) ≤H(ν +∇v, y) − η + ε√
θ

in Hν . (5.38)

For each R > 1, we define

ψR(y) ∶= (R2 + SyS2)1~2 −R and vR(y) ∶= v(y) + (η + ε)ψR(y).

Notice that

Y∇ψRYL∞(RN ) ≤ 1 and lim
SyS→∞

SyS−1ψR(y) = 1. (5.39)
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Owing to (5.35), (5.38), and (5.39) we obtain

H(ν +∇vR, y) ≥H(ν +∇v, y) − (η + ε)√
θ
Y∇ψRYL∞(RN )

=H(ν +∇v, y) − (η + ε)√
θ
≥H(ν +∇u, y) in Hν .

Moreover, since vR ≥ v, we have

u(y) ≤ vR(y) on Σν , (5.40)

and by (5.37) and superadditivity of lim inf, we find

lim inf
SyS→∞

vR(y) − u(y)
SyS = lim inf

SyS→∞

v(y) + (η + ε)ψR(y) − u(y)
SyS

≥ lim inf
SyS→∞

v(y) − u(y)
SyS + (η + ε) lim

SyS→∞

ψR(y)
SyS

≥ −η + (η + ε) = ε > 0.

This implies that for SyS sufficiently large, the numerator must be nonnegative,
and thus there is a large ball BM so that

u(y) ≤ vR(y) on Hν ∖BM . (5.41)

We may now apply the comparison principle for the Dirichlet problem of stationary
Hamilton-Jacobi equations on bounded domains [14, Theorem 3.3] to conclude that
by (5.41), the comparison principle, and (5.40),

sup
Hν

u(y) − vR(y) + = sup
BM∩Hν

u(y) − vR(y) + ≤ max
∂BM∩Hν

u(y) − vR(y) +

≤ sup
Σν

u(y) − vR(y) + = 0.

This yields that
u(y) ≤ vR(y) in Hν .

Finally, as ψR(y) → 0 pointwise as R → ∞, we have vR(y) → v(y) pointwise as
R →∞, independent of η and ε, and thus

u(y) ≤ v(y) in Hν .

∎
In order to conclude the statement of Theorem 1.5 along the whole sequence

T →∞, we refer to a result of the famous (unpublished) work of Lions-Papanicolaou-
Varadhan [25], concerning the existence of periodic correctors.

Theorem 5.10. [25, Theorem 1] For each p ∈ RN , there exists a unique number

H(p) and u ∈ Lip(TN) (the set of Lipschitz continuous and TN -periodic functions)
so that u solves

H(p +∇u,x) =H(p) in RN (5.42)

in the viscosity sense.

We note that the function u satisfying (5.42) is clearly not unique (for any M ∈ R,
the function u +M is also a solution to (5.42)), but emphasize that Theorem 5.10

guarantees that H(p) is unique.
Equipped with Lemma 5.8, Lemma 5.9, and Theorem 5.10, we now present the

proof of Theorem 1.5.
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Proof of Theorem 1.5. We first argue that the value of c(ν) must be unique in Hν .
Let us suppose, for the purposes of contradiction, that c(ν) is not unique, and define

c1(ν) ∶ = inf c(ν) ∈ [
√
θ,
√

Θ] ∶ ∃ a subsequence {Tm} such that (5.43)

lim
Tm→∞

km(x) = c(ν)x ⋅ ν loc. uniformly in Hν ,

and

c2(ν) ∶ = sup c(ν) ∈ [
√
θ,
√

Θ] ∶ ∃ a subsequence {Tm} such that

lim
Tm→∞

km(x) = c(ν)x ⋅ ν loc. uniformly in Hν .

By definition, c1(ν) < c2(ν). Setting

w1(y) ∶= hν(y) − c1(ν)(y ⋅ ν) and w2(y) ∶= hν(y) − c2(ν)(y ⋅ ν),
we have

H(c1(ν)ν +∇w1, y) = 1 and H(c2(ν)ν +∇w2, y) = 1 in Hν .

By 1-homogeneity of H(⋅, y), this implies that for w̃1(y) ∶= c1(ν)−1w1(y) and
w̃2(y) ∶= c2(ν)−1w2(y), we have

H(ν +∇w̃2, y) =
1

c2(ν)
< 1

c1(ν)
=H(ν +∇w̃1, y) in Hν . (5.44)

We now claim for any K ⊆ Hν compact,

lim sup
T→∞

1

T
w2(Tx) ≤ 0 and lim inf

T→∞

1

T
w1(Tx) ≥ 0 for all x ∈K. (5.45)

Indeed, by Lemma 5.8, we know that for any sequence T → ∞, there exists
a subsequence such {Tm} and c̄(ν) ∈ [

√
θ,
√

Θ] so that T −1
m hν(Tmx) → c̄(ν)x ⋅ ν

as Tm → ∞, and c̄(ν) ∈ [c1(ν), c2(ν)]. This, in particular, implies that for any
convergent subsequence,

T −1
m w1(Tmx) = T −1

m hν(Tmx) − c1(ν)x ⋅ ν
= T −1

m hν(Tmx) − c̄(ν)x ⋅ ν + [c̄(ν) − c1(ν)](x ⋅ ν)
≥ T −1

m hν(Tmx) − c̄(ν)x ⋅ ν,
where the right hand side tends to 0 as m→∞. Taking lim inf of both sides, we see
that every subsequential limit, hence the full sequence, satisfies the second assertion
of (5.45). The other inequality in (5.45) follows by an analogous argument. In
particular, taking x ∈ SN−1 ∩Hν and y = Tx, we have

lim sup
SyS→∞

w̃2(y)
SyS ≤ 0 and lim inf

SyS→∞

w̃1(y)
SyS ≥ 0. (5.46)

By Theorem 5.10, let u be the periodic corrector corresponding to H(ν), so that

⎧⎪⎪⎨⎪⎪⎩

H(ν +∇u, y) =H(ν) in RN ,
limSyS→∞

u(y)
SyS = 0.

(5.47)

We consider two cases: Case 1: H(ν) ∈ 1
c2(ν) ,

1
c1(ν) . Without loss of generality,

we will assume H(ν) < 1
c1(ν) (if not, then we can repeat the following argument
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using that H(ν) > 1
c2(ν) ). We claim that there exists η > 0 so that the hypotheses of

Lemma 5.9 are satisfied.
Indeed, for the functions uη(y) ∶= u(y) + η(y ⋅ ν) and w̃1(y), by (5.44), (5.35),

and the assumption of Case 1 that H̄(ν) < 1
c1(ν) , there exists η > 0 sufficiently small

so that

H(ν +∇uη, y) ≤H(ν +∇u, y) + η√
θ
=H(ν) + η√

θ
< − η√

θ
+ 1

c1(ν)
= − η√

θ
+H(ν +∇w̃1, y) in Hν .

We note that the function u ∈ Lip(TN) is bounded, and for any M > 0, the function
u −M ∈ Lip(TN) and also satisfies (5.42). We may thus assume assume without
loss of generality that u ≤ 0. This implies

uη(y) = u(y) + η(y ⋅ ν) = u(y) ≤ 0 = w̃1(y) on Σν .

Furthermore, by (5.46) and (5.47),

lim inf
SyS→∞

w̃1(y) − uη(y)
SyS ≥ −η.

By Lemma 5.9, this yields

u(y) + η(y ⋅ ν) ≤ w̃1(y) in Hν . (5.48)

If the infimum in (5.43) is achieved, then there exists a subsquence {ym} = {Tmx}
so that limm→∞ SymS−1w̃1(ym) = 0. Dividing (5.48) by SyS, using that y ⋅ ν > 0, and
evaluating this inequality along this particular sequence, we have

η ≤ 0,

which is a contradiction.
If the infimum in (5.43) is not achieved, then we know that for every ε > 0,

there exists a subsequence {ym} = {Tmx} so that T −1
m hν(Tmx) → (c1(ν)− ε)x ⋅ ν. In

particular, the function w̃1,ε(x) ∶= (c1(ν) − ε)−1hν(x) − x ⋅ ν solves

1

c1(ν) − ε
=H(ν +∇w̃1,ε, y) >H(ν +∇u, y) in Hν .

We now repeat the above argument with uη,ε(y) ∶= u(y)+ η + ε
c1(ν)−ε y ⋅ν. We may

again choose η > 0 sufficiently small so that

⎧⎪⎪⎨⎪⎪⎩

H(ν +∇uη,ε, y) < − η√
θ
+H(ν +∇w̃1,ε, y) in Hν ,

uη,ε(y) ≤ w̃1(y) on Σν ,

and we can check that

lim inf
SyS→∞

w̃1,ε(y)
SyS ≥ ε

c1(ν) − ε
,

which implies

lim inf
SyS→∞

w̃1,ε(y) − uη,ε(y)
SyS ≥ −η.

By another application of Lemma 5.9, we have

u(y) + η + ε

c1(ν) − ε
y ⋅ ν ≤ w̃1,η(y) in Hν .
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Dividing by SyS and taking this along the particular subsequence {ym}, we have

η + ε

c1(ν) − ε
≤ 0,

which is another contradiction.
Case 2. H(ν) ∉ 1

c2(ν) ,
1

c1(ν) . Without loss of generality, let us assume H(ν) > 1
c1(ν)

(otherwise, a symmetric argument to handle the other alternative). We consider the
function ŵ1,λ(y) ∶= λw̃1(y) + (1 − λ)u(y). We note that by the convexity of H(⋅, y),

H(ν +∇ŵ1,λ, y) ≤ λH(ν +∇w̃1, y) + (1 − λ)H(ν +∇u, y) =
λ

c1(ν)
+ (1 − λ)H(ν)

< λH(ν) + (1 − λ)H(ν)
<H(ν) in Hν .

Moreover, by definition of w̃1 and (2.3), we have

lim sup
SyS→∞

ŵ1,λ(y)
SyS = lim sup

SyS→∞

λw̃1(y) + (1 − λ)u(y)
SyS ≤ λ

√
Θ

c1(ν)
+ 1 =∶ λM. (5.49)

We now proceed by the same arguments as above. Let uη(y) ∶= u(y) − η(y ⋅ ν),
choose λ > 0, and then η = η(λ) > 0 sufficiently small, so that

⎧⎪⎪⎨⎪⎪⎩

H(ν +∇ŵ1,λ, y) < −η+λM√θ +H(ν +∇uη, y) in Hν ,
ŵ1,λ(y) ≤ uη(y) on Σν .

By (5.49), we have

lim inf
SyS→∞

uη(y) − ŵ1,λ(y)
SyS ≥ −(η + λ)M.

By Lemma 5.9, this yields

ŵ1,λ(y) ≤ u(y) − η(y ⋅ ν) in Hν .

Note that for any λ > 0, if {ym} is a sequence such that limSymS→∞ SymS−1w̃1(ym) = 0,

then we have limSymS→∞ SymS−1ŵ1,λ(ym) = 0. We then argue as in the last step of
Case 1 to conclude that upon dividing by SyS and sending SyS → ∞, we will have
0 ≤ −η. We note that we can make a similar argument as in Case 1 if the infimum
in (5.43) is not achieved.

Now since c(ν) is uniquely determined, we have that every subsequence {km} =
T −1
m hν(Tm⋅) has a further subsequence which converges locally uniformly to

x ↦ c(ν)x ⋅ ν, where c(ν) = 1

H(ν)
is uniquely defined. This implies that for any

K ⊆ Hν compact, we have

lim
T→∞

sup
x∈K
V 1
T
hν(Tx) − c(ν)x ⋅ νV = 0.

This, combined with Lemma 5.8, guarantees that for any K ⊆ RN ∖Σν compact,
we have

lim
T→∞

sup
x∈K
V 1
T
hν(Tx) − c(ν)x ⋅ νV = 0.

We note that the functions {km} are themselves uniformly bounded and uniformly
equicontinuous on any compact set K ⊆ RN . In particular, by the Arzelà-Ascoli
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Theorem, this implies that for any sequence {Tm} tending to infinity, there exists a
function q(x) so that

lim
m→∞

sup
x∈K
Skm(x) − q(x)S = 0.

In particular, by uniqueness of limits, we must have that q(x) ≡ c(ν)x ⋅ ν, and this
yields that for any K ⊆ RN compact,

lim
T→∞

sup
x∈K
V 1
T
hν(Tx) − c(ν)x ⋅ νV = 0.

We also have that

lim
T→∞

sup
x∈K
V 1
T
h−ν(Tx) − c(−ν)(x ⋅ −ν)V = 0.

Since hν(x) = −h−ν(x) by (2.1), taking x ∉ Σν , we have

Sc(ν)x ⋅ ν − c(−ν)x ⋅ νS ≤ V− 1

T
hν(Tx) + c(ν)x ⋅ νV + V

1

T
hν(Tx) − c(−ν)x ⋅ νV

= V 1
T
hν(Tx) − c(ν)x ⋅ νV + V−

1

T
h−ν(Tx) − c(−ν)x ⋅ νV

= V 1
T
hν(Tx) − c(ν)x ⋅ νV + V−

1

T
h−ν(Tx) + c(−ν)(x ⋅ −ν)V

Taking a limit on the right as T → ∞, we arrive at the conclusion that c(ν) =
c(−ν). ∎

Remark 5.11. A posteriori, knowing that c(ν) = 1

H(ν)
, we may use various known

properties of effective Hamiltonian from [25, Proposition 2] to conclude properties
of c(ν). For instance, we obtain that c(⋅) is Lipschitz continuous, and moreover that

H(p) ∶= 1

c(p~SpS) SpS

is convex. One could pursue further analysis of alternative representation formulas
for H(⋅) through its convex, homogeneous, and continuous nature (e.g. the analysis
of supports and gauges, see [34]), but we do not carry this out here.

Remark 5.12. We furthermore recall that in the works of [5, 8], the authors identify
the stable norm Yx − yY∗ for x, y ∈ RN , which represents a homogenized distance
function between x and y. If we think of c(ν)x ⋅ ν as the homogenized distance
function to the plane Σν , then in comparison to the Euclidean setting, we expect
that for x ∈ Hν ,

c(ν)x ⋅ ν = inf
y∈Σν
Yx − yY∗.

While we do not explore it here, we think it would be very interesting to connect
Theorem 1.5 with this related body of literature in geometry.

Finally, we complete the paper with the proof of Theorem 1.6. We first note an
equivalent definition of Bohr almost periodicity, and used throughout the literature
in almost periodic homogenization:

Definition 5.13. A continuous, bounded function g ∶ Rd → R is said to be Bohr
almost periodic if the family of functions

g(⋅ + z) ∶ z ∈ Rd

is relatively compact in Y ⋅ Y∞.
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For a proof of the equivalence between this definition of Bohr almost periodicity,
and the one using trigonometric polynomials, we refer the reader to [38]. With this
in hand, we are now ready to prove Theorem 1.6:

Proof of Theorem 1.6. We note that if a(⋅) is (Bohr) almost periodic, then a(⋅) has
a uniformly convergent Bochner-Fourier series (see (5.3)). This was the only fact
we needed in the proof of Lemma 5.7. By the equivalence of Definition 5.13 and the
characterization of Bohr almost periodic functions via their uniformly convergent
Bochner-Fourier series (see (5.3)), Lemma 5.7 holds when a(⋅) is almost periodic.

The proof of Lemma 5.8 only relies on the almost periodicity from Lemma 5.7,
in which case Lemma 5.8 also holds when a(⋅) is almost periodic.

Finally, the proof of Theorem 1.5 only uses the fact that for every p ∈ RN , there
exists a unique value of H(p) and a corrector u which is bounded and solves

H(p +∇u, y) =H(p) in RN . (5.50)

When a(⋅) is almost periodic, a result of Ishii [24, Theorem 2] yields the existence
of a bounded uniformly continuous function u satisfying (5.50). This implies that
the conclusion of Theorem 1.5 holds true when a(⋅) is almost periodic. ∎

Appendix A. Modified Boundary Conditions via De Giorgi’s Slicing
Technique

Recalling the distance function hν introduced in Section 2.1, we next argue that σ
has an alternative representation with boundary conditions in terms of the function
q ○ hν .

Lemma A.1. Define σ ∶ SN−1 → (0,∞) by

σ(ν) ∶= lim
T→∞

1

TN−1
inf S

TQν
a(y)W (u) + 1

2
S∇uS2 dy ∶

u ∈H1(TQν), uS∂TQν = q ○ hν .

Then σ(ν) = σ(ν) for all ν ∈ SN−1.

Proof. Fix ν ∈ SN−1. For ease of notation, for u ∈ H1(A) and A ⊆ RN open, we
introduce the localized functional

Gε(u,A) ∶= S
A

1

ε
a

y

ε
W (u) + ε

2
S∇uS2 dy.

By the change of variables y ↦ Tx with ε = 1
T

, we rewrite σ as

σ(ν) = lim
ε→0

inf Gε(u,Qν) ∶ u ∈H1 (Qν) , uS∂Qν = (q ○ hν) (x~ε) , (A.1)

and, similarly, we rewrite (1.4) as

σ(ν) = lim
ε→0

inf Gε(u,Qν) ∶ u ∈H1 (Qν) , uS∂Qν = ũρ,1~ε,ν . (A.2)

Here, ũρ,1~ε,ν ∶= u0,ν ∗ ρε, where ρε(⋅) ∶= ε−Nρ(⋅~ε).
To show that σ(ν) = σ(ν), we first prove that σ(ν) ⩾ σ(ν). The inequality

σ(ν) ⩽ σ(ν) can be carried out in an analogous manner. Throughout the rest of
the proof, we let Q ∶= Qν . Let ηj → 0 as j → ∞ be fixed, and {vj} ⊆ H1(Q) with
vj(x) = ρ1~ηj ∗ u0,ν(x) on ∂Q be such that

lim
j→∞
Gηj(vj ,Q) = σ(ν). (A.3)
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We extend vj to τQ, for τ ∈ (1, 2], by defining vj(x) ∶= ρ1~ηj ∗u0,ν(x) for x ∈ τQ∖Q.

Set wj(x) ∶= (q ○ hν) (x~ηj) for x ∈ RN . By (2.6), since τ ∈ (1,2], we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩

wj (x) ⩾ 1 − c1e
−c2 Sx⋅νSηj if x ∈ τQν ∩ {x ⋅ ν ⩾ 0},

wj (x) ⩽ −1 + c1e
−c2 Sx⋅νSηj if x ∈ τQν ∩ {x ⋅ ν < 0}.

Therefore, as Swj S ⩽ 1,

lim
j→∞
Ywj − u0,νY2L2(τQ) = lim

j→∞SτQ∩ x⋅ν>√ηj
Swj − 1S2 dx (A.4)

+ lim
j→∞SτQ∩ x⋅ν<−√ηj

Swj + 1S2 dx

+ lim
j→∞SτQ∩ −√ηj⩽x⋅ν⩽√ηj

4dx

= 0. (A.5)

Clearly

lim
j→∞
Yvj − u0,νYL2(τQ∖Q) = 0. (A.6)

In particular, we have that

λj ∶= Ywj − vjYL2(τQ∖Q) ———→
j→∞

0. (A.7)

We will now construct a function uj ∈H1(τQ) such that uj S∂(τQ)= wj , and for
some C > 0,

lim sup
j→∞

S
τQ

1

ηj
a

x

ηj
W (uj) +

ηj

2
S∇uj S2 dx ⩽ σ(ν) +C(τ − 1). (A.8)

Our main approach will be to define a new function which smoothly interpolates
between vj in Q and wj on ∂(τQ) in the region τQ ∖Q.

We note that by (2.6),

S∇wj(x)S2 = 2 W (q ○ hν)
x

ηj
W∇hν

x

ηj
W
2

1

η2
j

⩽ 2Θ

η2
j

⎡⎢⎢⎢⎢⎣
1 − (q ○ hν)2

x

ηj

2⎤⎥⎥⎥⎥⎦

⩽ 2Θ

η2
j

⎡⎢⎢⎢⎢⎣
1 − tanh2

√
2hν

x

ηj

2⎤⎥⎥⎥⎥⎦

= 2Θ

η2
j

sech4
√

2hν
x

ηj
. (A.9)

Combining (2.6), (2.3), and (A.9), we find

S∇wj S ⩽
C

ηj
e
−c Sx⋅νSηj . (A.10)

We consider, for k ∈ N with k >> 1
τ−1

,

Lk ∶= x ∈ τQ ∖Q ∶ dist(x, ∂(τQ)) < 1

k
.
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We divide Lk into cubic shells (or layers), which we denote by Lki,j
Mk,j

i=1 , of thickness

ηjλj , where λj is defined by (A.7). We note that Mk,j ∶= ⌈ 1
kηjλj

⌉, and thus

Mk,jηjλj ⩾ 1~k. (A.11)

For every k, j ∈ N, we let i0 ∈ {1, . . . ,Mk,j} be the smallest value such that

S
Lki0,j

bj(x)dx ⩽
1

Mk,j
S
Lk
bj(x)dx, (A.12)

where

bj(x) ∶=
1

ηj
+ Svj(x) −wj(x)S

2

(λj)2ηj
+ ηj(S∇vj(x)S2 + S∇wj(x)S2).

We also consider cut-off functions ϕk,j ∈ C∞c (τQ) with

0 ⩽ ϕk,j ⩽ 1, Y∇ϕk,jYL∞ ⩽
C

ηjλj
,

and

ϕk,j =
⎧⎪⎪⎨⎪⎪⎩

1 for x ∈ Q⋃ ⋃i0−1
i=1 Lki,j ,

0 for x ∈ ⋃Mk,j

i=i0+1L
k
i,j .

We note that ϕk,j transitions precisely in the layer Lki0,j . We then set

uk,j ∶= ϕk,jvj + (1 −ϕk,j)wj ,

and we have by (A.4) and (A.6), limk→∞ limj→∞ Yuk,j − u0,νYL2(τQ∖Q) = 0.
We estimate

Gηj(uk,j , τQ) = Gηj vj ,
i0−1

i=1
Lki,j Q + Gηj uk,j , L

k
i0,j + Gηj

⎛
⎝
wj ,

Mi,j

i=i0+1

Lki,j
⎞
⎠

=∶ Ak,j +Bk,j +Ck,j . (A.13)

We have

Ak,j ⩽ Gηj (vj ,Q) + Gηj (vj , τQ ∖Q) ,
and we see that, since vj = ρ1~ηj ∗ u0,ν(x) in τQ ∖Q,

Gηj(vj , τQ ∖Q) = S
τQ∖Q∩{Sx⋅νS<ηj}

1

ηj
a

x

ηj
W (vj) +

ηj

2
S∇vj S2 dx

⩽ C
ηj
SτQ ∖Q ∩ {Sx ⋅ νS < ηj}S ,

where we used the facts that vj ∈ {1,−1} in τQ ∖Q ∩ {Sx ⋅ νS > ηj}, and that

S∇vj S = S∇(ρ1~ηj ∗ u0,ν)S ⩽ Cη−1
j . (A.14)

Hence,

Gηj(vj , τQ ∖Q) ⩽ C(τ − 1)N−1,

which implies that

lim sup
k→∞

lim sup
j→∞

Ak,j ⩽ σ(ν) +C(τ − 1)N−1. (A.15)

Next, since YvjYL∞(τQ) ⩽ 1, and YwjYL∞(τQ) ⩽ C(Θ), we have by (A.12),
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Bk,j ⩽ C S
Lki0,j

1

ηj
+ ηj S∇ϕk,j S2(vj −wj)2 + S∇vj S2 + S∇wj S2 dx

⩽ C S
Lki0,j

1

ηj
+ Svj −wj S

2

ηjλ2
j

+ ηj S∇vj S2 + S∇wj S2 dx

⩽ C

Mk,j
S
Lk

1

ηj
+ Svj −wj S

2

ηjλ2
j

+ ηj S∇vj S2 + S∇wj S2 dx.

By (A.14), (A.10), and (A.11), we obtain

Bk,j ⩽
C

Mk,j

1

ηj
SLkS +

λ2
j

ηjλ2
j

+ C
ηj
SLk S ⩽ C SLk S

ηjMk,j
+ C

ηjMk,j
⩽ C τ

N−1kλj

k
+Ckλj ,

where we have used the fact that SLk S ⩽ C(N) τN−1
k

. Hence,

lim sup
k→∞

lim sup
j→∞

Bk,j = 0. (A.16)

For the term Ck,j , we first remark that by (2.6), and (2.3),

W (wj) ⩽ (1 − tanh2(2hν(x~ηj)))2 = sech4(2hν(x~ηj))) ⩽ Ce
−c Sx⋅νSηj .

Combining this with (A.10), we have

S
τQ∖Q

1

ηj
a

x

ηj
W (wj(x)) +

ηj

2
S∇wj(x)S2 dx

⩽ S
τQ∖Q∩{Sx⋅νS⩾2ηj}

1

ηj
a

x

ηj
W (wj(x)) +

ηj

2
S∇wj(x)S2 dx

+ S
τQ∖Q∩{Sx⋅νS⩽2ηj}

1

ηj
a

x

ηj
W (wj(x)) +

ηj

2
S∇wj(x)S2 dx

⩽ C S
τQ∖Q∩{Sx⋅νS⩾2ηj}

1

ηj
e
−c Sx⋅νSηj + 1

ηj
e
−c Sx⋅νSηj dx

+C S
τQ∖Q∩{Sx⋅νS⩽2ηj}

1

ηj
dx

⩽ C(τ − 1)N−1 +Cηj(τ − 1)N−1 1

ηj

⩽ C(τ − 1)N−1.

This implies that

lim sup
k→∞

lim sup
j→∞

Ck,j ⩽ C(τ − 1)N−1. (A.17)

Finally, by (A.15), (A.16), and (A.17), and using a diagonal argument, we may
find an increasing sequence {k(j)} such that

lim sup
j→∞

Ak(j),j +Bk(j),j +Ck(j),j ⩽ σ(ν) +C(τ − 1)N−1.

By (A.13), we let uj = uk(j),j , and we arrive at (A.8), with uj = wj on ∂(τQ).
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To conclude, we now move from τQ to Q, defining ũj(x) ∶= uj(τx), for x ∈ Q,
and changing variables to obtain

S
Q

τ

ηj
a

τy

ηj
W (ũj(y)) +

ηj

2τ
S∇ũj(y)S2 dy

= 1

τN
S
τQ

τ

ηj
a

x

ηj
W ũj

x

τ
+ ηj

2τ
V∇ũj

x

τ
V
2

dx

= 1

τN
S
τQ

τ

ηj
a

x

τ
W (uj(x)) +

ηjτ
2

2τ
S∇uj(x)S2 dx

= τ

τN
S
τQ

1

ηj
a

x

ηj
W (uj(x)) +

ηj

2
S∇uj(x)S2 dx.

By (A.8), this implies

lim sup
j→∞

S
Q

τ

ηj
a

τy

ηj
W (ũj(y)) +

ηj

2τ
S∇ũj(y)S2 dy ⩽ 1

τN−1
σ(ν) + C

τN−1
(τ − 1)N−1.

We note that εj ∶= ηj
τ
→ 0 and for all x ∈ ∂Q,

ũj(x) = uj(τx) = wj(τx) = (q ○ hν)
τx

ηj
= (q ○ hν)

x

εj
.

Hence, ũj is admissible for (A.1) (with sequence εj), from which we conclude
that

σ(ν) ⩽ lim sup
j→∞

S
Q

τ

ηj
a

y

ηj
W (ũj(y)) +

ηj

2τ
S∇ũj(y)S2 dy

⩽ 1

τN−1
σ(ν) + C

τN−1
(τ − 1)N−1.

Letting τ → 1+, we arrive at σ(ν) ⩽ σ(ν). As priorly mentioned, the opposite
inequality follows from a symmetrical argument.

∎
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