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Abstract: This paper establishes bounds on the homogenized surface tension for
a heterogeneous Allen-Cahn energy functional in a periodic medium. The approach
is based on relating the homogenized energy to a purely geometric variational
problem involving the large scale behaviour of the signed distance function to a
hyperplane in periodic media. Motivated by this, a homogenization result for the
signed distance function to a hyperplane in both periodic and almost periodic media
is proven.

1. INTRODUCTION

1.1. The Setting and Statements of the Main Results. We examine anisotropic
surface tensions arising from the periodic homogenization of energy functionals in
the study of phase transitions. Here, we focus on a subclass of problems presented in
[15] where the authors study inhomogeneous media characterized by a heterogeneous
double-well potential. Precisely, we consider double-well potentials of the form

W (e, u) = a(2)W () = a(e) (1 - u*)?, (L1)

with a: RY - R continuous, strictly positive, and T -periodic, where TV denotes
the standard N-dimensional torus. In [15], the authors addressed the I'-limit of the
gradient regularized problem with energy F. : H'(Q) — [0, oo], defined by

Fe(u) ::'/;z[la(g)W(u)+g|Vu|2] dz. (1.2)

9 S

Their result pertained to a more general class of potentials W(x, u), but the work
presented here relies critically on the product structure (1.1). The I'-limit obtained
in [15] has the typical form of the weighted perimeter functional

Jortum1ynn @ Wpu=—1y (2)) dHN () if we BV(Q;{-1,1}),
+00 otherwise,

fo(u) = {

where vy,-_;y denotes the measure-theoretic external unit normal to the reduced
boundary of the level set {u = ~1}, and the anisotropic surface tension o : S¥~1 —
[0, 00) is defined by a cell formula governed by a variational problem (see (1.4)).
In homogenization, the first step is to find o, which characterizes the effective
“homogenized” behavior of the system. A natural follow-up question is to obtain
further refined information which clarifies the asymptotic cell formula: this a
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posteriori investigation seeks to understand a number of issues, such as bounds
on the homogenized coefficients, regularity, and ellipticity of the effective surface
tension o. This paper is concerned with the first of these: bounds on the effective,
anisotropic surface tension o obtained from the analysis in [15, 16], which we achieve
via comparison with a novel “geodesic” formula. These bounds are written in
terms of a metric which takes into account the heterogeneities of the underlying
media. With regards to some of the other properties posed above (i.e. regularity),
we mention the works of [11, 21] which contain very interesting results in these
directions.

To state and then motivate our results, we need to first recall the effective surface
energy density o : S¥71 - (0, 00) which was introduced in [15]. To this end, we
introduce some notation.

Let N > 2 denote the spatial dimension, and let {e1,es,---,ex} be the standard
orthonormal basis of RY.

e Cubes: With respect to this basis, let @) := (—%, %)N be the unit cube in
RY centered at the origin, and for each v € S¥71, let @, be a unit cube
centered at the origin with two faces orthogonal to v. Let ¥, denote the
plane through the origin with normal v, and we set O, := ¥, n Q,, an
(N - 1)-dimensional unit cube in the plane ¥,.

e Half-Spaces: For each v € S¥~! we define H, = {z-v>0}. This is the
“positive” open half-space in the direction v.

e Sequences: In what follows, when we write T — oo, we understand an
arbitrary sequence {7}, } men, with T, — co as m — oco.

The following hypotheses (H1)-(H4) are used in the sequel:
(H1) a:RY - (0,00) is TV-periodic, i.e., a(x + ke;) = a(z) for all z € RY,
keZ,ie{l,- N}
(H2) There exist © > > 0, such that for all z € RV, # < a(z) < O.
(H3) QcRY is a Lipschitz domain.
(H4) a is continuous.

Let
C(TQ,) ={ue H' (TQ,):u=p*up,ond(TQ,)}, (1.3)
with
) -1 ifz-v<O0,
uo, () =
oY 1 ifz-v>0,
and p e CZ(B(0,1)), with 0< p< 1, and [pn p(x) dz = 1. Following [15], we define
o :SM1 5 (0,00) by the cell formula
1 1
o(v) = %ﬂmmf{/my [a(y)W(u)+ 5\Vu|2] dy:ueC(TQ,,)}. (1.4)
We now state the precise result of [15].
Theorem 1.1. ([15, Theorem 1.6], see also [16]). Let {ex},y be a sequence such

that e, > 0% as k > oo. Assume that (H1)-(H3) hold, and that the function a is
measurable.

(i) If {ur} ey € H (G R) satisfies

sup Fe, (ug) < +o0,
keN
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then, up to a subsequence (not relabeled), there exists some function u €

BV (Q;{-1,1}) so that uy L@, u.
(ii) Ask — oo, Fe, ifo, where
. dHN1 j BV (Q;{-1,1}),
Folu) = {fa a0a@) AN @) Fue BV LI,
+00 otherwise,

for o : SVt — [0,00) defined by (1.4), A = {u=-1}, and va(z) is the
measure theoretic external unit normal to the reduced boundary 0* A at x.

(iii) oSN - [0,00) defined by (1.4) is continuous, and its one-homogeneous
extension is convex, and hence, locally Lipschitz in RN .

The formula (1.4) for o embeds a one-parameter family of variational problems,
henceforth called the cell problem. Our first main result consists of anisotropic
bounds on ¢ in relation to a novel geodesic formula which is expressed by solutions to
an associated Eikonal equation. To formulate our estimates, consider the Riemannian
metric in RY given by the following: for any yo,y1 € RY,

4 sl y) =int [ JaGEIR(O) bt (1.6

where the infimum is taken among Lipschitz curves v : [0,1] - RY with v(j) =
y;,J = 0,1. Standard arguments via the Hopf-Rinow theorem entail that RY, with
the d_ 5 metric, is a complete metric space. For any v € SNV~ recalling that

¥, ={xeRY :z.v=0},

we consider the signed distance function with respect to the d ;5 metric, to the
plane ¥,,. Precisely,

hy(y) :=sign(y - v) zienzf d /z(y,2). (1.7)

It is well known, and recalled in Lemma 2.2 below, that h, is Lipschitz continuous
and satisfies, pointwise a.e., the eikonal equation

|Vh,|=+va inRY.
We next present the first main result.

Theorem 1.2. Suppose that (H1)-(H4) hold, and let o : S¥~1 - [0,00) be the
anisotropic surface energy as in (1.4). Let q: R — R be defined by

q(2) :=tanh(v/22), zeR.

For v eSN™1, define

Tj\lf—l fmu [a(y)W(q ohy)+ %Iv(q ° hu)IQ] dy,

Av) = liqmjip%ﬁQy [a(y)W(qohu)+%|V(qohu)l2] dy.

A(v) :=liminf
T—o0
(1.8)

There exist Ao > 0 universal and Ao : SV — [0, Ag] such that

A(V) = Xo(v) <a(v) <A(v). (1.9)
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Remark 1.3. We conjecture that the main result of [15], namely, Theorem 1.1, holds
with an identical cell formula, when a is merely almost periodic, as opposed to
periodic. If this is the case, then our bounds in Theorem 1.2 also apply to the
setting where a is almost periodic.

Remark 1.4. While for simplicity, and in order to focus on the essence of our estimates,
we work with the specific choice of potential in (1.1), we believe that the bounds in
Theorem 1.2 remain valid for more general potentials W (y, z) := a(y) W (z), where
z is vectorial (i.e., z € R? for some d > 1), the potential W is nonnegative, and
vanishes in exactly two points p,q € R? in a suitably non-degenerate manner (e.g.
min,—, ; D*W(2)€- € > alé]? for all € e RY, for some a > 0).

More generally, a number of more complicated phase transitions problems in the
literature have asymptotic I'-convergence results that yield anisotropic limiting
surface tensions. These surface tensions are generally described by localization
principles or cell formulas, that are not easy to compute. While convex varia-
tional problems always admit the powerful convex duality principle (and related
calibration-type methods) in order to obtain (sharp) lower bounds, there are no
similar systematic approaches to finding analogous lower bounds in nonconvex
problems. To this end, examining the scope of “equipartition bounds” such as those
in the present paper, in these more complicated settings, remains a very interesting
open direction.

The computation of these bounds depends solely on the large-scale behavior
of the distance functions h,, for which one can readily invoke efficient numerical
algorithms, for example fast marching and sweeping methods [36]. As we explain in
the next subsection, the structure of the new geodesic formula, which is the basis
for our bounds, is an intuitive generalization of the Modica-Mortola framework for
the homogeneous case a = 1.

Motivated by these bounds, we next turn to rigorous analytical results concern-
ing the large-scale behavior of the distance functions h,. Precisely, we seek to
characterize the limit

h, (T
fim 1(T2).

A zeRY,
in a suitable topology of functions. Our second main result resolves this question,
by showing that these rescaled functions converge locally uniformly to the signed

distance function in an effectively homogeneous medium.

Theorem 1.5. Suppose (H1)-(H4) hold. For each v e SNt there exists a unique
c(v) € [V0,/O] such that for all K < RN compact, we have

1
lim sup|—=h,(Tx)-c(v)(xz-v)| =0,
Jim sup b, (Tz) = e(v) ()

and c¢(v) = ¢(-v).

From the perspective of geometry, Theorem 1.5 characterizes the large-scale
limiting behaviour of the signed distance function to a hyperplane in a periodic
Riemannian metric that is conformal ot the Euclidean one. We refer to the works of
Bangert [5] and Burago [8], who studied the behaviour of “point-to-point” distances
in periodic metrics, in greater abstraction than what we study here. Under the
same rescaling, they identify the effective “stable norm” |« —y| . which characterizes
the effective distance between z,y € RY. In Remark 5.12, we discuss some open
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directions relating this effectively homogeneous distance function c¢(v)(-) - v with
the stable norm | - ||« identified in these works.

Theorem 1.5 also implies a homogenization result for the Eikonal equation in half-
spaces. Indeed, it is well known (see for example [28]) that for each fixed v e SV71
for {Ton},,50 With T5,, = 00 as m — oo, the functions ky,(z) = T by (Thn2) and
£(x) == c(v)(x-v) are the unique viscosity solutions of

= T i v = i v
V| =va(Tnz) inH and [Vl =c(v) inH (1.10)
knm =0 on X, /=0 on Y,

where we recall that H, = {x-v>0}. We note that although h, is defined on
all of RY, the well-posedness of h,, as the unique viscosity solution of (1.10) only
holds true in H,. Theorem 1.5 shows that viscosity solutions of the PDEs on
the left side of (1.10) converge locally uniformly to the viscosity solution of the
PDE on the right. A stochastic (and possibly viscous) version of these equations
(termed the “planar metric problem”) in R -stationary and finite range of dependent
media (essentially independent and identically distributed media) was introduced
by Armstrong and Cardaliaguet [2] and studied by others [22, 19] in the context
of stochastic homogenization of geometric flows. In these works, they prove a
similar result holds true almost surely. We will discuss related work and alternative
approaches to what we have taken here in Section 1.3.

Finally, we add that our argument for proving Theorem 1.5 also yields a homoge-
nization result for the planar metric problem in almost periodic media:

Theorem 1.6. Suppose (H2)-(H4) hold, and a:RY — R is a Bohr almost periodic
function (see Definition 5.2 or Definition 5.13). For h, defined by (1.7), there exists
a unique ¢(v) € [V/0,V/0O] such that for all K ¢ RN compact, we have

1
TILH; 211}1{) ‘Thl,(Ta:) —c(v)(z-v)|=0,

and c(v) = c(-v).

While we have stated Theorem 1.5 and Theorem 1.6 in terms of the signed
distance function, we note that our approach is also valid in proving homogenization
results for the family of functions {uf} as T — oo, where ul : H, - R is the unique
viscosity solution of

H(vul Tz)=0 inH,,
ul =0 on X,
whenever the Hamiltonian H satisfies the following:

e H(-,x) is convex, 1-homogeneous, and coercive, i.e.

. . . N _
I%l_r)r;omf{H(p,y) tp|> Rz e RV} = +o0.

e H(p,-) is Lipschitz continuous and periodic or almost periodic.

Furthermore, if ul is in fact defined on all of RY, and ul = —u?,, then one can

obtain a homogenization result on all of RY, using the same arguments as in the
proofs of Theorem 1.5 and Theorem 1.6.
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1.2. Motivation with Connections to the Homogeneous Modica-Mortola
Problem. The homogeneous case of a = 1 reduces to the famous problem in phase
transitions and the calculus of variations. The resulting homogeneous cell problem
in the cell formula (1.4) for o is

inf{/TQ,, [W(u)+%|Vu|2] dy:ueC(TQl,)}. (1.11)

A classical argument using algebraic manipulations, made famous in the work of
Modica and Mortola [31], yields that as T' — oo, the minimizer is the solution to
{§|Vu|2 =W(u) inRY,

(1.12)
u(y) = +1, as y-v > +oo.

It is clear that (1.12) encodes equipartition of energy between the gradient singular
perturbation term and the potential term in the energy, see (1.11). The optimal u
for (1.11) is thus given by

u(y) =qeo(y-v),
where ¢ satisfies the associated Euler-Lagrange ODE,

q"=W'(q) lim g(z) = +1, (1.13)

which is translation-invariant. Associated to this continuous symmetry, Noether’s
theorem yields a conservation law. This can be more simply derived, by multiplying
(1.13) by ¢/, and integrating. We obtain |¢'|*> = 2W (g), a relation which dictates
equipartition of energy. The solution to (1.13) is ¢(z) = tanh(1/22). Note that y-v
is precisely the signed distance to the minimizing interface ¥, = {z e RN : - v = 0}.
The resulting surface tension is the constant

U:\/illl\/W(S)dS.

Turning to the minimizer of the inhomogeneous cell problem
1
inf{fm [a(y)W(u)+§|Vu|2] dy:ueC(TQy)}, (1.14)

one could expect that g o (y-v) is simply replaced with g o h,(y), where the
inhomogeneous distance function h, is defined by (1.7). Indeed, we see that by
definition of h,, we have

S19aC () = 5 ()10 () = @)W (ol (),

in which case g o h, achieves equipartition of energy. With this in hand, the cell
formula (1.4) for o (assuming the limit exists) would take the form

o) = Jim 2 [ [aWaen) + 5vGon)R] du (1.15)
That is, in Theorem 1.2, we might have \o(v) = 0 with o(v) = A(v) = A(v). This is
false, at least for rational directions v, and we address why in the following subsection.
Moreover, it is never the case that ¢ o h, is a minimizer of the inhomogeneous cell
problem (1.14) for any T < co. What Theorem 1.2 shows, however, is that this
simple explicit formula yields upper and lower bounds for ¢. Moreover, we make
the case that on large scales as T' — oo, the minimizer of (1.14) is close to go h, (see
Proposition 3.4 in comparison with (2.3)).



In the theory of homogenization, questions about bounds on the effective coef-
ficients have a rather long and rich history in the context of optimal design (see
[1, 12, 26, 29, 30, 33] among many, many other references). This body of literature
(largely) deals with effective bounds on linear elliptic (systems) of PDE using the
homogenization method. Closer in spirit to our work is the paper [7], where the
authors use nonlinear homogenization to study the so-called “shape memory effect”
in polycrystals: the viewpoint there being that the heterogeneities in the texture
field of the polycrystal within a nonconvex mesoscopic variational theory, upon
nonlinear homogenization, yields a macroscopic theory whose global minimizers
are recoverable strains. This coarse-graining procedure yields valuable bounds on
the possible recoverable strains of the polycrystal- information that is not directly
accessible from the mesoscopic theory.

1.3. Outline of the Proofs and Discussion. Here we outline the proof of Theo-
rem 1.2. We then discuss whether or not it is possible for Ag(v) = 0 and o(v) = A(v),
and this leads us to a discussion of Theorem 1.5.

The upper bound in Theorem 1.2 is more or less immediate: it essentially comes
from energy comparison. We do need to alter the boundary conditions in the cell
formula (1.4), and this is achieved by the standard De Giorgi slicing technique, see
Appendix A. This procedure yields that for any v € S¥71, the surface tension o(v),
defined in (1.4), has the alternative representation given by

o(v) = lim % inf{fTQu [a(y)W(U) + %W“'Q] dyru= el on a(TQD()1}i6)

Having proven the upper bound in Theorem 1.2, we turn to the lower bound. By the
Direct Method in the Calculus of Variations, for each fixed T there is a minimizer
of the problem inside, which we denote by ur. In other words,

1 1
ur € argmin{ﬁ /TQU [a(y)W(u) + §|Vu|2] dy:u=qoh, on 8(TQ,,)}.
Define

(2) ::\/Q/OZ\/W(s)ds, 2eR.

Consider the function h, introduced in (1.7). It is easily shown (see Lemma 2.2
below) that

[Vhy (y)] = Va(y), for a.e. y e RY.
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For any T > 1, completing squares we find

1 1,
TN fTQV [a(y)W(UT) + §|VUT| ] dy

V2
= TN Vhy - /W (ur) VUTdy+TN 1 f

TQ.,

VUT /—(UT Vh,
VUT /—(UT vh,

1 1
= N1 ro, Vhy - V(é(ur)) dy + TN-1 f

1
2 i g, Ve V(0(ur))dy

1
= TN Jro, Vhy, - V(¢(g o hy ))dy+TN T

- T% Jo [swwen « 5ven?|as

[ Vhy -V ($(ur) - d(qo hy)) dy,

[ Vhy -V ($(ur) - 6(go hy)) dy

TN 1

(1.17)

where, in the last line, we used the fact that g o h, achieves equipartition of energy,
while completing squares one more time. Defining

A(v) =limsup Tji o [aww o)+ Slvton)R] dv

1 2
M) =timint 2o [ [a@W(aon) + 59Gaon)?] v
the proof of the lower bound in Theorem 1.2 (specifically (1.9)) is now immediate,
provided we can show that

lim sup

msup 7 [ [ Ih()- (@ur) = o(ao b)) dy| = de) s Ao, (113)

for some Ag > 0. Obtaining this error bound is complicated by the fact that Ag(v)
couples oscillations and concentrations. In Section 3, we present novel tools and
concentration estimates in order to control A\g(»), which we briefly summarize here:
(1) We recall that for each T > 1, the function ur € H'(7'Q,) is a minimizer of
the variational problem in (1.16). In Theorem 3.1 below, we show that, as
T — oo, {ur(T-)}rs0 converges to ug, strongly in L'(Q,) , where ug, is

given by

1 v >0,
U/O,l/(y) ::{ -1 z'l/<0'

We emphasize that this convergence is not simply along a subsequence, since
the limit is unique. This further implies that ¢(qo h,(T-)) also converges
in L'(Q,) to the same limit, ug . It follows that
¢(ur(T)) = d(gohu(T-)) >0 (1.19)
in L'(Q,) as T — oo.
(2) For each T > 1, writing ur(y) = tanh(v/2wr(y)), we show in Lemma 3.2
that

-l<up(y) <1, yeTQ,. (1.20)



We prove in Proposition 3.4 that there exist positive numbers «y, 179 depend-
ing only on v,0 and ©, such that

VO(y-v)—ag > wr(y) >Vo(y-v)-ny if wr >0,
~VO(y-v)+m0 > wr(y) > -VO(y-v) +ag if wr(y) <0.

In particular, this shows that the profiles u7 and goh,,, in blown up variables
as in (a) above, converge to the sharp interface limit at the same rate (see
(2.3)).

Naturally, the above mentioned results are proven in order to pass to the limit in
the error term in (1.17). It is easy to see that the topology of convergence in item
(1) is not strong enough to conclude that the asymptotic contribution of this error
term vanishes. However, we are able to put these ingredients together, to obtain
bounds on the error term in (1.17). This is carried out in Section 4.

These results beg the following natural questions:

e Can the error term \o(v) = 0, with o(v) = A(v) = A\(v)?
e Is it ever the case that the minimizer ur to the cell problem is simply goh,?

(1.21)

It turns out that the answer to both of these questions is no, unless a is constant.
In regards to the first question, William Feldman and Peter Morfe [20] have recently
shown the authors the following: if (1.15) holds true for v € S¥~1 a rational direction
(i.e., when v has rational components), then one can argue that g o h, must be a
minimizer on an infinite strip. An analysis of the Euler-Lagrange equations readily
leads to a contradiction in that h, must be harmonic (which is true if and only
if a is constant). When v € SV~ is an irrational direction, one can still argue
using techniques from [32] that a must be constant. This implies that, surprisingly,
equipartition of energy does not hold in any direction v € SV, unless a is constant.

An interesting question, which we are unable to resolve here, is the following: for
a given choice of periodic heterogeneities a, is at least one of the bounds in Theorem
1.2 close to being sharp? Naturally, verifying the sharpness of the lower bound in
Theorem 1.2 requires passing to the limit in the term A\y(v); this in turn requires
convergence of {Vh,(Ty, )} in suitable topologies. We provide partial progress
in this direction with the second main contribution of this paper in Theorem 1.5:
we show that there exists a unique ¢(v) € [v/8,/©] such that , for any sequence
{T\n} men tending to infinity, for the functions k,,(+) =T h, (T, -),

{kpm }m converges locally uniformly in RN to z + ¢(v)z - v.

We prove Theorem 1.5 (and analogously Theorem 1.6) in two steps. In Lemma
5.8, we first show that for every sequence {7}, } tending to infinity, there exists a
subsequence and a function ¢(v) € [V/0,V0O] such that k,,(z) - c¢(v)z - v locally
uniformly in RY. The proof of Lemma 5.8 uses various properties of Bohr almost
periodic functions and ideas which come from the proof of the Stone-Weierstrauss
theorem. Lemma 5.8 also holds true in the almost-periodic setting with essentially
no modifications to the proof. Upon establishing Lemma 5.8, we then argue that
¢(v) must be unique in order to establish convergence of the full sequence.

Our uniqueness argument relies on the existence of correctors in the setting of
periodic (or almost-periodic) Hamilton-Jacobi equations (see Theorem 5.10 and [24,
Theorem 2]). It was pointed out to us that an alternative approach to proving that

{km }m converges locally uniformly in H, to z — c(v)z - v,
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could use the existence of periodic (or almost-periodic) correctors, a comparison
principle on half-spaces (stated in [22], without proof), and the perturbed test
function method of Evans [17]. While this argument may appear more direct
to specialists in homogenization of Hamilton-Jacobi equations, we highlight that
aside from the existence of correctors, the proofs of Theorem 1.5 and Theorem
1.6 are entirely self-contained. Moreover, to our knowledge these results on the
half-plane have not appeared in the extensive homogenization literature . Our
results concerning the large scale behavior for h, are contained in Section 5.

2. BASIC PROPERTIES OF h, AND EQUIPARTITION OF ENERGY

2.1. Existence and Basic Properties of h,. We introduce a Riemannian metric
in RY | which is conformal to the standard Euclidean one. To be precise, given a
Lipschitz curve 7 : [0,1] - RY we define its length to be

L= [ VaGO@)

Naturally, L(+y) does not depend on the parametrization of v. We define the distance
between points y1,y2 € RY in the \/a—metric, by

d , = inf L(7). 2.1
\/E(yl Y2) ()= (1)=ys () (2.1)

The existence of a minimizer, i.e., a geodesic in (2.1), and its regularity, follow by
classical arguments via the Hopf-Rinow theorem, since a is bounded away from
zero by (H2) (for details, see [37, Lemma 2.9]), thereby rendering RY geodesically
complete.

Let v e SV1 set ¥, := {x e RY : z-v = 0}, and define h, : RN —» R by

dg(x,2,) ifx-vz0
. NASE R )
() { -d si(z,%,) ifz-v<0, (2:2)

The function h, (x) represents a signed distance function from z to the plane 3,,.
Remark 2.1. Observe that, by (2.2), and since ¥, = ¥._,,, we have
d El, s v20 d aEl/ ) T 2 Oa
ho(x) = va(@ ) vy and h_,(z)= va(@ ) - (=v)
_dﬁ(xazu)a z-v <0, _d\/E(xaEu)v :L'-(—V)<O,

which imply that
h_y(z) = =h,(x).

In particular, h, is odd with respect to v. As h,, is a type of signed distance, it in
fact satisfies an Eikonal equation.

Lemma 2.2. The function h, is Lipschitz continuous in RN, with
|Vh, (z)| = Va(z) for a.e. z e RN,
Proof. See [37, Lemma 11]. ]
LSince submitting this paper, Scott Armstrong has informed us that the paper [3] contains the

proof of homogenization of the planar metric problem using comparison principles, in stationary
ergodic media.
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Since |Vh,| = v/a € [V/6,/O] by (H2), by (2.1) and (2.2) we have

V|z-v| < hy(z) <VO|z - v ifz-v20, (2.3)
—~Olz-v|<h,(x) <Oz -v| ifz-v<0. .

2.2. Equipartition of Energy: |Vul? = 2a(z)W (u). In this section we use the
Riemannian geometry framework introduced above to find approximate “one-
dimensional” solutions to the degenerate Eikonal equation
Vuf?
2
in large cubes in RY, in a sense to be made precise. This analysis is crucial in the
proof of Theorem 1.2. Taking inspiration from the cell formula (1.5), for v e S¥=1

we seek solutions w to (2.4) that “connect” the zeroes of W, ie., u(z) — £1 as
x-v — xoo. Consider the ansatz

u(z) = (g0 hy)(2),

for some ¢: R — R to be determined. Inserting this into (2.4), we obtain

(6 ()P0 () = )W (a( ().

As |Vh,| = /a pointwise a.e. (see Lemma 2.2), the function ¢ must satisfy the

ordinary differential equation
q =V2:/W(q). (2.5)

By (2.3), we see that h,(z) > +oo as z-v — +oco. In particular, to connect the zeros
of u at +oo, we require that ¢(z) - £1 as z - +oo. In order to identify this function
q, we consider a suitable initial condition associated to (2.5) in Proposition 2.3.

For convenience, we recall some basic properties of the hyperbolic tangent and
secant functions, tanh and sech, respectively, which will be used throughout the
rest of the paper:

=a(z)W(u) (2.4)

tanh(z) = 7% is an odd function,

-1 < tanh(z) <1, for all z € R,

hmm—mao |1 - tanh(m)| < 016_02‘37‘,

There exists c1,co > 0 such that {

lim—,— o |-1 — tanh(z)| < ¢ e™c2lel,

1 - tanh®(z) = sech®(z), for all z € R,
|sech(z)| = |2%| < 2e71! is an even function, and 0 < sech(z) < 1,Vz € R,
(sech(z))’ = —tanh(x)sech(z), (tanh(z))’ = sech?(z), Va € R,

sech?(x) is decreasing on (0, ).

(2.6)
Proposition 2.3. There exists a unique solution to

q =vV2y/W(q), q(0)=0. (2.7)

Moreover, there exist c1,co >0 such that

q(z)21- cle_cjlz‘ zf 2> 0, (2.8)
<-l+ce el gfz<o0.

In particular, q(z) — £1 as z - +oo.
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Proof. Tt is easy to see that ¢(z) := tanh(1/2z) is the unique solution to (2.7). The
exponential bounds (2.8) immediately follow from (2.6). ]
3. PROPERTIES OF MINIMIZERS IN THE CELL PROBLEM

By Lemma A.1, which enables the use of new boundary conditions involving
qo h,, we have

o) = Jim mxint{ [ Ja)Ww)+ 51y ay:

(e}

we HY(TQ,),ulorg, =g h}

2
= TI‘LH; inf{ /C:?u [Ta(Tz)W(V) + %|V;/| ] dz

Ve HY(Qu), Vloq, = a0 hy(T)}. (3.1)

In the remainder of this section, we suppress the subscript m for notational ease,
with the understanding that when we let T'— oo in the end, we do so along this
particular subsequence T, - oo.

We introduce the function vy € H'(Q,) satisfying

1|vV]?
vr € argmin {ET(V) = '/(; 1[vv]

T 2

v

[Ta(Tx)W(V) + ] dx :V0]sg, =¢qo hV(Tx)} .
(3.2)

Since qo h,(T-) is an admissible competitor in the variational problem (3.1), we
may assume that

fQ [Ta(Tx)W(UT) + 1 |VUT2] dx

T 2
2
1|vgoh,(Tz)| ]dx (3.3)

< /Qu [Ta(Tx)W(q o hy(T)) + .
<O(1)

as T — oo.

Lemma 3.1. Let vr : Q, — R satisfy (3.2). There exists a subsequence, not
relabeled, such that

v > Ug N Ll(Qu)a (34)
where, we recall, ug : RY - R is defined by
(z) = 1 z-v>0,
YRP)=3 21 zev <.

Proof. Since vr satisfies (3.2), it verifies the uniform energy bound (3.3). As a is
bounded away from zero, this estimate yields, via a standard compactness argument
using the Modica-Mortola inequality, that {vr} is precompact in L'(Q,) (see [23] or
[37]). Let U be an L' cluster point of {vr}r. By (3.1), the energies of the minimizers
vr converge to o(v).

We recall that o(v) is the limiting energy corresponding to ug, and we claim that
U =up. We extend vr to all of RY by setting vy (z) := go h,(Tx) for z ¢ Q, and,
likewise, we extend U to all of RV by setting U = ug outside Q,. Let 7 > 0 be fixed,
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and we work in the dilated cube (1+7)Q,. We label the restrictions of vy and U
to (1+7)Q, by or,U, respectively. By [18, Theorem 5.8], U € BV ((1+7)Q,). We
note that by the aforementioned compactness arguments,

op—-U in LN(1+7)Q,) as T — oo, (3.5)
Doy = DU weakly-* in the sense of measures as T — oo, (3.6)

for all 7 > 0. Since U is piecewise constant, VU = 0, and we find that dDU =

2vg dHN | J5, where Jg is the jump set of U and Vg = jlggl on Jg (see [27]). We

[ _ dDU = 2. (3.7)
JUJWQV

SNfl

claim that

By (3.6), for every ¢ € C.((1+7)Q,) and for every unit vector e € , we have

f ¢e~v5de:f gbe-dDﬁTaf de-dDT  as T — oo.
(1+7)Q. (1+7)Q. (1+7)Q.
(3.8)

In particular, let ¢ € C°((1+7)Q,) be such that ¢ =1 on Q,, 0< ¢ <1, and
¢p=0on (1+7)QN\(1+7/2)Q,. If e € {vy,--, N}, we then have that as T — oo,
f ¢e-Vﬁde+/ e-Vordr — _
(1+7/2)Q.\Qu Qv (1+7/2)Q.\Q,
As U7 = qp o h,(T) and U = ug outside Q,, we find that the first and the third
terms in the previous display are O(7¥~1). It remains to evaluate the limit of the
second term as T' — oo . With the choice e = vy = v, by the fundamental theorem of
Calculus, we find that, as T' — oo,

¢e~DU+/§ ¢- dDU.

f v-Vurdr - 2, as T — oo,

v

because go h,(T) is exponentially close to 1 and -1 respectively, on the top and
bottom faces of Q,, ie., {xeQ, :x-v= :!:%} It follows that

ﬁ v dDU =2+ 0(+V1).

Finally, for the lateral directions e = vy, -+, vn_1, we have,

JR R AVRIRLLTCEE A
- [Qm{m:_%} qohy(Tz) dH" " (2)
T fQuﬁ{w-e%} o dH (@) - Qunfoe—i) aH" (2) =0,
We deduce that

Since |DU| = 21N Jg, it follows that
J5nQ, =Juu{zedQ, :trace(U)(x) # uo(z)} =: Ky. (3.10)

and the set Ky on the right hand side is independent of 7 > 0. Indeed, note that the
extension U of U does not depend on 7, and we now call it U". The Radon-Nikodym
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;lggg‘ is equal to vy on Jy, and it is equal to the normal to the boundary

of Qu, vag,, on Ky\Jy. Now (3.9) reduces to

derivative

[ dDU° = 20 + O(+V1).
Ky
Letting 7 — 0" we deduce that

DU" = 2v. (3.11)
Ky

By Theorem 1.1 on (1 +7)@Q, for each fixed 7, then sending 7 — 0%, and then using
Jensen’s inequality owing to the convexity of the one-homogeneous extension of o,
o, we have

o(v) = lir{)1+ liqrﬂn inf Er(0r; (1+7)Q,)

. N- ; N-
> lim sup /JW(HT)QV 0(1/[7) dHN 7! > limsup fJgr@V U(Vﬁ) dHNt

70 70
0
J? (%) e (3.12)
- oo 00 i
But |DU?|| Ky = 2HN Y| Ky, and we find by the one-homogeneity of & that
a'(/KU jgg;)ﬂN—l(KU):;a(fKU dDUO). (3.13)

Again using the one-homogeneity of 7, the equality (3.11) implies that the right hand
side of (3.13) evaluates to £5(2v) = 3(v) = o(v). In turn, plugging this into the
chain of inequalities in (3.12), we learn that we must have equalities throughout. But
equality holds in Jensen if and only if %[KU is a constant. This immediately
implies that H™ ! (z € 0Q,, : trace(U) # ug) = 0, and thus that U inherits the trace
ug from the sequence {v7}. Furthermore, we conclude Ky = Jy up to a set of HV !
null measure, and so, U = ug in Q,, yielding (3.4).

For what follows, we need finer, quantitative versions of the foregoing convergence
result and, in particular, of the convergence of the functions up. The remainder of
this section is devoted to obtaining these estimates. The next preparatory lemma is
an immediate consequence of the maximum principle.

Lemma 3.2. Let up be a minimizer to (1.16). Then

“l<up(y)<l, yeTQ,.

Proof. For each T, as up is a minimizer of the energy

o aww e + 5w s,
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subject to Dirichlet boundary conditions ur = g o h,, along d(T'Q,), it follows by
standard arguments that up is a classical solution of the associated Euler-Lagrange
equations

{Au =a(y)W'(u) = —da(y)u(l -v?*) yeTQ,, (3.14)

u(y) =qoh,(y), yed(TQ,).

We know that for any T < oo, sup,cs(rg, ) |g o hy| < 1. Suppose, by way of contradic-
tion, that there exists yg € T'Q), such that

ur(yo) = max ur(y) > 1.
yeT'Qy

Then Aur(yo) <0, while W’ (ur(yo)) >0, and a(y) > 0 > 0, yielding a contradiction.
It follows that ur(y) < 1 for every y € TQ,. A similar argument shows that
ur(y) > -1 for every y € TQ,. Finally, a standard argument (as in the proof of
the strong maximum principle) using the Hopf lemma yields the desired strict
inequalities. [ |

Define

1
wy = — tanh ™! ug. (3.15)

V2

By Lemma 3.2, wr : TQ, — (—o00,00) is of class C*(T'Q, ). Further, wr is a classical
solution to the PDE

{AwT(y) = = tanh(v2wr(y)) (IVwr(y)? - a(y)), yeTQ,
wr(y) = hy(y) yed(TQy).

In the remainder of this section we obtain fine properties of the function wr,
specifically in Proposition 3.4 below. A crucial ingredient in the argument is the
following result due to L. Caffarelli and A. Cordoba [9, Theorem 2].

(3.16)

Proposition 3.3. Consider the functions ur : TQ, — R. Then, as T — oo, for
each p € (=1,1) the level sets {x € TQ, : ur(z) = pu} are at a uniformly bounded
distance from X, nTQ,. To be precise, for each u € (-1,1) there exists a constant
n(u,v) >0, only depending on p and v, and independent of T > 1, such that

{yeTQu:ur(z) =p}c{yeTQy:ly-v|<n(u,v)}. (3.17)

Equipped with the foregoing proposition, we are ready to prove the proof the
main result of this section, namely, that the functions wr defined in (3.15) are
essentially linear.

Proposition 3.4. Let wr be as in (3.15), let T > 1, and define the constants
no = VOn(0,v) > 0, and og = VOn(0,v) > 0, where n(0,v) is obtained from
Proposition 3.3 corresponding to the level set u = 0. Then, for all T > 1, the

following hold:
VO(y-v)-ag>wr(y) > Vo(y-v)-no if wr(y) >0, (318)
~VO(y-v)+m 2 wr(y) 2 —VO(y-v)+ag  if wr(y) <0. '

Proof. Owing to the continuity of wr, the sets

Q, = {y €eTQ,: wT(y) 2 0}
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are open. We show the lower bound in the first statement in (3.18). Define the
function (7 : 2, — R by the formula

CT(y) = y Y €§T+-

(y) + 7o
Being a continuous function on the compact set )., it achieves its maximum. The
assertion in the first inequality of (3.18) is that the maximum value of this function
is no more than %. Suppose, by contradiction, this were false. Let yg € (2, be a
point at which (7 achieves its maximum, and

Cr(yo) > % (3.19)

There are three possibilities, which we will now argue can never occur:
(1) yo € Q. NA(TQ,) : by virtue of (2.3), along (TQ,,) we know that wr(y) =

h,(y) > VO(y-v) . This implies that wp(y) + 1o > VO(y - v) for every
y € (TQ,) nQ,. Thus, under the contradiction hypothesis (3.19), (r
cannot attain its maximum here.

(2) yo €82 = in this case, yo would be an interior maximum point of {7, and so,

V¢r(yo) =0, Al (yo) < 0. (3.20)

Towards ruling out this case, we derive the PDE satisfied by (7. From the
definition of {7, we note that at any y € 2,

v = (wr(y) +n0)V<r(y) + Cr(y) Vwr(y). (3.21)

Taking divergence of this relation and applying (3.16), we find that at any
y €8y,
0=2V¢r(y) - Vwr(y) + (wr(y) +10)Alr(y) + Cr(y) Awr(y)

=2VCr(y) - Vwr (y) + (wr(y) +10) Alr(y) (3.22)

4
+ 5w tanh(V2wr(y)) ([Vwr(y)? - a(y)) .

In order to evaluate (3.22) at y = yo, we note that from (3.21) and (3.20),
we have

v =(r(yo) Vwr(yo).
By the contradiction hypothesis (3.19) this yields

Moreover, the contradiction hypothe51s (3.19) also guarantees that ygo-v > 0,
since yo € ;. Inserting this into (3.22) at y = yo, and applying (3.20),
(3.23), and a > 6, we have

B 4 tanh(v/2wr (o)) 1 u
0=A¢r(yo) + ﬂCT(yo) w01 (50) + 10 (C%(yo) (yo))
< (g0 v) tanh(VZwr (30)) (0 - ),

V2

which yields a contradiction.
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(3) yo € TQ, n{wy =0} : finally, if this were to hold, we would have wr(yo) =0,
so that

. 1
Yo 1/>7

o \/57
ie., yov> % =n(0,v). But wr(yo) = 0 implies that ur(yo) = tanh(wr(yo))
is 0, and by Proposition 3.3 we must have |yo - v| < 7(0,v), provided T > 1.
We again conclude in a contradiction.

¢r(vo) =

This implies that the contradiction hypothesis (3.19) cannot hold, and the proof of
the lower bound in the first equation in (3.18) is complete. The proof of the other
inequalities is similar, with only minor differences. [ |

Having proven Proposition 3.4, we are able to get fine exponential decay estimates
for the function ur and its derivatives, away from the interface %,,.

Proposition 3.5. For ' = 42V gnd ¢ = 2v/2V0, for all T sufficiently large,
1-ud(y)<Ce WVl yeTQ,. (3.24)
Moreover, there exists a universal constant Cy >0 such that for all T > 1,
[Vur(y)| < Cre~ ! (3.25)

Proof. The first inequality is immediate by noting that 1 -u2. = 1 - tanh®(\/2wr) =
sech?(v/2wr), and wy satisfies the estimates in Proposition 3.4, and (2.6). For the
second, by the Euler-Lagrange equations we know that

[Aur(y)] = la()W' (ur)| = [4a(y)ur (1 - uz)| < Ce W™ yeTQ,.
Rescaling, by setting y = Tx and defining vy (x) := ur(Tz), we find that
|Avy ()] = T2a(T2)|W' (vr(2))| < CT?e T, zeq,
Elliptic estimates yield
|Vor(z)| < CyTe T,

Scaling back, one recovers (3.25). [

4. BOUNDS ON THE ERROR TERM

Recall the remainder term A introduced in (1.18). The main result of this section
is next.

Proposition 4.1. There exists a constant Ag >0 such that

No(V)<Ao  forall v eSSV (4.1)

Proof. We know that |Vh, (y)| < V/O. Moreover, from Proposition 3.4 and 3.5 we
have that

Vo (ur(y))] = ¢ (ur (y))Vur (y)| = V2(1 - w7 (y))|Vur (y)| < Ce= W™,

and, similarly,

[Vo(q o hy)| = V2(1 - tanh?(v/2h,))|Vhy, | < Ce~e],
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Then, for A\g(v) defined by (1.18),

Ao(v) =limsup
T

— 00

|, @tur®) - (aoh.))- vh,

TN-1

1
. —cly-v|
<\/@hmsup7TN_1 fTQU Ce W dy

T—oo

o CV©
< C\/@f el ds = =: Ao,
R Ve ’

where, we recall from Proposition 3.5 that ¢ = 4\/6. [ |

Proof of Theorem 1.2. As discussed in the introduction, the proof of Theorem 1.2
is an immediate consequence of (4.1). ]

5. THE PROOF OF THEOREM 1.5 AND THEOREM 1.6

We begin by summarizing several properties of h, that will be needed in the
proof of Theorem 1.5.

Lemma 5.1. Let v e SN"1n QY. There exist Ty € N and unit vectors {v;} N1 ¢
SNL A QN such that {vy,-,vN_1,un = v} form an orthonormal basis for RN,
Moreover, the coefficient a is Ty periodic in the directions {ui}gl, and h, is Ty
periodic in the directions {v;}N7!.

Proof. By an appeal to [15, Proposition 3.5], there exist vy,--,vy_1 € Q¥ nSN-1
and Tp € N such that {v;}, is an orthonormal basis of RY, and a is Tp—periodic
in each of the directions {1;}X,. We prove the periodicity of h, in the directions
{Vi}?iil. We fix x € RV, and show that for any i € {1,---, N -1},

hy(x + kTov;) = hy(x), for all k€ Z.

We note that if x - v = 0, then the estimate is automatic since both sides of
the equation are 0. Without loss of generality, we may assume that x-v > 0
and k > 0. Let y € ¥, and v : [0,1] = RY be such that v(0) = z,v(1) = y,
and fol Va(yE)y(@)|dt = h,(z). The existence of such a geodesic follows by
classical arguments. For each v;, i = 1,...,N — 1, we define 7 : [0,1] - RY by
F(t) := y(t) + kTov;. Since v; L v, we have F(1)-v =~v(1) - v+ kTov;-v =y -v =0,
which implies (1) € ¥,. We also note that 5(0) = « + kTov;. Hence, by the Ty
periodicity of a with respect to v;, we have

hl,(l‘ + kTQVi) = d\/a(x + kJTol/i, ZV) < d\/a(x + kJT()Vi,y + ]CT()VZ‘)
< [ VaG@IFEOId = [ VaGm Kl ol
= [ VARt = d . 9) = b ).

The reverse inequality follows by a symmetric argument. [ ]

We now make a slight digression to almost periodic functions, which will play an
important role in the characterization of the asymptotic behaviour of s, (see Lemma
5.8). When v € SV nQY, we know from Lemma 5.1 that there is an orthonormal
basis {11, vy = v} €SN AQVN, and Ty = To(v) €N, such that h,, is To—periodic
in the transverse directions {r;}¥7!. This periodicity yields an averaging property
which we will exploit in the proof of Lemma 5.8. When v e SY"1\Q¥, it turns out
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that an averaging property still holds, using the theory of Bohr almost periodic
functions. For the convenience of the reader, we recall the basic notions of the
theory of Bohr almost periodic functions, referring to [6] for details.

Definition 5.2. A continuous bounded function g : R - R is said to be Bohr
almost periodic if for every n > 0, there exists an n—almost period T > 0 such that for
any a € R?, there exists ¢ € a + 7Hy with
sup [g(z +¢) - g(z)| <, (5.1)
reR4

where By is any d-dimensional unit cube.

Remark 5.3. In the sequel, we use almost periodicity primarily with d = N - 1.
Continuous periodic functions are examples of Bohr almost periodic functions (by
choosing 7 larger than the period, since then (5.1) holds with 7 = 0).

An important feature of Bohr almost periodic functions, which we will use in the
proof of Lemma 5.8, is the existence of the so-called mean value. To be precise, if f
is a Bohr almost periodic function, then the limit

W)= dim = [ f@ydy=Jim [ f(Ty)dy (5.2)

T—oo Td
exists and is finite.

Remark 5.4. In what follows, We will use the definition of Bohr almost periodicity
with various choices of the unit cube my, as it turns out that the definition, and the
mean value defined above, are independent of the choice of the unit cube my. To
be precise, let {V;}:2, € RY be a sequence of bounded domains with £4(V},) — co
as k — oo, and let {V}*} denote the set of points in V} at distance not exceeding h
from the boundary dVj. If OV} is regular enough such that there exists a sequence

d h
(hi )52, with hy — 0 and limg_, e %‘k/:)) =0, then the limit in (5.2) is equal to

u(h) = Jim {0 d.
— 00 Vk
For a proof of this assertion, see [38, Proposition 1.9].

It is well known that f is Bohr almost periodic if and only if f has a uniformly
convergent Bochner-Fourier series (see [6]). In particular, if f is Bohr almost-
periodic, then there exist an at most countable set A € R? of “frequencies”, and a
square-summable sequence {f)}rea € C of “Fourier modes”, such that

flz)=> frer® for x e RY, (5.3)
AeA
and the sum on the right is uniform and absolute. The coefficients f are given by
fa = u(fe™O) for pas in (5.2), and A € R? is the at most countable set for which
fx #0. In particular, this implies that if f is Bohr almost periodic, and

uw(f()e™) =0 for every A eRY, (5.4)
then f =0.
We will also use the notion of two-scale convegence for Bohr almost periodic
functions [10, Definition 4.1, Proposition 4.6]. We introduce the space B! as the
closure of Bohr almost periodic functions with respect to the semi-norm

)= Jim 2 [ 1Pl dy = (1)

= 1i
T—oo



20 R. CHOKSI, I. FONSECA, J. LIN, AND R. VENKATRAMAN

Definition 5.5. Let Q ¢ R? be open. We say that a sequence {u,} € L{. () Bohr

loc

two-scale converges to u € Li. (Q; B') if for every bounded function g: Q x R? - R
that is continuous in the first variable and Bohr almost periodic in the second

variable, we have
tim [ u(@)g (. 5) do= [ p(ue. o)) do

Remark 5.6. It is proven in [10, Proposition 4.6] that if f is a Bohr almost periodic
function, and T;,, — oo is a sequence of positive numbers, then f,,(-) := f(T},-) Bohr
two-scale converge to u(f) in any bounded open set 2 ¢ R

hy (z)

xr-v

We next show that for each v € SV-!, the function z + satisfy Bohr almost

periodicity as functions of the orthogonal directions.

Lemma 5.7. Let v e SV, and write x e RN as v ="+ (z-v)v ~ (2,2 -v). The
functions 2’ € ¥, — a(2’,s) and ' € &, — L‘;S) are Bohr-almost periodic for
every s € R\ {0}, uniformly in s. To be precise, for every n >0 there exists T > 0,

independent of s, such that for any a € X, there exists ( € a+ (7Q, NX,) such that

sup la(z’ +¢,s) —a(z’,s)| <, (5.5)
x’eX,
and
r'eX, S S 0

Proof. We recall O, := @, n X, and throughout the proof of the Lemma we use this
choice of an (N —1)-dimensional unit cube my_; from the definition of Bohr-almost
periodicity.

By a mollification, if needed, we may assume a is smooth. This represents no loss
of generality since Bohr almost periodic functions are closed under uniform limits.
As a is TV —periodic and smooth, it admits an absolutely and uniformly convergent
Fourier series

a(z)= ). ape? ke zeRY.
keZN
Upon a rotation, we may express z = (z/, z-v) and k = (k' k-v), and take the sum over
another countable family AV which is isomorphic to ZV. Welet 2y = z-v = s e R\ {0}
be fixed. Defining by, := ape?™(F¥)s = g, e2™FNEN e find that |bk| = |ag|, and we
have
a(@’,s)= > ( > bk)eg’”'k"’c'7 DI
k’eAN-1 kGAN:
k=(k',)

Since the series on the right converges uniformly and absolutely, it follows that
a(+, s) is Bohr almost periodic. In particular, for each 7 > 0 there exists 7 > 0 such
that for every a € ¥,,, there exists ( € a + 70, satisfying

sup |a(z’ + ¢, s) —a(a’,s)[ <n,

x’eX,
and this proves (5.5). The property of almost periodicity is preserved under compo-
sition with uniformly continuous functions. As a consequence, for each n > 0 there
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exists 7 > 0 such that for all « € ¥, there exists ¢ € a + 70, with

sup |\/a(x’ +¢,8) - \/a(:c’,s)| <. (5.7)

x’eX,

The proof of almost periodicity of # follows a similar argument as the proof

of Lemma 5.1. Fix z ¢ RV and, without loss of generality, assume that z - > 0. Let

ye¥, and v:[0,1] - RY be such that v(0) = 2,v(1) = y and fol va(y()(t)|dt =
h,(z). Let ¢ € ¥, and we define 7 : [0,1] = RY by F(t) := v(t) + ¢. Note that as
¢ Lv, wehave (1) v =~v(1)-v+(-v=y-v =0, so that 7(1) € X,. Moreover,
F(0) =z + ¢, and so

e+ Q) <d e +C.y)
< [ VaGO@)d
= [ VaG@hOld [ (VaG® 0 - JaGm)h o)
“n@)+ [ (VaG@ + O - aG)(0lar
Choose ¢ € %, as in (5.7), and conclude that
e+ O =h@l<n [ Bl < 2 [ a0

n NG
< —=VO|x- v, 5.8
Ry (5.)
where in the last inequality we have used the definition of v(¢) and its relation to
hy(x), as well as (2.3). The inequality (5.6) now follows upon diving (5.8) through
by |« - v|, and noting that ¢-v = 0.

The next lemma is crucial for the proof of Theorem 1.5, and requires various
properties of h, which we have previously established.

Lemma 5.8. Fiz v e SN and let {Ty,}men € (0,00) with Ty, = 00 as m — oo.
For m €N, consider the functions kp, : RY - R defined as

o () = TihV(Tm.). (5.9)

There exist a constant c(v) € [V/0,v/O] and a subsequence of {Tn }men (which we
do not relabel) such that for any compact set K ¢ RN <%, and for every a > 0,
there exists M = M (o, K) € N such that if m > M, then

km (2) —c(v)z-v|<alz-v| forallzeK. (5.10)

Proof. We show that {ky,},, .y is uniformly bounded and uniformly Lipschitz, from
which we obtain local uniform convergence (up to a subsequence) in a strong
(uniform) topology. We further use averaging associated to weak convergence
arguments to identify the limit in a weak topology. Carrying out this program
involves some ideas using polynomial approximation which might be of independent
interest in this context. We break up the proof in several steps.
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Step A: We show that there exists a Lipschitz continuous function k: RY — R
and a subsequence of {k,,} (which we do not relabel) such that for any compact
K <RV N\, and for every a > 0, there exists M = M (a, K) € N such that, if m > M,

|km(2) —k(2)| < alz-v| forall ze K. (5.11)

As v is fixed, we define zy = z- v and write z = (2, zy) = (2, 2z - v) throughout the
rest of the proof. By (2.3), for z e RV \ ¥, we have

ko, 1 VOT,
(Z) = ‘ hV(TmZ) < M — /(._.). (512)
<N Tinzn Timzn
By Lemma 2.2 and (H2), k,, is Lipschitz with
[Vl L= = [Vhy | 1= < V. (5.13)

Combining (5.12) and (5.13), we deduce that for a point of differentiability z €

RV.\Y,,
‘V(km(Z))’ ) ’v(km(Z))‘
ZN zZ-V

_ ’wm(zxz )~k (2)V

(z-v)?
s2¢§:i¢?. (5.14)
zZ v ZN

In view of (5.12) and (5.14), the Arzela-Ascoli theorem yields that there exist
a subsequence of {k,,} (not relabeled) and a continuous function 7: RY \ 3, - R
such that, for every compact set K C RN \3,,

km(2)

lim sup -
ZN

m—>00 ¢

mzﬂzo. (5.15)

Defining now

k() = G(2)zy for ze RN\ %,,
0 for ze X,

we see that (5.11) follows from (5.15).

Step B: Fix R > 1. We argue that h, can be approximated on RV~1 x[-R, R] by
a polynomial in the last variable. In particular, we will show that this polynomial
belongs to the class

p .
A = {g(z',zN) = bj(z" )2y peN,bj € AP(}RN_l)},
=0

where AP(R™-1) is the set of Bohr almost periodic functions in R¥-1. In what
follows, we write z € RY as z = (2/,zy) with 2/ € ¥, ~ RV and |zy| < R. Let
f:RY"1x[0,1] = R be defined by

f(Z'2n)=h, (2',2Rzy - R) .

Fix 2z’ € R¥~! such that (2/,0) € £,, and consider the functions zy — (2, 2n).
Throughout the rest of Step B, we allow C' = C(N,0,0) in every step. Define
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F:RN"1x[0,1] = R, by

N(Zlva) P= f(zlva) - f(z’,O) —ZN (f(zlv 1) - f(Z,aO))
=h,(2',2Rzn — R) = h,(2',-R) - zx(h, (2", R) = h,,(Z',-R)). (5.16)

We have that f(z',0) = f(2/,1) = 0, and we can extend this function to all of RN by
setting f =0 off of RV=! x [0,1].

We now proceed nearly identically to the proof of the Stone-Weierstrass Theorem
(see [35, Page 160]). For j € Ny, we define the functions g; : R — R as

gi(z',2n) = C; /:11 (' 2y + 1) (1= t2) dt, (5.17)

where C; are chosen so that

1 .
f C;(1-t*)dt=1, (5.18)
-1
and, as shown in [35],

IC; < C\/j. (5.19)
Since f =0 in RNV=! x (R\[0,1]), we have that for any 2’ ¢ RN~ and zy € [0,1],

9 (2", 2x) = C; leN f(z',zN+t)(1-tQ)J‘dt:cjfolf(z',t)(1—(t—zN)2)jdt,

which is a polynomial in zy with continuous coefficients depending on z’. Recall
that by Lemma 5.7, M is Bohr almost periodic, uniformly, for all s # 0. In
particular, this implies that h,(-,s) is Bohr almost periodic (the case s = 0 being
trivial since hy,(-,0) = 0). Note that for every zy € [0,1], f(-, zx) defined by (5.16)
is a linear combination of Bohr almost periodic functions, which is still Bohr almost
periodic. We infer that g;(-,zx), whose coefficients are given by integration in the
Nth variable of Bohr almost periodic functions (which does not affect the first N -1
variables), is Bohr almost periodic for every zy € [0,1].
For z e RV x [0,1], we define

M(z)=M(2, zn) = max |72, 2n +1)].
te[-1,

By (5.16) and the Lipschitz continuity of h, (Lemma 2.2 and (H2)), we have
M(z) = e, |h(2',2R(zy +t) = R) — hy, (2", R)
- (an +t)(hy (2", R) = hy (', -R))|
< te[m—?ﬁ] VO]2R(zn +t—1)| + |2y +t|2VOR
=CR(zn+1). (5.20)

Fix n > 0. Note that by Lemma 2.2, f (and hence f) is Lipschitz continuous and,

in particular, f (and hence f) is uniformly continuous. Hence, choose § € (0,1) such
that for any z,y € RN with |z - y| < 6, we have |f(z) - f(y)| < 1.
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By (5.17), (5.18), the uniform continuity of f, (5.20), and (5.19), we find that at
ze RN x[0,1],

~ T ~ ;
T -a@I=[o; [ (FEan) - T ax +0) 1= af
SO [ s T e = TG 2| (1= ) de
s ’ j
+Cj[6 |f(z',zN+t)—f(z',zN)|(1—t2) dt
2yj °n 2yj
SO [ e M2V d [5 Ta-ey

<CM(2)\/G(1-6%) + g
<SCRVG(1-6%) (an +1) + g
Taking j sufficiently large, using the fact that R > 1, and that
lim /(1 -6%)7 =0,
]—)m
we can find g7 € 2 such that, for all z e RV-1 x [0,1],

17(2) - g"(2)| < Rn(zn +1).
By (5.16), this implies that for all z e RV~! x [0,1],

|hy(2',2Rzy = R) = hy,(2',-R) = 25 (hy (', R) = hy (2, -R)) - ¢"(2)
< Rn(zn +1).

Combining the constant term and the linear term in zp into the polynomial g"(z),
we deduce that there is a polynomial g% € 2 such that

|hl,(z',2RzN -R) —g"’R(z)| <Rn(zy +1) for all ze RN x[0,1].

By the affine transformation in the Nth variable (zy ﬁ(zN + R)), we obtain a
polynomial g7 € 2 such that

|hy (2) —@”’R(z)| < g(zN +3R) forall ze RV x[-R,R]. (5.21)

Step C. In this step, we argue that the linear growth of h, at infinity implies that
we may restrict to polynomial approximations that are linear in zy. Our strategy to
make this reduction will be to obtain a single “infinite polynomial” which pointwise
approximates the bounded function z e RM\%, ~ hz—l(vz) (rather than on sets of the
form RN x [-R, R], in which the coefficients of the polynomial approximation
might depend on R).

To this end, let {7,,},, denote an increasing sequence of positive numbers with
Tm — 00 as m — oo. We define

b . ~
AL = {g(z’,zN) = Y bi(z")zy peN,bj e AP(RNl)}.
j=—1



25

Fix 1> 0. On the compact interval [~7,, - —~]U [, 7, ], let py, € A7 as in Step B
be chosen such that

h'l/(zlaZN) n N-1 1 1
T—pm(z) <27m ZER X[—Tm,—a]u[a,’]—m] (522)
We set qo := p1, and ¢, = Pims1 — Pm, for m € N. Then
m
pm+1(z) = Z qn(Z),
n=0
and thus, pointwise, we have
h, ad .
(2) = > qn(2) + O(n), ze RN 15 (RN 0). (5.23)
ZN n=0

Next, we show that on sets of the form RY=! x [¢,d],0 < ¢ < d < oo, the series in
(5.23) converges uniformly and absolutely. Indeed, if [¢,d] c (0, 00), then for all m
sufficiently large and for all z e RN~ x [¢,d], we have by (5.22)

h,(z
ZN 2
and so,
hu z hl/ z
4 () < [pra () = 2 |1 E) ol
ZN ZN om om+

It follows that there exists M € N large so that

Y a2 Y Lo,
m=M m=M 2

and thus the series ¥ o _; ¢m(z) converges uniformly and absolutely to z — h;—fj)

on the set RV x [¢,d]. As {pm}m c AL, we have also {qn }m ¢ A7, Collecting
powers of zy and rearranging, using the absolute summability we may rewrite the
series in (5.23) as

hu(z) - i gj(z’)zgv +O(77)»

ZN j=—1

where the coefficients Ej are Bohr almost periodic, and therefore, bounded. Testing
this with z = T;,¢, for ¢ € Q,, with (x = 1, we get

PATnC) 5 B (LT + O ().

=
We claim that each of the terms

sup [b;(T,n¢")T3,| < Cj, (5.24)

for some constant C; > 0, for every j > 1. To see this, as the infinite series above
is convergent for each m, there exists Jo(m) such that for all j > Jy(m), we have
b (T ¢T3 <1, and |5 5o (my bj (Tm¢")TE, | < 1.1t follows by the triangle inequality
that

> bi(TudT,

j<Jo(m)

sup
m

<C. (5.25)
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As the coefficients Zj are bounded, by Bohr almost periodicity, (5.25) implies the
claim in (5.24).
Having proven the claim in (5.24), it follows that the b; are Bohr almost periodic
functions that decay at infinity. From this, we claim that each of the Zj must vanish
g

identically. Indeed, for any j > 1, since |3] (T (') < T squaring, and integrating

over the cube O, = ¥, nQ,, and then sending m — oo, we find that
u@) = lim [ (T dC =0,
m—00 Dl/

which, together with (5.4), implies that Zj =0 for all j > 1. In particular, we may
reduce (5.21) to a linear approximation, so that for every >0 and R > 1 there exist
Bohr almost periodic functions b{,b] with

|ho(2) = b0 (2") = b7 (2")zn| < n(|zn| + R), for all ze RN"!x[-R,R]. (5.26)
Recalling (5.9), by (5.26) we have for z e RV™1 x [-R, R],

1 1
km(2) - T—bg(Tmz') -b(T2")zn| = T |ho (T 2) = by (T z) = b] (T2 ) T 2N|

< %(|TmzN|+R) = len]+ %. (5.27)

With the choice of z = (2’,0) € 3, in (5.26) and (5.27), respectively, we conclude
that

1 R
lbd(z")| <nR and T—|bg(Tmz')| < ;— for all 2/ e RV, (5.28)
From (2.3), (5.26), and (5.28), we see that for zy € (0, R],

b7(2) = %b’f(z’)zjv < % (7 (2) = b5 (2") + n(lzn| + R)] < @“7(1 ! %)

and
1 1 2
W) = W > — [(2) =BG (el + R > Vi-n 1+ 27
ZN ZN ZN
Taking zy = R, we infer that
VO -3 <b1(2") < VO + 3. (5.29)
Since b} is Bohr uniformly almost periodic, it follows that the limit
. BT 1 ! r_ 1 / /
b = (b)) = Jim o /TD,, bi(=') d2' = Jim fD bI(T) dz (5.30)

exists. From (5.29), it follows that v/6 — 37 < 5;’ <+/© + 37. This implies that up to
a subsequence (not relabeled),

by — ) (5.31)
for some c(v) € [V/0,V/0O]. Fix a > 0. As the functions b7(7,,-) Bohr two-scale
converge to 5;] as m — oo(see Remark 5.6), for any fixed 7' > 1, using Definition 5.5
in the domain Q = T'0,,, this entails that for every test function ¢ : T'0, xRY - R,
that is continuous in the first variable and Bohr almost periodic in the second
variable, we have

lim o b (T2 (2, Trn2") dz" = [TDU u(yfw(z',-))dz' =b; [TDU u((Z',-))dz'.

m— 0o
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In what follows, we use this framework with the choice of test functions given by

(2 w) = e~ X7 for x € RV=1 which are independent of w. For such a choice,
lim b?(Tmz')efiX'Z’ dz' =b) f e . (5.32)
m—oo JTO, TO,

Step D. To prove (5.10), in view of Step A it remains to show that k(z) = c(v)z-v
for all z e RY. We note that this is immediate for all z € 32, by definition of k(z).
We recall the function z — G(z) = kz(—]i) from Step A, and notice that being the locally
uniform limit of Bohr almost periodic functions, §(-, zn) is Bohr almost periodic.
Fix R > 0 and also fix |zn| < R, zy # 0. Our strategy is to show that for all y e RV=1,
we have

(@G 2n) - e(v)e™0) =0, (5.33)

where, as in (5.2), i denotes the mean value of the almost periodic argument. If we
can verify (5.33), then by (5.4) we deduce that (2, z) = ¢(v). As zy is arbitrary
on [-R, R] ~ {0}, we conclude that k(z) = ¢(v)z-v for all ze R¥"? x [-R, R].

Let a > 0, and for T > 1 fixed let K := T 0, x{zx} be a compact subset of
{z-v>0}, and let M = M(a, K) be as in (5.11). Let mgo > M be such that for all
m > my, in view of (5.32),

VIR 7 —’r] i, 4
f bl (T 2)e” X% dz' — by f e X dz!
Tg, To,

For m > my, by (5.11), (5.27), (5.28), and (5.34), we have

<a. (5.34)

1 ~ —ixz" g1
‘W '/TDV (@2, 2n) —c(v)) e dz

< 1 f k(z,?ZN) _ km(z) e—z’xz' ds'
TN-1 Ta, ZN ZN

1 km(2) 1 bJ(Tmz") i
+ - 0mE ) yN(T2) | e d
TN-1 /TD( v Tm 2N 1(Tnz) )€ ‘
1 1 bg(TmZ,) —ix-z' gt 1 n I T iz’ gt
+ TN fﬂ’uyﬁizN e X% dZ'| + e fTu,(bl(TmZ)_bl)e XZ dz
=1
+ by — c(v)]
n 2nR 1 n N T i | L
<a+—m+Tm|ZN|+‘TN_1 /;Dy(bl(Tmz)—bl)e X2 dZ' | +1by — c(v)]

n nR o —n
=a+C|—+ +———+|b; - .
“ (Tm Tm|zN|) TN-1 b1 = e(@)]

We first send m — oo, so that T, - co. Then letting T" - oo, we obtain that

(@ 2n) = e()e ™ O) | <a+ ) = e(v)].

Sending 1, - 0 completes the proof of (5.33), where we used (5.31).

Step E. The foregoing argument shows that k(z) = ¢(v)z-v for all z e (RV71 x
[-R, R]). As R is arbitrary, and k from Step A is defined in RY (i.e., independently
of any truncation R), we conclude that ¢(v) is independent of R and

k(z)=c(v)z-v.
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Thus, for all K ¢ RN <%, compact,

m()

lim sup

—c(v )‘

and this implies (5.10).

For notational convenience, we define H : RV x RN - R by

H(p,y) = @Ipl-

With this notation, (1.10) yields that, in the viscosity sense,

H(Vkp, Tnz) =1 in H,,
Em(z)=0 on Y,.

We also point out that H(-,y) is uniformly Lipschitz continuous. Indeed, by (H2),
we have

1 1
-q|<—=p—q| 5.35

mlp ql ﬂlp ql (5.35)

Throughout the rest of the paper, we take all equalities and inequalities of PDEs
to be in the viscosity sense, and refer the reader to [14, 13] for an overview of
viscosity solutions.

We next present a comparison principle which is specifically tailored for the proof
of Theorem 1.5. A more general version of this result is stated in [22, Lemma 3.3]
without proof (although the proof essentially follows the same lines as [4, Lemma
3.1].) For completeness, we provide a self-contained proof of the result we need here:

|H (p,y) - H(g,y)| =

Lemma 5.9. Let >0, and let u,v € C(RY) satisfy

e
H(v+Vu,y) < H(v + Vu,y) - 75 Hy, (5.36)
u(y) <v(y) on %,
with
lim inf v(y) = uly) > —n. (5.37)
lyl—oo ]
Then

u(y) <v(y) in H,.

Proof. Due to the strict inequality in (5.36), there exists € > 0 so that

n+e

H(V+Vu,y)SH(V+Vv,y)—W

in H,. (5.38)

For each R > 1, we define

Yr(y) = (R +y)* - R and v"(y)=v(y) + (n+e)vr(y).
Notice that

IVr| =@~y <1 and ‘yl‘i_fgo Iyl or(y) = 1. (5.39)
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Owing to (5.35), (5.38), and (5.39) we obtain
(n+¢)
V oo N
NG IVYR] L= @)
(n+e)
Vo

H(v+vo,y) > H(v+Vo,y) -

=H(v+Vuv,y) -

>H(v+Vu,y) inH,.

Moreover, since vt > v, we have
u(y) <vf(y) on %, (5.40)
and by (5.37) and superadditivity of liminf, we find
R _ R _

timing L) —uy) L v() + (4 )9 (y) —uly)

[yl—>eo [yl [yl—o0 [yl
> liminf vy) -~ uly) +(n+e) lim Yr(y)

[yl->o0 lyl lul=oo [yl

>-n+(n+e)=e>0.

This implies that for |y| sufficiently large, the numerator must be nonnegative,
and thus there is a large ball Bj; so that

u(y) <v®(y) on H, ~ By (5.41)
We may now apply the comparison principle for the Dirichlet problem of stationary
Hamilton-Jacobi equations on bounded domains [14, Theorem 3.3] to conclude that
by (5.41), the comparison principle, and (5.40),
sup (u(y) —v™(y)), = sup (u(y)-v™(y)), < max (u(y)-v"(v)),
,Hu BMﬁ'H

v BBMQHV

<sup (u(y) -v™(y)), =0.
3y

This yields that
u(y) <v®(y) inH,.
Finally, as ¥r(y) — 0 pointwise as R — oo, we have v?(y) - v(y) pointwise as
R — o0, independent of n and ¢, and thus

u(y) <v(y) in H,.
u

In order to conclude the statement of Theorem 1.5 along the whole sequence
T — oo, we refer to a result of the famous (unpublished) work of Lions-Papanicolaou-
Varadhan [25], concerning the existence of periodic correctors.

Theorem 5.10. [25, Theorem 1] For each p € RY, there exists a unique number
H(p) and u e Lip(TN) (the set of Lipschitz continuous and T™ -periodic functions)
so that u solves

H(p+vVu,z)=H(p) inRY (5.42)
in the viscosity sense.

We note that the function u satisfying (5.42) is clearly not unique (for any M € R,
the function u + M is also a solution to (5.42)), but emphasize that Theorem 5.10
guarantees that H(p) is unique.

Equipped with Lemma 5.8, Lemma 5.9, and Theorem 5.10, we now present the
proof of Theorem 1.5.
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Proof of Theorem 1.5. We first argue that the value of ¢(v) must be unique in #H,.
Let us suppose, for the purposes of contradiction, that ¢(v) is not unique, and define

c1(v) : = inf {c(z/) € [V0,V0] : 3 a subsequence {T},,} such that (5.43)

lim k,,(z) =c¢(v)z-v loc. uniformly in ”HV},

'm—>00

and

co(v) : = sup {c(u) € [V0,V/6] : 3 a subsequence {T},,} such that
Tlim Em(x) = ¢(v)x - v loc. uniformly in ’H,,}.

By definition, ¢1 (V) < c2(v). Setting
wi(y) = h(y) —ar()(y-v) and  w(y) :=hy(y) - c2(¥)(y-v),
we have
H(ei(v)v+Vwy,y) =1 and H(co(v)v+Vws,y)=1 inH,.

By 1-homogeneity of H(-,y), this implies that for @;(y) := c1(v) twi(y) and
Wa(y) = ca(v) twa(y), we have
1 1

H(v+ Viba,y) = < =H(v+Vw,y) inH,. (5.44)
() a@)
We now claim for any K ¢ H, compact,
1 1
limsup —wo(Tz) <0 and liminf —w;(T2) >0 for all z € K. (5.45)
T =00 T T—oo T

Indeed, by Lemma 5.8, we know that for any sequence T — oo, there exists
a subsequence such {T},} and &(v) € [\/0,/©] so that T;'h,(T,,x) - é(v)z - v
as Ty, = oo, and &(v) € [e1(v),ca(v)]. This, in particular, implies that for any
convergent subsequence,
T wy (Thnx) = T by (Tyz) = e (v)z - v
=T hy (Trx) - e(v)x v+ [e(v) — a1 (v)](z-v)
> T h, (Thx) - e(v)x - v,
where the right hand side tends to 0 as m — oo. Taking liminf of both sides, we see
that every subsequential limit, hence the full sequence, satisfies the second assertion

of (5.45). The other inequality in (5.45) follows by an analogous argument. In
particular, taking € SN"' nH, and y = Tz, we have

limsupw2(y)30 and liminfwl(y)
oo Y] oo [yl

>0. (5.46)

By Theorem 5.10, let u be the periodic corrector corresponding to H(v), so that
{H(z/ +Vu,y) = H(v) inRY,

: uw(y) _
11m|y|_,°o ﬁ =0.

(5.47)

We consider two cases: Case 1: H(v) € [Wlu)v ﬁ] Without loss of generality,

we will assume H(v) < Tlu) (if not, then we can repeat the following argument
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using that H(v) > Wlu)) We claim that there exists n > 0 so that the hypotheses of
Lemma 5.9 are satisfied.

Indeed, for the functions u"(y) := u(y) + n(y - v) and w1 (y), by (5.44), (5.35),
and the assumption of Case 1 that H(v) < there exists 1 > 0 sufficiently small

so that

1
c1(v)?

1
o

o
Vo Ve av)
n —~ .
-——+ H(+Viwi,y) in H,.
N ( 1,Y)
We note that the function u € Lip(T?) is bounded, and for any M > 0, the function
u— M e Lip(TV) and also satisfies (5.42). We may thus assume assume without
loss of generality that u < 0. This implies

H(Z/+Vu",y)sH(Z/+Vu,y)+izﬁ(y)+

Vo

u'(y) =uy) +n(y-v) =u(y) <0=wi(y) on3,.
Furthermore, by (5.46) and (5.47),

Wi (y) —u'(y) | _

liminf 7.
[yl—>o0 [yl
By Lemma 5.9, this yields
u(y) +n(y-v) <wi(y) inHy. (5.48)

If the infimum in (5.43) is achieved, then there exists a subsquence {y, } = {Tmx}
so that 1im,, e |Ym| 1@ (ym) = 0. Dividing (5.48) by |y|, using that y-v > 0, and
evaluating this inequality along this particular sequence, we have

n<0,

which is a contradiction.

If the infimum in (5.43) is not achieved, then we know that for every ¢ > 0,
there exists a subsequence {y,, } = {Tnx} so that T, h, (T),7) = (c1(v) —€)z-v. In
particular, the function @ o(z) := (c1(v) =€) 'h,(z) — 2 - v solves

1
———— =HWw+Vii.,y)>HW+Vu,y) inH,.
a(v)-e¢
We now repeat the above argument with u™*(y) := u(y) + (r] + ﬁ) y-v. We may

again choose 1 > 0 sufficiently small so that
H(v+vu™ y) <—%+H(V+V@1,E,y) in H,,
u (y) < (y) on 3,

and we can check that

lim inf D1 (y) > c )
lyleo [yl c(v)-e
which implies

1,s(y) - ums(y) > _

liminf 2 > 7.
lyl—oo [yl

By another application of Lemma 5.9, we have

u(y) + (n .

- v < W i .
cl(V)—s)y v<i,(y) inH,
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Dividing by |y| and taking this along the particular subsequence {y,,}, we have
€ <0,

+———<
K a(v)-¢

which is another contradiction. o

Case 2. H(v) ¢ [Wlu)’ ﬁ] Without loss of generality, let us assume H(v) > ciy)
(otherwise, a symmetric argument to handle the other alternative). We consider the
function w; x(y) := A@01(y) + (1 - Mu(y). We note that by the convexity of H(-,y),

H(v+ Vi, y) <AHW+Vw,y)+(1-NH@p +Vu,y) = +(1-\N)H(v)

c1(v)
<AH(v)+(1-N)H(v)
<H(v) inH,.
Moreover, by definition of @w; and (2.3), we have

AT (y) + (1= Nu(y) </\( Vo

- Cl(V

. A (y)
imsup = lim sup

+ 1) = AM.  (5.49)
oo 1Yl lyl—o0 Iyl

We now proceed by the same arguments as above. Let u,(y) = u(y) - n(y-v),
choose A >0, and then 1 = n(\) > 0 sufficiently small, so that

{H(V + Vi z,Y) < —% +H(v+Vu,,y) inH,,

w12 (y) < up(y) onY,.
By (5.49), we have
lim inf —un(y) 1A (y)
lyl->oo lyl
By Lemma 5.9, this yields

>-(n+A)M.

w1 (y) <uy) -n(y-v) inH,.

Note that for any A > 0, if {y,,} is a sequence such that limy, |- co |Ym| ' @1(ym) =0,
then we have lim, |, Y| 201 2 (ym) = 0. We then argue as in the last step of
Case 1 to conclude that upon dividing by |y| and sending |y| - oo, we will have
0 < —n. We note that we can make a similar argument as in Case 1 if the infimum
in (5.43) is not achieved.

Now since ¢(v) is uniquely determined, we have that every subsequence {k,,} =
{T;llh,,(Tm-)} has a further subsequence which converges locally uniformly to
x v+ c(v)x - v, where c¢(v) = ﬁ is uniquely defined. This implies that for any
K cH, compact, we have

=0.

1
TILH; Z?}E ‘ThV(Tx) —c(V)x-v

This, combined with Lemma 5.8, guarantees that for any K ¢ RN \ ¥, compact,
we have

lim sup =0.

1
—h,(Tz) - :
A sup| 7 (Tz) - c(v)x-v

We note that the functions {k,, } are themselves uniformly bounded and uniformly
equicontinuous on any compact set K ¢ RY. In particular, by the Arzela-Ascoli
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Theorem, this implies that for any sequence {T,,} tending to infinity, there exists a
function ¢(z) so that

lim sup |k, (x) — ¢(x)| = 0.

m—>oo reK
In particular, by uniqueness of limits, we must have that ¢(z) = ¢(v)z - v, and this
yields that for any K ¢ R compact,

lim sup ‘%hu(Tx) -c(v)z-v|=0.

T—oo pe K

We also have that

%h_y(Tx) ~ (=) (z—v)| = 0,

lim sup
T—oo pe i

Since hy(x) = —h_,(x) by (2.1), taking = ¢ ¥, we have

le(V)x-v=-c(-v)x-v|< —%hy(Ta:) +e(v)x-v|+

%h,,(Tx) —c(-v)r-v

1 1
= ‘fhl,(Tac) —c(V)x-v|+ —fh_l,(Tx) —c(-v)x-v

, %hV(Tx) ez vl +

—%h_y(Tm) +o(-v)(z--v)

Taking a limit on the right as T — oo, we arrive at the conclusion that ¢(v) =
c(-v). ]

Remark 5.11. A posteriori, knowing that ¢(v) = ﬁ, we may use various known

properties of effective Hamiltonian from [25, Proposition 2] to conclude properties
of ¢(v). For instance, we obtain that ¢(-) is Lipschitz continuous, and moreover that

_ 1
HE) = o P

is convex. One could pursue further analysis of alternative representation formulas
for H(-) through its convex, homogeneous, and continuous nature (e.g. the analysis
of supports and gauges, see [34]), but we do not carry this out here.

Remark 5.12. We furthermore recall that in the works of [5, 8], the authors identify
the stable norm |z - y||. for x,y € RY, which represents a homogenized distance
function between z and y. If we think of ¢(v)x - v as the homogenized distance
function to the plane ¥, then in comparison to the Euclidean setting, we expect
that for v € H,,
c(v)r-v=inf |z-y|..
yeX,

While we do not explore it here, we think it would be very interesting to connect
Theorem 1.5 with this related body of literature in geometry.

Finally, we complete the paper with the proof of Theorem 1.6. We first note an
equivalent definition of Bohr almost periodicity, and used throughout the literature
in almost periodic homogenization:

Definition 5.13. A continuous, bounded function g : R - R is said to be Bohr
almost periodic if the family of functions

{g(-+2):zeR%}

is relatively compact in |« ||co-
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For a proof of the equivalence between this definition of Bohr almost periodicity,
and the one using trigonometric polynomials, we refer the reader to [38]. With this
in hand, we are now ready to prove Theorem 1.6:

Proof of Theorem 1.6. We note that if a(-) is (Bohr) almost periodic, then a(-) has
a uniformly convergent Bochner-Fourier series (see (5.3)). This was the only fact
we needed in the proof of Lemma 5.7. By the equivalence of Definition 5.13 and the
characterization of Bohr almost periodic functions via their uniformly convergent
Bochner-Fourier series (see (5.3)), Lemma 5.7 holds when a(-) is almost periodic.

The proof of Lemma 5.8 only relies on the almost periodicity from Lemma 5.7,
in which case Lemma 5.8 also holds when a(-) is almost periodic.

Finally, the proof of Theorem 1.5 only uses the fact that for every p e RV, there
exists a unique value of H(p) and a corrector u which is bounded and solves

H(p+Vu,y)=H(p) inRY, (5.50)

When a(+) is almost periodic, a result of Ishii [24, Theorem 2] yields the existence
of a bounded uniformly continuous function u satisfying (5.50). This implies that
the conclusion of Theorem 1.5 holds true when a(-) is almost periodic. [

APPENDIX A. MODIFIED BOUNDARY CONDITIONS VIA DE GIORGI’S SLICING
TECHNIQUE

Recalling the distance function h, introduced in Section 2.1, we next argue that o
has an alternative representation with boundary conditions in terms of the function
qoh,.

Lemma A.1. Define o:SV! - (0,00) by
o) = Jim zint{ [ oW« Sva?] a
a(v) = lim ——in a u) + =|Vu :
T—oo TN-1 TQ, Y 2 Y
u € HI(TQV)?U|3TQV = qohu}-

Then (v) = o(v) for all v e VL.

Proof. Fix v € SV, For ease of notation, for u € H'(A) and A ¢ RY open, we
introduce the localized functional

6. 4)= [ [Za(L) W) + Svu] ay

By the change of variables y — Tz with ¢ = %, we rewrite o as

5(v) = I inf {G-(u.Qu) s u e H' (Qu) ulog, = (aoh) (2f2)}. (A1)
and, similarly, we rewrite (1.4) as
U(V) = lli% inf {gs(ua Qu) tu € Hl (Qu) 7u‘8Q,, = ﬂp,l/sm} . (A2)

Here, ~p,1/571/ = U,y * Pes where pE() = €7Np(./€)'

To show that o(v) = 3(v), we first prove that o(v) > d(v). The inequality
7(v) < o(v) can be carried out in an analogous manner. Throughout the rest of
the proof, we let Q := Q,. Let n; » 0 as j » oo be fixed, and {v;} ¢ H'(Q) with
vj(x) = p1yy, * uo,v(z) on OQ be such that

lim G,, (05, @) = o(v). (A.3)
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We extend v; to 7Q, for 7 € (1,2], by defining v;(x) = p1y, * uo,. () for z e TQ N Q.

Set w;(x) = (gohy) (x/n;) for z e RY. By (2.6), since 7 € (1,2], we have

eyl

wi (z) 21 -cre if xerQ, n{x-v >0},
—eo lE2l

wj(x)<—1+clec2”j ifxer@, n{x-v<0}.

Therefore, as |w;| <1

) N ) _ i / —1)%d
jg?o ij UO,V||L2(TQ) jg{.lo TQn{zv> /75 } |wj | !
+ lim Jwj + 1 dz
j=oo JrQn{zv<—/m;}
+ lim 4dx
7= Jr@n{-/m<avsi}
=0.

Clearly
i oy = 0, |22y = 0

In particular, we have that

)\J = ij —; HLZ(TQ\Q) J_)—oo> 0.

(A.4)

(A7)

We will now construct a function u; € H'(7Q) such that u; lo¢r@y= wy, and for

some C > 0,

[t

j

(A.8)

Our main approach will be to define a new function which smoothly interpolates

between v; in @ and w; on O(7Q) in the region 7Q \ Q.
We note that by (2.6),
()
nj

s =2 (o) ()]

*

i

<

1T

Combining (2.6), (2.3), and (A.9), we find
_elzrl
[Vw;| < Lo,
J
We consider, for k € N with k& >> ﬁ,

Lk = {33 eT@Q N Q :dist(z,0(7Q)) < %} .
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We divide L* into cubic shells (or layers), which we denote by {Lic j}?ﬁ’j, of thickness

n;\j, where ); is defined by (A.7). We note that My ; := [ﬁ], and thus
Mk,jnj)\j 2 1/k (All)
For every k,j € N, we let ig € {1,..., My ;} be the smallest value such that
1
fL bi@)do < 3 fL by(a) de, (A.12)
where
1 Joi(2) —w; (@) 2 2
bj (@) = — + ==+ [V (@) + [V (2) ).
! M (Aj)%n; . !
We also consider cut-off functions ¢y ; € C2°(7Q) with
C
0<pr; <, Nre < ——,
Pk,j 1Ver;lo sy
and

~ 1 forxe QL_J(U;ZI1 Lf,j),
Phig 0 forxze (Uf\ffoil Lﬁj) .
We note that ¢y, ; transitions precisely in the layer Lfo’ ;- We then set
Ug,j = Ph,jV; + (1= @rj)wj,

and we have by (A.4) and (A.6), limye lim;eo [Tk, j — U0 [ 22(rg @) = 0
We estimate

ig—1 M;
gnj (ﬂkaTQ) = gﬁj (vj7( L:J1 Lﬁj) UQ) + gnj (ﬂ’fJ’L?o,j) + gnj (wj7 U L?J)

1=19+1
=t A j+ By j+Cg . (A.13)

‘We have
Arj <Gy, (vj,Q) + Gy, (v, TQNQ),

and we see that, since v; = p1/,. * up () in 7Q \ Q,

1 T Nj 2
Gn. (v, TQNQ :f [a()W vi) + -2|V; ]dm
m( J ) TNQN{|z-v|<n;} n4 14 ( ]) 2 | j|
C
< =R~ Qn{lz- v <,
N5
where we used the facts that v; € {1,-1} in 7Q ~ Q n{|z - v| > n;}, and that

Vvs] = 1V (p1jm, * uow) < Cj . (A.14)
Hence,
G, (0, 7QNQ) < C(r - )N,
which implies that
limsup limsup A ; < o(v) + (1 - 1)1 (A.15)

k—oo j—oo

Next, since [v;r~(-0) < 1, and |w;| 1~(rg) < C(©), we have by (A.12),
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wj)2 + |ij|2 + |ij|2)] dx

By,; < Cf |:+77J |VWk,J| (vj
scf

1 vy —wjf?
[77 + L )\2 +77](|v”3|2 |ij|)
j

C f 1 |11j —1Uj|2 9 9 ]
< — 4+ ———— +1; {|Vy;|” + |Vw; dx
i oLy~ e (vt o)
By (A.14), (A.10), and (A.11), we obtain

1 A2 L
Bk,j<0[|Lk|+]+C|Lk|]< CIL7] + ¢
M.,

nj AT

N-1

T kX

< <C J +CkN;,
niMy,;  njMg,; k !

where we have used the fact that |L*|

N-1
< C(N)™—. Hence,

lim sup lim sup By, ; = 0. (A.16)
k—oc0 j—oo
For the term Cj, ;, we first remark that by (2.6), and (2.3),

ezl
W (w;) < (1 - tanh? (2h, (/n;)))? = sech (2hy (w/n;))) < Ce ™ 5
Combining this with (A.10), we have

o[ (2) WSt

1 T ; 2]
< —a|— | W(w;(x)) + =|Vw;(x dx
/;Q\Qﬂ{lx-VIﬂm}[??j (TU) (w; (2)) 2| (@)l

. —|vVw;(T 2 X
+fr@x@n{|w~uszm}[m (m)w(wf(f‘”))+ [Vuw; ()] ]d

_ M _ |z-v|
SC’[ |:1€C"j +1ec"j]da:
TQNQN{|zv]>2n;} [ 75 nj

+C/T ldac

Q\Qn{|z-vI<2n;} 15

1
<C(r-1)N1 +Cnj (T - Nt
N5
<O(r-1)N L
This implies that

limsup limsup Cy ; < C(7 - 1)V,

(A.17)
k—o0 j—ooo

Finally, by (A.15), (A.16), and (A.17), and using a diagonal argument, we may
find an increasing sequence {k(j)} such that

limsup [A(j),; + Br(i).j + Cr(iyg] o) +C(r -1)N!
j—oo

(A.13), we let u; = Uy ;) j, and we arrive at (A.8), with u; = w; on 9(7Q)
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To conclude, we now move from 7Q to @, defining @;(x) = u;(rx), for x € Q,
and changing variables to obtain

ol Ea(2) e « 2]

nj Ul
1 [ .
L)
T Q[ mj 75 T 2T

()

2
]dx

1 [+ x n'7'2 5
=% - _ma(r)W(uj(x)) + ;T |V, ()] ] dz

T [ 1 T 7; 9
- Zal Z VW us g , d.

Lol o)W tten + Zivuor | as

By (A.8), this implies

: T (Y ~ M 1 orr 1 ¢ -
s | Za (22w 500 + 219500 | € o)+ (-1

We note that ¢; = 777] — 0 and for all x € 0Q),

() = uj(72) = w;(72) = (g0 ) (9”) - (gohy) ()
n €

j J
Hence, @; is admissible for (A.1) (with sequence ¢;), from which we conclude
that

7y <tmsu [ | Za( L) win) « Zivw |

J

(r-1)N1

Letting 7 — 1%, we arrive at o(v) < o(v). As priorly mentioned, the opposite
inequality follows from a symmetrical argument.
[
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