
Transportation Research Part C 140 (2022) 103697

A
0

a

b

v
t

h
R

Contents lists available at ScienceDirect

Transportation Research Part C

journal homepage: www.elsevier.com/locate/trc

Significance of low-level control to string stability under adaptive
cruise control: Algorithms, theory and experiments
Hao Zhou a, Anye Zhou a, Tienan Li b, Danjue Chen b, Srinivas Peeta a, Jorge Laval a,∗
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, United States
School of Civil and Environmental Engineering, University of Massachusetts Lowell, Lowell, United States

A R T I C L E I N F O

Keywords:
Commercial ACC
String stability
Low-level controller
Comma.ai
On-road experiments

A B S T R A C T

Commercial adaptive cruise control (ACC) systems are bi-level: an upper-level planner decides
the target trajectory and the low-level system executes it. Existing literature on ACCs mostly
focus on the planner algorithms or the actuator delay, while the transition process between
them, e.g. the low-level control design and its impact are often ignored. This paper tries to fill
this gap by digging into the codebase of a recent open-source self-driving system, Openpilot
(OP), Comma.ai, from which we extract and formulate the algorithms at both the upper and
lower levels. For linear ACCs, the paper extends the transfer function analysis from planners
only to full control loops and investigates the impact of slow/fast low-level control on the
overall string stability (SS). For MPC ACCs, it studies their planning characteristics based its
optimization objectives and approximates the low-level impact using an ODE approach.

We find that low-level control has a significant impact on the overall SS of ACCs: (i)
slow low-level control undermines SS under small frequencies and improves SS given large
frequencies for linear systems, (ii) MPC features a varying gain throughout an oscillation, where
the fast low-level control typically results in a ‘fast-slow’ changing process of the MPC gain,
which benefits the SS, whereas the slow low-level control leads to a ‘slow-fast’ varying gain
which undermines the SS, (iii) slow low-level control are common as they arise from comfort-
oriented control gains, from a "weak" actuator performance or both, and (iv) the SS is very
sensitive to the integral gain under slow low-level control for both PI and PIF controllers.
Overall, the study recommends fast low-level control for ensuring vehicular SS to reduce traffic
congestion, considering that large congestion waves usually feature both small frequencies
and large amplitudes, although slow controllers could perform even better provided a short
and small leader perturbation. The findings of this paper are verified both numerically and
experimentally. For the first time in the literature we implement custom ACC algorithms on
market cars, and achieve SS on open roads with a random leader by only tuning the low-level
controllers. The source code is shared at https://github.com/HaoZhouGT/openpilot to support
on-road experiments of arbitrary car-following models, which may be of interest to other studies.

1. Introduction

With the development of vehicle automation, adaptive cruise control (ACC) systems are now widely available on commercial
ehicles around the world. From the perspective of traffic flow efficiency, ACC systems are expected to achieve string stability (SS)
o ensure that small perturbations do not amplify upstream within a platoon of vehicles (Shaw and Hedrick, 2007; Feng et al.,

∗ Correspondence to: 790 Atlantic Dr NW, Atlanta, GA, 30313, United States.
E-mail address: jorge.laval@ce.gatech.edu (J. Laval).
vailable online 19 May 2022
968-090X/© 2022 Elsevier Ltd. All rights reserved.

ttps://doi.org/10.1016/j.trc.2022.103697
eceived 16 July 2021; Received in revised form 15 February 2022; Accepted 14 April 2022

http://www.elsevier.com/locate/trc
http://www.elsevier.com/locate/trc
https://github.com/HaoZhouGT/openpilot
mailto:jorge.laval@ce.gatech.edu
https://doi.org/10.1016/j.trc.2022.103697
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trc.2022.103697&domain=pdf
https://doi.org/10.1016/j.trc.2022.103697

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

Z

t
t
p
t

f
t

l
c

2019), i.e., speed fluctuations should be dampened rather than amplified by the followers (Naus et al., 2010; Zhou and Peng, 2005;
hou et al., 2020). In recent years, the SS of factory ACC systems has drawn increasing attention from the traffic flow community.
Unfortunately, the factory ACC products can only be treated as ‘‘black boxes’’ due to the proprietary technology. As a result, related
studies in the literature are mostly data-driven; i.e., researchers often collect the driving behavior data of factory ACC vehicles and
then directly examine the SS features (e.g., Makridis et al. (2021), Li et al. (2021)) or indirectly study the features by calibrating a
model (e.g., Gunter et al. (2019, 2020), Shi and Li (2021)) . For example, Gunter et al. (2020) found that most market ACC systems
are string unstable. Li et al. (2021) show that factory ACCs can amplify or dampen an oscillation (and overshoot or undershoot
after the oscillation), depending on the ACC headway setting, speed level, and leader trajectory. Shi and Li (2021) illustrate similar
findings in that a large headway setting produces better SS while a small one usually induces perturbations to grow. Li (2020)
indicates that this property of factory ACC suggests a trade-off between SS, mobility and safety. These empirical findings of ‘‘black
box’’ factory ACC systems shed light on some of their key features, but lack insights from the perspectives of ACC controller design
and execution.

Although the data-driven studies have shed new light on understanding the factory ACC systems, there are some limitations.
Notably, in recent commercial car models, ACC functionality is often provided by radar manufacturers, e.g. Bosch, Continental, who
sell the units to automakers. Those ACC units usually integrate a built-in ACC algorithm with the radar module. More specifically,
an upper-level planner receives the updated information from the radar and plans for the optimal trajectory, and then a low-level
controller executes the trajectory by sending low-level commands (gas/brake or acceleration) to the car control interface. Given this
design feature of ACC, the data-driven approach is not ideal in uncovering ACC behaviors. First, they use similar GPS devices with a
sampling rate of only 0.1 s, which is larger than the typical updating interval for both radar (0.05 s) and the low-level control system
(0.01 s) in modern cars. This means that some vehicle maneuver information is potentially lost. Second, the data-drive approach only
captures the holistic outcomes of ACC behaviors and cannot decouple the role of the upper-level planner and low-level controller
as well as their interactions. Notably, the prevailing approach of modeling ACCs per (Gunter et al., 2019; Li, 2020; Shi and Li,
2021) essentially only calibrates the upper-level planner models against trajectory data while assuming the low-level controllers
can achieve perfect performance as desired, which is questionable in real-world driving scenarios. In fact, Li (2020), Shi and Li
(2021) calibrated the factory ACC using a parsimonious linear car following (CF) model and found that the model falls short in
explaining some empirical ACC features. This highlights the needs of going deeper into the mechanic level of ACC controller design
and execution.

Fortunately, a recently open-sourced factory ACC system, Openpilot (Comma.ai, 2021), here provides one way to uncover the
details of the black box. Openpilot is developed by an after-market self-driving company, Comma.ai, who aims to be to Tesla what
Android is to Apple, but with self-driving technology. Besides the open-source ACC software, Comma.ai also develops an after-factory
ACC development kit, Comma Two, which can connect the stock ACC unit and override its control on many regular commercial
cars. Note that Openpilot is considered to be factory level because it only overwrites the built-in algorithms in the ACC unit, as
it still uses the stock sensor and communicates with existing car control interface. The benefits of such open-source ACC software
and after-market hardware are unprecedented. Openpilot enables researchers to obtain full access to all the controller parameters,
variables and algorithms of the ACC system. It also opens a new gate for analysis, design and test of our own factory ACC algorithms,
which is aligned with the objective of this study.

Prior to the open-source factory ACC algorithms, the SS of ACC systems has already been extensively studied in the control area,
e.g. Yanakiev and Kanellakopoulos (1995), Liang and Peng (1999, 2000). The theoretical SS condition for linear CF models have
been examined for years since (Wilson and Ward, 2011), and one can notice that it is not difficult to meet the SS condition after
tuning the model parameters. For example, Gunter et al. (2019) obtained a wide region of string-stable parameters for the optimal
speed velocity speed model and verified the SS through simulation. Wilson and Ward (2011) has derived the string stability region
for parameters of some CF models. Yet, two interesting questions arise: can we directly apply those tuned models to a car and
achieve string-stable performance? Why are string-stable commercial ACCs so rare in real life?

Unfortunately, the current short answer to the first question is ‘‘no’’, and the second question can be explained by the lack of
considerations for low-level controllers. Specifically, this study points out that the gap between SS theory and practice lies in the
impact of low-level controller, which has been consistently neglected so far. For the field experiments in literature, researchers
used either original equipment manufacturer (OEM) controller or in-house designed controllers. The OEM controller (Eilbert et al.,
2020) directly tracks the acceleration/speed command, or torque/brake pressure generated from the upper-level planner but
these algorithms are also ’black-boxes’. The in-house designed controllers use specific feedback control law to track the planning
trajectories. For instances, Naus et al. (2010), Ploeg et al. (2011) used a ‘MOVE’ gateway to interact with the vehicle motor to
achieve acceleration setpoints. Lu and Shladover (2018) applied the feedback linearization control technique to calculate the desired
orque/brake pressure command of truck actuators for realizing desired accelerations. Shladover (2009) utilized the loop-shaping
echniques to devise a ’speed servo’ to track the planned speed. Although the in-house designed controllers demonstrate desired
erformance in the experiments, they are only applied to specific field-test scenarios, it remains unclear if they can be generalized
o real-world driving. Additionally, most in-house designed controllers are not open-sourced either.
Correspondingly, the paper will focus on the impact of the factory low-level controller, this study first presents the open-source

actory ACC algorithms, based on which we further investigate the impact of low-level controllers on SS. The findings are validated
hrough both numerical simulations and real-car tests on a regular commercial car model, a 2019 Honda Civic.
The contribution of this paper is threefold: (i) on the algorithm side, for the first time it formulates the planner models and

ow-level control algorithms from the codes of an open-source commercial ACC system, Openpilot. Towards this it finds that the
2

ommercial planner models (e.g. linear and model predictive controller (MPC)) are significantly different from the traditional models

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

t

d

2

2

u

𝑣
r
T

u
s
c
m
(
f
p
l

𝑔
m
t

2

v
f

Fig. 1. Pipeline for the longitudinal control in Openpilot ACC.

in the literature. The paper also details the full control thread of the low-level system, including the algorithms to post-process
upper-level planning targets, the controllers to track low-level setpoints, as well as the common actuator model used by commercial
ACC products. (ii) the theory side, the paper extends the transfer function (TF) analysis for linear ACCs from planners only to bi-level
loops including low-level control. That allows us to investigate the impact of slow/fast low-level control analytically. For MPCs, the
paper identifies their characteristics in responses to oscillations and approximate the impact of slow/fast control with simplified
models. (iii) For the experimental method, the paper contributes to a new data collection method to collect detailed ACC data from
regular car models and make adaptions of Comma.ai’s original code base to allow easy testing of any CF models on the road. Such
data collection methods provide promising opportunities to explain/understand the behaviors of other black-box ACC systems. The
new road experiment approach allows traffic flow researchers to test their models on the road, which can be of interest to many
other studies.

The remainder of the paper is organized as follows: Section 2 introduces the open-source commercial ACC algorithms for both
he planner and the low-level control; Section 3 and Section 4 investigates the impact mechanisms of low-level control on the SS of
linear and MPC ACCs respectively; Section 5 presents the numerical and on-road experiments and showcase the results; Section 6
iscusses the improvements for low-level control design for the better SS; and Section 7 concludes the paper.

. ACC algorithms in Openpilot

.1. Full control pipeline of factory ACCs

Before diving into the detailed algorithms for the upper-level planner and the low-level controller, it is important to first
nderstand the full control pipeline of the ACC system, as shown in Fig. 1.
As mentioned earlier, a typical on-board radar runs at 20 hz. It provides the lead vehicle information (e.g. the lead vehicle speed

𝑙𝑒𝑎𝑑 and the spacing 𝑠𝑒𝑔𝑜) for the planner, with or without the sensor fusion from cameras. The planner listens to the sensors and
esponds to the speed and spacing changes by adjusting the target speed, 𝑣target, or the target acceleration, 𝑎target for the ego vehicle.
he planner model is usually a linear controller or an MPC more recently.
The low-level controller operates to achieve the planner targets by producing the low-level commands (gas/brake), which are

sually at the rate of 100 hz for recent car models. Due to the higher frequency, the low-level controller forms an inner loop of 5
teps in each planning period (0.05 s). As Fig. 1 shows, the low-level control loop consists of four major steps: (i) first, the low-level
ontrol algorithm, ‘LongControl’, calculates the low-level setpoint, 𝑣pid or 𝑎pid or both, at each of the five control steps using the
ost-recent upper-level planner target 𝑣target or 𝑎target; (ii) then a proportional–integral (PI) or proportional–integral–feedforward
PIF) controller tracks the low-level setpoints and outputs the 𝑎𝑐𝑜𝑛𝑡𝑟𝑜𝑙 demand; (iii) the 𝑎𝑐𝑜𝑛𝑡𝑟𝑜𝑙 demand is then fed to a ′𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑏′
unction which maps it to the final actuator command, i.e. a gas or brake percent 𝑔𝑏 for the car; and (iv) finally the gas/brake
ercentage is applied and moves the vehicle. The true acceleration 𝑎ego, speed 𝑣ego, position 𝑥ego of the vehicle are send back to the
oop for the next step.
Here a PI or PIF controller outputs the 𝑎𝑐𝑜𝑛𝑡𝑟𝑜𝑙 demand, which is further processed by a 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑏 function to generate the final

𝑏 commands. Note that the 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 can also be understood as the desired acceleration, thus the 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑏 function is essentially a
apping from the desired acceleration to the necessary gas/brake. Reversely, we refer this mapping from the applied gas/brake 𝑔𝑏
o the true acceleration 𝑎𝑒𝑔𝑜 as the 𝑔𝑏2𝑎𝑐𝑐𝑒𝑙 function, which is essentially a model of the engine and brake system.

.2. Upper-level planner algorithms

For upper-level planners, linear and non-linear models like MPC are common. A linear ACC controller was first used in the earlier
ersions of OP, and later replaced by a MPC planner. According to the source code in OP, we now formulate the detailed equations
3

or both planners.

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

c

p
s
t
c
(
f
u

2

w
e
2
a

s

w
1
1
O

w

2.2.1. The OP linear planner
The OP linear planner adopts a constant time headway policy (CTH), but different from the literature, the desired spacing is

alculated using the leader, not the ego vehicle speed. Given a desired time headway 𝜏, and the jam spacing 𝛿, the desired spacing
𝑠des from the front bumper of the ego vehicle to the rear bumper of the lead vehicle is calculated as:

𝑠des(𝑡) = 𝛿 + 𝜏 ⋅ 𝑣lead(𝑡) (1)

Based on the desired spacing, the planner then outputs a target speed 𝑣target to reduce the spacing error 𝛥𝑠 = 𝑠𝑒𝑔𝑜 − 𝑠𝑑𝑒𝑠 between
the true spacing 𝑠ego and the desired spacing 𝑠des by the gain 𝑘.

𝑣target(𝑡) = 𝑘 ⋅ (𝑠𝑒𝑔𝑜(𝑡) − 𝑠𝑑𝑒𝑠) + 𝑣lead(𝑡) = 𝑘 ⋅ 𝛥𝑠(𝑡) + 𝑣lead(𝑡) (2)

Note that the parameter 𝑘 physically means how fast the planner tries to adjusts the spacing variability. In OP 𝑘 is speed-
dependent, piecewise linear and decreases with speed values, which is different from the constant assumptions commonly used in
existing studies (Gunter et al., 2019; Zhou and Ahn, 2019; Li, 2020; Shi and Li, 2021).

It is also worth noting that here the OP linear ACC model uses the lead vehicle speed 𝑣lead to calculate the desired spacing and
lan for the target speed, which is different from the tradition CTH in the literature that adjusts the desired spacing based on the ego
peed 𝑣ego. While the true motivations are unclear yet, we notice that such design enables the planner to run independently from
he low-level responses such as 𝑣ego or 𝑎ego. Similar design is also found in MPC-type planner, which will be introduced shortly. We
onjecture that using 𝑣lead in the planner can also reduce the hardware communication between the ACC unit and the vehicle CAN
Controller Area Network) bus since no low-level variables need to be retrieved from the CAN bus. The 𝑣lead is directly measured
rom the radar in the ACC unit, which helps the ACC module to be self-contained. From the perspective of SS, the difference between
sing 𝑣lead and 𝑣ego is not trivial. We show that the factory linear ACC can be easily string stable in the next section.

.2.2. MPC planner
MPC planners have become ubiquitous in the literature since they allow the optimization of more general objective functions

hile considering more refined vehicle dynamics models (Corona and De Schutter, 2008; Naus et al., 2008; Li et al., 2010; Gong
t al., 2016; Zheng et al., 2017). This extra computational burden comes at the cost of requiring a professional solver (e.g. Diehl,
014) to run in real time. The formulation of the optimization objective and the reference trajectory are two key components for
n MPC problem, as shown next.
In Openpilot the objective function 𝐶(𝑡) for the longitudinal MPC at the planning time 𝑡 is defined as a weighted sum of four

ub-costs, with respect to the time to collision, spacing, acceleration and jerk values:

𝐶(𝑡) =
∑

𝑡≤𝑡𝑘≤𝑡+𝑇MPC

𝑤𝑡𝑡𝑐𝐶
2
𝑡𝑡𝑐 (𝑡𝑘) +𝑤𝑑𝑖𝑠𝑡𝐶

2
𝑑𝑖𝑠𝑡(𝑡𝑘) +𝑤𝑎𝑐𝑐𝑒𝑙𝐶

2
𝑎𝑐𝑐𝑒𝑙(𝑡𝑘) +𝑤𝑗𝑒𝑟𝑘𝐶

2
𝑗𝑒𝑟𝑘(𝑡𝑘) (3)

here 𝑡𝑘 denotes the time of each discrete planning step in each planning horizon 𝑇MPC; see dotted points in Fig. 2. In OP, the
0-second planning horizon is discretized into 20 intervals, where the first 5 intervals have a step length of 0.2 s, and the remaining
5 intervals are share a step length of 0.6 s. The tunable weights applied here are 𝑤𝑡𝑡𝑐 = 5, 𝑤𝑑𝑖𝑠𝑡 = 0.1, 𝑤𝑎𝑐𝑐𝑒𝑙 = 10, 𝑤𝑗𝑒𝑟𝑘 = 20.
mitting the subscript of 𝑡𝑘, the four sub-costs are defined below:

𝐶𝑡𝑡𝑐 (𝑡) = exp{
𝑠des(𝑡) − 𝑠ego(𝑡)

(
√

𝑣ego(𝑡) + 0.5 + 0.1)∕0.3
} − 1 (4)

𝐶𝑑𝑖𝑠𝑡(𝑡) =
𝑠des(𝑡) − 𝑠ego(𝑡)
0.05𝑣ego(𝑡) + 0.5

(5)

𝐶𝑎𝑐𝑐𝑒𝑙(𝑡) = 𝑎ego(𝑡)(0.1𝑣ego(𝑡) + 1) (6)

𝐶𝑗𝑒𝑟𝑘(𝑡) = 𝑗𝑒𝑔𝑜(𝑡)(0.1𝑣ego(𝑡) + 1) (7)

here 𝑗𝑒𝑔𝑜 is the jerk of ego vehicle (i.e., derivative of acceleration). The desired spacing 𝑠des for the MPC controller is defined as:

𝑠des(𝑡) = 𝑣ego(𝑡) ⋅ 𝜏 − (𝑣lead(𝑡) − 𝑣ego(𝑡)) ⋅ 𝜏 +
𝑣ego(𝑡)

2 − 𝑣lead(𝑡)
2

2𝐵
(8)

where 𝐵 is the maximum deceleration rate.
The reference trajectory is the estimated lead vehicle trajectory in the prediction horizon 𝑇MPC (10.0 s). Let 𝑑𝑡𝑝 denote the

varying step length (s) between two consecutive stops in the planning horizon 𝑇MPC, the future lead trajectory is estimated using
the dynamics model in 5 (a–d), which assumes a decaying acceleration of the lead vehicle with time parameter ℎ (1.5 s). Starting
from 𝑡 = 0 to 𝑡 = 𝑇MPC, the lead vehicle states in the planning horizon are predicted and updated as follows:

𝑎lead(𝑡) = 𝑎lead(𝑡) exp(−ℎ ⋅ 𝑡2∕2) (9a)

𝑥lead(𝑡) = 𝑥lead(𝑡) + 𝑣lead(𝑡) ⋅ 𝑑𝑡𝑝 (9b)

𝑣lead(𝑡) = 𝑣lead(𝑡) + 𝑎lead(𝑡) ⋅ 𝑑𝑡𝑝 (9c)
4

𝑡 ∶= 𝑡 + 𝑑𝑡𝑝 (9d)

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

t

2

2

t
i

L
s

Fig. 2. Example of MPC’s prediction and optimization: 𝑥𝐷𝑒𝑠𝑖𝑟𝑒 is the predicted position of the leader 𝑥𝑙𝑒𝑎𝑑 minus the desired spacing 𝑠𝑑𝑒𝑠. The leader acceleration
𝑎𝑙𝑒𝑎𝑑 is from model (9d). The solution of 𝑎𝑒𝑔𝑜, 𝑣𝑒𝑔𝑜 and 𝑥𝑒𝑔𝑜 are subject to the MPC optimization problem (10).

By solving the MPC problem (10) at each time step 𝑡, we can obtain the 𝑎target(𝑡+ 𝑑𝑡𝑝), i.e. the target acceleration of the MPC at
he first step of the optimization solution:

min
𝑎target

𝐶(𝑡)

s.t. Discrete point-mass dynamics for vehicle longitudinal movements
Predicted dynamics for the lead vehicle in (9)
𝑣target ≥ 0

(10)

.3. Low-level control system

.3.1. Algorithms in longitudinal control to update low-level setpoints
The pipeline in Fig. 1 shows that the first step in the low-level control loop is to process the planner targets and calculate

he corresponding low-level setpoints. Note that the low-level setpoints are the true references for the car to track, therefore it is
mportant to understand how the algorithms update them using the planning targets.
If the planner gives a target speed 𝑣target, the low-level controller usually uses a speed setpoint 𝑣𝑝𝑖𝑑 and a PI controller to track it.

et 𝑡 denote the planning time when the sensor and planner get updated every 0.05 s, and 𝑡 is the low-level control time with step
ize 𝑑𝑡 = 0.01 s. The algorithm to compute 𝑣pid for the PI controller is shown in Algorithm 1 with initial condition 𝑣pid(0) = 𝑣ego(0).
Algorithm 1 Low-level controller algorithm for 𝑣pid with a linear planner

Input: most recent 𝑣target; 𝑎𝑚𝑎𝑥, 𝑎𝑚𝑖𝑛; a constant overshoot allowance 𝑜𝑎 = 2.0.
Output: 𝑣pid

Initialisation: 𝑣pid(0) = 𝑣ego(0)
Low-level iteration to update 𝑣pid

1: if 𝑣pid > 𝑣ego + 𝑜𝑎 and 𝑣target < 𝑣pid then
2: 𝑣pid ← max(𝑣target, 𝑣ego + 𝑜𝑎)
3: else if 𝑣pid < 𝑣ego − 𝑜𝑎 and 𝑣target > 𝑣pid then
4: 𝑣pid ← min(𝑣target, 𝑣ego − 𝑜𝑎)
5: end if
6: if 𝑣target > 𝑣pid + 𝑎𝑚𝑎𝑥 ⋅ 𝑑𝑡 then
7: 𝑣pid ← 𝑣pid + 𝑎𝑚𝑎𝑥 ⋅ 𝑑𝑡
8: else if 𝑣target < 𝑣pid + 𝑎𝑚𝑖𝑛 ⋅ 𝑑𝑡 then
9: 𝑣pid ← 𝑣pid + 𝑎𝑚𝑖𝑛 ⋅ 𝑑𝑡
10: else
11: 𝑣pid ← 𝑣target
12: end if
13: update 𝑣ego ← 𝑣ego from CAN bus

In short, the above algorithm 1 shows the current 𝑣pid(𝑡) updates itself by moving towards the given planner target 𝑣target(𝑡) at
a maximum rate but bounded by constraints that include acceleration limits.

If the upper-planner outputs the upper-level desired acceleration 𝑎target, the low-level control loop usually outputs the acceleration
setpoint 𝑎pid along with 𝑣pid. The acceleration setpoint is designed for the feedforward term in a PIF controller. It is worth noting
that OP introduces two more variables 𝑣start(𝑡) and 𝑎start(𝑡) in lieu of 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑎𝑡𝑎𝑟𝑔𝑒𝑡 as the references to calculate low-level setpoints
𝑎𝑝𝑖𝑑 and 𝑣𝑝𝑖𝑑 . The 𝑣start and 𝑎start are updated using the following rule:

̂

5

𝑎start ← 𝑎start + 𝑑𝑡∕𝑑𝑡𝑝(𝑎target − 𝑎start) (11)

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

𝑣

(
T
s
𝑘

a
𝑔
s
W
𝑎

i

w
t
e

w
S
b
T

t
a
l
l
g
t

𝑣start ← 𝑣start + 𝑑𝑡(𝑎target + 𝑎start)∕2 (12)

where 𝑑𝑡 denotes the time step for the planner to update (0.05 s). We conjecture those surrogate variables 𝑣start and 𝑎start are
used to avoid potentially large compounding errors when directly incorporating 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 or 𝑎𝑡𝑎𝑟𝑔𝑒𝑡. In Algorithm 2, we show the
algorithm for computing the low-level setpoints 𝑎pid and 𝑣pid using the 𝑎target, 𝑣start and 𝑎start. Initially, we reset 𝑣start(0) = 𝑣ego(0)
and 𝑎start(0) = 𝑎ego(0).
Algorithm 2 Low-level controller algorithm for 𝑎pid, 𝑣pid with an MPC planner

Input: most recent 𝑎target, 𝑎start, 𝑣start
Output: 𝑎pid and 𝑣pid

Low-level loop for 𝑣pid(𝑡), 𝑎pid(𝑡) for 𝑡 ∈ {𝑡, 𝑡 + 0.01...𝑡 + 𝑑𝑡}:
1: 𝑑𝑡 = 𝑡 − 𝑡
2: 𝑎pid(𝑡) = 𝑎start + 𝑑𝑡(𝑎target − 𝑎start)∕𝑑𝑡𝑝
3: 𝑣pid(𝑡) = 𝑣start + 𝑑𝑡(𝑎pid(𝑡) + 𝑎start)∕2

2.3.2. Low-level controller
Now we introduce how the PI/PIF controllers track those low-level setpoints. Define the true speed at each control time 𝑡 as

ego, the speed error as 𝑒(𝑡) = 𝑣pid(𝑡) − 𝑣ego(𝑡), the formulation of PI/PIF control input is expressed as:

𝑎𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑡) = 𝑘𝑝 ⋅ 𝑒(𝑡) + 𝑘𝑖 ⋅ ∫

𝑡

0
𝑒(𝜏)𝑑𝜏 + 𝑘𝑓 ⋅ 𝑎pid(𝑡) (13)

where 𝑘𝑝, 𝑘𝑖 and 𝑘𝑓 correspond to the control gain for the proportional (P), integral (I) and feedforward (F) terms. Note that the
default control gains are speed-dependent in Openpilot, where 𝑘𝑝 = 𝑘𝑝(𝑣) and 𝑘𝑖 = 𝑘𝑖(𝑣); see Fig. 19. Similar to the parameter 𝑘 in
2), P and I gains are also piecewise linear and smaller at higher speeds. The 𝑘𝑓 equals to 1 in theory of the feed-forward control.
he first two terms in (13) construct a PI controller, and a feedforward term is added to form a PIF controller if the acceleration
etpoint is available. In the PI controller, the control gains are also varying under risky scenarios for safety reasons, where 𝑘𝑝 and
𝑖 are increased by 20% for every 1 m∕s2 of the required braking deceleration smaller than −1 m∕s2.

2.3.3. Actuator model and gas/brake estimator
For the 𝑎𝑐𝑜𝑛𝑡𝑟𝑜𝑙 demand, one has to calculate the gas/brake percentage 𝑔𝑏 for the actuator to execute it. To do so, we need a good

understanding of the actuator performance, i.e. the acceleration produced by a 𝑔𝑏 value, or the 𝑔𝑏2𝑎𝑐𝑐𝑒𝑙 function.

𝑎ego = 𝑔𝑏2𝑎𝑐𝑐𝑒𝑙(𝑔𝑏, 𝑣𝑒𝑔𝑜) (14)

The 𝑔𝑏2𝑎𝑐𝑐𝑒𝑙 function represents vehicle actuator model, which is highly nonlinear and dependent on current vehicle speed,
acceleration, road grade, wind, vehicle loads, and the control performance of engine/motor, transmission, and brake etc. The detailed
model of powertrain dynamics can be found in Rajamani et al. (2000), Li et al. (2016). Note that the torque supply of engine/motor,
nd the braking pressure are controlled under the factory settings of automakers, which are typically difficult to be accessed. The
𝑏2𝑎𝑐𝑐𝑒𝑙 function for a specific car model can be roughly fitted from its driving data. One can test several 𝑔𝑏 values under different
peed levels and record the produced true accelerations. Then a linear function or neural networks can be used to fit the model.
e will later show on many recent car models, the 𝑔𝑏2𝑎𝑐𝑐𝑒𝑙 is approximately a simple scaling function of the 𝑔𝑏 only, for example,
ego = 3𝑔𝑏, and accordingly the 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑏 function should share the same scale factor in the denominator, e.g. 𝑔𝑏 = 𝑎ego∕3.
Based on the actuator model 𝑔𝑏2𝑎𝑐𝑐𝑒𝑙, we can estimate the required 𝑔𝑏 given a desired acceleration using its inverse function,

.e. the estimator function 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑏, which calculates the desired gas/brake for the 𝑎𝑐𝑜𝑛𝑡𝑟𝑜𝑙 demand from (13):

𝑔𝑏 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑏(𝑎𝑐𝑜𝑛𝑡𝑟𝑜𝑙 , 𝑣ego) (15)

here 𝑔𝑏 ∈ [−1, 1] because the brake is negative. Recalling that 𝑎𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is the desired acceleration, to obtain the corresponding 𝑔𝑏,
he 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑏 must be in accordance with the 𝑔𝑏2𝑎𝑐𝑐𝑒𝑙 function. We consider the gas/brake estimator 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑏 is perfect if the
stimated 𝑔𝑏 always generates the same amount of the true acceleration 𝑎𝑒𝑔𝑜 as the acceleration control demands:

𝑎ego = 𝛽 ⋅ 𝑎𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (16)

hich holds obviously when 𝑔𝑏2𝑎𝑐𝑐𝑒𝑙 and 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑏 are both simple scaling functions with the reciprocal parameters, e.g 3 and 1/3.
ince the true dynamics or the simplified scale factor in 𝑔𝑏2𝑎𝑐𝑐𝑒𝑙 is usually unknown to us, the gas/brake estimator 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑏 can
e designed to have smaller or larger scale factors which causes the true acceleration overshoot or undershoot the 𝑎𝑐𝑜𝑛𝑡𝑟𝑜𝑙 demand.
o further study their impacts, we define the actuator system is ‘‘strong’’ if |𝑎ego| > |𝑎𝑐𝑜𝑛𝑡𝑟𝑜𝑙|, or ‘‘weak’’ if |𝑎ego| < |𝑎𝑐𝑜𝑛𝑡𝑟𝑜𝑙|.
Now we have formulated the upper-level planners and the low-level control systems used in OP. To summarize, OP has introduced

wo types of planners: a linear speed planner that outputs the target speed 𝑣𝑡𝑎𝑟𝑔𝑒𝑡, and a non-linear MPC planner that gives the target
cceleration 𝑎𝑡𝑎𝑟𝑔𝑒𝑡. The respective low-level system first processes 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 or 𝑎𝑡𝑎𝑟𝑔𝑒𝑡 and transforms it to feasible and continuous low-
evel setpoints 𝑣𝑝𝑖𝑑 or 𝑎𝑝𝑖𝑑 . Then a speed (PI) or acceleration (PIF) low-level controller is used to track 𝑣𝑝𝑖𝑑 , or 𝑎𝑝𝑖𝑑 or both. The
ow-level controller calculates the 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 command, based on which the gas/brake estimator 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑏 calculates the corresponding
as/brake percentages 𝑔𝑏. Finally the actuator plant, i.e. 𝑔𝑏2𝑎𝑐𝑐𝑒𝑙, executes the 𝑔𝑏 and generates the true accelerations 𝑎𝑒𝑔𝑜 to move
he vehicle.
6

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

p
o
t
M

3

c
p
p
t
w
m
t
w

3

u

a

𝑘
r

d
I
d

Fig. 3. Comparing SS of OP and general linear planners and the impact of gains and frequencies.

We conjecture the similar low-level controller should widely exist in market ACC systems: (i) the frequency gap between the
lanning (sensor) and execution (actuator) needs the car to have a separate tracking reference for the low level; (ii) the planner
utputs are usually prone to fluctuations due to sensor measurement error or imperfect execution, thus they cannot be directly fed
o actuator; (iii) a controller is certainly necessary to help track the setpoints and PI/PIF are typically go-to options if they are not
PCs.

. Impact mechanism of slow/fast low-level control on SS of linear ACCs

Traditionally, the SS of bi-level ACCs is only captured using planner’s model. While the imperfect low-level control inevitably
hanges the whole dynamics, we conjecture the slow/fast low-level control could cause an effect similar to increased/decreased the
lanner gains. To investigate the impact of low-level control on the overall SS of ACCs, it would be worthwhile to study the SS of
lanners first, and see how it could be changed by a small variation of the planner gain. In the above section, we have introduced
he OP linear speed planner, which is new to the literature. In this section, we will first study its SS properties and then investigate
hether the low-level control can be fully captured by the planner model only. To see this, we will extend the SS analysis from the
ere planner to bi-level loops including the low-level control. Notice that OP linear planner is a unique planner that outputs the
arget speed and pairs with a PI low-level controller, without loss of generality we also investigate the popular linear ACC planner
idely adopted in the literature, which outputs target accelerations and is followed by a PIF low-level controller.

.1. SS characteristics of pure linear planners

As stated earlier, the OP linear planner is different from the traditional linear CF models in the literature, which features a
nique CTH policy that depends on the leader speed 𝑣𝑙𝑒𝑎𝑑 , not the ego speed 𝑣𝑒𝑔𝑜. Further, it is a speed planner that directly outputs
a desired target speed, not the acceleration, for the low-level system to track. Therefore, such planner does not fall into the range
of traditional linear CF models, whose SS is worth more investigation.

We first convert the time-domain linear speed planner in (2) into frequency domain:

𝑣target(𝑗𝜔) = 𝑘[𝑥lead(𝑗𝜔) − 𝑥ego(𝑗𝜔) − 𝜏𝑣lead(𝑗𝜔)] + 𝑣lead(𝑗𝜔) (17)

where 𝜔 is the angular frequency, 𝑗 is the complex number indicator. As here we focus merely on the planner, we assume
𝑣ego = 𝑣target. Then substituting in (1), and applying the position as the integrator of corresponding speed: 𝑥lead(𝑗𝜔) = 𝑣lead(𝑗𝜔)∕𝑗𝜔,
and 𝑥ego(𝑗𝜔) = 𝑣ego(𝑗𝜔)∕𝑗𝜔 = 𝑣target(𝑗𝜔)∕𝑗𝜔, we can rearrange (17) into the speed to speed transfer function 𝛤OP using the SS
nalysis approach in Wilson and Ward (2011), Montanino and Punzo (2021):

𝛤OP =
𝑣target(𝑗𝜔)
𝑣lead(𝑗𝜔)

=
𝑗(1 − 𝑘𝜏)𝜔 + 𝑘

𝑗𝜔 + 𝑘
(18)

The squared 2-norm of the transfer function 𝛤OP equals to:

‖𝛤OP‖2 =
‖

‖

‖

‖

‖

𝑣target(𝑗𝜔)
𝑣lead(𝑗𝜔)

‖

‖

‖

‖

‖

2

2
=

[(1 − 𝑘𝜏)𝜔]2 + 𝑘2

𝜔2 + 𝑘2
≤ 1 (19)

If |1 − 𝑘𝜏| ≤ 1, i.e. 0 ≤ 𝑘𝜏 ≤ 2, we have 𝛤OP ≤ 1, where the planner is string stable, and 𝜔 → 0 gives the maximum 𝛤OP = 1. When
𝜏 > 2, the planner is string unstable and 𝛤OP increases with the angular frequency 𝜔, where 𝜔 → 0 gives the minimum transfer
atio.
The impact of gain 𝑘 and the frequency 𝜔 on the SS is shown in Fig. 3(a). Noticeably, the increasing/decreasing interval

epends on the angular frequency 𝜔, which means the oscillation wavelength determines the impact of a decreased/increased gain.
nterestingly, the convex pattern of the OP linear’s TF suggests that if the oscillation frequency 𝜔 is known in advance, we can
erive the optimal gain 𝑘∗ for the ACC follower to best dampen the wave:

𝑑‖𝛤OP‖2(𝑘)
=

2𝜏𝜔(𝑘2 + (−1 + 𝑘𝜏)𝜔2)
= 0 ⇒ 𝑘∗ = 1 (−𝜏𝜔2 +

√

𝜔2(4 + 𝜏2𝜔2)) (20)
7

𝑑𝑘 (𝑘2 + 𝜔2)2 2

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

2
a

F
t
c
f
c
e

which suggests that predicting the leader oscillation wavelength can help the follower dynamically adjust the response rate in order
to reduce speed perturbations. This feature might be similar to what human drivers are capable of.

The general linear acceleration planners have been widely used in ACC literature (Wilson and Ward, 2011; Gunter et al.,
019), which has control gains 𝑘𝑥 and 𝑘𝑣 with respect to both spacing and speed errors, and such linear controllers output desired
ccelerations instead of speeds. The linear ACC planner is typically formulated as follows:

𝑎𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) = 𝑘𝑥(𝑠𝑒𝑔𝑜(𝑡) − (𝜏 ⋅ 𝑣𝑒𝑔𝑜(𝑡) + 𝛿)) + 𝑘𝑣(𝑣𝑙𝑒𝑎𝑑 (𝑡) − 𝑣𝑒𝑔𝑜(𝑡)) (21)

The squared 2-norm of its TF has already been derived in previous studies as:

‖𝛤 𝑃𝐷
‖

2 =
𝜔2𝑘2𝑣 + 𝑘2𝑥

𝜔2(𝑘𝑣 + 𝑘𝑥𝜏)2 + (𝑘𝑥 − 𝜔2)2
(22)

Opposite to the linear speed planner in OP, the TF of the general linear acceleration planner shows a concave pattern; see
ig. 3(b). Also the increase in the spacing gain 𝑘𝑥 and the speed gain 𝑘𝑣 around their default values can lead to opposite impacts on
he SS. The impact of spacing gain changes on TF is more sensitive to the oscillation frequency 𝜔, since the common value 𝑘𝑥 = 0.15
ould fall into either the increasing or the decreasing interval when 𝜔 is small. It suggests increasing 𝑘𝑥 improves SS under small
requency such as 𝜔 = 0.1 or 𝜔 = 0.3, but undermines SS when 𝜔 = 0.5 or 𝜔 = 1.0. By contrast, the TF is less sensitive to the
hanges in speed gain 𝑘𝑣, whose common value is around 0.25 and seems to always improve the SS unless the frequency is large,
.g. 𝜔 = 1.0.
Interestingly, the TF of linear planners all show the convergence trend with gains. Mathematically, we have:

lim 𝑘→∞‖𝛤OP‖2 = 1 + 𝜏2𝜔2 (23)

lim 𝑘𝑥→∞‖𝛤 𝑃𝐷
‖

2 = 1
1 + 𝜏2𝜔2

(24)

lim 𝑘𝑣→∞‖𝛤 𝑃𝐷
‖

2 = 1 (25)

although regular values for those gains are around 0.2, (23) and (24) could partially explain why the impact of gain 𝑘 and 𝑘𝑥 are
more related to oscillation frequency 𝜔 and time headway 𝜏. Eq. (25) suggests controlling the speed difference is an easy solution
to the marginal SS but it does not guarantee the safe spacing.

The above SS analysis of linear planners suggest that the OP linear speed planner has unique features against general acceleration
planners in following aspects: (i) the string stable condition holds for almost all feasible values of the only control gain 𝑘, (ii) there
exists an optimal 𝑘 for best SS provided the oscillation frequency 𝜔, and (iii) increasing the gain 𝑘 deteriorates the SS under small
𝜔 and improves SS under large 𝜔, which has an opposite pattern with general linear ACC planners. The common feature of both
the OP and general linear ACC is that they both show the variation in spacing gains, i.e. 𝑘 and 𝑘𝑥, can significantly affect the SS
and such impact is closely related to the angular frequency 𝜔, or equivalently the wavelength, of a leader oscillation.

The above analysis adopts the traditional TF method in the literature to study how linear ACC’s SS is affected. Suppose the
slow/fast low-level control decreases/increases the upper-level planner gains as an overall effect, the above analysis could offer
some insights of the low-level impact mechanism. However, such assumption needs more justification and also fails to capture the
full interaction between two levels, which motivates us to study the SS of full bi-level loops of ACC systems.

3.2. SS theory for full ACC control loops

The above analysis of SS for planners casts some light into the impact mechanism of slow/fast low-level control by assuming
they behave as decreased/increased planner gains. however, the true impact of low-level control could be more complex considering
the ACC system is a closed feedback control loop, where the execution of low-level controller delivers signal back to the upper-
level planner, while the upper-level planner also sends signal to the low-level controller. The interaction between these two levels
makes the overall dynamic difficult to track, and errors become compounding due to the feedback mechanism. Additionally, the
intermediate modifications from the factory longitudinal control algorithm, and the imperfect execution of vehicle actuator in the
real world also contributes to the difficulty of analysis the string stability of an ACC system. In this section, with some proper
simplifications, we try to derive the SS of the bi-level control loop in linear ACC systems, and then investigate how slow/fast
low-level control affects their overall SS.

Fig. 4(a) illustrates a simplified control loop of an ACC system consisting of the OP linear planner (2) and the PI low-level
controller (labeled as OP-PI ACC system). The 𝛼 capture the effect of the longitudinal control algorithm transforming upper level
planner targets to low-level setpoints, 𝛼 = 𝑣𝑝𝑖𝑑∕𝑣𝑡𝑎𝑟𝑔𝑒𝑡 for speed planner or 𝛼 = 𝑎𝑝𝑖𝑑∕𝑎𝑡𝑎𝑟𝑔𝑒𝑡 for the acceleration planner. The 𝛽 is
another factor representing the imperfect control execution of the vehicle actuator possibly due to some real-world disturbances
such as grades, i.e. 𝛽 = 𝑎𝑒𝑔𝑜∕𝑎𝑐𝑜𝑛𝑡𝑟𝑜𝑙 meanwhile 𝛽 can also be understood as a multiplier to scale the default controller gains, which
makes controller faster when 𝛽 > 1. Following the similar style, Fig. 4(b) shows a simplified control loop of an ACC system consists
of the general linear acceleration planner (21), i.e. (PD) upper-level planner, and the PIF low-level controller (labeled as PD-PIF
8

ACC system).

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

i

Fig. 4. Feedback control loops of linear ACC systems.

Then, following the feedback control loop in Fig. 4(a), we derive the TF of the full OP-PI ACC system following the procedures
of TF derivation in Åström and Murray (2008). Following the feedback loop from left to right, we can write the expression of the
position of ego vehicle 𝑋𝑖(𝑠) in the Laplace domain as:

𝑋𝑖(𝑠) = 𝛽(𝑘𝑝 +
𝑘𝑖
𝑠
)
[

𝛼(𝑘(𝑋𝑖−1(𝑠) −𝑋𝑖(𝑠) − 𝜏𝑉𝑖−1(𝑠)) + 𝑉𝑖−1(𝑠)) − 𝑉𝑖(𝑠)
] 1
𝑠2

(26)

Then, with 𝑠 as the differential operator and 1∕𝑠 as the integral operator, we can substitute 𝑉𝑖(𝑠) = 𝑠𝑋𝑖(𝑠), and 𝑉𝑖−1(𝑠) = 𝑠𝑋𝑖−1(𝑠)
nto (26) to perform some arithmetic simplification. Correspondingly, we can obtain the TF as:

𝛤OP-PI(𝑠) =
𝑋𝑖(𝑠)
𝑋𝑖−1(𝑠)

=
𝛼𝛽[(𝑘𝑝 − 𝑘𝑘𝑝𝜏)𝑠2 + (𝑘𝑘𝑝 + 𝑘𝑖 − 𝑘𝑘𝑖𝜏)𝑠 + 𝑘𝑘𝑖]

𝑠3 + 𝛽𝑘𝑝𝑠2 + 𝛽(𝛼𝑘𝑘𝑝 + 𝑘𝑖)𝑠 + 𝛼𝛽𝑘𝑘𝑖
(27)

Substituting in 𝑠 = 𝑗𝜔, the corresponding squared L2-norm of (27) is:

‖𝛤OP-PI(𝑗𝜔)‖22 =
𝛼2𝛽2(𝑘2𝑖 + 𝑘2𝑝𝜔

2)(𝜔2 + 𝑘(𝑘 − 2𝜔2𝜏 + 𝑘𝜔2𝜏2))

(𝛼𝛽𝑘𝑘𝑖 − 𝛽𝑘𝑝𝜔2)2 + (−𝛽(𝑘𝑖 + 𝛼𝑘𝑘𝑝)𝜔 − 𝜔3)2
(28)

Similarly, following the feedback control loop in Fig. 4(b), we derive the TF as of the PD-PIF bi-level ACC loop:

𝛤 PD-PIF(𝑠) =
𝛼𝛽[𝑘𝑣𝑘𝑓 𝑠3 + (𝑘𝑥𝑘𝑓 + 𝑘𝑣𝑘𝑝)𝑠2 + (𝑘𝑥𝑘𝑝 + 𝑘𝑣𝑘𝑖)𝑠 + 𝑘𝑥𝑘𝑖]

𝑠4 + 𝛽[𝐾TF,1𝑠3 +𝐾TF,2𝑠2 + 𝛼𝐾TF,3𝑠 + 𝛼𝑘𝑥𝑘𝑖]
(29)

where 𝐾TF,1 = 𝑘𝑝 + 𝛼𝑘𝑥𝑘𝑓 𝜏 + 𝛼𝑘𝑣𝑘𝑓 , 𝐾TF,2 = 𝑘𝑖 + 𝛼𝑘𝑣𝑘𝑝 + 𝛼𝑘𝑥𝑘𝑝𝜏 + 𝛼𝑘𝑥𝑘𝑓 , 𝐾TF,3 = 𝑘𝑥𝑘𝑝 + 𝑘𝑥𝑘𝑖𝜏 + 𝑘𝑣𝑘𝑖. The corresponding squared
2-norm of (29) is expressed as:

‖𝛤 PD-PIF(𝑗𝜔)‖22 =
[𝛼𝛽𝑘𝑥𝑘𝑖 − (𝛼𝛽𝑘𝑥𝑘𝑓 + 𝛼𝛽𝑘𝑣𝑘𝑝)𝜔2]2 + [(𝛼𝛽𝑘𝑥𝑘𝑝 + 𝛼𝛽𝑘𝑣𝑘𝑖)𝜔 − 𝛼𝛽𝑘𝑣𝑘𝑓𝜔3]2

[𝛼𝛽𝐾TF,3𝜔 − 𝛽𝐾TF,1𝜔3]2 + [𝛼𝛽𝑘𝑥𝑘𝑖 − 𝛽𝐾TF,2𝜔2 + 𝜔4]2
(30)

Now we have derived the TFs for full ACC loops with both upper-level planners and low-level control system. Interestingly, we
find the TF of those pure planners mentioned earlier are just special evaluations of the TFs of the full ACC loops we derived here.
To show this, from (28), we first assume the integral gain 𝑘𝑖 = 0 and 𝛼 = 1, and let 𝑘′𝑝 = 𝑘𝑝𝛽 which reduces the full loop TF to:

‖𝛤OP-PI(𝑗𝜔, 𝑘𝑖 = 0, 𝛼 = 1)‖22 =
(𝑘𝑘′𝑝)

2𝜔2 + 𝜔4(𝑘′𝑝 − 𝑘𝑘′𝑝𝜏)
2

𝑘′2
𝑝 𝜔4 + (𝑘𝑘′𝑝𝜔 − 𝜔3)2

=
𝑘2 + 𝜔2(1 − 𝑘𝜏)2

𝜔2 + (𝑘 − 𝜔2
)2

(31)
9

𝑘′𝑝

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

U
c

𝑘
𝛽
s

S

Taking the limit of 𝑘′𝑝 gives us:

lim
𝑘′𝑝→∞

‖𝛤OP-PI(𝑗𝜔, 𝑘𝑖 = 0, 𝛼 = 1)‖22 =
[(1 − 𝑘𝜏)𝜔]2 + 𝑘2

𝜔2 + 𝑘2
(32)

which is the exact the TF of the OP linear planner we derived earlier in (19). It also suggests that only fast enough PI low-level
control can achieve the desired SS.

Similarly, for general linear ACCs, we assume 𝛼 = 1 and 𝑘𝑖 = 0, which gives us:

‖𝛤 PD-PIF(𝑘𝑝 = 0)‖22 =
𝛽2𝑘2𝑓𝑘

2
𝑥𝜔

4 + 𝛽2𝑘2𝑓𝑘
2
𝑣𝜔

6

𝛽2𝑘2𝑓 (𝑘𝑣 + 𝑘𝑥𝜏)2𝜔6 + (−𝛽𝑘𝑓𝑘𝑥𝜔2 + 𝜔4)2
=

𝑘2𝑥 + 𝜔2𝑘2𝑣
𝜔2(𝑘𝑣 + 𝑘𝑥𝜏)2 + (𝑘𝑥 −

𝜔2

𝛽𝑘𝑓
)2

(33)

‖𝛤 PD-PIF(𝑘𝑓 = 0)‖22 =
𝛽2𝑘2𝑝𝑘

2
𝑥𝜔

2 + 𝛽2𝑘2𝑝𝑘
2
𝑣𝜔

4

(−𝛽𝑘𝑝𝑘𝑥𝜔 + 𝛽𝑘𝑝𝜔3)2 + (−𝛽𝑘𝑝(𝑘𝑣 + 𝑘𝑥𝜏)𝜔2 + 𝜔4)2
=

𝑘2𝑥 + 𝜔2𝑘2𝑣
𝜔2(𝑘𝑣 + 𝑘𝑥𝜏 −

𝜔3

𝛽𝑘𝑝
)2 + (𝑘𝑥 − 𝜔2)2

(34)

Let 𝑘′𝑓 = 𝛽𝑘𝑓 and 𝑘′𝑝 = 𝛽𝑘𝑝, we have:

lim
𝑘′𝑝→∞

‖𝛤 PD-PIF(𝑘𝑓 = 0, 𝑘𝑖 = 0)‖22 =∥ 𝛤 PD-PIF(𝑘𝑝 = 0, 𝑘𝑖 = 0, 𝑘′𝑓 = 1) =
𝜔2𝑘2𝑣 + 𝑘2𝑥

𝜔2(𝑘𝑣 + 𝑘𝑥𝜏)2 + (𝑘𝑥 − 𝜔2)2
(35)

which also indicates the TF of the general linear ACC planner in (22) is just a special evaluation of the bi-level ACC system given
the perfect low-level control.

3.3. Impact of low-level control on SS of linear ACCs

As mentioned earlier, 𝛽 can be understood as the scale for the low-level controller gains. Before studying the impact of low-level
control gains, we are interested in if a scaled low-level controller gain has the same or similar effect with the scaled planner gains
with the same factor 𝛽.

To check this, apply the scale factor 𝛽 to the planner gain 𝑘, i.e. 𝑘′ = 𝛽𝑘, and plug in the original P gain 𝑘𝑝, then Eq. (31)
becomes:

(𝑘′𝑘𝑝)2𝜔2 + 𝜔4(𝑘𝑝 − 𝑘′𝑘𝑝𝜏)2

𝑘𝑝𝜔4 + (𝑘′𝑘𝑝𝜔 − 𝜔3)2
(36)

nfortunately, this does not equal to (31), suggesting that a scaled low-level controller gain 𝑘𝑝 has different impacts on the SS
ompared to a scaled planner gain 𝑘 with the same 𝛽.
To check if the scaled planner gains 𝑘′𝑥, 𝑘′𝑣 have the same effect with the scaled low-level controller gains 𝑘′𝑝 and 𝑘′𝑓 for the

general linear ACCs, apply the replacing rules 𝑘′𝑓 = 𝛽𝑘𝑓 , 𝑘′𝑝 = 𝛽𝑘𝑝, 𝑘′𝑥 = 𝛽𝑘𝑥 and 𝑘′𝑣 = 𝛽𝑘𝑣 into (33) and (34). After substitutions we
have:

𝑘′2
𝑓 𝑘

2
𝑥𝜔

4 + 𝑘′2
𝑓 𝑘

2
𝑣𝜔

6

𝑘′2
𝑓 (𝑘𝑣 + 𝑘𝑥𝜏)2𝜔6 + (−𝑘′𝑓𝑘𝑥𝜔

2 + 𝜔4)2
=

𝑘′2
𝑥 𝑘

2
𝑓𝜔

4 + 𝑘2𝑓𝑘
′2
𝑣 𝜔

6

𝑘2𝑓 (𝑘
′
𝑣 + 𝑘′𝑥𝜏)2𝜔6 + (−𝑘𝑓𝑘′𝑥𝜔2 + 𝜔4)2

(37)

𝑘′2
𝑝 𝑘

2
𝑥𝜔

2 + 𝑘′2
𝑝 𝑘

2
𝑣𝜔

4

(−𝑘′𝑝𝑘𝑥𝜔 + 𝑘′𝑝𝜔3)2 + (−𝑘′𝑝(𝑘𝑣 + 𝑘𝑥𝜏)𝜔2 + 𝜔4)2
=

𝑘2𝑝𝑘
′2
𝑥 𝜔

2 + 𝑘2𝑝𝑘
′2
𝑣 𝜔

4

(−𝑘𝑝𝑘′𝑥𝜔 + 𝛽𝑘𝑝𝜔3)2 + (−𝑘𝑝(𝑘′𝑣 + 𝑘′𝑥𝜏)𝜔2 + 𝜔4)2

≈
𝑘2𝑝𝑘

′2
𝑥 𝜔

2 + 𝑘2𝑝𝑘
′2
𝑣 𝜔

4

(−𝑘𝑝𝑘′𝑥𝜔 + 𝑘𝑝𝜔3)2 + (−𝑘𝑝(𝑘′𝑣 + 𝑘′𝑥𝜏)𝜔2 + 𝜔4)2
(38)

where (37) suggests that when only F gain exists, the scale factor 𝛽 on 𝑘𝑓 has the exactly same effect of scaled planner gains 𝑘𝑥 and
𝑣 with the same 𝛽. The (38) suggests that the scaled P gain 𝛽𝑘𝑝 has an approximately equal impact with the scaled planner gains
𝑘𝑥 and 𝛽𝑘𝑣, provided the I gain and F gain is zero.Contrary to OP linear ACC, the general linear ACC with PIF low-level controllers
eem to better support the assumption that slow low-level control just means smaller planner gains.
The above analysis also sheds insights of how the low-level control gains, the actuator performance or both can affect the overall

S of the ACC. Using (32), (33), and (34), we are able to derive the increasing/decreasing interval of TFs with respect to 𝛽𝑘𝑝 and
𝛽𝑘𝑓 . Correspondingly, the decreasing interval for the TF (32) of the OP linear ACC is [𝜔∕𝑘,+∞) with respect to 𝛽𝑘𝑝. For general
linear ACCs, the decreasing interval of (33) with respect to 𝛽𝑘𝑓 , is [𝜔2∕𝑘𝑥,+∞), and for 𝛽𝑘𝑝, the decreasing interval of (34) is
[𝜔3∕(𝑘𝑣 +𝑘𝑥𝜏),+∞). Starting from the default values 𝛽 = 1, 𝑘𝑓 = 1 and 𝑘𝑝 = 0.7, a small deviation from them can result from control
design or external disturbances. Their impact on SS can be determined using those increasing/decreasing intervals derived above.
In general, fast low-level control, i.e. larger 𝛽, 𝑘𝑝 and 𝑘𝑓 , will benefit the SS under small frequencies and has the opposite effect at
large frequencies if they fall into the increasing intervals of the TF.

The above analysis based on (37) and (38) both require a zero I gain along with a zero P or F gain for maximum simplification. In
practice, the impact mechanisms could be more complex when P, I, and F interact with each other. Now we release the assumption
10

of 𝑘𝑖 and study the details changes of the TF caused by different combinations of controller gains and actuator performance under

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

i

a
g
𝑘
d
l
F
g
(

Fig. 5. Impact of low-level control on SS of the OP linear ACC: 𝛤 2 > 3 is truncated from the figures.

varying oscillations. Based on original TFs (28) and (30) for full bi-level ACCs, Figs. 5 and 6 depicts how the SS, i.e. |𝛤 |

2, is affected
by low-level control and oscillation frequencies.

For the OP linear ACC, Fig. 5(a) shows that, increasing 𝛽 (default value 1.0) and 𝑘𝑝 (default value 0.7) both improves the SS at
small frequencies and undermines it at large frequencies, which is consistent with our theory of its decreasing interval. However,
such impact pattern only holds when the integral gain 𝑘𝑖 = 0, and it is substantially altered after a slight increase in 𝑘𝑖. Fig. 5(b)
shows that 𝑘𝑖 can lead the TF to rise quickly under large frequencies such as 𝜔 = 0.5 or 𝜔 = 1.0 provided the actuator is weak,
.e. 𝛽 < 1. By contrast Fig. 5(b) shows the OP linear ACC is always string stable for arbitrary 𝑘𝑝 or 𝛽 values under those same
oscillations without integral gains, where the SS even gets better with a smaller 𝛽. Fig. 5(c) suggests the integral gain also makes
the TF to explode when coupled with a small P gain 𝑘𝑝. In the same figure we see a large 𝑘𝑖 (around 0.7) even makes large-frequency
(𝜔 = 1.0) oscillations become unstable, unless a very strong 𝑘𝑝 (close to 1.0) is paired to stabilize the TF. In comparison with Fig. 5(a)
where 𝑘𝑖 = 0, Fig. 5(d) re-depicts the impact of actuator performance and the P gain given the default I gain value 𝑘𝑖 = 0.1. We
noticed that, for 𝑘𝑝 the increasing interval [0, 𝑘∗𝑝] becomes narrower with 𝑘∗𝑝 getting smaller under all frequencies. Similarly, the
increasing interval of 𝛽, i.e. [0, 𝛽∗] gets closer to zero, which makes the TF no longer monotonically decreases with 𝛽, i.e. a stronger
actuator cannot always ensure better SS. Fig. 5(e) verifies that our estimated decreasing interval for 𝛽𝑘𝑝 is [𝜔2∕𝑘,+∞), where 𝑘 = 0.5
and 𝜔 = 0.5 lead to 𝑘∗𝑝 = 𝜔2∕𝑘 = 0.5, and it becomes smaller when 𝛽 is large. Fig. 5(f) confirms our finding about the decreasing
interval is independent of headway 𝜏.

For general linear ACCs, Figs. 6(a) and 6(b) shows that a stronger actuator (𝛽) and a larger P/F gain (𝑘𝑝/𝑘𝑓) improve the SS at
small frequencies and undermine it at large frequencies, which aligns with the increasing/decreasing analysis from (33) and (34),
s well as the earlier analysis on planner gain 𝑘𝑥 in Fig. 3(b). Fig. 6(c) and Fig. 6(d) shows the similar impact pattern still holds
iven the default P and I gains (𝑘𝑖 = 0.1 and 𝑘𝑝 = 0.7). Interestingly, impact of the integral gain 𝑘𝑖 becomes less sensitive to small
𝑝 and 𝛽 values compared to the PI controller in the OP linear ACC. Noticeably, Fig. 6(d) shows the default integral gain 𝑘𝑖 = 0.1
oes not explode the TF even if coupled with small 𝑘𝑝 or 𝛽, which is in contrast with Fig. 5(d). Fig. 6(e) displays that even super
arge I gains, e.g. 𝑘𝑖 = 1.0, do not explode the TF given a weak actuator, showing more stability than the PI low-level controller in
ig. 5(b). Fig. 6(g) further manifests the robustness of the PIF controller against errors, where 𝑘𝑝 and 𝑘𝑖 seem not affect the SS at all
iven 𝑘𝑓 = 1 and 𝛽 = 1. The last row of Fig. 6 further shows that the impact of the I gain is only significant given weak actuators
see Fig. 6(g)), smaller P gains (see Fig. 6(h)) and slow feedforward control (see Fig. 6(i)).
From the above analysis, we draw the following remarks:

R-1 Slow/fast low-level control has a similar but not equivalent effect on SS compared to small/large upper-level planner
gains. We found that the slow/fast low-level controller in linear ACC systems, i.e. smaller/larger 𝑘𝑝 and 𝑘𝑓 gains, or 𝛽,
behave similarly but not equivalently to the decreased/increased planner gains with the same scale factor. Mathematically,
only Eq. (37) proves that the discount factor 𝛽 applied to low-level controller gains is equivalent to 𝛽 multiplied by upper-level
planner gains provided no P or I gain is used. The (36) and (38) both suggest that such equivalence does not apply to 𝑘𝑝
even if 𝑘𝑖 is zero. Such finding suggests that the ACC design should not only focus on tuning the planner gains, instead the
low-level control should be considered as well to guarantee the overall SS.
11

Transportation Research Part C 140 (2022) 103697H. Zhou et al.
Fig. 6. Impact of slow/fast control loop on SS of general linear ACCs: the captions of subfigures mark the key parameters not shown in the plots.

R-2 Integral gain substantially deteriorates ACC’s SS under slow low-level control. The above results suggest that the integral
gain can significantly move the increasing/decreasing interval of the TF with respect to 𝑘𝑝 and 𝛽, which may even cause
opposite impact of slow/fast low-level control when it has no integral control, e.g. a stronger actuator can unexpectedly
undermine the SS under small frequencies. We also find the integral gain can easily explode the TF if 𝑘𝑖 and 𝑘𝑝 are not well
paired, or the actuator severely undershoots, making the whole ACC less robust in terms of SS. Such issues can happen when
I gains are still close to default values, and they are more devastating when I gain gets larger. It suggests that extra precaution
is needed to balance the low-level gains and guarantee the actuator performance if the integral control is used.

R-3 The PIF controller is more robust against the impact of slow low-level control than PI controllers. The PI speed
controller is shown to be too sensitive to small P gains and actuator undershootings, where the integral gain further
deteriorates the SS. By contrast, the PIF controller combines both the feedback and feedforward controller to execute
desired accelerations/speeds, which provides extra robustness in case one under-performs. Mathematically, one can verify
that the following partial derivatives 𝜕‖𝛤 PD-PIF(𝑘𝑓 = 1, 𝛽 = 1)‖22∕𝜕𝑘𝑝 = 0, 𝜕‖𝛤 PD-PIF(𝑘𝑓 = 1, 𝛽 = 1)‖22∕𝜕𝑘𝑖 = 0 and
𝜕‖ lim𝑘𝑝→∞ 𝛤 PD-PIF(𝛽 = 1)‖22∕𝜕𝑘𝑓 = 0, which helps explains why descent control of either F or PI makes the whole controller
more robust to the potential failure of the other.

R-4 Low-level impact is more sensitive to oscillation wavelengths than headways. Despite that the headway 𝜏 plays a
significant role in planner’s SS, it barely affects the impact of slow/fast low-level control, as 𝜏 has none or little impact
on the bounds of the decreasing intervals derived from (31), (33), (34), which are 𝜔2∕𝑘, 𝜔2∕𝑘𝑥 and 𝜔3∕(𝑘𝑣 + 𝑘𝑥𝜏).

The above analysis for linear ACCs is conducted in the frequency domain. We provide more intuition in the time domain in
Appendix A. Also notice that for linear ACC systems, the impact of slow/fast low-level controllers does not vary with the amplitude
of the signals, indicating a scale-invariant property. We will shortly show, this is not true for non-linear MPC ACCs in Openpilot, as
12

well as the empirical tests in the literature (Li et al., 2021).

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

f
M
i

4

t
c
a

c

4. Impact mechanism of low-level control on SS of MPC ACCs

In the previous section we have shown the impact of low-level control on the SS of linear ACCs based on the TFs of the bi-level
eedback loops. Unfortunately, similar analytical methods using TFs cannot be directly used for nonlinear control systems such as
PC ACCs. To circumvent this, we start by investigating the characteristics of the MPC planners experimentally, then analyze the
mpact of slow/fast low-level control by approximation.

.1. Characteristics of MPC planners: non-linearity and scenario-dependent gains

Different from most CF models, MPC planners handle the CF task by first predicting the leader movement, and then solving the
rajectory of the follower from an optimization problem that balances safety, efficiency and driving comfort. Although no explicit
ontrol gains are involved in MPC planners, to understand its characteristics we can approximate the MPC gain as the ratio between
ccelerations and spacing errors, i.e. 𝑎𝑒𝑔𝑜∕(𝑠𝑒𝑔𝑜 − 𝑠𝑑𝑒𝑠), similarly to the gain 𝑘 in linear controllers such as (2).
We argue that the MPC gain is scenario-specific due to the prediction capability as well as the safety design according to the

open-source MPC model in OP (10). To illustrate, in the look-ahead planning horizon of the MPC, the predicted leader trajectory
always impacts the current follower decisions since it is the reference line for estimations of spacing and relative speeds. A simple
lead prediction model, e.g. the (9d), often bases its prediction on the current leader acceleration 𝑎𝑙𝑒𝑎𝑑 . In the case where the follower
needs to brake for a safer spacing, an accelerating leader helps to enlarge the space hence saves the follower’s efforts from braking
too hard, while the decelerating leader would force the follower to brake harder than the case without prediction. On the other
hand, it is common that the safety cost increases nonlinearly with spacing errors. For example, the exponential safety term in (4)
becomes more dominant in MPC’s total cost when spacing errors are large, which likely results in hard brakes to reduce the safety
cost and possibly sacrifices other cost terms with respect to comfort or accelerations. Note that in non-emergency cases the MPC
is designed to be comfort-oriented, which always promotes small jerks and small accelerations thanks to the cost functions in (6)
and (7). In a nutshell, these design features suggest MPC gains are scale-dependent and scenario-specific, which are supposed to be
small given small spacing errors, larger leader accelerations and could increase quickly in risky scenarios when the leader brakes
hard and the spacing error is large.

As an example of the varying MPC gain, the OP MPC planner without a low-level controller is tested against a typical deceleration
oscillation and the results are displayed in Fig. 7(a). The MPC gain in the deceleration phase is initially small and increases with
spacing errors and the leader deceleration for safety reason, later it drops again to comfortably follow the leader when the leader
starts to accelerate away. We further show the relationship between the MPC gain in Fig. 7(a) with the spacing error in Fig. 7(b)
and the leader acceleration in Fig. 7(c), which support our conjectures above.

In this example, the MPC gain increases first and decreases later when the lead vehicle starts to accelerate again while at the
same time the spacing error is not very large. We refer to this as the ‘fast-slow’ pattern for the varying gain, which benefits traffic
congestion since it effectively responds to the leader deceleration at first such that it does not need to brake hard later to cause
speed overshootings and undermine the SS. Oppositely, the MPC gain can be ‘slow-fast’, which reacts to deceleration oscillations
slowly at first, accumulates spacing errors, and later has to respond fast to large cumulative spacing errors with larger control gains.
The impact of the ‘slow-fast’ varying gain may have a different impact on SS, which needs further investigation.

4.2. Impact of slow/fast low-level control on the SS of MPC ACCs

The above analysis on MPC’s planning characteristics suggests that MPC can have different varying gain patterns, i.e. ‘fast-slow’
or ‘slow-fast’ under large oscillations, now we study their impacts on the overall SS.

Fig. 13(a) shows a typical CF scenario in a congestion shockwave, where the ACC follower often overshoots the leader speed 𝑣𝑙
and amplifies the congestion wave. At the time 𝑇𝑜𝑠, the follower reaches the new leader speed 𝑣𝑙, and the spacing error is 𝑒𝑠.

From the beginning to time 𝑇𝑜𝑠, the spacing error accumulates, which is approximately equal to the area between the shifted
leader speed (with time 𝜏) and the true speed of the following MPC. At 𝑇𝑜𝑠, the planning goal of the MPC is approximately moving
its future trajectory towards the desired trajectory safely and comfortably. Considering that the leader has zero acceleration after
𝑇𝑜𝑠, the desired trajectory of the following MPC can be approximated as the shifted leader, or ‘‘Newell trajectory’’ (Newell, 2002),
as shown in Fig. 8(b), where the initial position of the MPC equals the spacing error 𝑒𝑠. Apparently, the MPC with slow low-level
ontrol will delay the time 𝑇𝑜𝑠 and consequently result in a larger spacing error 𝑒𝑠.
In the overshooting process after time 𝑇𝑜𝑠, we approximate the MPC dynamics using the general linear CF model in (21) for

mathematical tractability. Using 𝑇𝑜𝑠 and the desired position at 𝑇𝑜𝑠 as the origin point for the axis of the ODE problem; see Fig. 8(b);
we have:

𝑥̈𝑒𝑔𝑜(𝑡) = 𝑘𝑥(𝑡)(𝑥𝑙𝑒𝑎𝑑 (𝑡) − 𝑥𝑒𝑔𝑜(𝑡) − 𝑠𝑑𝑒𝑠(𝑡)) + 𝑘𝑣(𝑡)(𝑥̇𝑙𝑒𝑎𝑑 (𝑡) − 𝑥̇𝑒𝑔𝑜(𝑡)) (39)

≈ 𝑘̄𝑥(𝑣𝑙 ⋅ 𝑡 − 𝑥𝑒𝑔𝑜(𝑡)) + 𝑘̄𝑣(𝑣𝑙 − 𝑥̇𝑒𝑔𝑜(𝑡)) (40)
13

where the initial conditions are 𝑥𝑒𝑔𝑜(0) = 𝑒𝑠 and 𝑥̇𝑒𝑔𝑜(0) = 𝑣𝑙.

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

o

t

Fig. 7. The varying gain of the MPC and its relationship the leader acceleration and spacing errors.

Fig. 8. Responses of MPCs in a congestion shockwave and the approximation of the speed overshooting.

For simplicity, we assume 𝑘𝑣 = 01 in the overshooting process. By solving the ODE, we can derive the trajectory and the speed
f the MPC follower:

𝑥𝑒𝑔𝑜(𝑡) = 𝑡 ⋅ 𝑣𝑙 + 𝑒𝑠 cos(𝑡
√

𝑘̄) (41)

1 We have verified numerically that 𝑘𝑣 ≠ 0 does not change the conclusion that larger 𝑒𝑠 and larger 𝑘𝑥 causes a larger speed overshooting. For mathematical
14

ractability, 𝑘𝑣 = 0 allows us to have a simple and analytical solution of the overshoot speed.

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

t
w
g

c
l
v
s

5

i
w
w
r

5

a
(

C
a
e
m
a
f

w
m
o

Fig. 9. On-road experiment set-up Comma Dev-kit.

𝑣𝑒𝑔𝑜(𝑡) = 𝑣𝑙 −
√

𝑘̄𝑒𝑠 sin(𝑡
√

𝑘̄) (42)

The ODE solution suggests that, the larger spacing error 𝑒𝑠 accumulated prior to the overshooting process, and the larger gain 𝑘̄ in
he overshooting process will both contribute to a larger speed overshooting, which undermines the SS and amplifies the congestion
ave. According to this theory, the impact of low-level control becomes how it changes the cumulative spacing error and the control
ain in the overshooting process.
As mentioned earlier, the varying MPC gain can have two opposite patterns, i.e. ‘slow-fast’ or ‘fast-slow’ depending on how it

hanges before and after 𝑇𝑜𝑠 in Eq. (40). More specifically, the ‘slow-fast’ pattern will have a smaller gain before 𝑇𝑜𝑠, accumulating
arger spacing error 𝑒𝑠, and forces itself to have a larger gain 𝑘̄ after 𝑇𝑜𝑠. According to our ODE approximation above, the ‘slow-fast’
arying gain will consequently overshoot the speed more than the ‘fast-slow’ case. Next we will investigate experimentally how
low/fast low-level control can affect the MPC to switch between ‘slow-fast’ and ‘fast-slow’ pattern.

. Simulation and experiment results

So far we have found that the slow/fast low-level control can affect the SS of linear and MPC ACCs. For linear ACCs, whether it
mproves or undermines the overall SS largely depends on the control gains, as well as the frequency of the oscillation. For MPCs,
e still need more experimental results of the varying control gains to identify the impact of slow/fast low-level control. This section
e will study the impact of slow/fast low-level control by numerical simulations, and then validate the findings experimentally on
eal cars.

.1. Numerical and experimental methods

The experimental method is to run a custom Openpilot on a regular commercial vehicle, which builds upon the stock sensors
nd actuator interfaces of the car. Our numerical method uses the same code base from OP for real cars, but emulates the actuator
gas/brake) with a model and uses the simulation distances in lieu of the radar measurements.
For on-road testing of custom ACCs on a daily car model, the hardware preparation is rather simple. We only need to connect the

omma.ai’s after-market device Comma Two, to the interface of the ACC unit of the car, which will be overwriting the stock ACC
lgorithms and running our custom Openpilot instead. The driving logs from Comma Two include all the ACC-related variables,
.g. the 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑘𝑝𝑒(𝑡), as well as the CAN bus messages of the car, such as 𝑣𝑒𝑔𝑜 and 𝑎𝑒𝑔𝑜. The method does not require any
odifications of a regular commercial car and the full access of the ACC system allows us to dive into the details of the control
lgorithm and analyze its impact. We show the setup of the Comma dev-kit in Fig. 9. A more detailed installation tutorial can be
ound here (Comma.ai, 2020).
To run the same ACC code numerically on computers, we have to create a virtual radar and gas/brake system. For the sensor,

e replace the radar estimates 𝑣𝑙𝑒𝑎𝑑 and 𝑠𝑒𝑔𝑜 using the free-of-error speed and spacing from simulations. For the virtual actuator
odel, i.e. the 𝑔𝑏2𝑎𝑐𝑐𝑒𝑙 function, recall that (14) can be approximated as a simple scaling function. To further simulate the impact
f a strong or weak actuator, one can simply manipulate the scale factor in 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑏 to change the equality in (16). For the other
car-specific parameters such as the acceleration bound, or the control gains, we can pick the default values from any car model
available in the Openpilot’s pool. Here in this paper we use all default values from a Honda Civic in accordance with the field
experiments. Since we focus on the longitudinal control, a tangent road is assumed where the steering angle is always zero and no
lateral control is needed. We also omit other impact factors such as the grade, and the external speed disturbances. The numerical
method can run efficiently without a professional car kinematics software, it is also hazard-free which allows us to test arbitrary
control gains and conduct the platoon experiments with little cost.

5.2. Simulation results

Now we simulate the impact of slow/fast low-level control on the overall SS of linear and MPC ACCs.
15

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

i
e
N
i
d
a
c
f

a
A
F
d

Fig. 10. The impact of slow/fast low-level control on the OP linear ACC.

Fig. 11. Impact of slow/fast low-level control on SS of general linear ACCs.

5.2.1. Impact of slow/fast low-level control on SS of linear ACCs
We first use numerical simulations to verify the impact of slow/fast low-level control on the OP linear ACC system. We tested

the same source code from OP with only emulated radar and actuator. The slow/fast low-level control is simulated by adjusting 𝛽,
e.g. 𝛽 = 1.2 or 𝛽 = 0.8 before the default gains. Fig. 10 compares the impact of fast/slow low-level control with a P-only and PI
controller. The results in Fig. 10(a) show that the slow low-level P controller improves the SS while adding integral gain reverses such
mpact, causing the slow low-level control undermine the SS, which is consistent with our earlier analysis and remarks on the integral
ffect. We also show plot the measured gain, defined as the true acceleration responses over the spacing error, i.e. 𝑎𝑒𝑔𝑜∕(𝑠𝑒𝑔𝑜− 𝑠𝑑𝑒𝑠).
oticeably, despite the OP ACC uses a linear planner, it outputs significantly varying gains during the whole process, which seems to
ncrease with spacing errors. We conjecture the variance may result from not only the lead speed change, but also the collision-proof
esign in the low-level control gains we introduced in Section 2, where the low-level PI gains are scaled up when large decelerations
re required for the safe braking. In Fig. 10(b), the measured gain in the slow linear ACC becomes negative after the true speed 𝑣𝑝𝑖𝑑
rosses the tracking speed 𝑣𝑝𝑖𝑑 , suggesting integral overshooting exits and deteriorates SS, which is consistent with our analytical
indings in Section 3.
In addition to the OP linear ACC system, we also tested the general linear ACC system consisting of the general linear CF model

nd a PIF low-level controller. As suggested by the theory in Section 3, the impact of slow/fast low-level control on a general linear
CC system largely depends on the oscillation frequency 𝜔, where the slow tracking undermines the SS at small frequencies; see
ig. 11(a); and improves the overall SS at large frequencies; see Fig. 11(b). Notice that they have the same amplitude, the only
ifference is that the leader accelerates slowly in Fig. 11(a), which is more realistic considering the acceleration limits of vehicles.
16

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

g

5

Fig. 12. The impact of slow/fast low-level control on the SS of the MPC ACC under small/large oscillations: notice that fast low-level control causes the MPC
ain has a ‘fast-slow’ pattern, whereas the slow low-level control leads the MPC gain to have a ‘slow-fast’ pattern.

.2.2. Impact of slow low-level control on SS of MPC ACCs
First, we verify our approximation of the MPC under small-scale oscillations in Fig. 12(a), where the results show that slow

low-level control helps improve the SS of the MPC ACC. Apparently the slow low-level control causes smaller MPC gain compared
to fast low-level control. Their impact on the overall SS can be explained using the theory for general linear ACC systems in Fig. 3(b)
where smaller gain 𝑘𝑥 in (0.04, 0.08) improves SS under 𝜔 ≈ 0.4.

Then we study MPC’s responses at large oscillations. As stated earlier, our focus here is to experimentally investigate how the
slow/fast low-level control decides the ‘slow-fast’ or ‘fast-slow’ patterns of the varying MPC gain. Fig. 13(a) shows that the slow
low-level control contributes to the ‘slow-fast’ MPC gain, which is a result of larger spacing errors as shown in the same graph.
Oppositely, the fast low-level control; see the orange line; shows a ‘fast-slow’ varying gain process. At 𝑇𝑜𝑠, or the step 5850 here;
see the left dashed line; the spacing error 𝑒𝑠 is larger for the slow low-level control. After 𝑇𝑜𝑠, the MPC gain is also larger for the one
with slow low-level control. According to our earlier explanation of the ODE solution, the slow low-level control causes the MPC to
have larger overshootings, which is consistent with the observation here. We also notice that our ODE method in (42) over-estimates
the speed overshootings. To see this, the MPC with the slow low-level controller, 𝑒𝑠

√

𝑘 ≈ 3
√

0.25 ≈ 1.5 m∕s, where the true speed
drops from 15 m/s to around 14.6 m/s in Fig. 13(c). This is probably due to our simplification of the speed gain 𝑘𝑣 = 0. In practice,
the speed gain would also play a role and help close the gap with smaller speed overshootings. We also verified numerically 𝑘𝑣 ≠ 0
does not change the relationship between speed overshooting and 𝑘𝑥/𝑒𝑠 here.

Although the ODE estimation originates from the shockwave case and is not a direct solution for the cyclic speed oscillation in
Fig. 12(b), we notice the impact mechanism for both cases seems to be similar, where the slow low-level control also results in a
‘slow-fast’ varying gain as shown in Fig. 12(b), which leads to more speed overshootings as estimated by the ODE approach.

5.3. Experimental results

Now we conduct on-road experiments using a daily car model, 2019 Honda Civic, to validate the impact of slow/fast control
on the overall SS of the ACC. Thanks to our unique experiment method to run a custom ACC on a real car, we are able to collect
detailed data of the actuator and evaluate its performance including the actuator model 𝑔𝑏2𝑎𝑐𝑐𝑒𝑙, actuator delays, as well as the
grade impact.

5.3.1. Real-car validation of the impact of fast/slow low-level control on SS
To verify the impact of the fast/slow tracking performance, we now test and compare two low-level controllers sharing the

same planner (MPC) but with the different control gains and actuator performances. Following the experimental method introduced
earlier, two custom MPC+PIF branches are used to overwrite the stock ACC in a 2019 Honda Civic. Specifically, the fast low-level
controller uses the control gains 1.0𝑘0𝑝, 0.33𝑘

0
𝑖 , 1.2𝑘

0
𝑓 and the 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑏 is defined as 𝑔𝑏 = 1∕3 ⋅ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 to make the actuator strong.

By contrast, the slow controller adopts 0.5𝑓 0
𝑝 , 0.33𝑘

0
𝑖 , 1.0𝑘

0
𝑓 and the 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑏 is set to 𝑔𝑏 = 1∕5 ⋅ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 such that the actuator is

weak. All the scales are applied to the default control gains used in OP.
Fig. 14 displayed the results from the two real drives using the fast/slow low-level controller. The ego vehicle was following

a human-driven lead vehicle in the natural driving where the lead changes its speed occasionally on a curvy road. It is apparent
that the fast low-level controller is able to dampen the lead speed changes while the slow low-level controller amplifies them. The
results verified our finding that a fast low-level controller improves the SS and vice versa.
17

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

F
a
t

s
b
f

Fig. 13. The impact of slow/fast low-level control on congestion shockwave of MPC ACCs.

Fig. 14. Impact of a fast/slow low-level controller on SS in real drives.

We further show more control details in the fast low-level controller and help explain why it improves the SS. Fig. 15(a) displays
the detailed 𝑃 , 𝐼, 𝐹 terms in the 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 input during the 1-minute drive. As we pointed out earlier, the 𝐹 and 𝑃 term are expected
to be consistent which makes the controller faster, rather than canceling out each other. Also a faster controller helps prevent the
overshoot caused by the integral accumulation because the speed tracking error is always small and never dominates the control.
Fig. 15(b) displays that 𝑣start is close to 𝑣ego.

To validate the impact of the integral term, we conducted a real drive and compared the detailed control values from all three
sources (P, I and F). Fig. 16(a) showcases a string unstable example where the follower overshoots the lead vehicle around step
3300, meanwhile Fig. 16(b) clearly shows that the overshoot is much due to a large and dominating integral value since both P and
terms are close to zero or even negative. Taken together, the two figures suggest the integral term accumulates when the follower
ccelerates to catch the leader, similar to what we have explained in Fig. A.22. Then an immediate overshoot takes places where
he opposite relationship between the I term and P/F terms.
The similar empirical observations of the overshoots have also been reported in our recent experiments on the commercial ACC

ystems (Li et al., 2021). Among the three tested car models in the experiments, two show significant overshoots while the other
ehave much better in preventing them. This indicates the integral overshooting could be common in commercial ACCs, but a
18

ast low-level controller could help alleviate such effect and probably has been applied in some cars models. Since the observed

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

o

Fig. 15. Details of the low-level and upper-level variables in a real string-stable drive.

Fig. 16. Validation of the integral impact on SS in a real drive.

vershoots can result from both the planner and the low-level controller; see Fig. A.22; further analysis is currently conducted to
enhance the empirical evidence.

5.3.2. Evidence of actuator performance: errors, delay and grade impact
Previously we assume the 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑏 and the 𝑔𝑏2𝑎𝑐𝑐𝑒𝑙 as simple scaling functions. Now we show the empirical data collected

from a 2020 Toyota Corolla and a 2019 Honda Civic in Fig. 17. We can see a simple scaling function is a good fit to the relationship
between gas/brake and true acceleration, though the errors tend to grow when the acceleration changes the direction, possibly due
to shift in gas and brake.

The scaling functions maybe a bit surprising or even counter-intuitive because theoretically the speed should also affect the
dynamics as indicated by (14). The simple scaling functions are devised through the special design of the car control interface on
recent car models, which can accept the scaled accelerations, or 𝑔𝑏 equivalently, as the input and execute the true accelerations
perfectly at all speed levels. For cars equipped with this control interface, we can view the 𝑔𝑏 as a scaled acceleration, rather than the
true gas/brake percentages. Such scaling factor is predetermined by the car manufactures. According to the discussions in Openpilot
community (Smiskol, 2021), at least the latest car models from General Motor and Toyota are found to share this feature.

The earlier analysis has stated the actuator performance, i.e. the factor 𝛽, has significant impact on SS if it deviates from 1. Fig. 18
showcases a few examples of the to provide evidence that the weak or strong performance of the actuator can be common in the
real world. Those figures show measurement from a Rav 4, including the actuator response errors, delay, and the potential impact
from the grade. The data presented here conform that the upgrade leads to insufficient acceleration, while the downgrade could
cause the true decelerations fall short, suggesting that 𝛽 < 1, or the slow low-level control discussed in this paper may commonly
exist in practice. In addition, we manually measure the delay and to our surprise, the actuator delay can be up to 0.7 s, which is
larger than the common values (0.2–0.5 s) usually adopted in simulation studies. Notice that those delay measurements are directly
19

from commercial ACC products, not in-house experiment vehicles in the literature.

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

i

6

p
b

t
t

a
f
2

Fig. 17. Relation between gas/brake and acceleration on real cars.

Fig. 18. Measurements of the actuator performance, delay and grades from a 2019 Toyota Rav: the command acceleration is the 𝑐𝑜𝑛𝑡𝑟𝑜𝑙, the true acceleration
s the output 𝑎𝑒𝑔𝑜 defined in this paper.

. Guidance on tuning low-level controllers

The Ziegler–Nichols method (Ziegler and Nichols, 1942) is commonly used to obtain control gains for a PID controller. Its
rocedure is to first set the integral and derivative gain to zero and gradually increase the P gain until the system exhibits oscillatory
ehavior. Then, a look-up table provides the estimated values of control gains.
In this study, since our control gains 𝑘𝑝(𝑣) are speed-dependent, we propose the following two-step method as an extension of

he Ziegler–Nichols method which only considers constant control gains. The first step is to obtain an initial feasible 𝑘𝑝(𝑣) that tracks
he speed reference and drives the car. The second step is to fine tune 𝑘𝑝(𝑣) to achieve a fast low-level controller for better SS.
To derive the initial P gains of the low-level controller, we conjecture that they should be proportional to the maximum

cceleration the engine is able to output, namely 𝑎∗(𝑣). Rakha et al. (2001) show that a straight line provides a good fit for this
unction. Note that a straight line fit also matches empirical data of the desired acceleration of human driven vehicles (Laval et al.,
014; Xu and Laval, 2020). Since 𝑎∗(𝑣) is the upper bound for the acceleration, it should satisfy:

𝑎∗(𝑣) ≥ max 𝑎𝑒𝑔𝑜(𝑣) (43)

To understand why our conjecture should be robust, we combine (16) and (A.1) to obtain:
20

𝑘𝑝(𝑣) ⋅ 𝑒(𝑡) ≈ 𝑎𝑒𝑔𝑜(𝑣(𝑡)) (44)

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

F
a

a
d
𝑐

d
l
p

Fig. 19. Default P and I gains in Openpilot and the initial P gain using linear acceleration model: 𝑘𝑝 and 𝑘𝑖 are the default control gains, 𝑎∗(𝑣) is the linear
acceleration bound, and 𝑎∗(𝑣)∕2 is the proposed initial P gain.

Fig. 20. Parameter combinations for the marginal SS of the OP linear ACC: default values 𝜔 = 0.1, 𝜏 = 1.5, 𝑘 = 0.2, 𝑘𝑝 = 0.8.

urther, from Algorithm 1 we note that the maximum speed error in the low-level controller is max 𝑒(𝑡) = 2 m∕s. Thus, the maximum
cceleration generated by the low-level controller is max𝑡 𝑎𝑒𝑔𝑜(𝑣) ≈ 2𝑘𝑝(𝑣) at speed 𝑣, which indicates that the P gain 𝑘𝑝(𝑣) is a multiple
of the maximum acceleration.

The maximum acceleration in control design should be approximately equal to the true acceleration bound corresponding to the
engine, which gives:

𝑘𝑝(𝑣) ≤ 𝑎∗(𝑣)∕2 (45)

The default acceleration upper bound used in Openpilot shown in Fig. 19(a) is piecewise linear and larger than the linear
accelerations of human drivers. If we assume 𝑎∗(𝑣) = 1.0(1 − 𝑣∕40) + 0.5 for a regular car model, then using (45) we can derive
the initial P gains 𝑘𝑝(𝑣) = 0.5(1 − 𝑣∕40) + 0.25. We test the performance of such initial P gains which are feasible for driving but
string unstable, using simulation (see Fig. 19(b)). The results validate our approach to derive the initial P gains.

For a PI controller, we still need the initial value for the I gains. A simple and common method is to determine how long it will
take for an integral action to match a proportional action. For example, if the ideal time is 10 steps in the control loop, then it leads
to 𝛴10

1 𝑘𝑖(𝑣)𝑒 ≈ 𝑘𝑝(𝑣)𝑒, i.e. 𝑘𝑖(𝑣) ≈ 𝑘𝑝(𝑣)∕10.
Next, we tune the control gains to enable fast tracking performance. To this end, we suggest keeping the shape of 𝑘𝑝(𝑣) and only

tuning a scaling factor before it, i.e. 𝑠 ⋅ 𝑘𝑝(𝑣) where 𝑠 should be gradually increased from 1. For tuning the controller faster, a large
body of instructions, handbooks and tools (O’dwyer, 2009; Collins, 2021) can be found online. More advanced tuning methods can
also be found in the literature (Wang and Shao, 2000; O’Dwyer, 2006; Kanojiya and Meshram, 2012). The general procedure is
to gradually increase the gains while circumventing instability. The most straightforward method is trial-and-error. To verify the
new control gains, the SS performance can be evaluated by running the platoon experiments using simulation, as it is efficient and
hazard-free. In the simulation experiments, the control gains are increased until the desired SS is achieved. Then, field experiments
are recommended for further testing because some other aspects such as driving comfort, impact of grades, or sudden disturbances,
also need to be accounted for in the real world. The SS can be evaluated from the field experiments as shown in Fig. 14.

The above procedures are designed for a PI controller, based on which the initial control gains for a PIF low-level controller
re easier to determine and one can apply the same method for tuning it fast. To ensure that the gas/brake is strong enough, real
riving data needs to be collected for the specific car model (see Fig. 17) and fit to the actuator model in (14), based on which the
𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑏 function can be designed to ensure that the actuator is strong.
According to the trade-off analysis between SS and safety in Li (2020), the marginal SS where 𝛤 = 1 appears to be the optimal

esign for ACCs in order to balance safety and efficiency. While the above trial-and-error method still holds, the TFs of the full ACC
oops actually provide us a more efficient way to determine the desired control gains for both low-level controllers and upper-level
lanners.
21

Transportation Research Part C 140 (2022) 103697H. Zhou et al.
Fig. 21. Optimal parameter combination for the marginal SS of general linear ACC systems: 𝑘𝑥 = 0.15, 𝑘𝑣 = 0.25, 𝑘𝑝 = 0.1, 𝑘𝑖 = 0.05, 𝜏 = 1.5.

Now we show the parameter combinations for the marginal SS, i.e. ‖𝛤‖

2
2 = 1, based on (28) and (30). We are especially interested

in how the planner gain 𝑘 or 𝑘𝑥 can be adjusted to compensate for the slow/fast low-level control captured by the parameter 𝛽.
Practically it means if the low-level actuator overshoots or undershoots due to some disturbances such as grades, or the low-level
controller gains are scaled, how should we adjust the upper planners to maintain the marginal SS. Figs. 20(a) and 20(b) shows the
parameter combinations of (𝑘, 𝛽) in the OP linear ACC, similarly curves for general linear ACCs are shown in Figs. 21(a) and 21(b).
Recall that in Section 3 we reveal that 𝛽 has a similar effect when applied to the low-level control gains as it is multiplied by the
planner gain, which partially explains the linear pattern of the log–log plot in Figs. 21(a) and 21(b). Interestingly, the slope 𝑠 in
each Figs. 20(a), 21(a) and 21(b) has the physical meaning that if 𝛽 increases by ratio 2, the upper-planner gain needs to increase
by 2𝑠.

The TF of the full loop also casts more insights into balancing low-level control gains. Earlier we found that the integral gain 𝑘𝑖
can reverse the impact of slow/fast low-level control on SS. To see how to tune 𝑘𝑖 and pair it with 𝑘𝑝, we show the parameter
combinations for both the OP linear ACC and the general linear ACC; see Figs. 20(c), 20(d), 21(c) and 21(d). Similarly, the
feedforward gain 𝑘𝑓 in the PIF low-level controller can be designed to compensate for the actuator performance by simply maintain
their product 𝑘′𝑓 = 𝛽𝑘𝑓 according to our earlier analysis in (34).

7. Concluding comments

This study investigates the impact of low-level control on SS, which has previously been ignored in the literature. To summarize,
we articulate that the impact of low-level control is significant, which depends on oscillation frequencies for linear ACCs, and is
also sensitive to oscillation amplitudes for MPC ACCs. In addition, we point out that for linear ACCs, the slow low-level control
undermines SS under perturbations with small frequencies, while it improves SS under perturbations with large frequencies. While
the same impacts remain valid for MPC ACCs under small-scale oscillations, we further find that slow/fast low-level control can
make MPC gain have opposite evolving pattern under large-scale oscillations. The fast low-level control results in a ‘fast-slow’ pattern
of the varying MPC gain, which effectively prevent speed overshootings, whereas the slow low-level control often contributes to
the ‘slow-fast’ varying MPC gain, which undermines the SS by forcing the MPC to overshoot at the end of the oscillation. Through
empirical data we show that slow low-level control is common, which can result from comfortable control gains, environmental
disturbances (e.g. grade), and the limited actuator performance. Overall, the study recommends fast low-level control for ensuring
vehicular SS to reduce traffic congestion, considering that large congestion waves usually feature both small frequencies and large
amplitudes, although slow controllers could perform even better provided a short and small leader perturbation.

The results are based on open-source factory ACC algorithms in Openpilot, Comma.ai. While stock ACC algorithms on commercial
car models may vary and still remain proprietary, we conjecture that they follow a bi-level control framework similar to the one
introduced in this study, as they share the same stock ACC hardwares (e.g., the radar modules and actuator interfaces from the
limited number of manufacturers). As more evidence, we note that the factory ACC algorithms presented here are able to explain
some recent empirical findings from market ACC vehicles, such as the varying SS at different speed levels/ headway settings, the
observed overshooting/undershooting at the end of an oscillation, and the puzzling gap between many string stable planner designs
and string unstable platoons in the real world. The theoretical and experimental methods proposed in this study provide promising
new venues to explain more empirical ACC features or approximate the ‘‘black-box’’ ACC products on the market.

Moreover, the study points out that the integral gain, although proved to be useful to reduce steady errors, can substantially
deteriorate SS when the low-level control is slow. Notice that although the theoretical analysis in Section 3 does not incorporate anti-
windup design for mathematical tractability, all the simulations and road experiments in this paper are using the same codebase in
Openpilot, which of course includes the anti-windup design but still reveals the similar impact of integral control on SS. Considering
it might be too difficult for PI or PIF low-level controllers to circumvent the integral issue, alternatively we advocate the MPC
low-level controllers because: (i) it is also able to combat steady tracking errors but not causing integral overshootings, (ii) an MPC
low-level controller can also be leveraged to address the poor actuator performance caused by disturbances such as the grade and air-
drag. One can incorporate the grade and air-drag information into the planning horizon of MPC and dynamically increase/decrease
the low-level controller gains to compensate for it. Similar methods also apply for other dynamic factors such as the load, rolling
resistance, fuel consumption or actuator delays, which can also affect the actuator performance; see Appendix B.

This study also suggests that primarily there are two major types of ACC planners, linear and MPC controllers, both of which
originate from the control domain. In this context, it is surprising to note that the large body of the well-established CF models
22

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

M
W
a

A

T
i

A

A

t
i
i
1
t
p
𝑣
T

f

in the traffic flow domain has neither been applied nor tested. Specifically, the pipeline in Fig. 1 suggests that any model should
work if it can generate reasonable target speed or acceleration. This motivates the exploration of the promise of CF models through
future research efforts and their feasibility for commercial ACC products. To encourage more experimental testing of ACC algorithms
and CF models on real cars, the authors have shared a custom fork of Openpilot at https://github.com/HaoZhouGT/openpilot. This
repository includes the implementation of the linear ACC+PI and MPC+PIF frameworks presented in this paper. The low-level
controllers are fine-tuned for a 2019 Honda Civic and can be tested in the field by interested readers. We have added a parser to
process the raw log files from Comma Two and help retrieve the ACC variables and the CAN bus signals. It is worth noting that the
experimental method not only applies to the study of the low-level controllers, any ACC algorithm design (e.g., a new planner CF
model) can be tested in the same way. To facilitate such efforts, the authors have implemented the well-known Intelligent Driver
Model (IDM) in the same github repository to replace the role of a linear ACC or MPC. Future research efforts can also explore
replacing the IDM model with other CF models in our shared repository and testing their performance in the field.

Remarkably, the experiment method in this paper has an unique advantage to obtain detailed ACC control data, including the
inputs and outputs of the actuator, which allows us to measure the empirical actuator delay and the impact of the environment
such as the grade. Notice that although the actuator delay has been studied for more than 20 years, to the best of our knowledge
there do not exist empirical measurements of those delay values in the literature. This is probably due to the limitation of current
experiment methods which cannot send commands or record the input signal timing of the actuator. Leveraging the Comma Dev-kit,
we are able to obtain the commanded accelerations and the actual vehicle accelerations, which allow us to measure the actuator
delay data for the first time in the literature. In addition, from the GNSS (Global navigation satellite system) data we extract the
vertical speed of the vehicle, which further helps estimate the grade. The paper did not include delay in our linear analysis, but
incorporated a constant delay of 0.5 s in all simulations and the real-car experiments. We also verified the delay does not alter the
findings regarding the impact of slow/fast low-level control on the overall SS of ACCs.

CRediT authorship contribution statement

Hao Zhou: Methodology, Experiment design, Data curation, Conceptualization, Writing – original draft, Revision. Anye Zhou:
ethodology, Conceptualization, Writing – original draft, Revision. Tienan Li: Writing – original draft, Revision. Danjue Chen:
riting – review & editing, Supervision, Funding acquisition. Srinivas Peeta: Writing – review & editing, Supervision, Funding
cquisition. Jorge Laval: Methodology, Conceptualization, Writing – review & editing, Supervision, Funding acquisition.

cknowledgments

This study is supported by National Science Foundation (NSF) Cyber-Physical Systems (CPS) grant #1932451 and #1826162.
he authors would like to acknowledge the warm help from Joe Pancotti and Chris Souers for their commits in Honda Bosch
nterface (Pancotti, 2021). We also appreciate the discussions with Shane Smiskol at Openpilot’s community.

ppendix A. Intuition of low-level impact in the time domain

.1. Impact of integral overshootings

The integral term commonly exists in controllers to combat steady errors, however it can cause integral overshootings given large
racking errors of slow controllers. Those overshootings can further deteriorate the SS of ACCs. For completeness we briefly analyze
ts unique impact here. The role of the integral term in (13) is to accelerate the object towards the setpoint. However, since the
ntegral term responds to accumulated errors from the past, it can cause the present value to overshoot the setpoint value (Willis,
999). For example, the shaded area in Fig. A.22 is followed by a speed overshoot. Note that the integral overshoot happens after
he 𝑣ego catches up with 𝑣pid. In the real world the observed overshooting (Li et al., 2021) may come from two different sources,
lanner or low-level controller; see Fig. A.22 for the speed overshooting at the end of an oscillation. We argue the overshooting of
pid compared to the lead speed is mainly due to the planner in response to the extra spacing caused by the slow low-level controller.
he additional overshooting of 𝑣ego compared to 𝑣pid mainly results from the integral accumulation.
Now we investigate the impact of the integral error, namely , on SS. To this end, for tractability we will derive an upper bound

or the accumulated integral error by assuming a P-only controller:

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ≈ 𝑘𝑝(𝑣pid − 𝑣ego) (A.1)

Recall that a ‘‘perfect’’ pair of 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑏 and 𝑔𝑏2𝑎𝑐𝑐𝑒𝑙 functions means 𝑎𝑒𝑔𝑜 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙. Then, (A.1) can be written in discrete-time
as follows:

𝑣ego(𝑡 + 1) = 𝑣ego(𝑡) + 𝑘𝑝(𝑣pid(𝑡 + 1) − 𝑣ego(𝑡))𝑑𝑡 for 𝑡 = 1, 2, 3,… , (A.2)

Combining (A.2) with the initial condition 𝑣pid(0) = 𝑣ego(0), we obtain 𝑣ego(𝑛) at the time step 𝑛:

𝑛 𝑛 𝑛−𝑖
23

𝑣ego(𝑛) = (1 + 𝑘𝑝𝑑𝑡)(1 − 𝑘𝑝𝑑𝑡) 𝑣ego(0) + 𝑘𝑝𝑑𝑡𝛴𝑖=1(1 − 𝑘𝑝𝑑𝑡) 𝑣pid(𝑖) for 𝑖 = 1, 2,… , 𝑛 − 1 (A.3)

https://github.com/HaoZhouGT/openpilot

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

S

l

A

w

s
t

A

e

Fig. A.22. Integral accumulation in a PI controller during an oscillation: the lead vehicle changes its speed from 25 m/s to 30 m/s and then reverts to 25 m/s.
tarting at time 𝑇1, the follower speed 𝑣ego moves towards the setpoint 𝑣pid and reaches it for the first time at 𝑇1 + 𝛥𝑇𝑒, where 𝑣ego(𝑇1 +𝛥𝑇𝑒) = 𝑣pid(𝑇1 +𝛥𝑇𝑒) and

𝑣ego(𝑡) < 𝑣pid(𝑡) for 𝑇1 < 𝑡 < 𝑇1 + 𝛥𝑇𝑒 < 𝑇1 + 𝛥𝑇 in the acceleration case.

Now we can quantify the tracking error 𝑒(𝑛) = 𝑣pid(𝑛) − 𝑣ego(𝑛) at time step 𝑛:

𝑒(𝑛) = (1 − 𝑘𝑝𝑑𝑡)𝑣pid(𝑛) − (1 + 𝑘𝑝𝑑𝑡)(1 − 𝑘𝑝𝑑𝑡)𝑛𝑣ego(0) − 𝑘𝑝𝑑𝑡𝛴
𝑛−1
𝑖=1 (1 − 𝑘𝑝𝑑𝑡)𝑛−𝑖𝑣pid(𝑖) (A.4)

Typical values for 𝑘𝑝 and 𝑑𝑡 are 1 and 0.01 s, respectively. Thus (1 − 𝑘𝑝𝑑𝑡)𝑛 tends towards zero for large 𝑛, making the second
term (1 + 𝑘𝑝𝑑𝑡)(1 − 𝑘𝑝𝑑𝑡)𝑛𝑣ego(0) → 0. In addition, as 𝑘𝑝𝑑𝑡 ≪ 1, the third term (𝑘𝑝𝑑𝑡)𝛴𝑛−1

𝑖=1 (1 − 𝑘𝑝𝑑𝑡)𝑛−𝑖𝑣pid(𝑖) is negligible comparable
to (1 − 𝑘𝑝𝑑𝑡)𝑣pid(𝑛). Therefore, the first term is the dominating one, which suggests the following approximation for :

 = 𝛴𝑇+𝛥𝑇𝑒
𝑛=𝑇 𝑒(𝑛) ≈ (1 − 𝑘𝑝𝑑𝑡)𝛴

𝑇+𝛥𝑇𝑒
𝑛=𝑇 𝑣pid(𝑛) (A.5)

It can be seen the integral error  decreases with 𝑘𝑝 within its sensible range. This indicates that a slow controller may cause
arge integral error and undermines the SS.

.2. SS analysis of the low-level impact in time domain

For an ACC system consisting with an acceleration planner and the PIF low-level controller, we track the speed change of 𝑣start
to study SS since it is the surrogate variable for 𝑣ego. Setting 𝑎start = 0 in (12) the 𝑎start sequence can be simplified using only 𝑎target,
which leads to:

𝑎start(𝑡) =
⌊𝑡∕𝑑𝑡⌋−1
∑

𝑛=0

𝑑𝑡
𝑑𝑡𝑝

(1 − 𝑑𝑡∕𝑑𝑡𝑝)⌊𝑡∕𝑑𝑡⌋−1−𝑛𝑎target(𝑛𝑑𝑡) (A.6)

where
⌊

𝑡∕𝑑𝑡
⌋

is a floor function to calculate index for planning step of 𝑡 starting from zero. Substitute (A.6) into (12), the changes
of 𝑣start can be described using 𝑎target from the planner:

2∕𝑑𝑡 ⋅ 𝛥𝑣start =
∑

𝑇1≤𝑡≤𝑇1+𝛥𝑇
𝑎target(𝑡) +

⌊𝑡∕𝑑𝑡⌋
∑

𝑛=0

𝑑𝑡
𝑑𝑡𝑝

(1 − 𝑑𝑡
𝑑𝑡𝑝

)⌊𝑡∕𝑑𝑡⌋−1−𝑛𝑎target(𝑛𝑑𝑡) (A.7)

Correspondingly, the SS index 𝐼𝑠𝑠 given a MPC planner can be derived as:

𝐼𝑠𝑠 =
|𝛥𝑣start| − |𝛥𝑣lead|

|𝛥𝑣lead|

= −1 +
∑

𝑇1≤𝑡≤𝑇1+𝛥𝑇
|𝑎target(𝑡)|

𝑑𝑡
2|𝛥𝑣lead|

+
⌊𝑡∕𝑑𝑡⌋
∑

𝑛=0

𝑑𝑡(1 − 𝑑𝑡∕𝑑𝑡𝑝)⌊𝑡∕𝑑𝑡⌋−1−𝑛

𝑑𝑡𝑝|𝛥𝑣lead|
|𝑎target(𝑛𝑑𝑡)| (A.8)

here a smaller 𝐼𝑠𝑠 means better SS.
The impact of slow low-level control can be understood as follows in the time domain: A slow low-level controller makes the true

pacing 𝑠ego deviate more from the desired spacing 𝑠des, which consequently induces larger accelerations |𝑎target(𝑛𝑑𝑡)| and longer
ime 𝛥𝑇 to rectify 𝑠ego and 𝑣ego to desired values, thus increases the 𝐼𝑠𝑠 to the detriment of SS.

ppendix B. Impacts of real-world disturbances on actuator performance

During ACC operations, the real-world disturbances (i.e., varying road grade, vehicle loads, rolling resistance, air-drag, etc.) can
24

xert great impact on the tracking performance of the low-level controller, if it is not counteracted by the vehicle powertrain control

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

t
𝑓
d

𝜄

C
C
C

D

Fig. B.23. Increased load, rolling resistance and air-drag contribute to slow low-level control.

(engine/motor and transmission control algorithms designed by the automakers). The paper has already shown the grade impact
using empirical data from a Civic and Rav4. For other disturbances which are difficult to capture, here we apply the simplified
nonlinear vehicle longitudinal dynamics in Wu et al. (2016) to describe the their impacts on vehicle motions:

𝑥̇ = 𝑣 (B.1)

𝑣̇ =
𝜂 𝑇
𝑅 − 𝐶𝑎𝑣2 − 𝐹𝑓

𝑚
(B.2)

𝑇̇ = 𝑢 − 𝑇
𝜏𝑎

(B.3)

where 𝜂 is the transmission efficiency, 𝑅 is the wheel radius, 𝑇 is the engine/brake torque output, 𝐶𝑎 is the air drag coefficient, 𝑚 is
he vehicle mass, 𝐹𝑓 = 𝑚𝑔(𝑠𝑖𝑛(𝜃) +𝑓𝑐𝑜𝑠(𝜃)) indicates the impacts of rolling resistance and gravity, 𝑔 = 9.81 is the gravity coefficient,
is the friction coefficient, 𝜃 is the road grade angle. 𝑢 is the torque command send to the engine/brake, 𝜏𝑎 is the engine/brake
elay factor. Then, to manifest the impacts of disturbances during the real-world operations, the general linear CF model in (21) is
used as the upper-level planner. We then apply the feedback linearization technique in Khalil (2008) to devise the low-level actuator
control (i.e., determine the desired engine torque of the vehicle to track the planned trajectory). Correspondingly, we transform the
vehicle dynamics into the following strict feedback form:

𝜁̇1 = 𝜁2 (B.4)

𝜁̇2 = 𝜁3 (B.5)

𝜁̇3 =
1
𝑚
[
𝑢 − 𝑅(𝑚𝜁3 + 𝐶𝑎𝜁22 + 𝐹𝑓)∕𝜂

𝜏𝑎
− 2𝐶𝑎𝜁2𝜁3] (B.6)

where 𝜁 = [𝑥, 𝑣, 𝑎] is the transmission efficiency, 𝑢 = 𝑅(𝑚𝜁3 + 𝐶𝑎𝜁22 + 𝐹𝑓)∕𝜂 + 2𝐶𝑎𝜁2𝜁3𝜏𝑎 + 𝑚𝜏𝑎𝜄 is the desired driving torque,
= 𝑘𝑝𝑒𝑣+𝑘𝑖𝑒𝑥+𝑘𝑑𝑒𝑎 is the PID control input which aims to achieve desired tracking performance, 𝑘𝑝, 𝑘𝑝, and 𝑘𝑝 are the proportional
gain, integral gain, and derivative gain, respectively. 𝑒𝑥, 𝑒𝑣, and 𝑒𝑎 are the spacing error, speed tracking error, and acceleration
tracking error, respectively. The simulation results in Fig. B.23 show that, similar to the impacts of road grade and weak actuator, the
increased vehicle loads, rolling resistance and air-drag can all contribute to slow tracking of desired speeds in regular CF scenarios.
Thereby, factoring real-world disturbances in the low-level controller deign is significant for realizing string stability of an ACC
system.

References

Åström, K.J., Murray, R.M., 2008. Feedback Systems: An Introduction for Scientists and Engineers. Princeton university press Princeton, NJ.
Collins, D., 2021. How to tune servo systems for high dynamic response? URL: https://www.motioncontroltips.com/faq-tune-servo-system-high-dynamic-

response/.
omma.ai, 2020. Comma.ai two setup. URL: https://comma.ai/setup.
omma.ai, 2021. Comma.ai – introducing openpilot. URL: https://comma.ai/.
orona, D., De Schutter, B., 2008. Adaptive cruise control for a SMART car: A comparison benchmark for MPC-PWA control methods. IEEE Trans. Control Syst.
Technol. 16 (2), 365–372.

iehl, M., 2014. Toolkit for Automatic Control and Dynamic Optimization. URL: https://acado.github.io/.
Eilbert, A., Chouinard, A.M., Tiernan, T., Smith, S., 2020. Performance comparisons of cooperative and adaptive cruise control testing.
Feng, S., Zhang, Y., Li, S., Cao, Z., Liu, H., Li, L., 2019. String stability for vehicular platoon control: Definitions and analysis methods. Annu. Rev. Control. 47,

81–97.
Gong, S., Shen, J., Du, L., 2016. Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle
25

platoon. Transp. Res. B 94, 314–334.

http://refhub.elsevier.com/S0968-090X(22)00137-1/sb1
https://www.motioncontroltips.com/faq-tune-servo-system-high-dynamic-response/
https://www.motioncontroltips.com/faq-tune-servo-system-high-dynamic-response/
https://www.motioncontroltips.com/faq-tune-servo-system-high-dynamic-response/
https://comma.ai/setup
https://comma.ai/
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb5
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb5
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb5
https://acado.github.io/
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb7
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb8
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb8
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb8
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb9
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb9
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb9

Transportation Research Part C 140 (2022) 103697H. Zhou et al.

G

K

K
L
L
L

R

R

S

S

S
S
W
W
W
W

X
Y

Z

Z

Z

Z

Z

Gunter, G., Gloudemans, D., Stern, R.E., McQuade, S., Bhadani, R., Bunting, M., Delle Monache, M.L., Lysecky, R., Seibold, B., Sprinkle, J., et al., 2020. Are
commercially implemented adaptive cruise control systems string stable? IEEE Trans. Intell. Transp. Syst..

unter, G., Janssen, C., Barbour, W., Stern, R.E., Work, D.B., 2019. Model-based string stability of adaptive cruise control systems using field data. IEEE Trans.
Intell. Veh. 5 (1), 90–99.

anojiya, R.G., Meshram, P., 2012. Optimal tuning of PI controller for speed control of DC motor drive using particle swarm optimization. In: 2012 International
Conference on Advances in Power Conversion and Energy Technologies. APCET, IEEE, pp. 1–6.

halil, H.K., 2008. Nonlinear Systems, third ed..
aval, J.A., Toth, C.S., Zhou, Y., 2014. A parsimonious model for the formation of oscillations in car-following models. Transp. Res. B 70, 228–238.
i, X., 2020. Trade-off between safety, mobility and stability in automated vehicle following control: An analytical method.
i, T., Chen, D., Zhou, H., Laval, J., Xie, Y., 2021. Car-following behavior characteristics of adaptive cruise control vehicles based on empirical experiments.
Transp. Res. B 147, 67–91. http://dx.doi.org/10.1016/j.trb.2021.03.003.

Li, S.E., Gao, F., Cao, D., Li, K., 2016. Multiple-model switching control of vehicle longitudinal dynamics for platoon-level automation. IEEE Trans. Veh. Technol.
65 (6), 4480–4492. http://dx.doi.org/10.1109/TVT.2016.2541219.

Li, S., Li, K., Rajamani, R., Wang, J., 2010. Model predictive multi-objective vehicular adaptive cruise control. IEEE Trans. Control Syst. Technol. 19 (3), 556–566.
Liang, C.Y., Peng, H., 1999. Optimal adaptive cruise control with guaranteed string stability. Veh. Syst. Dyn. 32 (4–5), 313–330.
Liang, C., Peng, H., 2000. String stability analysis of adaptive cruise controlled vehicles. Jsme Int. J. Ser. C-Mech. Syst. Mach. Elem. Manuf. 43, 671–677.
Lu, X., Shladover, S., 2018. Truck CACC system designand DSRC messages.
Makridis, M., Mattas, K., Anesiadou, A., Ciuffo, B., 2021. OpenACC. An open database of car-following experiments to study the properties of commercial ACC

systems. Transp. Res. C 125, 103047.
Montanino, M., Punzo, V., 2021. On string stability of a mixed and heterogeneous traffic flow: A unifying modelling framework. Transp. Res. B 144, 133–154.
Naus, G., Ploeg, J., Van De Molengraft, R., Steinbuch, M., 2008. Explicit MPC design and performance-based tuning of an adaptive cruise control stop-&-go. In:

2008 IEEE Intelligent Vehicles Symposium. IEEE, pp. 434–439.
Naus, G.J., Vugts, R.P., Ploeg, J., van De Molengraft, M.J., Steinbuch, M., 2010. String-stable CACC design and experimental validation: A frequency-domain

approach. IEEE Trans. Veh. Technol. 59 (9), 4268–4279.
Newell, G.F., 2002. A simplified car-following theory: a lower order model. Transp. Res. B 36 (3), 195–205.
O’Dwyer, A., 2006. PI and PID controller tuning rules: An overview and personal perspective.
O’dwyer, A., 2009. Handbook of PI and PID Controller Tuning Rules. World Scientific.
Pancotti, J., 2021. Honda bosch interface for openpilot. URL: https://github.com/jpancotti/openpilot/commit/468b89a.
Ploeg, J., Scheepers, B.T.M., van Nunen, E., van de Wouw, N., Nijmeijer, H., 2011. Design and experimental evaluation of cooperative adaptive cruise control.

In: 2011 14th International IEEE Conference on Intelligent Transportation Systems. ITSC, pp. 260–265. http://dx.doi.org/10.1109/ITSC.2011.6082981.
ajamani, R., Choi, S.B., Law, B.K., Hedrick, J.K., Prohaska, R., Kretz, P., 2000. Design and experimental implementation of longitudinal control for a platoon
of automated vehicles. J. Dyn. Syst. Meas. Control-Trans. Asme 122, 470–476.

akha, H., Lucic, I., Demarchi, S.H., Setti, J.R., Aerde, M.V., 2001. Vehicle dynamics model for predicting maximum truck acceleration levels. J. Transp. Eng.
127 (5), 418–425.

haw, E., Hedrick, J.K., 2007. String stability analysis for heterogeneous vehicle strings. In: 2007 American Control Conference. pp. 3118–3125. http:
//dx.doi.org/10.1109/ACC.2007.4282789.

hi, X., Li, X., 2021. Empirical study on car-following characteristics of commercial automated vehicles with different headway settings. Transp. Res. C 128,
103134.

hladover, S., 2009. Effects of Cooperative Adaptive Cruise Control on Traffic Flow: Testing Drivers’ Choices of Following Distances. PATH Research Report.
miskol, S., 2021. Discussion on the "compute_gb" function in openpilot community.
ang, Y.G., Shao, H.H., 2000. Optimal tuning for PI controller. Automatica 36 (1), 147–152.
illis, M., 1999. Proportional-Integral-Derivative Control. Dept. of Chemical and Process Engineering University of Newcastle.
ilson, R.E., Ward, J.A., 2011. Car-following modelsfifty years of linear stability analysis a mathematical perspective. Transp. Plan. Technol. 34 (1), 3–18.
u, Y., Li, S.E., Zheng, Y., Hedrick, J.K., 2016. Distributed sliding mode control for multi-vehicle systems with positive definite topologies. In: 2016 IEEE 55th
Conference on Decision and Control. CDC, pp. 5213–5219. http://dx.doi.org/10.1109/CDC.2016.7799067.

u, T., Laval, J., 2020. Statistical inference for two-regime stochastic car-following models. Transp. Res. B 134, 210–228.
anakiev, D., Kanellakopoulos, I., 1995. Variable time headway for string stability of automated heavy-duty vehicles. In: Proceedings of 1995 34th IEEE Conference
on Decision and Control, Vol. 4. IEEE, pp. 4077–4081.

heng, Y., Li, S.E., Li, K., Borrelli, F., Hedrick, J.K., 2017. Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies.
IEEE Trans. Control Syst. Technol. 25 (3), 899–910. http://dx.doi.org/10.1109/TCST.2016.2594588.

hou, Y., Ahn, S., 2019. Robust local and string stability for a decentralized car following control strategy for connected automated vehicles. Transp. Res. B
125, 175–196.

hou, A., Gong, S., Wang, C., Peeta, S., 2020. Smooth-switching control-based cooperative adaptive cruise control by considering dynamic information flow
topology. Transp. Res. Rec. 2674, 444–458.

hou, J., Peng, H., 2005. Range policy of adaptive cruise control vehicles for improved flow stability and string stability. IEEE Trans. Intell. Transp. Syst. 6 (2),
229–237.

iegler, J.G., Nichols, N., 1942. Optimum settings for automatic controllers. J. Dyn. Syst. Meas. Control-Trans. Asme 115, 220–222.
26

http://refhub.elsevier.com/S0968-090X(22)00137-1/sb10
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb10
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb10
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb11
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb11
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb11
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb12
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb12
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb12
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb13
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb14
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb15
http://dx.doi.org/10.1016/j.trb.2021.03.003
http://dx.doi.org/10.1109/TVT.2016.2541219
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb18
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb19
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb20
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb21
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb22
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb22
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb22
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb23
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb24
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb24
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb24
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb25
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb25
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb25
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb26
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb27
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb28
https://github.com/jpancotti/openpilot/commit/468b89a
http://dx.doi.org/10.1109/ITSC.2011.6082981
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb31
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb31
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb31
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb32
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb32
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb32
http://dx.doi.org/10.1109/ACC.2007.4282789
http://dx.doi.org/10.1109/ACC.2007.4282789
http://dx.doi.org/10.1109/ACC.2007.4282789
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb34
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb34
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb34
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb35
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb36
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb37
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb38
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb39
http://dx.doi.org/10.1109/CDC.2016.7799067
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb41
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb42
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb42
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb42
http://dx.doi.org/10.1109/TCST.2016.2594588
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb44
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb44
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb44
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb45
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb45
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb45
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb46
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb46
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb46
http://refhub.elsevier.com/S0968-090X(22)00137-1/sb47

	Significance of low-level control to string stability under adaptive cruise control: Algorithms, theory and experiments
	Introduction
	ACC algorithms in Openpilot
	Full control pipeline of factory ACCs
	Upper-level planner algorithms
	The OP linear planner
	MPC planner

	Low-level control system
	Algorithms in longitudinal control to update low-level setpoints
	Low-level controller
	Actuator model and gas/brake estimator

	Impact mechanism of slow/fast low-level control on SS of linear ACCs
	SS characteristics of pure linear planners
	SS theory for full ACC control loops
	Impact of low-level control on SS of linear ACCs

	Impact mechanism of low-level control on SS of MPC ACCs
	Characteristics of MPC planners: non-linearity and scenario-dependent gains
	Impact of slow/fast low-level control on the SS of MPC ACCs

	Simulation and experiment results
	Numerical and experimental methods
	Simulation results
	Impact of slow/fast low-level control on SS of linear ACCs
	Impact of slow low-level control on SS of MPC ACCs

	Experimental results
	Real-car validation of the impact of fast/slow low-level control on SS
	Evidence of actuator performance: errors, delay and grade impact

	Guidance on tuning low-level controllers
	Concluding comments
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A. Intuition of low-level impact in the time domain
	Impact of integral overshootings
	SS analysis of the low-level impact in time domain

	Appendix B. Impacts of real-world disturbances on actuator performance
	References

