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A B S T R A C T

Currently, model predictive control (MPC) for adaptive cruise control (ACC) systems relies on
the prediction of the leader’s motion to plan the follower’s trajectory. However, such predictions
must be accurate to guarantee string stability, which represents an ongoing challenge for
machine learning approaches. This issue can be circumvented by simply incorporating the
leader’s history, which follows from Newell’s car-following (CF) model where a trajectory under
congestion corresponds to a temporal–spatial shift of the leader’s past trajectories. By leveraging
this insight, this paper develops a family of MPC models based on Newell’s CF model, labeled
Newell MPCs, which are safe and can reduce traffic congestion.

Specifically, We first present baseline Newell MPCs to replicate the original Newell’s CF
model, including the 𝑋𝑏𝑜𝑢𝑛𝑑-Model, which uses the shifted leader trajectory as an upper
envelope; and the 𝑋𝑟𝑒𝑓 -Model, which adopts the shifted leader trajectory as a reference to
avoid the issue of infeasible solution triggered by hard constraints. To further improve the
control performance, we propose the 𝑋𝑉 -Model which uses the leader speed history as an
additional reference to enhance the model robustness and regulate speed over/under-shootings.
In addition, we extend the single-leader Newell’s model through incorporating multiple leaders
and propose the 𝑋𝑚𝑢𝑙-Model, which can achieve driver anticipation, and correspondingly
reduce reaction time and improve string stability. Finally, based on the 𝑋𝑉 -Model, we present
two additional extensions: (i) the 𝑋𝑉 𝑟𝑒𝑙𝑎𝑥-Model, which incorporates driver relaxation to
achieve smooth response to merging traffic; and (ii) the 𝑋𝑉 𝑠𝑠-Model, which achieves strict
string stability to further dampen traffic oscillations. The proposed Newell MPCs are tested using
both numerical simulations and field studies on a stock 2019 Honda Civic using Openpilot and
Comma.ai; the source code is available at https://github.com/HaoZhouGT/openpilot.

1. Introduction

ACCs were first developed as linear controllers in the 1990s (Sheikholeslam and Desoer, 1993; Ioannou et al., 1993; Fancher
t al., 1997; Jurgen, 2006; Gerrit Naus, 2008). Unfortunately, this technology did not gain much popularity with consumers, possibly
ue to the lack of driving comfort. Starting from the 2000s, MPC ACCs have become more and more popular (Bageshwar et al.,
004; Gerrit Naus, 2008; Luo et al., 2010; Li et al., 2010).
Over the past few years, ACC’s market share has steadily increased. In the meantime, the string stability of ACC systems has

ttracted increasing interest in traffic flow theory due to its profound impact on traffic congestion. Recent empirical studies (Gunter
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et al., 2020; Makridis et al., 2021; Shi and Li, 2021; Li et al., 2021a,b) have demonstrated that most market ACCs are string unstable,
hich is unfortunate as it indicates ACCs will amplify congestion waves. Intriguingly, a few empirical studies also find that the string
tability of market ACCs is significantly more complex than what linear controllers can explain, largely due to its non-linearity and
he speed/scale dependence. Shi and Li (2021) finds that the estimated key parameters and string stability of the market ACCs
ubstantially vary across different speed levels. According to Li et al. (2021a), market ACC products can be string stable under
small oscillations but string unstable for large oscillations, even when the speed level and oscillation frequency are the same. These
findings suggest that the string stability of market ACCs is both speed-dependent and scale-dependent, which is unfortunate as we
expect ACCs to be string-stable under all speed and oscillation conditions.

Unlike linear controllers to regulate current spacings and speeds, MPC ACCs foresee a finite time-horizon, predict the leader
movements first, and then solve the future trajectory from an optimization problem that can include multiple objectives such as
safety, efficiency, and driving comfort. The predict-and-optimize MPC makes it easier for ACCs to add new objectives for trajectories,
beyond the spacing and speed regulation that linear ACCs provide. Moreover, the receding horizon optimization mechanism of MPC
also brings new opportunities to achieve more desirable control performance (e.g., fuel economy, comfort, smoothness, etc.) than
linear ACCs (Musa et al., 2021). We hypothesize that current ACC manufactures would utilize MPC ACC considering its inherent
lexibility and outstanding performance. For instance, Tesla clearly disclosed its predict-and-optimize approach at its AI Day Event
n 2021 (Zhou, 2021), as Waymo (Ettinger et al., 2021) and Baidu (Zhang et al., 2020) also announced similar predict-and-optimize
methods. Although different manufacturers may embed the predict-and-optimize problem using frameworks other than MPC, in
this paper we refer to these ACCs as MPC ACCs because they share the same spirit of the MPC, i.e., anticipating future events and
optimizing the current timeslot while considering future timeslots.

While MPC ACCs are especially effective at incorporating and balancing multiple objectives, they have limitations including
the string stability, which lacks a closed-form analysis due to its non-linearity and is hard to guarantee because of the prediction
challenge. As mentioned earlier, current MPC ACCs need to predict leader positions before optimizing the follower’s trajectory. We
show later that the precision of the leader predict is important as a better trajectory prediction alone can dramatically improve the
string stability. Unfortunately, to accurately predict the leader movement is challenging, as we are witnessing many ongoing efforts in
this direction, such as the machine learning challenges specialized in forecasting leader movements held by Lyft (2021) and Waymo
(2022). To train a decent model for leader prediction often requires deep neural networks and large datasets. Unfortunately no
major success has been reported by the industry yet.

In light of all those limitations and challenges, a prediction-free, and string-stable ACC under all speeds and oscillations is highly
anticipated. Fortunately, we already have such a model in the traffic flow theory, namely Newell’s CF model, that satisfies all of these
criteria. According to Newell’s CF model, the follower’s trajectory is merely a temporal–spatial shift of the leader’s history position.
Thereby, it ensures marginal string stability, meaning that the follower neither amplifies nor dampens the leader’s oscillations.
More interestingly, Newell’s CF model does not require predictions of the leader at all, instead, it only requires the leader’s history
(position, speed or both), which can be easily obtained using current sensing technologies, such as a single radar. Such a simple and
elegant model has not drawn much attention from the robotics/computer science community, possibly due to lack of disciplinary
depth in traffic flow theory, and to the best of our knowledge, no self-driving company has reported the use of this idea to imitate
the leader’s history trajectory. Although we do not know whether Newell’s CF model is not being used by market ACCs due to
the opacity of self-driving companies, the aforementioned recent empirical tests have revealed the significant differences between
Newell’s CF model and current black-box ACCs, where ACCs exhibit poor string stability across different speeds and oscillations,
which is substantially different from the constant marginal string stability of Newell’s CF model. Those empirical observations suggest
that Newell’s CF model or a similar design is very unlikely to exist in market ACCs. To the best of our knowledge, no similar design
of Newell’s CF model under MPC has been documented by industry or academia, which motivates us to conduct this study.

The paper aims to bridge the aforementioned research gaps and develop a family of new MPCs based on Newell’s CF model,
i.e. Newell MPCs. As extensions to the original Newell’s model, the strict string stability, driver relaxation (Laval and Leclercq,
2008) and driver anticipation (Treiber et al., 2007) will be incorporated to mitigate congestion and improve traffic capacity. To
ensure transferability from the paper to the road, we use the same codebase for the simulations, including the processional MPC
solver from a recent open-source ACC system, Openpilot (OP), Comma.ai. Later we will test the functioning of the same MPC on a
production ACC vehicle (a 2019 Honda Civic) on the road.

The major contribution of this paper is to incorporate Newell’s CF model into the MPC ACC, which provides a simple and
elegant solution to string stable ACCs without prediction needs. Additionally, we present a framework to apply Newell’s model for
anticipative driving, which can reduce reaction time and improve string stability. We also provide two extensions of the baseline
Newell MPC, one of which aims to address lane change disruptions and the other to achieve strict string stability in order to further
dampen traffic oscillations. Finally, we implement a baseline Newell MPC (i.e., 𝑋𝑉 -Model) in a market ACC vehicle on the road,
which demonstrates the feasibility of the design. The source code is available at https://github.com/HaoZhouGT/openpilot.

The paper is organized as follows: Section 2 surveys the MPC design in the literature and its recent development in the industry;
ection 3 introduces our design of the family of Newell MPCs; Section 4 presents the simulation results; Section 5 describes the road
test; and Section 6 provides some concluding comments.

. Current MPCs and their limitations

.1. State of the art

MPC was first introduced (Bageshwar et al., 2004) to ACC systems as a new distance controller to minimize the spacing error
2

ith a target value in an optimal control problem (OCP). For the target spacing, the safe inter-distance-policy was used (Chien and

https://github.com/HaoZhouGT/openpilot
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Ioannou, 1992; Seiler et al., 1998; Brackstone and McDonald, 1999), which is a Newtonian motion equation; see (1).

𝑠𝑠𝑎𝑓𝑒 = 𝜆1(𝑣2𝑒𝑔𝑜 − 𝑣2𝑙𝑒𝑎𝑑 ) + 𝜆2𝑣𝑒𝑔𝑜 + 𝜆3 (1)

here 𝑣𝑒𝑔𝑜 and 𝑣𝑙𝑒𝑎𝑑 refers to the speed of the follower and the leader respectively, and 𝜆1, 𝜆2 and 𝜆3 are constants.
It was quickly noticed that the safe inter-distance-policy can produce undesirable large spacings, then the constant time headway

CTH) (2) took place its role which describes the desired spacing 𝑠𝑒𝑔𝑜 as follows.

𝑠𝑑𝑒𝑠 = 𝜏 ⋅ 𝑣𝑒𝑔𝑜 + 𝛿 (2)

where 𝜏 is the desired time headway, and 𝛿 is the jam spacing.
Initially, the MPC was simply a different approach to distance control, where safety, comfort and economy were not directly

included in the objectives but instead served as hard constraints (Corona et al., 2006; Martinez and Canudas-de Wit, 2007). Gerrit
Naus (2008), Luo et al. (2010), Li et al. (2010) extended the MPC from a distance controller to the solver of a multi-objective
optimization problem involving other goals. In their design, except for the desired spacing, MPC also minimizes the relative speed
with its leader, i.e. 𝑣𝑙𝑒𝑎𝑑 − 𝑣𝑒𝑔𝑜. Meanwhile, some secondary objectives such as driving comfort and fuel assumptions are added by
simply minimizing the jerks 𝑗𝑒𝑔𝑜 and accelerations 𝑎𝑒𝑔𝑜 respectively.

The hard constraints in those MPC controllers are usually constant, meaning that only the nominal maximum or minimum
accelerations/jerks are applied, which is not very realistic considering the linear acceleration bounds found in traffic flow
studies (Laval and Daganzo, 2006; Laval et al., 2014).

It is also worth noting that, the models used in MPCs for the ego vehicle are usually beyond the simplest motion dynamics of a
point-mass. Typically the model incorporates an delay-actuator to capture the lag between commanded accelerations and the true
output. For example, the first-order system delay model is also shown in Bageshwar et al. (2004), Zhou and Peng (2005) as follows:

𝑡𝑑𝑒𝑙𝑎𝑦
𝑑𝑠̈(𝑡)
𝑑𝑡

+ 𝑠̈(𝑡) = 𝑢(𝑡) (3)

where 𝑡𝑑𝑒𝑙𝑎𝑦 refers to the time lag in the low-level controller, and 𝑢 is the control input (desired acceleration), and 𝑠 is the position
state.

Another key component of the MPC ACC, the prediction of the leader movement, is usually over-simplified by assuming a zero
acceleration in the literature (Bageshwar et al., 2004; Zhou and Peng, 2005; Naus et al., 2008; Luo et al., 2010). We will illustrate
he significance of accurate prediction models shortly.
Those MPCs for ACCs are formulated mathematically as a discrete, constrained linear quadratic regulator (LQR) which can be

olved by professional solvers. The follow-up studies on the MPC design employ the same general approach, with modest tweaks
o enhance safety (Magdici and Althoff, 2017), energy consumption (Vajedi and Azad, 2015), or extend weight tuning to the real
time (Zhao et al., 2017).

While sequel MPC studies for ACCs are sparse, a much larger body of research (Bu et al., 2010; Naus et al., 2010; Stanger and
del Re, 2013; Gong and Du, 2018; Zhou et al., 2019, 2020) is working on developing MPCs for Cooperative Adaptive Cruise Control
(CACC) systems, which feature accurate acceleration values transmitted by short-range communication technologies. More system-
level optimization problems are studied in the CACC context. Notably, Gong and Du (2018) developed a MPC-CACC control algorithm
to ensure the overall speed smoothness and stability. Zhou et al. (2019) presented a distributed MPC approach for CACC systems to
achieve local and string stability. However, these insights cannot be directly transferred to MPCs in current non-cooperative ACC
systems using only speed and spacing measurements from the leader.

2.2. State of the practice: the MPC design in open-source self-driving system

The market ACC technology is proprietary, but in recent years, a few self-driving companies have begun to release their source
code to the general public. Comma.ai, which views itself as the Android to Tesla’s Apple, is one of the first companies to offer
an after-market device that can be connected to the ACC modules on recent car models and run customized ACC algorithms. The
open-source control algorithms, including the MPC design, provide new opportunities to model the black-box market ACCs.

Now we formulate the MPC algorithms in OP’s codebase. In OP, the total cost function 𝐶(𝑡) for the longitudinal MPC starting
from time 𝑡 is defined as a weighted sum of four sub-costs over all grid points in its rolling horizon [𝑡, 𝑡 + 𝑇𝑚𝑝𝑐].

𝐶(𝑡) = 1∕2
∑

𝑡≤𝑡(𝑘)≤𝑡+𝑇MPC

𝑓 (𝑘)[𝑤𝑡𝑡𝑐𝐶
2
𝑡𝑡𝑐 (𝑡(𝑘)) +𝑤𝑑𝑖𝑠𝑡𝐶

2
𝑑𝑖𝑠𝑡(𝑡(𝑘)) +𝑤𝑎𝑐𝑐𝑒𝑙𝐶

2
𝑎𝑐𝑐𝑒𝑙(𝑡(𝑘)) +𝑤𝑗𝑒𝑟𝑘𝐶

2
𝑗𝑒𝑟𝑘(𝑡(𝑘))] (4)

where 𝑡(𝑘) denotes the time of each discrete planning step 𝑘 in the planning horizon 𝑇MPC of 10 s. 𝑓 (𝑘) is a step multiplier to weight
the costs from different time steps in the 10 s horizon, where 𝑓 (𝑘) = 1 for 𝑘 ≤ 5 with step size of 0.2s, and 𝑓 (𝑘) = 3 for 𝑘 > 5 with
step size of 0.6 s. We conjecture that the step multiplier 3 is used to balance different step lengths (3 = 0.6∕0.2) between the first
5 steps and the remaining 15 steps. The weights for sub-costs are constant for all driving scenarios. Determining those values need
careful tuning, where the default values in OP are 𝑤𝑡𝑡𝑐 = 5, 𝑤𝑑𝑖𝑠𝑡 = 0.1, 𝑤𝑎𝑐𝑐𝑒𝑙 = 10, 𝑤𝑗𝑒𝑟𝑘 = 20.

The sub-costs functions are with respect to the time to collision, spacing, acceleration and jerk values, which are defined as
follows if the time index is omitted:

𝐶𝑡𝑡𝑐 = exp{
0.3(𝑠des − 𝑠ego)

√

𝑣 + 0.5 + 0.1
} − 1 (5)
3

ego
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𝐶𝑑𝑖𝑠𝑡 =
𝑠ego − 𝑠des

0.05𝑣ego + 0.5
(6)

𝐶𝑎𝑐𝑐𝑒𝑙 = 𝑎ego(0.1𝑣ego + 1) (7)

𝐶𝑗𝑒𝑟𝑘 = 𝑗𝑒𝑔𝑜(0.1𝑣ego + 1) (8)

where 𝑗𝑒𝑔𝑜 is the jerk of ego vehicle (i.e., derivative of acceleration). The desired spacing 𝑠des for the MPC controller is defined as:

𝑠des = 𝑣ego ⋅ 𝜏 − (𝑣lead − 𝑣ego) ⋅ 𝜏 +
𝑣2ego − 𝑣2lead

2𝐵
(9)

here 𝐵 is the vehicle’s maximum deceleration rate.
Note that to calculate the desired and true spacing in the MPC prediction horizon, the lead vehicle trajectory and speed need to

e estimated. OP uses a simple model to predict the lead vehicle movement as shown in by the dynamics model in (10) (a–d), which
ssumes a exponentially decaying acceleration of the lead vehicle with time parameter 𝜃 (1.5s). Recall that 𝑡 denotes the time of
iscrete step in the MPC planning horizon 𝑇MPC. Let 𝛥𝑡 denote the step length between two consecutive stops, where 𝛥𝑡(𝑘) = 0.2s
hen 𝑘 ≤ 5 and 𝛥𝑡(𝑘) = 0.6s if 𝑘 > 5. Starting from 𝑡(0) = 0, the lead vehicle states are predicted and updated as follows:

𝑎lead(𝑡) = 𝑎lead(𝑡) exp(−𝜃 ⋅ 𝑡2∕2) (10a)

𝑥lead(𝑡) = 𝑥lead(𝑡) + 𝑣lead(𝑡) ⋅ 𝛥𝑡 (10b)

𝑣lead(𝑡) = 𝑣lead(𝑡) + 𝑎lead(𝑡) ⋅ 𝛥𝑡 (10c)

𝑡 ∶= 𝑡 + 𝛥𝑡 (10d)

Recall that 𝑡 is the current time, thus 𝑎lead(𝑡) denotes the current leader acceleration measured by the sensor. The above model is
ust a simple prediction of the leader’s future acceleration, speeds and positions.
The control variable in OP MPC is a vector of jerks in the future horizon, based on which the state variables of the ego vehicle,

.e., the acceleration, speed and position lists are calculated using the dynamics model:

𝑥̇𝑒𝑔𝑜 = 𝑣𝑒𝑔𝑜 (11)

𝑣̇𝑒𝑔𝑜 = 𝑎𝑒𝑔𝑜 (12)

𝑎̇𝑒𝑔𝑜 = 𝑗𝑒𝑔𝑜 (13)

here 𝑗𝑒𝑔𝑜(𝑘) is the jerk value at the MPC step 𝑘 = 0, 1,… , 𝐾. Notice that the dynamics model in OP does not consider the actuator
elay which is commonly used in literature.
With the prediction and dynamic models, we can formulate OP’s MPC as follows:

min
𝑗⃗𝑒𝑔𝑜

𝐶(𝑡)

s.t. Dynamics model of the ego vehicle in (11), (12), and (13)
Predicted dynamics for the lead car in (10)
𝑣target ≥ 0

(14)

At each planning starting time 𝑡, OP solves the jerk vector ⃖⃗𝑗𝑒𝑔𝑜 = [𝑗𝑒𝑔𝑜(0), 𝑗𝑒𝑔𝑜(1),… , 𝑗𝑒𝑔𝑜(𝐾)] for the MPC problem (14) and
obtains the desired acceleration for the next MPC planning step, i.e. 𝑎𝑚𝑝𝑐 (𝑡 + 𝛥𝑡). The desired acceleration will be further passed to
the low-level system for execution.

To sum up, the MPCs in both the literature and the industry use a few heuristics cost functions to drive the car, in a manner
close to but not necessarily identical to that of humans. The distance term always moves the vehicle to the desired spacing, the
safety term provides additional assurance that unsafe distances are avoided. The jerk term directly addresses comfort. Those three
components address the three typical aspects of designing the optimal trajectory for a self-driving car, as Tesla does similarly (Zhou,
2021). The acceleration term accounts for the vehicle’s limited acceleration/deceleration capabilities, which also addresses energy
and comfort requirements.

2.3. Comparisons between MPCs from the art and the practice

The objective functions in the factory-level OP MPC are defined differently than those in the literature. A significant distinction
is the extra precaution taken with safety. In (9), the safe braking term is added to the CTH for enhanced safety. In addition to the
regular spacing control that works both for larger or smaller spacing, OP adds an exponentially-increasing time-to-collision (TTC)
term to prevent dangerously small spacing.

Another significant distinction is that the cost functions are all speed-dependent. The (7) and (8) suggest that acceleration and jerk
costs grow with higher speeds, meaning the MPC will restrict them more at high speeds, which is reasonable given the well-known
linear acceleration limit where the engine produces smaller accelerations at higher speeds. Instead, the safety and distance costs
4

both decrease at higher speeds; see (5) and (6), indicating that MPC loosens spacing control at high speeds.
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Fig. 1. Leader prediction plays a decisive role in the string stability of the MPC ACC : In the legends ‘lead’ means leader, w is short for ‘with’. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

In contrast to the prevalent delay model (3) in the literature, the dynamics in the factory-level OP MPC completely ignores
he actuator delay, suggesting that the actuator delay might not be significant, or not a life-or-death issue for current ACC system.
he impacts of such difference needs more investigation. Notice that the delay model used in the literature actually originates
rom 1990s, which might no longer be suitable for today’s market vehicles after 30 years development. On the other hand, OP has
ore than thousands of active users and accumulated millions of miles from over 140 vehicle models (Comma.ai, 2021). Although
omewhat counter-intuitive, the OP MPC planner without specific delay treatment has not yet caused significant problems. This
s likely due to their low-level control design, which compensates for actuator delay by slightly overshooting/undershooting the
ommanded gas/brake values (Zhou et al., 2022b).
While the literature often assumes a zero acceleration of the leader, OP uses an exponentially decaying acceleration model. The

mpact of the different predictions will be discussed shortly.

.4. The leader prediction matters

As stated earlier, the current MPC optimizes the follower trajectory given the predicted leader movement. Now we show the
ignificance of the prediction model by comparing the same MPC in OP (OP-MPC) with two different predictions: one is the
efault prediction model in (10), referred to as the Vanilla prediction, the other is the perfect prediction assuming the follower can
erfectly foresee the future movement of the leader, i.e. the ground truth. The perfect prediction here is achieved in simulation by
redefining the leader trajectory and equipping the follower with this prior knowledge. The comparison results are shown in Fig. 1.
n Fig. 1(a), it is clear that the same MPC is string stable with the perfect prediction of the leader, but amplifies the oscillation
rovided the vanilla prediction. Notice that, due to the ‘‘foreseeing’’ capability of the perfect prediction model, the follower can
espond much earlier; see the orange line (the follower’s speed profile) starts to change even earlier than the blue line (the leader’s
peed profile), while the green line (the follower with the vanilla prediction) is lagging behind. It also suggests that, the string
tability can be improved if the follower responds to the leader’s speed change earlier. At the beginning of the oscillation, the
P with vanilla prediction underestimates the speed change of the leader because the deceleration is not exponentially decaying.
uch underestimation results in a smaller deceleration compared with the leader and the short spacing, which forces the follower to
ecelerate more to compensate. The above comparison indicates that prediction plays an important role in the string stability of MPC
CCs. To pursue better string stability, one can propose better prediction models. However, this is not an easy task since predicting
5
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Fig. 2. Comparison of the existing MPC design and the proposed Newell MPC: 𝑤 is the universal wave speed, 𝜏 is the desired time headway, and 𝛿 is the jam
pacing. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Summary of the family of Newell MPCs.
Name Motivation Feature Pros and Cons Application

𝑋𝑏𝑜𝑢𝑛𝑑 Directly translate Newell’s model The shifted leader position is
used as the bound

Simplest model but prone to
infeasible solutions due to sensor
errors

Follow a fixed
leader

𝑋𝑟𝑒𝑓 Avoid infeasibility caused by the
bound in 𝑋𝑏𝑜𝑢𝑛𝑑, try reference

The shifted leader position is
used as the reference

Avoid hard constraints but can
suffer from over/under-shootings

Follow a fixed
leader

𝑋𝑉 Regulate speed
over/under-shootings and add
redundancy to 𝑋𝑟𝑒𝑓

Use the leader history position
and speed as references

Increase sensor redundancy and
flexible for congestion-friendly
extensions

Follow a fixed
leader

𝑋𝑚𝑢𝑙 For anticipative driving using
multiple look-ahead leaders in
advanced ACCs

Use history positions of multiple
leaders as the reference

Achieve strict string stability and
reduce reaction time

Multiple leaders
available

𝑋𝑉 𝑠𝑠 Towards the strict string stability Adopt new speed references using
discounted leader history speeds

Achieve strict string stability but
face smaller spacings

Dampen
oscillations

𝑋𝑉 𝑟𝑒𝑙𝑎𝑥 Smooth merging traffics Incorporate driver relaxation into
position references

Reduce oscillations caused by
cut-ins but face smaller spacings

Follow the cut-in

the leader’s movement may require a complex neural network trained on massive human-labeled data, as we have seen many
ongoing machine learning challenges on forecasting leader movements (Lyft, 2021; Waymo, 2022). No major successes have been
documented in the literature or in the industry. To run large machine learning models on automobiles, however, may necessitate
the use of powerful chips, which is currently uncommon on market vehicles.

Instead of focusing on a precise prediction model, we argue that, the widely available sensor measurements of history (leader’s
speed and position) can be utilized more effectively in accordance with Newell’s well-known CF model, which suggests that human
drivers’ following trajectory is just a temporal–spatial shift of the leaders’ movement. Newell’s model not only captures human
drivers’ CF behaviors, but also illustrates significant potential to improve traffic efficiency. It does not amplify the congestion wave
when the leader decelerates, and catches up tightly to prevent extra spacings when the leader accelerates away, which is rarely
observed from market ACC products (Li et al., 2021a). Inspired by these good qualities of the Newell’s CF model, the next section
will introduce the design of a group of Newell MPCs.

3. Design of the Newell MPCs

We have introduced the existing MPC models for ACC, which first predict the leader movement 𝑥𝑝𝑟𝑒𝑑𝑙𝑒𝑎𝑑 and then solve the ego
vehicle trajectory from an optimization problem formulated in (14). Motivated by the challenges of good predictions and their
mpact on traffic efficiency, we now present the design of the family of Newell MPCs. The Fig. 2 shows the backbone of the Newell
PC design, and compares the differences and similarities between the two approaches. As the figure indicates, while the existing
PC relies on prediction with a designed horizon of 𝑇𝑚𝑝𝑐 , the Newell MPC has a fixed horizon of 𝜏 seconds. More importantly, the
olution of ego trajectory in current MPCs results from heuristic optimization objectives, while the Newell MPC bases its solution
n the shifted leader’s position 𝑥𝑙𝑒𝑎𝑑 from 𝑡 − 𝜏 to current time 𝑡, i.e. the Newell trajectory 𝑥𝑁𝑒𝑤𝑒𝑙𝑙.
In this section, several Newell MPCs are developed and organized as follows: first, we present baseline Newell MPCs to replicate

he original Newell’s CF model to achieve the marginal string stability. Towards this, we first propose the 𝑋𝑏𝑜𝑢𝑛𝑑-Model, which uses
6
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𝑥𝑁𝑒𝑤𝑒𝑙𝑙 as the upper bound, and then the 𝑋𝑟𝑒𝑓 -Model, which uses 𝑥𝑁𝑒𝑤𝑒𝑙𝑙 as a reference alternatively to avoid infeasibility issues
caused by the bound. Further, we find that the leader speed history can be added as an additional reference to improve the model
robustness and regulates speed over/under-shootings, thereby constructing the 𝑋𝑉 -Model. A natural extension of the single-leader
Newell’s model is to incorporate multiple look-ahead leaders, i.e., 𝑋𝑚𝑢𝑙-Model, which achieves driver anticipation that helps to
reduce reaction time and improve string stability. Finally, on the basis of the 𝑋𝑉 -Model, we present two additional extensions: the
𝑋𝑉 𝑟𝑒𝑙𝑎𝑥-Model, which incorporates driver relaxation to smooth merging traffics, and the 𝑋𝑉 𝑠𝑠-Model, which achieves strict string
stability to further dampen traffic oscillations. The summary of the proposed six Newell MPC models is shown in Table 1. Note that
we use 𝑋 to denote position and 𝑉 to denote speed for abbreviation.

3.1. Baseline newell MPC

We first present the baseline Newell MPC that replicates the original Newell’s CF model. Recall that the original Newell’s CF
model adopts the shifted leader trajectory, i.e. the Newell trajectory, as the upper envelope for the follower. Motivated by this, we
will first present the 𝑋𝑏𝑜𝑢𝑛𝑑-Model that directly translates the same spirit.

3.1.1. Using the leader history as the bound: 𝑋𝑏𝑜𝑢𝑛𝑑-Model
The 𝑋𝑏𝑜𝑢𝑛𝑑-Model utilizes the shifted leader history trajectory, i.e. the Newell trajectory/bound 𝑥𝑁𝑒𝑤𝑒𝑙𝑙 as the upper limit for

the follower’s position 𝑥𝑒𝑔𝑜 between 𝑡 and 𝑡+𝜏. Recall that 𝑘 denotes the index of discrete time steps in the planning horizon starting
from time 𝑡, the Newell trajectory 𝑥𝑁𝑒𝑤𝑒𝑙𝑙 is defined as:

𝑥𝑁𝑒𝑤𝑒𝑙𝑙(𝑡, 𝑘) = 𝑥𝑙𝑒𝑎𝑑 (𝑡 − 𝜏 + 𝑘𝛥𝑡) − 𝛿 (15)

The optimization goal for the 𝑋𝑏𝑜𝑢𝑛𝑑-Model is as simple as the entropy condition (EC) found in human drivers, which is to
aim for higher speeds subject to the constraint of the Newell bound 𝑥𝑁𝑒𝑤𝑒𝑙𝑙(𝑘) and the acceleration limits 𝑎𝑚𝑎𝑥(𝑣𝑒𝑔𝑜(𝑘)), which are
a function of the ego vehicle speed 𝑣𝑒𝑔𝑜(𝑘) according to the linear acceleration bound model in Laval and Daganzo (2006), Laval
et al. (2014). As depicted in Fig. 2, the design concept is to advance the ego position (green dashed line) below the shifted Newell
trajectory (red dashed line) to the extent feasible. Mathematically, the optimization problem is formulated as follows:

min
𝑗⃗𝑒𝑔𝑜

𝐶𝑁𝑒𝑤𝑒𝑙𝑙(𝑡) = 1∕2
∑

0≤𝑘≤⌊𝜏∕𝛥𝑡⌋

𝐶2
𝑠𝑝𝑒𝑒𝑑 (𝑡, 𝑘) (16a)

s.t. 𝑥𝑒𝑔𝑜(𝑡, 𝑘) ≤ 𝑥𝑁𝑒𝑤𝑒𝑙𝑙(𝑡, 𝑘) ∀𝑘 ∈ {0, 1,…
⌊

𝜏∕𝛥𝑡
⌋

} (16b)

𝑎𝑒𝑔𝑜(𝑡, 𝑘) ≤ 𝑎𝑚𝑎𝑥(𝑣𝑒𝑔𝑜(𝑡, 𝑘)) ∀𝑘 ∈ {0, 1,…
⌊

𝜏∕𝛥𝑡
⌋

} (16c)

The 𝐶𝑠𝑝𝑒𝑒𝑑 is the cost function that always rewards higher speeds:

𝐶𝑠𝑝𝑒𝑒𝑑 (𝑡, 𝑘) = 𝑣𝑚𝑎𝑥 − 𝑣𝑒𝑔𝑜(𝑡, 𝑘) (17)

where 𝑣𝑚𝑎𝑥 is the desired free flow speed, or the target speed set by the driver in the ACC system. The (16a) suggests that the MPC
wants to go as fast as possible, which is in spirit of the EC in human drivers who want to drive as fast as we can but stay within
the set limit.

The preceding 𝑋𝑏𝑜𝑢𝑛𝑑-Model is similar to the original Newell’s CF model, with the addition of a realistic linear acceleration
restriction. a realistic linear acceleration constraint. It can probably be the simplest MPC design that can drive a car provided an
uninterrupted and smooth Newell bound. The model is parsimonious, without requiring any heuristics objective functions to reason
the driving rules of human drivers.

However, such a design quickly falls short when the Newell bound is discontinuous, such as when a vehicle suddenly cuts in, or
when the Newell bound is noisy due to inaccurate sensor measurements, e.g. 𝑥𝑁𝑒𝑤𝑒𝑙𝑙(𝑡, 𝑘) is an outlier at some 𝑘. Those scenarios
or conditions can be devastating because the hard constraint in (16b) cannot be satisfied, resulting in an infeasibility problem for
he MPC where no solutions can be found.
To avoid those issues, we propose substituting the soft constraints for the hard constraints in (16b) and designing a exponential-

shape cost function to penalize any positive errors without compromising feasibility:

𝐶𝑏𝑜𝑢𝑛𝑑 (𝑡, 𝑘) = exp{𝑐 ⋅
𝑥𝑒𝑔𝑜(𝑡, 𝑘) − 𝑥𝑁𝑒𝑤𝑒𝑙𝑙(𝑡, 𝑘)

𝑣𝑒𝑔𝑜 ⋅ 𝜏
} − 1 (18)

where 𝑐 is a positive coefficient needs tuning.
To make the MPC more robust to noises in sensor measurements, we also incorporate similar sub-cost designs in OP to prevent

exploding accelerations or jerks.

𝐶𝑎(𝑡, 𝑘) = 𝑎𝑒𝑔𝑜(𝑡, 𝑘) ⋅ 𝑣𝑒𝑔𝑜(𝑡, 𝑘) (19a)

𝐶𝑗 (𝑡, 𝑘) = 𝑗𝑒𝑔𝑜(𝑡, 𝑘) ⋅ 𝑣𝑒𝑔𝑜(𝑡, 𝑘) (19b)

Combining all, the total cost for the 𝑋𝑏𝑜𝑢𝑛𝑑-Model is defined as:

𝐶𝑏𝑜𝑢𝑛𝑑
𝑁𝑒𝑤𝑒𝑙𝑙(𝑡) = 1∕2

∑

𝑤𝑠𝑝𝑒𝑒𝑑𝐶
2
𝑠𝑝𝑒𝑒𝑑 (𝑡, 𝑘) +𝑤𝑏𝑜𝑢𝑛𝑑𝐶

2
𝑏𝑜𝑢𝑛𝑑 (𝑡, 𝑘) +𝑤𝑎𝐶

2
𝑎 (𝑡, 𝑘) +𝑤𝑗𝐶

2
𝑗 (𝑡, 𝑘) (20)
7

0≤𝑘≤⌊𝜏∕𝛥𝑡⌋
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where 𝑤𝑠𝑝𝑒𝑒𝑑 , 𝑤𝑏𝑜𝑢𝑛𝑑 , 𝑤𝑎, and 𝑤𝑗 are weights that need further tuning.
Finally, the 𝑋𝑏𝑜𝑢𝑛𝑑-Model is formulated as follows:

min
𝑗⃗𝑒𝑔𝑜

𝐶𝑏𝑜𝑢𝑛𝑑
𝑁𝑒𝑤𝑒𝑙𝑙(𝑡) (21a)

s.t. 𝑎𝑒𝑔𝑜(𝑡, 𝑘) ≤ 𝑎𝑚𝑎𝑥(𝑣𝑒𝑔𝑜(𝑡, 𝑘)) ∀𝑘 ∈ {0, 1,…
⌊

𝜏∕𝛥𝑡
⌋

} (21b)

Dynamics model of the ego vehicle in (11), (12), and (13) (21c)

where the explicit acceleration bound is designed to be the linear, i.e., 𝑎𝑚𝑎𝑥(𝑣) = 𝑎𝑚𝑎𝑥−𝛽𝑣, which originates from Laval and Daganzo
(2006), Laval et al. (2014) and captures the comfortable accelerating behaviors of human drivers. The parameters 𝑎𝑚𝑎𝑥 and 𝛽 can
differ across car models based on engine performance. Note that we use the explicit linear acceleration limits instead of the soft
acceleration constraints in (19a) to get the most out of the vehicle acceleration capabilities. This is designed to preclude the extra
large spacings, i.e. capacity loss, that are caused by timid accelerations found on market ACC vehicles (Li et al., 2021a).

3.1.2. Using the leader histories as references: 𝑋𝑟𝑒𝑓 -Model and 𝑋𝑉 -Model
As stated earlier, using the Newell trajectory as the bound might not be flexible enough when the follower is cut off or the sensor

has noisy measurements. A simple variation is to use the Newell trajectory 𝑥𝑁𝑒𝑤𝑒𝑙𝑙 as the reference, i.e. minimizing the squared 2-
norm of the errors as one of the sub-costs, which we refer to as the 𝑋𝑟𝑒𝑓 -Model. Recall the popular CTH-RV (Constant time headway
and relative speed) model (Willis, 1999; Gunter et al., 2019) in ACC literatures consists of two terms which respectively regulate
he spacing and speed. Inspired by this, if we consider position reference as a spacing regulator, we may add speed reference as the
peed regulation into the Newell MPC, which we refer to as the 𝑋𝑉 -Model.
Now we present the detailed design of 𝑋𝑟𝑒𝑓 -Model and 𝑋𝑉 -Model. First we introduce the definition of the Newell speed reference

𝑁𝑒𝑤𝑒𝑙𝑙 at time 𝑡:

𝑣𝑁𝑒𝑤𝑒𝑙𝑙(𝑡, 𝑘) = 𝑣𝑙𝑒𝑎𝑑 (𝑡 + 𝑘𝛥𝑡 − 𝜏) ∀𝑘 ∈ {0, 1,…
⌊

𝜏∕𝛥𝑡
⌋

} (22)

Then total objective for the 𝑋𝑉 -Model is formulated as follows:

min
𝑗⃗𝑒𝑔𝑜

𝐶𝑥𝑣
𝑁𝑒𝑤𝑒𝑙𝑙(𝑡) = 1∕2

∑

0≤𝑘≤⌊𝜏∕𝛥𝑡⌋

𝑤𝑥𝐶
2
𝑥 (𝑡, 𝑘) +𝑤𝑣𝐶

2
𝑣 (𝑡, 𝑘) +𝑤𝑎𝐶

2
𝑎 (𝑡, 𝑘) +𝑤𝑗𝐶

2
𝑗 (𝑡, 𝑘) (23a)

s.t. 𝑎𝑒𝑔𝑜(𝑡, 𝑘) ≤ 𝑎𝑚𝑎𝑥(𝑣𝑒𝑔𝑜(𝑡, 𝑘)) (23b)

𝑥𝑒𝑔𝑜(𝑡, 𝑘) ≤ 𝑥𝑝𝑟𝑒𝑑𝑙𝑒𝑎𝑑 (𝑡, 𝑘) − 𝛿 (23c)

here the two new cost terms to regulate the positions and speeds are defined as follows:

𝐶𝑥(𝑡, 𝑘) = 𝑥𝑒𝑔𝑜(𝑡, 𝑘) − 𝑥𝑁𝑒𝑤𝑒𝑙𝑙(𝑡, 𝑘) (24a)

𝐶𝑣(𝑡, 𝑘) = 𝑣𝑒𝑔𝑜(𝑡, 𝑘) − 𝑣𝑁𝑒𝑤𝑒𝑙𝑙(𝑡, 𝑘) (24b)

For 𝑋𝑟𝑒𝑓 -Model, since it only adopts the position reference, one can just omit the speed term 𝑤𝑣𝐶2
𝑣 in the objective function

23a) while the rest of the design remains the same as 𝑋𝑉 -Model.
The safety constraint in (23c) requires a prediction of the leader position 𝑥𝑝𝑟𝑒𝑑𝑙𝑒𝑎𝑑 . Although we still need predictions for safety

n this model, it should be noted that such prediction does not have to be as accurate as those required for the string stability.
ven a zero-acceleration leader prediction model (25) can serve its purpose here because the MPC has a rolling horizon that moves
orward at the radar rate (e.g. 0.05 s). At every new planning step, the MPC receives new sensor inputs including spacing, the leader
peed and acceleration. The receding sensing and planning process of the MPC will help update and correct the leader prediction
mmediately with the updated measurements and estimations, which helps to prevent a potential crash due to the poor prediction
rom the last single time step. On the other hand, the predicted safety bound will not affect the solution of the MPC in most of the
ime since the bound is most likely inactive. The safety bound can be calculated either with the OP default prediction model (10)
r the simplest prediction of the leader trajectory that assumes the same speed for 𝜏 seconds.

𝑥𝑝𝑟𝑒𝑑𝑙𝑒𝑎𝑑 (𝑡, 𝑘) = 𝑥𝑙𝑒𝑎𝑑 (𝑡) +
𝑘

⌊

𝜏∕𝛥𝑡
⌋ ⋅ 𝑣𝑙𝑒𝑎𝑑 (𝑡) (25)

This design makes use of both the leader history positions and speeds, with the speed reference being optional but providing
edundancy to strengthen the model’s robustness and regulating speed over/under-shootings relative to the leader, which we will
how later in simulation. Moreover, the 𝑋𝑉 -Model makes it possible to make more designs that reduce traffic jams, which will be
escribed in more detail below.

.2. Newell MPC for anticipative driving using multiple look-ahead leaders: 𝑋𝑚𝑢𝑙-Model

Thanks to recent advancements in sensing technologies, many AVs are now capable of detecting multiple downstream leaders in
he same lane, particularly on curves and grades. Such innovation is unprecedented, which enabling AVs to see more downstream
eaders than human drivers; see the example of Tesla’s Autopilot in Fig. 16(a). Unfortunately, the additional information of multiple
8
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Fig. 3. 𝑋𝑚𝑢𝑙-Model design that incorporates multiple leader histories in the past 𝜏 seconds.

downstream leaders other than the immediate predecessor has not yet been incorporated into ACCs yet as no relevant design has
been documented by either industry or academics. In contrast, human drivers with more experience are better equipped to use
this information, known as driver anticipation (Treiber et al., 2007). For example, human drivers are willing to accept a small time
headway, or reaction time, if they see the far downstream leaders are running at a stable speed and show no intention to decelerate.
We conjecture this is because human drivers are able to use downstream traffic to predict whether a congestion wave will occur
and propagate backwards. In other words, if the driver observes the leader’s leader applying the brakes, he/she will instantly know
that the immediate leader will soon slow down. Depending on the driver’s ability to foresee the future, such behaviors would allow
human drivers to respond even earlier than the immediate leader. These driving behaviors provide ACCs with a valuable lesson:
seeing multiple leads can reduce response time, which not only improves safety but also contributes to string stability given the
detrimental effects of response delays (Xiao and Gao, 2011; Jin and Orosz, 2016; Makridis et al., 2020). Considering the sensor’s
ability to detect several leaders, we advocate designing new ACCs that can maximize this technology’s potential, which will also be
studied here.

Now we propose an extension of the Newell MPC to fully leverage multiple downstream leaders that may be available in more
advanced ACC systems. Suppose the ACC can detect 𝑛 ≥ 1 downstream leaders, then the prediction/planning horizon for the MPC
is 𝑛 ⋅ 𝜏 assuming the leaders have the same 𝜏 values. According to the original Newell’s CF model, the trajectory of the ego vehicle
is the lower envelope between the shifted trajectory of any downstream leader 𝑖 (1 ≤ ∀𝑖 ≤ 𝑛) and its trajectory under free-flow
conditions . Similar to the 𝑋𝑉 -Model, we use the shifted leaders trajectories as the reference; see Fig. 3; rather than the bound, in
order to avoid the infeasibility issue. Note that using the Newell trajectory (the red dashed line) as the reference also makes the
design robust to any discontinuity between the shifted trajectories from multiple leaders due to different 𝜏𝑖 and 𝛿𝑖 values. The total
objective function is defined as follows:

min
𝑗⃗𝑒𝑔𝑜

𝐶𝑚𝑢𝑙
𝑁𝑒𝑤𝑒𝑙𝑙(𝑡) = 1∕2

⌊𝑛⋅𝜏∕𝛥𝑡⌋
∑

𝑘=0
𝑤𝑥𝐶

2
𝑥 (𝑡, 𝑘) +𝑤𝑎𝐶

2
𝑎 (𝑡, 𝑘) +𝑤𝑗𝐶

2
𝑗 (𝑡, 𝑘) (26a)

s.t. 𝑎𝑒𝑔𝑜(𝑡, 𝑘) ≤ 𝑎𝑚𝑎𝑥(𝑣𝑒𝑔𝑜(𝑡, 𝑘)) (26b)

𝑥𝑒𝑔𝑜(𝑡, 𝑘) ≤ 𝑥𝑝𝑟𝑒𝑑𝑙𝑒𝑎𝑑 (𝑡, 𝑘) − 𝛿 ∀𝑘 ∈ {0, 1,… ,
⌊

𝜏∕𝛥𝑡
⌋

} (26c)

where the definition of the sub-cost functions remains the same as above.
As shown in Fig. 3, the Newell trajectory in 𝑋𝑚𝑢𝑙-Model is now the combination of all shifted history trajectories from multiple

leaders. The 𝑋𝑚𝑢𝑙-Model still only has a memory of past 𝜏 seconds, but incorporates multiple leader histories such that its planning
horizon can be extended to 𝑛 ⋅ 𝜏. Mathematically, the Newell trajectory/reference for the 𝑋𝑚𝑢𝑙-Model at the planning time 𝑡 is
defined as:

𝑥𝑚𝑢𝑙𝑁𝑒𝑤𝑒𝑙𝑙(𝑡, 𝑘) = 𝑥𝑖𝑙𝑒𝑎𝑑𝑒𝑟(𝑡 + 𝑘𝛥𝑡 − 𝑖𝜏) − 𝑖𝛿 ∀𝑘 ∈ {0, 1,… ,
⌊

𝑛𝜏∕𝛥𝑡
⌋

} (27)

where 𝑖 denotes the index of leader from 1, 2, . . . , 𝑖, . . . , 𝑛, and 𝑖 = 1+
⌊

𝑘𝛥𝑡∕𝜏
⌋

. Notice that when 𝑛 = 1, it reduces to the 𝑋𝑟𝑒𝑓 -Model
with a single leader.

Surprisingly, we observed that the 𝑋𝑚𝑢𝑙-Model can respond to a downstream wave as soon as the furthest leader 𝑛 begins to
change its speed, either due to an emergency brake or a small perturbation. In Fig. 3, when the furthest downstream leader 𝑛 starts
to change speed at 𝑡 − 𝜏, such a change will be promptly reflected on the Newell reference at 𝑡, triggering a potential immediate
response. By contrast, ACCs following a single leader must wait until the wave propagates back from the downstream to its immediate
9

leader before starting to respond. As the wave needs (𝑛 − 1)𝜏 seconds to travel, the possible response time of the regular MPC ACC
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Fig. 4. Road tests of the oscillation caused by a cut-in and its propagation along a Tesla platoon: a platoon of three 2021 T Model-3s is cut by a human-driven
ehicle.

s delayed by (𝑛 − 1)𝜏 seconds, although the true observable response time still depends on the magnitude of the perturbation and
the sensitivity of the 𝑋𝑚𝑢𝑙-Model in reacting to the far downstream speed change.

The multiple leaders in Fig. 3 share the same 𝜏 and 𝛿, which makes the Newell position reference a continuous curve. It is worth
noting that different leaders’ shifted trajectories may not overlap perfectly in the real world, but the 𝑋𝑚𝑢𝑙-Model still works thanks
to the design of using their positions only as a reference. We will justify this finding using numerical simulations in the following
section. Alternative designs will also be shown in Discussion to address the different shifted trajectories from multiple leaders.

3.3. Congestion-mitigation extensions based on 𝑋𝑉 -Model

Developing a ready-for-practice ACC planner requires more than a standard CF model, mainly because ACC is also responsible for
disruptive maneuvers such as being cut off or changing lanes. Human drivers exhibit a high degree of adaptability during disruptive
maneuvers, as they are willing to accept spacings much smaller than the equilibrium values at the onset of these maneuvers and then
gradually increase them until reaching equilibrium again. This process, which typically lasts around 20 or 30 s, is known as driver
relaxation, which improves comfort and capacity (Kim and Coifman, 2013; Milanés and Shladover, 2016). Based on our knowledge,
no ACC systems have displayed similar features of driver relaxation.

To provide more evidence, the paper conducts a simple experiment to evaluate the responses to cut-ins using Tesla’s Autopilot,
arguably the most advanced ACC system on the market. Three 2021 T Model 3s were running at 35mph in equilibrium, and the
Tesla 2 in Fig. 4(a) was cut off by the Civic in the middle of Tesla 1 and Tesla 2. The speed profiles are shown in Fig. 4(b),
which suggest that the Autopilot not only generates a larger speed perturbation than the cut-in, but also amplifies the upstream
oscillation. As we know, the string stability theory can well explain the amplification of those upstream oscillations. In comparison,
the oscillation amplification from the cut-in to its immediate follower has been less of a concern in the literature, until a recent
study (Zhou et al., 2022a) found that it is caused by the absence of driver relaxation in ACC design. In short, the experiment
indicates that Autopilot is not only string unstable, but also lacks driver relaxation. We believe that similar characteristics are likely
shared by other ACC manufacturers. Therefore, improving string stability and incorporating driver relaxation are both worth more
investigation for ACC design. In this subsection we will present two congestion-mitigation designs as extensions to the baseline
𝑋𝑉 -Model, which incorporate driver relaxation and strict string stability respectively.

3.3.1. Incorporating driver relaxation to smooth merging traffic: 𝑋𝑉 𝑟𝑒𝑙𝑎𝑥-Model
When a cut-in vehicle enters the lane and becomes the new leader for the ACC follower, the Newell position reference 𝑥𝑁𝑒𝑤𝑒𝑙𝑙

is supposed to immediately change to the shifted trajectory of the cut-in vehicle if there is no driver relaxation. This abrupt change
of the reference trajectory often generates large position errors which in turn causes large speed reductions in the following ACC.
After entering the new lane, the cut-in vehicle needs to re-adjust the spacing with its new leader, which normally undergoes a
decelerate-and-accelerate process and forces the immediate ACC follower to have a speed oscillation as well. As depicted in Fig. 4,
such an oscillation caused by the cut-in can further propagate upstream, resulting in potential stop-and-go waves.

To reduce the congestion caused by disruptive maneuvers, we must first contain the speed oscillation from the source, i.e. the
perturbation of the immediate ACC follower after the cut-in. Similar to the scenario when following a fixed leader, we would expect
the immediate ACC follower to experience a dampened oscillation compared to the cut-in leader. However, this can be dangerous
due to the typically tight spacing after the follower has been cut off. Hence we propose to pursue marginal string stability in the
cut-in scenario, meaning the ACC follower will seek to maintain speed identical to that of the cut-in leader. Correspondingly, the
10

key design principles are (i) having the MPC follow the same speeds as the cut-in leader during the deceleration process, and (ii)
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Fig. 5. The speed reference design in 𝑋𝑉 𝑟𝑒𝑙𝑎𝑥-Model: the cut-in starts at time 𝑇𝑐𝑢𝑡, 𝑇 𝑎𝑐𝑐𝑒𝑙
𝑐𝑢𝑡 denote the time when the cut-in vehicle is about to accelerate, and

𝑟 is the relaxation period.

Fig. 6. Incorporating driver relaxation into ACCs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)

radually recovering the spacing to the equilibrium value once cut-in leader begins to accelerate. We choose to recover the spacing
nly when the cut-in begins to accelerate because after that point, the follower MPC can easily regain the equilibrium spacing with
maller accelerations than the cut-in vehicle. This will enable the follower’s recovery process to be similar to cruising, which is
elaxing and does not require the use of brakes.
An intuitive option to follow the cut-in leader speed under the Newell MPC framework is to add an equality hard constraint for

he first planning discrete step, 𝑣𝑒𝑔𝑜(𝑡 + 𝛥𝑡) = 𝑣𝑐𝑢𝑡(𝑡), which, as previously stated, may cause infeasibility due to hard constraints. To
ircumvent this, we propose that the MPC can try to use the predicted cut-in speeds 𝑣𝑝𝑟𝑒𝑑𝑐𝑢𝑡 (𝑡) as the speed reference; as shown in
ig. 5. Mathematically, the Newell speed reference in the 𝑋𝑉 𝑟𝑒𝑙𝑎𝑥-Model can be defined as follows:

𝑣𝑁𝑒𝑤𝑒𝑙𝑙(𝑡, 𝑘) =

{

𝑣𝑝𝑟𝑒𝑑𝑐𝑢𝑡 (𝑡 + 𝑘𝛥𝑡) 𝑇𝑐𝑢𝑡 ≤ 𝑡 ≤ 𝑇𝑟
𝑣𝑐𝑢𝑡(𝑡 + 𝑘𝛥𝑡 − 𝜏) otherwise

(28)

for ∀𝑘 ∈ {1, 2,… ,
⌊

𝜏∕𝛥𝑡
⌋

} in the MPC planning horizon.
Since the sole purpose of the prediction is to track the leader speed, any plausible prediction model, such as (10) in OP, can be

sed. Formally, the predicted speed of the cut-in vehicle 𝑣𝑐𝑢𝑡 can be calculated as follows:

𝑎𝑝𝑟𝑒𝑑cut (𝑡) ∶= 𝑎cut(𝑡) exp{−𝜃 ⋅ 𝑡2∕2} (29a)

𝑣𝑝𝑟𝑒𝑑cut (𝑡) ∶= 𝑣𝑝𝑟𝑒𝑑cut (𝑡) + 𝑎𝑝𝑟𝑒𝑑cut (𝑡) ⋅ 𝛥𝑡 (29b)

𝑥𝑝𝑟𝑒𝑑cut (𝑡) ∶= 𝑥𝑝𝑟𝑒𝑑cut (𝑡) + 𝑣𝑝𝑟𝑒𝑑cut (𝑡) ⋅ 𝛥𝑡 (29c)

𝑡 ∶= 𝑡 + 𝛥𝑡 (29d)

Recall that 𝑡 is the starting time of each planning horizon and 𝑡 is the time of the discrete steps that starts from 0. Notice that such
rediction also gives the estimated future positions of the cut-in leader, 𝑥𝑝𝑟𝑒𝑑𝑐𝑢𝑡 , which can be adapted to construct a safety constraint
s shown in (23c) to prevent following ACC from collisions in the relaxation phase.
At the next stage when the cut-in leader accelerates from time 𝑇 𝑎𝑐𝑐𝑒𝑙

𝑐𝑢𝑡 to re-adjust the spacing with its own leader, a good
pportunity arises for the following ACC to recover to the equilibrium spacing. Now we introduce the recipe to incorporate driver
elaxation in this process.
Fig. 6(a) shows how driver relaxation is incorporated into a linear ACC system in Zhou et al. (2022a), where the idea is to
11

inearly recover the desired time headway 𝜏(𝑡) from the initial headway 𝜏𝑖𝑛𝑖𝑡 after the cut-in to the equilibrium value 𝜏. In the same
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Fig. 7. The speed reference design in 𝑋𝑉 𝑠𝑠-Model:.

spirit, we extend the relaxation design to Newell MPC as depicted in Fig. 6(b). In contrast to the gradual change in the desired time
eadway for a linear ACC, the relaxation in the Newell MPC is now the transition of the Newell reference, 𝑥𝑁𝑒𝑤𝑒𝑙𝑙, which moves
from the shifted trajectory of the original leader (blue dashed line) to the shifted trajectory of the new cut-in leader (orange dashed
line) during a period of 𝑇𝑟 (seconds).

To summarize, the incorporation of driver relaxation into the Newell MPC has two steps: (i) when the cut-in leader still
ecelerates from 𝑇𝑐𝑢𝑡 to 𝑇 𝑎𝑐𝑐𝑒𝑙

𝑐𝑢𝑡 , the MPC is designed to track the speed of the cut-in, in the mean time the Newell position reference
s the shifted history cut-in trajectory; see the blue dashed line in Fig. 6(b), and (ii) after the cut-in leader begins to accelerate
at 𝑇 𝑎𝑐𝑐𝑒𝑙

𝑐𝑢𝑡 , the relaxation process starts where the Newell position reference takes 𝑇𝑟 seconds to gradually recover from its current
position to the shifted history position of the cut-in leader. Mathematically, the two steps relaxation process is defined as follows:

𝑥𝑟𝑒𝑙𝑎𝑥𝑁𝑒𝑤𝑒𝑙𝑙(𝑡, 𝑘) =

{

𝑥𝑐𝑢𝑡(𝑡 + 𝑘𝛥𝑡 − 𝜏) − 𝑥𝑐𝑢𝑡(𝑡 − 𝜏) 0 ≤ 𝑡 ≤ 𝑇 𝑎𝑐𝑐𝑒𝑙
𝑐𝑢𝑡

𝑥𝑐𝑢𝑡(𝑡 + 𝑘𝛥𝑡 − 𝜏) − 𝑥𝑐𝑢𝑡(𝑡 − 𝜏) + 𝛼(𝑡)[𝑥𝑐𝑢𝑡(𝑡 − 𝜏) − 𝛿] 𝑇 𝑎𝑐𝑐𝑒𝑙
𝑐𝑢𝑡 < 𝑡 ≤ 𝑇𝑟

(30)

where 𝛼 (0 ≤ 𝛼(𝑡) ≤ 1) is a gradually varying factor to capture the transition of the reference trajectory during the driver relaxation
process. Formally, the relaxed trajectory reference line is defined as:

𝛼(𝑡) =
max(0, 𝑡 − 𝑇 𝑎𝑐𝑐𝑒𝑙

𝑐𝑢𝑡 )
𝑇𝑟

(𝑇𝑐𝑢𝑡 < 𝑡 < 𝑇𝑐𝑢𝑡 + 𝑇𝑟) (31)

Incorporating driver relaxation helps to reduce oscillations, albeit at the expense of smaller spacings that can be challenging.
evertheless, we believe that the proposed 𝑋𝑉 𝑟𝑒𝑙𝑎𝑥-Model is still safe because, during deceleration the ACC, by design, tries to
aintain the same speed as the cut-in leader, which will roughly keep the initial spacing unchanged after the cut-in. In other
ords, as long as the initial spacing after the cut-in is safe, the relaxation process will not affect the ACC with significantly smaller
pacings. Thus whether it is safe to incorporate driver relaxation largely depends on the initial spacing after the ACC is being cut
ff. To ensure safety in cut-in scenarios, we also add the safety constraint similar to cases when following a fixed leader. When
cut-in leader is detected, the predicted leader position in the safety constraint (23c) will be replaced with the predicted cut-in
osition (29c), which prevent potential collisions.
The reaction model for the ACC to make a lane change is almost the same with the cut-in case. One just need to replace the

cut-in leader with the new leader on the target lane in Eqns from (29) to (31).

.3.2. Achieving the strict string stability to further dampen oscillations: 𝑋𝑉 𝑠𝑠-Model
Another desired function of the ACC is to dampen congestion waves, which necessitates string stability in the model. In control

heory, the transfer function 𝛤 in the frequency domain is used to measure the string stability, or how much the congestion waves
an be dampened. As marginal string stability requires 𝛤 = 1, strict string stability means 𝛤 < 1, i.e. the speed/spacing oscillations
f the leader will be dampened by the follower. Note that when the leader is accelerating, the marginal string stability is already
ptimal for traffic efficiency because the strict string stability will produce lower speeds and extra spacings that waste capacity.
ence the strict string stability is only designed for the decelerating case. Rigorously, 𝑋𝑉 𝑠𝑠-Model is only strictly string stable for
eceleration but marginally string stable for acceleration to avoid capacity loss.
Unlike previous ACC models that attempt to achieve string stability by manipulating CF parameters or optimization heuristics,

he 𝑋𝑉 𝑠𝑠-Model offers a more direct method by tracking a string stable future speed reference based on adjustments to the leader’s
istory speeds. As shown by Fig. 7, the adjustment is to multiply the shifted leader speeds with 𝛤 to obtain the 𝛤 -string-stable speed
eference 𝑣𝑠𝑠𝑁𝑒𝑤𝑒𝑙𝑙. Mathematically, it can be defined as follows:

𝑣𝑠𝑠𝑁𝑒𝑤𝑒𝑙𝑙(𝑡, 𝑘, 𝛤 ) = (1 − 𝛤 )𝑣𝑙𝑒𝑎𝑑 (𝑡0) + 𝛤 ⋅ 𝑣𝑁𝑒𝑤𝑒𝑙𝑙(𝑡, 𝑘) (32)

here 𝑣𝑙𝑒𝑎𝑑 (𝑡0) is the equilibrium speed of the leader and 𝑎𝑙𝑒𝑎𝑑 (𝑡0) = 0.
To make it easier for the MPC to follow the strict string stable speed reference, we propose to relax the position reference in a

imilar way of what has been presented in (30) for the 𝑋𝑉 𝑟𝑒𝑙𝑎𝑥-Model. We relax the position reference when the leader decelerates,
12
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and gradually recover to the equilibrium spacing after the leader starts to accelerate at time 𝑇 𝑎𝑐𝑐𝑒𝑙
𝑙𝑒𝑎𝑑 . Mathematically, the position

reference is designed as follows:

𝑥𝑠𝑠𝑁𝑒𝑤𝑒𝑙𝑙(𝑡, 𝑘) =

{

𝑥𝑁𝑒𝑤𝑒𝑙𝑙(𝑡, 𝑘) − 𝑥𝑁𝑒𝑤𝑒𝑙𝑙(𝑡, 0) 𝑎𝑙𝑒𝑎𝑑 (𝑡) ≤ 0
𝑥𝑁𝑒𝑤𝑒𝑙𝑙(𝑡, 𝑘) − 𝛾(𝑡)𝑥𝑁𝑒𝑤𝑒𝑙𝑙(𝑡, 0) 𝑎𝑙𝑒𝑎𝑑 (𝑡) > 0

(33)

here 𝛾(𝑡) (0 ≤ 𝛾(𝑡) ≤ 1) is a gradually varying factor to capture the recovering process of the driver relaxation when the leader starts
o accelerates again. In this process, the follower is able to advance with smaller accelerations/speeds than the leader to regain the
esired spacing. The relaxation coefficient 𝛾(𝑡) is designed as:

𝛾(𝑡) = 1 −
𝑡 − 𝑇 𝑎𝑐𝑐𝑒𝑙

𝑙𝑒𝑎𝑑
𝑇𝑟

(𝑇 𝑎𝑐𝑐𝑒𝑙
𝑙𝑒𝑎𝑑 ≤ 𝑡 ≤ 𝑇𝑟) (34)

where 𝑡 − 𝑇 𝑎𝑐𝑐𝑒𝑙
𝑙𝑒𝑎𝑑 is the elapsed time after the leader accelerates.

To summarize, this section introduced a family of Newell MPCs. We found the Newell trajectory can be used either as a upper
bound or a reference to achieve similar performance to the original Newell’s CF model. The leader speed history can be leveraged
as an extra reference to improve the model robustness and prevent speed over/under-shootings. The same design philosophy was
extended to ACCs with multiple look-ahead leaders to achieve driver anticipation that reduces reaction time and improves string
stability. Based on the baseline 𝑋𝑉 -Model, two congestion-mitigation designs were developed, including driver relaxation to smooth
merging traffics and strict string stability to effectively dampen congestion waves.

4. Simulation results

This section discusses the performance of the Newell MPCs designed above using numerical simulations. We use the same MPC
solver, Acado (Diehl, 0000), that runs on real cars in OP’s codebase, implying that all following MPC simulations can be transferred
to the real world. Nevertheless, there may still be discrepancies between simulations and reality due to different inputs and low-level
control, as all leader speeds and spacings are perfectly emulated in simulations but are susceptible to sensor errors on real cars. We
will run those MPCs first in simulations and test their functioning on real cars in the next section.

4.1. Numerical results of the 𝑋𝑏𝑜𝑢𝑛𝑑-Model

Now we show the simulation results of the 𝑋𝑏𝑜𝑢𝑛𝑑-Model in (16) where the leader history trajectory is used as follower’s upper
bound. The MPC is tested in the scenario where the leader performs a decelerate-and-accelerate oscillation.

The Fig. 8(a) showcases one example of the planning step, where the history leader trajectory, the shifted leader trajectory,
i.e. the Newell bound, and the solution of the ego trajectory using the 𝑋𝑏𝑜𝑢𝑛𝑑-Model are all presented in the diagram. Fig. 8(b)
provides a zoom-in view of how the ego vehicle’s trajectory is effectively bounded by the shifted leader trajectory as a result of the
soft constraint in (18). The two lines are not exactly overlapping thanks to the other cost terms introduced in (20).

In Fig. 8(c), we compare the 𝑋𝑏𝑜𝑢𝑛𝑑-Model with the default MPC in OP (OP-MPC), where the 𝑋𝑏𝑜𝑢𝑛𝑑-Model shows the marginal
string stability while the OP is string unstable which undershoots and overshoots the leader speed in the deceleration and acceleration
case respectively.

The OP-MPC also shows larger oscillations in its spacing. The trajectory is compared in Fig. 8(d), where we see the capacity
(spacing) loss from OP-MPC compared to the 𝑋𝑏𝑜𝑢𝑛𝑑-Model in the acceleration oscillation. Combined with the acceleration profile in
Fig. 8(c), such extra spacing/capacity loss is induced by small accelerations, which is a result of the constraints on acceleration/jerks
for the driving comfort purpose.

4.2. Testing and comparing 𝑋𝑟𝑒𝑓 -Model and 𝑋𝑉 -Models

We test and compare the 𝑋𝑟𝑒𝑓 -Model using the only the position history and 𝑋𝑉 -Model using both the speed and position
histories. The objective is to analyze if adding the speed reference has an impact in CF scenarios where the position reference
accumulates substantial errors. To address this, a simulation is designed in which the leader vehicle is a high-performance car with
better acceleration capabilities, implying that the follower ACC may experience significant spacing errors with the Newell position
reference due to its engine limitations. Then we compare the results of 𝑋𝑟𝑒𝑓 -Model MPC against the 𝑋𝑉 -Model.

The Fig. 9(a) shows the issue of the 𝑋𝑟𝑒𝑓 -Model that uses only the leader position as the reference. The 𝑋𝑟𝑒𝑓 -Model experiences
significant speed/acceleration oscillations around step 9200 when closing the gap with the faster leader. More specifically, the 𝑋𝑟𝑒𝑓 -
Model displays too aggressive speeds when trying to minimize the position errors. It overshoots the leader speed a lot, and later
re-adjusts the spacing with large decelerations. In comparison, 𝑋𝑉 -Model incorporates an additional speed reference to prevent
large speed overshoots while reducing the position errors. When the leader already stabilized, the speed reference 𝑣𝑁𝑒𝑤𝑒𝑙𝑙 also helps
stabilize the follower to prevent large speed oscillations.

To see more details, starting from approximately step 9200, the differences of the two MPC followers start to grow. The planning
diagram at the step 9200 is shown in Fig. 9(b), where the shifted leader trajectory is above both of the two following MPCs due
to larger accelerating performances of the lead vehicle. In Fig. 9(c), the leader speed, i.e. the Newell speed already stabilized, the
𝑋𝑉 -Model decelerates thanks to the speed reference, but the 𝑋𝑟𝑒𝑓 -Model continues to overshoot the leader speed to close the
13
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Fig. 8. Simulation of the 𝑋𝑏𝑜𝑢𝑛𝑑-Model and comparison with OP-MPC.

position errors because it only has the position reference. It shows that the speed regulation is necessary for better stability of the
controller.

Through the comparison, we can conclude that 𝑋𝑉 -Model is not only more robust against sensor faults due to input redundancy,
but also reduces speed over/undershoots with the additional speed regulation. Such an advantage of the 𝑋𝑉 -Model can be more
significant in the presence of large and stable position errors that may result in oscillatory speeds.

4.3. Numerical testing of the 𝑋𝑚𝑢𝑙-Model

Now we present the simulation results of the 𝑋𝑚𝑢𝑙-Model designed to incorporate multiple downstream leaders.
In this simulation, we have a four vehicle platoon where the ego vehicle (𝑋𝑚𝑢𝑙-Model) has 3 downstream leaders, lead 1 and

lead 2 are two OP-MPCs and lead 3 is a human-driven vehicle that performs a perturbation. Notice that their true sequence in
the platoon should be lead 3, lead 2, lead 1 and ego 𝑋𝑚𝑢𝑙-Model from the upstream to the downstream. The Fig. 10(b) depicts
one planning step of the 𝑋𝑚𝑢𝑙-Model, where the history trajectories of three downstream leaders are shifted and projected to the
MPC planning horizon. The discontinuity between the adjacent shifted trajectories is caused by different 𝜏 and 𝛿 values used by the
unknown leaders. However, those errors can be ignored when using those shifted trajectories only as the references, considering
the jerk and acceleration constraints will always produce a smooth planning trajectory. In this case, we assume the same 𝜏 = 1.5 (s)
and 𝛿 = 8.5 (m) for all leaders.

Fig. 10(a) shows the speed, spacing and accelerations of all four vehicles in the platoon. When introducing the design for the
𝑋𝑚𝑢𝑙-Model, we also conjectured that because of the driver anticipation, the reacting time of the 𝑋𝑚𝑢𝑙-Model can be moved forward
by (𝑛−1)𝜏 seconds in theory. In Fig. 10(a), the 𝑋𝑚𝑢𝑙-Model reacts almost the same time with its predecessor, the second vehicle in
the platoon, which means its responding time is brought forward for about 𝜏 seconds. Although the reduction of the reaction time
is not as large as (𝑛 − 1)𝜏 = 2𝜏 seconds, it still verifies that the 𝑋𝑚𝑢𝑙-Model can benefit from the downstream leader information
and possibly help prevent collisions if a downstream collision happens unexpectedly. The similar impact of reduced reaction time

2007) which investigates driver anticipation with a different CF model.
14

is also found in Treiber et al. (
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Fig. 9. Comparison of the 𝑋𝑟𝑒𝑓 -Model and 𝑋𝑉 -Model.

Fig. 10. Simulation results of the 𝑋𝑚𝑢𝑙-Model.
15
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Surprisingly, we found that the 𝑋𝑚𝑢𝑙-Model also improves string stability without any specific design as required for the single
leader Newell MPC 𝑋𝑉 𝑠𝑠-Model. In Fig. 10(a), the speed oscillation on the 𝑋𝑚𝑢𝑙-Model is smaller than its immediate leader
mpc-follower2. The reasons for the improved string stability of the 𝑋𝑚𝑢𝑙-Model could be complex and needs more theoretical
nvestigation. A similar finding is reported by Treiber et al. (2007), which shows by simulation that a variation of the IDM model
ith multiple look-ahead leaders can also improve string stability. We conjecture that driver anticipation contributes to the improved
tring stability in a similar fashion either for the IDM or the 𝑋𝑚𝑢𝑙-Model, although the underlying mechanism needs further
nvestigation.
The Fig. 10(c) showcases the trajectories of all vehicles in the platoon, where the dashed lines denote the shifted leader trajectory

ith 𝜏 and 𝛿. Interestingly, the two string unstable OP MPCs both experience overshootings followed by under-shootings in the space–
ime diagram. It also indicates that the overshooting (𝜂 < 1 in Chen et al. (2012)) in the deceleration phase does not necessarily
guarantee string stability.

4.4. Testing driver relaxation in 𝑋𝑉 𝑟𝑒𝑙𝑎𝑥-Model against a cut-in

We simulate the 𝑋𝑉 𝑟𝑒𝑙𝑎𝑥-Model against a cut-in in order to test the function of driver relaxation. As shown in Fig/11, a cut-in
vehicle decelerates after the lane-change to adjust its spacing with the target lane leader, whose speed and trajectory are shown
in Fig. 11(a) and Fig. 11(b) respectively. In the top graph in Fig. 11(a), the 𝑋𝑉 𝑟𝑒𝑙𝑎𝑥-Model follows the speed of the cut-in vehicle
according to the Newell speed reference design in (28). In this process, the predicted cut-in speeds result from the model (10), where
the exponentially decaying acceleration and the corresponding speed predictions are shown in Fig. 11(c) and Fig. 11(d). Note that
the ACC’s spacing does not significantly decrease because it maintains nearly the same speed as the cut-in leader in the deceleration
phase; see Fig. 11(a)’s spacing and speed plots. This supports our earlier claim that relaxation is safe so long as the initial spacing
right after the cut-in is not too small.

Recall the relaxation design in (30) has two steps. For the first stage, or the deceleration phase, the Newell position reference
is the history cut-in position shifted to the current ego position of the follower; see Fig. 11(e); causing a zero cost which does not
take effects. For the second phase, the recovery of spacing happens after the leader starts to accelerate. The follower Newell MPC
now gradually relax its trajectory reference from its current position to the shifted cut-in trajectory; see the transition of the 𝑥𝑁𝑒𝑤𝑒𝑙𝑙
(orange dashed line) towards the shifted cut-in history position (green dashed line) in Figs. 11(e)–11(g). In this process, the cut-in
leader already starts to accelerate, the driver relaxation in the following 𝑋𝑉 𝑟𝑒𝑙𝑎𝑥-Model produces smaller accelerations compared
with the cut-in leader which helps recover the spacing. Such ‘‘cruising’’ behaviors effectively prevent the speed overshootings as
shown in the speed profile in Fig. 11(a).

Overall, the 𝑋𝑉 𝑟𝑒𝑙𝑎𝑥-Model produces a trajectory as shown in Fig. 11(b), where the dashed line is the Newell shift of the cut-in
trajectory. The color in Fig. 11(b) suggests the speed of the cut-in and follower vehicle, which is a justification of our design presented
in Fig. 6(b). The whole reaction process after the cut-in is more congestion-friendly compared with the non-relaxation case where
the follower is likely to abruptly decelerate at the beginning and to catch up with speed overshootings later.

4.5. Testing the strict string stability of the 𝑋𝑉 𝑠𝑠-Model

Here we present the simulation results of 𝑋𝑉 𝑠𝑠-Model that aims to achieve the strict string stability parameterized with 𝛤 . The
Fig. 12(a) presents the speed, spacing and acceleration results. In the speed profiles, we see the ego vehicle is able to follow the
strict string stable speed (the purple dashed line) when the leader decelerates, as we expect from Fig. 7. When the leader starts
to accelerate again, the 𝑋𝑉 𝑠𝑠-Model gradually recovers its desired spacing, i.e. slowly moves towards the leader trajectory shifted
by 𝜏 and 𝛿; see example in Fig. 12(c), where the position reference (red dashed line) is interpolated between the current position
and the regular Newell trajectory (orange dashed line) according to the rule in (33). As the ACC gradually recovers to the original
non-relaxation Newell reference, the ego vehicle starts to deviate from the 𝑣𝑠𝑠𝑁𝑒𝑤𝑒𝑙𝑙 designed for the strict stability (orange dashed
line) and chooses a lower speed to regain more spacing, as depicted in Fig. 12(d).

The Fig. 12(b) compares the trajectory of the marginal SS and the strict string stability achieved by the 𝑋𝑉 𝑠𝑠-Model. Apparently
the strict string stable trajectory is above the marginal one, coinciding with the convex pattern in the 𝜂 theory in Chen et al. (2012).
It also shows that strict string stability produces smaller spacings, which more or less sacrifices safety.

5. Field experiments

As stated previously, the simulations utilize the same professional MPC solver that OP employs for real cars. Hence, these models
likely can be transferred to the real world. However, this needs to be verified and their true performance need to be tested against
factors not accounted for in simulations, such as sensor measurement errors and imperfect low-level control. Consequently, this
section will use a market 2019 Honda Civic to: (i) verify the feasibility of the proposed Newell MPC planner on market ACCs, (ii)
16

evaluate the model performance, and (iii) identify the potential limitations of implementing the model on real cars.
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Fig. 11. Testing driver relaxation in 𝑋𝑉 𝑟𝑒𝑙𝑎𝑥-Model that prevents speed amplifications caused by cut-ins: In the legends ‘‘hist’’ means history and ‘‘traj’’ is short
for ‘‘trajectory’’. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5.1. Experimental method

The experimental method of testing custom ACC algorithms on market car models was first introduced in our previous work (Zhou
et al., 2022b) and Zhou et al. (2022a). To make this paper self-contained, we added some details here as well. The hardware
reparation is rather simple. We only need to connect the Comma.ai’s after-market device Comma Two, to the interface of the ACC
nit of the car, which will be overwriting the stock ACC algorithms and running our custom OP instead. A more detailed installation
utorial can be found here (Comma.ai, 2020). The experiment set-up is shown in Fig. 13.
It is worth noting that an ACC system consists of the upper level planner that outputs the desired acceleration, and the low-level

ontrol system which is responsible for execution. The upper-level planner can be a CF model, a linear controller or an MPC.
he low-level control system includes multiple components such as the proportional–integral–feedforward (PIF) controller and the
ctuator model translating command accelerations to gas/brake values; see details in Zhou et al. (2022b). All those low-level control
arameters are specific to car models and need careful tuning. In this paper, to test the feasibility of the Newell MPC as a new planner,
e only replaced the current MPC planner in OP, and maintain the default low-level controller and the actuator model.
Unlike linear ACCs and CF models, implementing an MPC for real cars needs both coding and compiling to ensure the running

peed. To construct an MPC, one needs to translate the mathematical formulation as required by a professional solver. The authors
se the same MPC solver as OP does, i.e., Acado (Diehl, 0000). The detailed coding and compiling process includes a lot of technical
17
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Fig. 12. Simulation results of the 𝑋𝑉 𝑠𝑠-Model that achieves the strict string stability: In the legends ‘‘pos’’ means ‘‘position’’, ‘‘sol’’ means ‘‘solution’’, and ‘‘ref’’
s short for ‘‘reference’’. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

etails, unfortunately Comma.ai does not provide any tutorials on this. The authors successfully explored the method and plan to
ublish it later since it is not within the scope of this paper.
The driving logs from Comma Two include all the ACC-related variables as well as the CAN (Car Area Network) bus messages

f the car, such as 𝑣𝑒𝑔𝑜 and 𝑎𝑒𝑔𝑜. The method does not require any modifications of a regular commercial car and the full access of
the ACC system allows us to dive into the details of the control algorithm and analyze its impact. In theory, the experiment method
can be applied to testing any other CF models and even lane-changing MPCs.

5.2. Field test of the newell MPC

This section discusses the empirical results of the baseline 𝑋𝑉 -Model on a 2019 Honda Civic. Due to liability concerns, the
uthors can only test the model on local roads at low speeds.
Fig. 14 reports the planning details and trajectories from two field drives. The leader speed is directly measured by the sensor,

nd the position is calculated based on the spacing outputs. Overall, the trajectory plots in Figs. 14(a) and 14(b) demonstrate that
he 𝑋𝑉 -Model is feasible, although the results are not good because we still see much discrepancies between the Newell trajectory
nd the true ego trajectory.
Next we identify the limitations of implementing this model on current market ACC vehicles. Unlike the simulations, empirical

esults of the model rely on sensor measurements for the history input, and the execution of desired accelerations largely depends
n low-level control. Note that our test vehicle, a 2019 Honda Civic does not have an available radar for OP to use. Thus the
eader spacings and speeds are both estimated using vision techniques with a mono-camera, which partially explains the choppy
pacing/speed measurements in Figs. 14(c) to 14(f). Some points in the figures are outliers, which helps to justify our earlier decision
18

o incorporate soft constraints rather than the default hard bound in the origin Newell’s model. However, the authors postulate that,
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Fig. 13. Test the Newell MPC on the road: experiment set-up.

Fig. 14. Road tests of the 𝑋𝑉 -Model on a 2019 Honda Civic: sensor measurements and control details.

with a different car model equipped with a radar or more advanced sensors such as multiple cameras/lidar, the leader measurements
can be more accurate and smooth, which will improve the performance of the Newell MPC.

The experiment results presented here are the holistic outcome of the full ACC control loop, which consists of not only the
upper-level planner (𝑋𝑉 -Model), but also the sensor (a mono-camera), and the low-level controller. Consequently, the discrepancy
between the planned and true trajectory is a result of all those components. The sensor delay, measurement errors, the actuator
delay, and actuator errors all contribute to the discrepancy here. Our previous work (Zhou et al., 2022b) has specifically studied the
significance of the low-level controller in the performance of ACC systems. In other words, to achieve the desired performance of
the Newell MPC planner proposed in this paper, the low-level control has to be carefully designed as well, including the well-known
actuator delay that has been extensively studied in the literature.

Those experiment results indicate that the Newell MPC appears to be sensitive to sensor errors, as outliers in spacing or speed
measurements can both contribute to large discrepancies. Note that those results are not satisfactory because we have not applied
any smoothing techniques to the raw sensor measurement. To address noises or errors in sensor measurements, we hypothesize that
a filter could be used to pre-process the history data that will be fed to the planner, thereby helping to smooth out the Newell speed
and position references. The similar concept can also be applied to situations in which the leader causes undesirable perturbations,
such as a ‘‘phantom’’ brake, which the filter can choose to ignore. In this regard, pattern recognition techniques may be required to
filter out these small perturbations and determine whether it is safe to neglect them. The 𝑋𝑉 𝑠𝑠-Model can also be used to dampen
19

these small oscillations, preventing them from spreading across the platoon.
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Fig. 15. Extensions for 𝑋𝑚𝑢𝑙-Model with longer memories: the Newell trajectory becomes the lower bound of shifted leader positions from different leaders.

. Discussion

This paper presented a family of novel MPC ACCs inspired by the well-known the Newell’s CF model in traffic flow theory. To
ircumvent the issues and challenges of the predict-and-optimize method prevalent in current MPCs, the proposed Newell MPCs
tilize the history of the leader, which is easily obtainable using existing sensors on market ACCs.
The family of Newell MPCs developed in this paper enables ACCs to circumvent prediction efforts/challenges while illustrating

ubstantial potential to improve traffic efficiency, i.e. alleviating ‘‘phantom’’ congestion waves. We find that: (i) the historical leader
rajectory can either be used as a bound or a reference to achieve marginal string stability; (ii) the leader history speed can be
sed as an additional reference along with the history position, which helps to improve the model robustness and prevent speed
ver/under-shootings; iii the single-leader Newell MPC can be extended to incorporate multiple downstream leaders, achieving
river anticipation that reduces reaction time and improves string stability, and (iv) the Newell MPCs are extendable to incorporate
ongestion-mitigation designs, including driver relaxation to smooth merging traffics, and the strict string stability to dampen
ongestion waves.
The field test on real roads validates the desired performance of the baseline Newell MPC 𝑋𝑉 -Model using a market ACC vehicle,

2019 Honda Civic. The experiment results suggest that the performance of the Newell MPCs not only depend on the model itself,
but also on sensor precision and low-level execution. Interested readers are encouraged to test/improve the baseline 𝑋𝑉 -Model
shared at https://github.com/HaoZhouGT/openpilot. As one of the limitations of this work, we need more experiments to identify
the detailed impact of factors other than the planner model, such as how does actuator/sensor delay would change the performance
of the Newell MPCs, and whether it is better to address the delay in upper-level planner or low-level controller. Since ACC’s string
stability is an overall outcome of the whole system, we cannot guarantee the proposed models can achieve the desired performance
without carefully addressing other influencing factors.

Regarding the proposed 𝑋𝑉 𝑟𝑒𝑙𝑎𝑥-Model and 𝑋𝑉 𝑠𝑠-Model, although these two extensions already include the safety bound in
their design, more research is needed to further examine their feasibility in practice, especially the 𝑋𝑉 𝑟𝑒𝑙𝑎𝑥-Model which accepts
smaller spacings after cut-ins. Human drivers tend to accept small spacings only when they can confidently anticipate future
incidents, i.e., a potential emergency brake of the leader is less likely to happen. The current 𝑋𝑉 𝑟𝑒𝑙𝑎𝑥-Model is still incapable
of this and additional safety design needs to be added to safely execute driver relaxation in order to smooth the merging traffic.

Remarkably, the essence of the proposed family of Newell MPCs is to ‘‘copy’’ the leader trajectory in congestion (i.e., achieving
marginal string stability). Although this design is reasonable in most cases because it does not amplify oscillations, it is important
to investigate whether consistently ‘‘copy’’ the leader trajectory is prudent, particularly in the case of abnormal lead behaviors with
high variances. To address this, the proposed 𝑋𝑉 𝑠𝑠-Model featuring strict string stability can be applied, which could help dampen
those oscillations in the platoon. However, additional research effort is still required to decide when to switch to the 𝑋𝑉 𝑠𝑠-Model
and how strict string stable the model should be in order to balance safety and efficiency. Correspondingly, the key parameter
𝛤 in the 𝑋𝑉 𝑠𝑠-Model must be optimized to consider the leader oscillation pattern, platoon size, and safety hazards. Moreover,
to recognize these abnormal leader behaviors, the acceleration or jerks in the leader’s past can be leveraged for driving pattern
recognition, which may also require relevant machine learning algorithms. In addition, the 𝑋𝑚𝑢𝑙-Model, which employs multiple
downstream leaders rather than just one, can also be used to mitigate the negative effects of an abnormal leader. The performance
of this method also needs further investigation under abnormal traffic conditions.

Next, we share some future research directions in the following subsections.

6.1. Implications on future self-driving systems

The 𝑋𝑚𝑢𝑙-Model proposed in this study investigates the possibility of utilizing advanced sensing and computer-vision technolo-
gies. Furthermore, we recognize that the 𝑋𝑚𝑢𝑙-Model could benefit from additional extensions along these lines. For instance, if the
20
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Fig. 16. Multiple leaders’ information can be helpful for existing MPC planners based on predictions. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

PC has longer memory of the past, more history information can be utilized to to improve input redundancy. However, not every
uman follows the exact Newell’s CF model, aggressive or timid behavior is common. As Fig. 15 shows, the leader 𝑖 might not be a
perfect shift of its leader 𝑖 + 1. Correspondingly, multiple shifted leader trajectories can be projected to the same planning horizon,
e.g. there are 3 different shifted references from 𝑡 to 𝑡+𝜏. To solve this conflict, we can extend the Newell’s model by always picking
he lowest bound of all shifted trajectories, which gives a safer reference to follow; see the red dashed line. Doing so can effectively
et rid of the effect of aggressive downstream leaders, whose impact on string stability merits investigation in future research.
Another takeaway from this paper is that the look-ahead sensing can be the answer to better predictions. The study shows

hat current MPCs are sensitive to accurate leader predictions for improved performance, especially string stability. Despite our
reference for history over prediction, we do not advocate abandoning all MPC models that rely on predictions. Instead, we would
ike to emphasize that the spirit of Newell MPCs can be easily incorporated into current MPCs by recognizing that look-ahead
ensing can enhance prediction. Next, we show how to incorporate the Newell MPC design into current predict-and-optimize MPCs
sing advanced sensing techniques. As Fig. 16(b) indicates, if the ACC’s sensor is able to detect the leader’s leader, we can certainly
utilize that information, i.e. the history trajectory of the leader’s to leader, to improve the prediction of the future trajectory of the
immediate leader. In Fig. 16(b), the green dashed line, i.e. the shifted history of the leader’s leader, is almost the perfect prediction
f the leader’s movement. While a machine learning model could potentially achieve similar performance, it certainly requires big
ata and deep models, which can be costly. Instead of laboring over machine learning models, we can certainly better leverage the
xisting sensor technologies, i.e. the leader’s leader to obtain a better prediction as the input for the ACC system, which can easily
enefit all the control objectives in current MPC designs. Consequently, we strongly recommend that future ACC systems should use
ameras to detect multiple leaders, which is a simple way to improve their current MPC performance.
We recommend that future ACC systems investigate the possibility of utilizing adjacent lane detections more effectively. The

aper shows that the Newell MPC can be extended to leverage the history information of multiple downstream leaders if they are
etectable by new sensors. Such information is already available in some advanced-level systems such as Tesla and Kia. The authors
ave done a simple experiment and show the detection results on Tesla’s Autopilot display in Fig. 16(a). Note that cameras are even
ble to detect multiple vehicles from the adjacent lanes, which can be another source of reference points for the ego vehicle. For
xample, when a congestion wave propagates back, the downstream leaders from adjacent lanes may brake and signal earlier than
hose on the current lane. Human drivers are able to react to those signals from adjacent lanes, possibly decelerating in advance
ven if their the leaders on their own lane are not decelerating yet. Unfortunately similar behaviors have not been found on ACC
ystems. Since the sensing technologies are already able to detect multiple downstream leaders including those from adjacent lanes,
e encourage more investigation in the future work to leverage them.

.2. Additional future works

ACCs have been shown inefficient in previous studies (Makridis et al., 2021) and entail environmental costs. While our study
oes not specifically address environmental costs of the presented models, recent study (Liu et al., 2021) have found string stable
latoons using CACC technologies can significantly reduce vehicle emissions especially for highway traffic. The proposed Newell
PCs in this study achieve string stability without requiring vehicle-to-vehicle communication and are ready for implementation on
urrent market ACC vehicles with no additional devices. Hence, the proposed Newell MPCs will likely reduce environmental costs
n a similar way and an ongoing study aims to test their environmental impacts empirically.
The paper presents the 𝑋𝑚𝑢𝑙-Model designed for future ACC systems with the key capability of detecting multiple leaders. The

easibility of such design is affected by the road geometry, for example, it would be easier for both human drivers and vehicle sensors
o detect more leaders on curves and grades. The detection also depends on the number and location of the cameras installed on the
21



Transportation Research Part C 142 (2022) 103801H. Zhou et al.
vehicle. We conjecture that detection capability can be improved if cameras are installed at a higher position, such as the top of the
vehicle where the lidar is usually placed. Hence, further empirical tests are needed to validate whether 𝑋𝑚𝑢𝑙-Model is practically
feasible and worth investing in market ACCs.
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