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A B S T R A C T

We consider a multiscale problem modeling the flow of a fluid through a de-
formable porous medium, described by a system of partial di↵erential equa-
tions (PDEs), connected with a lumped hydraulic circuit, described by a sys-
tem of ordinary di↵erential equations (ODEs). This PDE/ODE coupled prob-
lem includes interface conditions enforcing the continuity of mass and the
balance of stresses across models at di↵erent scales. In the present article, we
address questions related to the solution methods of the PDE/ODE coupled
problem via staggered algorithms, focusing on a detailed comparison between
functional iterations and an energy-based operator splitting method and how
they handle the interface conditions. We provide su�cient conditions for the
convergence of functional iterations and prove that the energy-based operator
splitting method is unconditionally stable with respect to the size of the time
discretization step.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Modeling of complex problems in science, engineering and medicine often requires the use of multiscale cou-
pling between partial di↵erential equations (PDEs) and ordinary di↵erential equations (ODEs). The typical rationale
is to provide an accurate three-dimensional (3D) description for a local region of interest, while simultaneously
accounting for global features via a reduced lumped model. This multiscale strategy has been used successfully
to study physiological flows, such as blood flow in the cardiovascular system or air flow in the respiratory tract
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Particular attention has been devoted to the multiscale modeling
of arterial blood flow, where Stokes or Navier-Stokes (S/NS) equations have been used as a 3D description for the
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blood flow through a main artery while accounting for the rest of the circulation via zero-dimensional (0D) lumped
models in which the only independent variable is time [8, 9, 10, 11, 12, 13, 14, 15, 16]. The coupling between a
3D Biot system and one-dimensional (1D) flow equations has also been considered with application in biology and
geosciences [17, 18, 19, 20, 21, 22, 23].

Our paper is focused on biological models where the perfusion of a tissue, which is a local phenomenon, is
studied in correlation with the global features of the surrounding blood circulation. Our work is motivated by the fact
that many pathologies are related to hemodynamic changes occurring at the microvascular level, where small vessels
pierce the tissue perfusing it with blood. Due to the small caliber and large number of such vessels, it is impractical to
model each one of them separately via S/NS equations as is traditionally done for large arteries. To address this issue,
deformable porous media models have been proposed for tissue perfusion, where blood vessels are modeled as pores
within a deformable solid representing the tissue [24, 25, 26, 27, 28, 29]. While studies for deformable porous media
in biological models are available [25, 26, 27, 30, 31, 32, 33], their coupling with 0D lumped models accounting for
systemic features has yet to be tackled and brings new challenges that constitute the main focus of this work.

Specifically, we consider a multiscale model where a PDE description of tissue perfusion, based on deformable
porous media, is coupled with an ODE description of the blood circulation to and from the tissue of interest, based on
the analogy between fluid flows and electrical circuits (Sections 2 and 3). This multiscale problem includes interface
conditions enforcing the continuity of mass and the balance of stresses across models at di↵erent scales, so that the
resulting system involves linear PDEs of mixed type, with interface conditions depending on ODEs. In the present
article, we address questions related to solution methods based on staggered algorithms of the multiscale problem de-
scribed above, focusing on a detailed comparison between functional iterations and an energy-based operator splitting
method and how they “handle” the interface conditions (Section 4). After setting the problem in its general 3D-0D
formulation, we present a specific example where a 1D version of the Biot problem is coupled with a 0D lumped cir-
cuit (Section 5). This example yields an analytic solution (Appendix) and enables a thorough comparison between the
techniques of functional iterations and operator splitting. Furthermore, we provide su�cient conditions for the conver-
gence of functional iterations when applied to the 1D-0D example by means of a Backward Euler time-discretization,
and we prove unconditional stability for the energy-based operator splitting method with respect to the size of the
time discretization step (Section 6). Unconditional stability of the operator splitting method is a consequence of the
fact that the splitting step does not disrupt the energy balance holding at the continuous level, ensuring in particular
that the dissipation mechanism has a nonnegative sign. Based on this consideration, we investigate how dissipation
is handled by the method based on functional iterations and its connection with failure of convergence (Section 7).
In addition to the solution of 1D-0D coupled problems, simulations are also presented for the full 3D-0D case. The
numerical results support the theoretical findings and, interestingly, confirm that decreasing the time step size does
not always guarantee convergence for the functional iterations (Section 8). Conclusions and future developments of
the solution algorithms analyzed in this work are illustrated in Section 9.

2. Mathematical formulation

Let us consider a poroelastic Biot model (see [34]) in the spatial domain ⌦ ⇢ R3 connected to a lumped hydraulic
circuit ⌥, as shown in Fig. 1. The circuit ⌥ comprises an internal part e⌥ that is not directly connected to the Biot
model and a connecting part ⇤. In this work, ⇤ represents a compliant hydraulic bu↵er, whose electric representation
consists of a linear time-invariant resistor R and a linear time-invariant capacitor C, as often encountered in blood
flow models [12, 35, 36]. The Biot-circuit connection occurs at the interface ⌃, which constitutes part of the boundary
of ⌦. The remaining part of the boundary is denoted by �, so that we can write @⌦ = � [ ⌃. The di↵erential
problems describing the poroelastic Biot model and the lumped hydraulic circuit are detailed in Sections 2.1 and 2.2,
respectively. Boundary, interface and initial conditions are illustrated in Section 2.3.
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Fig. 1: The Biot region ⌦ is connected to the lumped circuit ⌥. The connection ⇤ represents a compliant hydraulic bu↵er, whose electric
representation consists of a linear time-invariant resistor R and a linear time-invariant capacitor C. The internal circuit e⌥ contains all the lumped
elements that are not directly connected to the interface ⌃.

2.1. Poroelastic Biot model
We consider a poroelastic Biot model with incompressible components described by the following PDE system:

@⇣

@t
+ r · v = S in ⌦ ⇥ (0,T ), (1a)

r · T + f = 0 in ⌦ ⇥ (0,T ), (1b)
⇣ = � � �0 in ⌦ ⇥ (0,T ), (1c)
� = r · u + �0 in ⌦ ⇥ (0,T ), (1d)
v = �krp, in ⌦ ⇥ (0,T ), (1e)
T = 2µE(u) + � tr(E(u))I � p I in ⌦ ⇥ (0,T ), (1f)

where ⌦ ⇢ R3 is a bounded spatial domain and (0,T ) is a time interval. Eq. (1a) represents the balance of mass
of the fluid phase, Eq. (1b) represents the balance of momentum for the whole mixture and Eqs. (1c)-(1f) represent
the constitutive equations that are necessary to close the system. The unknowns of the problem are the fluid content
⇣ (unitless), the discharge (or Darcy) velocity v (units: m s�1), the stress tensor T (units: Nm�2), the porosity �
(unitless), the displacement u (units: m) and the pressure p (units: Nm�2). The tensor E(w) is the symmetric part of
the gradient of the vector field w defined as

E(w) =
1
2

(rw + (rw)T )

and tr(E(w)) is the trace of the tensor E(w). We emphasize that all the aforementioned variables are functions of both
space and time. In particular, we have u = u(x, t) and p = p(x, t), for x 2 ⌦ and t 2 (0,T ), from which it follows that
� = �(u(x, t)), ⇣ = ⇣(u(x, t)), v = v(p(x, t)) and T = T(u(x, t), (p(x, t)). The model also includes volumetric sources
of fluid content and linear momentum, denoted by S = S (x, t) (units: s�1) and f = f (x, t) (units: Nm�3), respectively.
The model parameters are the reference porosity �0 (unitless), the permeability k (units: m4s�1N�1), and the elastic
Lamé parameters µ and � (units: Nm�2), which are assumed to be given positive constants.

We note that the poroelastic model described by the PDE system (1) assumes that both fluid and solid components
are incompressible, the mechanic behavior is stress free, linearly elastic and isotropic, and the distribution of pores
within the medium is isotropic. Volumetric sources of mass within the medium may represent injections of fluid
which, in turn, may give rise to volumetric sources of linear momentum [34, 37, 38, 24]. Potential extensions of the
model motivated by applications in biology and bioengineering include: tissue viscoelasticity, compressibility and
anisotropy [37, 29]; tissue growth and remodeling [39, 40]; mass balance of cellular components [41, 42]; electro-
osmotic fluid pressure gradients [43, 44]. Gravitational e↵ects may also be important and they will a↵ect both the
Darcy law and the volumetric sources of linear momentum [45]. We remark that this work focuses on staggered
approaches for the solution methods of the coupling between the poroelastic problem and the lumped circuit so that,
thanks to the modularity of the resulting algorithms, potential extensions of the poroelastic model will be limited to
the pertaining module and, as a consequence, easier to include.
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2.2. Lumped circuit
In the lumped circuit, the fluid flow through an hydraulic network is described via its analogy with a current flow-

ing through an electric circuit, where active sources of voltage and current represent pressure and flow rate sources,
whereas passive elements such as resistances, inductances and capacitances, represent viscous e↵ects, inertial e↵ects
and vessel compliance, respectively [24]. For the sake of simplicity, in this work we consider linear time-invariant
resistors, capacitors and inductors, even though the approach could be extended to the more general case of nonlinear
time-varying elements. In hydraulic terms, this means that we are assuming the vasculature to be compliant, but
with small deformations, and passive. Potential extensions motivated by biological applications include large defor-
mations, such as those associated with vein collapsibility, and active changes in vessel diameters and biomechanical
properties, such as those due to regulatory mechanisms [46]. We remark that, in the spirit of staggered algorithms,
potential extensions of the lumped circuit model will a↵ect its module within the whole algorithm, thereby making
them easier to include.

Specifically, let us assume that the internal circuit e⌥ includes nR resistors with constant resistances Ri > 0, i =
1, . . . , nR, nC capacitors with constant capacitances Ci > 0, i = 1, . . . , nC , and nL inductors with constant inductances
Li > 0, i = 1, . . . , nL. Furthermore, we assume that the connection ⇤ consists of a resistor of resistance R and a
capacitor of capacitance C connected to the ground, where zero pressure is assumed.

Following [47], we introduce a vector y(t) of state variables characterizing the circuit ⌥, where state variables are
associated with each capacitor and inductor. The connection ⇤ includes a single capacitor connected to the ground, so
that the appropriate state variable is the pressure ⇡(t) (units: Nm�2) at the connecting node, as indicated in Fig. 1. The
internal circuit e⌥ includes multiple inductors and capacitors, so that the appropriate state variables are the volumetric
flow rate Q(t) (units: m3s�1) across each inductor and the pressure di↵erence⇧(t) (units: Nm�2) across each capacitor,
so that we can define the vector ey(t) of state variables characterizing e⌥ as follows

ey(t) = [⇧1(t), . . . ,⇧nC (t),Q1(t), . . . ,QnL (t)]T . (2)

Finally, we can define the vector of state variables y(t) for the whole circuit ⌥ as follows

y(t) =

2
6666664
⇡(t)

ey(t)

3
7777775 (3)

where y(t) 2 Rd and d = 1 + nC + nL. The dynamics of ⌥ is described by the following ODE system:

dy(t)
dt
= A y(t) + s(t) + b(Q(t)) in (0,T ). (4)

The d ⇥ d matrix A has given constant entries that depend on the circuit graph and on the values of the resistances,
capacitances and inductances within the circuit. The d ⇥ 1 vector s(t) represents the sources of voltage and current
present in e⌥. The d⇥1 vector b(Q(t)) represents the contribution from the connection with the poroelastic Biot model
and can be written as

b(Q(t)) =
Q(t)
C

e1 with e1 = [1, 0]T (5)

where Q = Q(t) is the volumetric flow rate through the connecting resistor, as shown in Fig. 1, and 0 2 R1⇥(d�1).

2.3. Boundary, interface and initial conditions
The poroelastic Biot model (1) can be completed with di↵erent boundary conditions representing di↵erent phys-

ical constraints on the portion � of ⌦. Specifically, let us write � = �D,v [ �D,p [ �N [ �0 and let us assume that the
following boundary conditions are imposed:

T n = g, v · n = 0, on �N ⇥ (0,T ), (6a)
u = 0, p = 0, on �D,p ⇥ (0,T ), (6b)
u = 0, v · n =  , on �D,v ⇥ (0,T ), (6c)

(T n) · ⌧1 = 0, (T n) · ⌧2 = 0, on �0 ⇥ (0,T ), (6d)
u · n = 0, v · n = 0, on �0 ⇥ (0,T ), (6e)
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where g and  are given functions of space and time, n is the outward unit normal vector to the surface @⌦, and ⌧i,
with i = 1, 2, are the tangential unit vectors to the surface. We remark that conditions (6a)-(6c) are the same as those
considered in [31], whereas conditions (6d)-(6e) are instrumental for the derivation of the 1D model illustrated in
Section 5. On the interface ⌃, we impose the following conditions:

u(x, t) = 0, (7a)
Z

⌃

v(x, t) · n(x) dx = Q(t), (7b)

p(x, t) = P(t), (7c)

holding for x 2 ⌃, t 2 ⇥(0,T ). By applying the hydraulic analog to Ohm’s law, namely Poiseuille’s law, to the resistor
in ⇤ that connects the poroelastic Biot model with the lumped circuit, we can write

Q(t) =
P(t) � ⇡(t)

R
(8)

where P(t) and ⇡(t) are the pressures at the Biot and circuit ends of the resistor, as shown in Fig. 1.
Finally, we prescribe the following initial conditions:

u(x, 0) = �(x) for x 2 ⌦ (9a)
y(0) = y0 (9b)

with �(x) and y0 given.

Coupled Problem. The fully coupled problem consists in finding u, p, y, P, Q that satisfy equations (1) and (4),
subject to the interface conditions (7) - (8), boundary conditions (6) and initial conditions (9). Existence of solutions
to the fully coupled problem is an open question in the field. The PDE system is the linear quasi-static Biot model
with incompressible constituents. There are many well-posedness results available in the literature regarding well-
posedness for poro-elastic systems, both in linear [48, 49, 50] and nonlinear scenarios (where the permeability is a
nonlinear function of pressure or solid dilation) [51, 52, 31, 53, 54]. In comparison, the Biot problem considered in
this article is di↵erent, since boundary conditions are not prescribed on ⌃, but instead we have interface conditions
that couple the poroelastic domain with the circuit. In particular, the PDE/ODE coupling involves nonlocal interface
conditions enforcing the continuity of mass and the balance of stresses across di↵erent scales. Notably, even though
similar nonlocal interface conditions arise in 3D/0D models involving the Stokes/Navier Stokes equations [1, 4, 9,
10, 11, 14], the mathematical challenges that these conditions bring for deformable porous media are very di↵erent.
Unlike the Stokes/Navier-Stokes case, in deformable porous media the discharge velocity is not solenoidal, thereby
yielding less control over its normal component at the interface, whose integral appears in the interface conditions.
This di↵erence calls for novel theoretical and computational approaches. The latter part is what we address in this
paper.

3. Energy identity for the fully coupled problem

The mathematical problem illustrated in Section 2 is characterized by an energy identity that captures the physical
phenomena governing the dynamics of the coupled system. Thus, when devising a numerical method for the solution
of the problem, it should be verified whether and to what extent such energy identity still holds at the discrete level.
This important aspect is examined in Section 6 in the case of the Operator Splitting method and in Section 7 in the
case of the PQP and QPQ functional iterations.

In order to obtain the energy identity, we begin by focusing on the Biot problem. Let ut denote the partial derivative
of u(x, t) with respect to t. Using multipliers p and ut for the mass balance equation and the linear momentum balance
equation, respectively, and recalling the boundary and interface conditions, we obtain

d
dt
E⌦(u) +D⌦(p) = F⌦( f , S ; u, p) + F@⌦(g, ; u, p) � P(t)Q(t) (10)
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where the elastic energy E⌦(u), the viscous dissipationD⌦(p) and the forcing terms F⌦( f , S ; u, p) and F@⌦(g, ; u, p)
are given by:

E⌦(u) =
�

2
kr · uk2L2(⌦) + µkE(u)k2L2(⌦) (11)

D⌦(p) = kk1/2rpk2L2(⌦) (12)

F⌦( f , S ; u, p) =
Z

⌦

f · ut d⌦ +
Z

⌦

S p d⌦ (13)

F@⌦(g, ; u, p) =
Z

�N

g · ut d�N �
Z

�D,v

 p d�D,v . (14)

Then we consider the ODE system describing the dynamics of the circuit. We define the following diagonal matrix
whose positive entries are given by the capacitances and inductances present in the lumped circuit

U := diag
⇣
[C,C1, . . . ,CnC , L1, . . . , LnL ]

⌘
. (15)

Using multiplier Uy in system (4), we obtain the following identity

dE⌥(y)
dt

+D⌥(y) = F⌥(s; y) + (Uy) · b(Q(t)), (16)

where E⌥(y) andD⌥(y) are defined as:

E⌥(y) =
C⇡2

2
+

nCX

i=1

Ci⇧
2
i

2
+

nLX

i=1

LiQ2
i

2
(17)

D⌥(y) = (By) · y (18)

F⌥(s; y) = (Uy) · s (19)

E⌥(y) being the energy stored in the capacitors and inductors within the circuit ⌥. The matrix B is given by

B = �U A. (20)

Since we are considering linear time-invariant elements, the circuit is passive and, consequently, the matrix B is
positive definite [47], thereby attributing to the functional D(y) the meaning of a dissipation of energy within the
circuit elements. Lastly, F⌥(s; y) represents the forcing on the system due to sources of flow rate and pressure
(analogous to current and voltage sources) within the circuit. Now, using the definition (15) of the matrix U and the
definition (5) of the vector b, we obtain that

(Uy) · b(Q(t)) = ⇡(t)Q(t)

and therefore (16) becomes
dE⌥(y)

dt
+D⌥(y) = F⌥(s; y) + ⇡(t)Q(t) . (21)

Combining (10) and (21) we obtain

d
dt

⇣
E⌦(u)) + E⌥(y)

⌘
+D⌦(p) +D⌥(y) = (22)

F⌦( f , S ; u, p) + F@⌦(g, ; u, p) + F⌥(s; y) + Q(t)
⇣
⇡(t) � P(t)

⌘
.

Finally, using (8) in (22), we obtain the following energy identity for the fully coupled system

d
dt

⇣
E⌦(u)) + E⌥(y)

⌘
+D⌦(p) +D⌥(y) +D⇤(Q) (23)

= F⌦( f , S ; u, p) + F@⌦(g, ; u, p) + F⌥(s; y)
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where

D⇤(Q) = RQ2(t) (24)

is the dissipation due to the resistive connection between the Biot region and the internal circuit. It is interesting to
remark that the non-negativity of the term in (24) is a direct consequence of the positivity of R and the physics of the
multiscale interface where the conservation of mass and the continuity of pressure must hold.

Remark 1. Besides its physical importance within the energy balance of the system at hand, the dissipation term (24)
is also relevant in a↵ecting the stability and convergence properties of the solution methods employed for the numer-
ical approximation of the coupled Biot-circuit problem. This critical aspect is analyzed theoretically (see Sections 6
and 7) and investigated numerically (see Section 8) for the staggered algorithms considered in this work (see Sec-
tion 4).

4. Solution methods

In this work, we consider and compare two main staggered approaches for the solution of the coupled problem
illustrated in Section 2. The two approaches are described at the continuous level as far as the spatial variable is
concerned, whereas the time interval is divided into a partition of finite size. The two approaches are then numerically
approximated in time using the Backward Euler method and in space using the Finite Element Method as described
in Section 8. The first approach is based on functional iterations (see Section 4.1), also referred to as fixed-point
iterations or Picard iterations, see [55], whereas the second approach is based on operator splitting (see Section 4.2).
Both approaches are modular and address the need of solving in separate substeps the PDE system associated with
the Biot model and the ODE system associated with the lumped circuit, so that potential extensions motivated by
particular applications can be dealt with in the corresponding module. However, the way in which this decoupling is
achieved makes the two approaches very di↵erent. Particular attention will be devoted to the treatment of the interface
conditions (7b), (7c) and (8), which also play a crucial role in ensuring the non-negativity of the term D⇤(Q) in the
energy identity (22) for the full coupled system at the continuous level.

For the sake of simplicity, we consider a uniform partition of the time interval [0, T ], with �t denoting the time
step. Let NT = T/�t be the number of uniform subdivisions in [0, T ]. For any n = 0, 1, . . . ,NT � 1, we utilize the
superscript n to indicate variables that are evaluated at time tn so that, for example, un := u(x, tn) and yn := y(tn).

4.1. Functional iteration methods
The technique of functional iterations consists in decoupling the PDE and ODE problems and solving them se-

quentially until convergence in order to advance from a given time level to the next. Two choices of functional
iteration methods are considered in this article, the di↵erence between the two laying in the treatment of the interface
unknowns P and Q. The two choices are denoted by PQP and QPQ subiterations and are detailed in Sections 4.1.1
and 4.1.2, respectively. These choices are conceptually similar to the Dirichlet-Neumann and Neumann-Dirichlet
approaches that are utilized in domain decomposition methods (see [56]), as discussed below.

4.1.1. PQP subiterations
Let j � 0 be an integer representing the functional iteration counter. In the PQP subiterations, at each discrete

time level tn, the Biot PDE model is solved first using P( j) as a (given) input in (7c) to compute the new value Q( j+1)
of the interface variable Q. Then, the ODE model for the lumped hydraulic circuit ⌥ is solved using Q( j+1) as a given
input in (5). Finally, relationship (8) allows the calculation of the new value P( j+1) of the interface variable P. The
iterative process continues until a convergence criterion on the distance between P( j) and P( j+1) is satisfied up to a
given tolerance. The method is schematically illustrated in Fig. 2.

The time advancement from tn to tn+1 using the PQP subiterations consists of executing sequentially the following
three steps for j = 0, 1, . . . until convergence:



8 Given-name Surname etal / Journal of Computational Physics (2022)

tn

un, pn, ⇡n,eyn

tn+1

un+1, pn+1, ⇡n+1,eyn+1
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P( j+1)
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Fig. 2: This figure schematically illustrates the PQP subiterations for the solution of the coupled PDE-ODE model. At each time level tn, an
iterative process characterized by the iteration counter j � 0 is conducted as follows. The interface variable P( j) is used as an input for the PDE
model to compute an updated value Q( j+1) of the interface variable Q. Then, Q( j+1) is used as an input for the ODE model of the lumped circuit ⌥
to compute an updated value P( j+1) of the interface variable P. The process is stopped when a convergence criterion on the distance between P( j)
and P( j+1) is satisfied up to a given tolerance.

Step 1. Given un and P( j) solve:

r · ut � r · (krp) = S in ⌦ ⇥ (tn, tn+1), (25a)

r · T(u, p) + f = 0 in ⌦ ⇥ (tn, tn+1), (25b)

with the boundary conditions:

T n = g, v · n = 0, on �N ⇥ (tn, tn+1), (26a)

u = 0, p = 0, on �D,p ⇥ (tn, tn+1), (26b)

u = 0, v · n =  , on �D,v ⇥ (tn, tn+1), (26c)

(T n) · ⌧1 = 0, (T n) · ⌧2 = 0, on �0 ⇥ (tn, tn+1), (26d)

u · n = 0, v · n = 0, on �0 ⇥ (tn, tn+1), (26e)

u = 0 on ⌃ ⇥ (tn, tn+1), (26f)

p(x, t) = P( j) on ⌃ ⇥ (tn, tn+1). (26g)

and the initial condition

u(x, tn) = un (27)

and then set

Q( j+1) = �k
Z

⌃

rp(x, tn+1) · n(x) dx (28)

Step 2. Given yn and Q( j+1) solve

dy(t)
dt
= Ay(t) + s(t) + b(Q( j+1)) in (tn, tn+1), (29a)
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with the initial condition

y(tn) = yn (29b)

and then set

P( j+1) = ⇡(tn+1) + R Q( j+1) (30)

where ⇡(tn+1) = y(tn+1) · e1.

Step 3. Check the condition

d(P( j), P( j+1)) < tolP (31)

where tolP is a given tolerance and d(P( j), P( j+1)) is the distance between P( j) and P( j+1). If (31) is satisfied, then
set

un+1 := u(x, tn+1), pn+1 := p(x, tn+1), Qn+1 := Q( j+1),

as computed in Step 1, and
yn+1 = y(tn+1), Pn+1 := P( j+1),

as computed in Step 2. Otherwise, advance j and repeat.

An initial value for P( j) must be selected in order to fully characterize the PQP subiterations. If n = 0 we set
P(0) = P0, where P0 is an initial guess, otherwise we set P(0) = Pn. Furthermore, a definition of distance for assessing
convergence must be adopted. Possible choices are the absolute and relative distances which, for any scalar variables
z( j) and z( j+1), are defined as follows:

dabs(z( j), z( j+1)) := |z( j+1) � z( j)| (32)

drel(z( j), z( j+1)) :=
|z( j+1) � z( j)|
|z( j+1)|

, z( j+1) , 0. (33)

We remark that the PQP subiterations described above are similar to the Dirichlet-Neumann approach in domain
decomposition. A Dirichlet condition for the pressure, see Eq. (26g), is utilized in Step 1, whose solution is then used
to update a Neumann condition of integral type, see Eq. (28), which is utilized as an input for Step 2, see Eq. (29a).

4.1.2. QPQ subiterations
At each discrete time level tn of the QPQ subiterations, the Biot PDE model is solved first using Q( j) as a (given)

input in (7b) to compute the new value P( j+1) of the interface variable P. Then, the ODE model for the lumped
hydraulic circuit ⌥ is solved using P( j+1) as a given input. Finally, relationship (8) allows the calculation of the new
value Q( j+1) of the interface variable Q. The iterative process continues until a convergence criterion on the distance
between Q( j) and Q( j+1) is satisfied up to a given tolerance. The method is schematically illustrated in Fig. 3.

In order to properly describe the QPQ subiterations, it is useful to utilize (8) and rewrite the vector valued function
b(Q(t)) introduced in (5) in the alternate form

b(Q(t)) = �(P(t)) + V y(t) (34)

with

�(P(t)) =
P(t)
RC

e1 and V =

2
666666666666666666666666666666664

� 1
RC

0 . . . 0

0 0 . . . 0

...
...
. . .

...

0 0 . . . 0

3
777777777777777777777777777777775

(35)
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Fig. 3: This figure schematically illustrates the QPQ subiterations for the solution of the coupled PDE-ODE model. At each time level tn, an
iterative process characterized by the iteration counter j � 0 is conducted as follows. The interface variable Q( j) is used as an input for the PDE
model to compute an updated value P( j+1) of the interface variable P. Then, P( j+1) is used as an input for the ODE model of the hydraulic lumped
circuit ⌥ to compute an updated value Q( j+1) of the interface variable Q. The process is stopped when a convergence criterion on the distance
between Q( j) and Q( j+1) is satisfied up to a given tolerance.

Then, ODEsystem (4) can be rewritten as

dy(t)
dt
= (A + V) y(t) + s(t) + �(P(t)) in (0,T ). (36)

The time advancement from tn to tn+1 using the QPQ subiterations consists of executing sequentially the following
three steps for j = 0, 1, . . . until convergence:

Step 1. Given un and Q( j) solve:

r · ut � r · (krp) = S in ⌦ ⇥ (tn, tn+1), (37a)

r · T(u, p) + f = 0 in ⌦ ⇥ (tn, tn+1), (37b)

with the boundary conditions:

T n = g, v · n = 0, on �N ⇥ (tn, tn+1), (38a)

u = 0, p = 0, on �D,p ⇥ (tn, tn+1), (38b)

u = 0, v · n =  , on �D,v ⇥ (tn, tn+1), (38c)

(T n) · ⌧1 = 0, (T n) · ⌧2 = 0, on �0 ⇥ (tn, tn+1), (38d)

u · n = 0, v · n = 0, on �0 ⇥ (tn, tn+1), (38e)

u = 0 on ⌃ ⇥ (tn, tn+1), (38f)

Z

⌃

v · ndx = Q( j) on ⌃ ⇥ (tn, tn+1), (38g)
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with the constraint that p is constant in space over ⌃, namely

p(x, t) = C(t), on ⌃ ⇥ (tn, tn+1) (39)

where the function C(t) is part of the unknowns of the problem, and the initial condition

u(x, tn) = un (40)

and then set

P( j+1) = C(tn+1). (41)

Step 2. Given yn and P( j+1) solve

dy(t)
dt
= (A + V)y(t) + s(t) + �(P( j+1)) in (tn, tn+1), (42a)

with the initial condition

y(tn) = yn (42b)

and then set

Q( j+1) =
P( j+1) � ⇡(tn+1)

R
(43)

where ⇡(tn+1) = y(tn) · e1.

Step 3. Check the condition

d(Q( j),Q( j+1)) < tolQ (44)

where tolQ is a given tolerance and d(Q( j),Q( j+1)) is the distance between Q( j) and Q( j+1). Possible options are
the absolute and relative distances defined in (32) and (33). If (44) is satisfied, then set

un+1 := u(x, tn+1), pn+1 := p(x, tn+1), Pn+1 := P( j+1),

as computed in Step 1, and
yn+1 = y(tn+1), Qn+1 := Q( j+1),

as computed in Step 2. Otherwise, advance j and repeat.

An initial value for Q( j) must be selected in order to fully characterize the QPQ subiterations. If n = 0 we set
Q(0) = Q0, where Q0 is an initial guess, otherwise we set Q(0) = Qn. We remark that the QPQ subiteration method
described above is similar to the Neumann-Dirichlet approach in domain decomposition. A Neumann condition of
integral type, see Eq. (38g), is utilized in Step 1, whose solution is then used to update the Dirichlet condition for the
pressure at the interface, see Eq. (41), which is utilized as an input for Step 2, see Eq. (42a).

4.2. Operator splitting
The operator splitting method consists in splitting the original system into separate parts and establishing a com-

munication among the parts through the initial conditions [57]. If the operator splitting is designed in such a way as
to maintain at the discrete level the energy properties of the system, unconditional stability with respect to the choice
of the time step may be achieved without the need of subiterations among the substeps [58, 59, 60, 61, 62, 63]. In-
spired by the energy identity illustrated in Section 3, we propose to split the problem at hand by treating the interface
coupling conditions together with the Biot model in a first substep, thereby ensuring mass conservation and pressure
continuity at the interface, and solving the internal part of the circuit e⌥ in the next substep, as illustrated in Fig. 4.

Then, for any n � 0, the proposed operator splitting method consists of solving sequentially the following two
steps:
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Fig. 4: This figure schematically illustrates the operator splitting method for the solution of the coupled PDE-ODE model. At each time level tn,
the Biot model in ⌦ is solved together with the circuit connection ⇤ to compute an updated value ⇡n+1/2 of the pressure at the connecting capacitor
C, which is then used as initial condition for the ODE model that is solved next. The method does not require any subiteration between the steps.

Step 1. Given un and yn solve:

r · ut � r · (krp) = S in ⌦ ⇥ (tn, tn+1), (45)

r · T(u, p) + f = 0 in ⌦ ⇥ (tn, tn+1), (46)
dy
dt
= b(Q(t)) in (tn, tn+1), (47)

with the boundary conditions:

T n = g, v · n = 0, on �N ⇥ (tn, tn+1), (48a)

u = 0, p = 0, on �D,p ⇥ (tn, tn+1), (48b)

u = 0, v · n =  , on �D,v ⇥ (tn, tn+1), (48c)

(T n) · ⌧1 = 0, (T n) · ⌧2 = 0, on �0 ⇥ (tn, tn+1), (48d)

u · n = 0, v(p) · n = 0, on �0 ⇥ (tn, tn+1), (48e)

the interface conditions:

u = 0 on ⌃ ⇥ (tn, tn+1), (49)
Z

⌃

v · n = Q(t) on ⌃ ⇥ (tn, tn+1), (50)

p(x, t) = P(t) on ⌃ ⇥ (tn, tn+1), (51)

Q(t) =
P(t) � ⇡(t)

R
on ⌃ ⇥ (tn, tn+1), (52)

and the initial conditions:

u = un in ⌦ at t = tn (53)
y = yn at t = tn. (54)

Then set un+1/2 = u(tn+1), pn+1/2 = p(tn+1) and yn+1/2 = y(tn+1).



Given-name Surname etal / Journal of Computational Physics (2022) 13

Step 2. Given yn+1/2, solve

dy
dt
= Ay + s(t) in (tn, tn+1), (55)

with the initial condition

y = yn+1/2 at t = tn (56)

Then set yn+1 = y(tn+1). Since u and p are not updated in this step, we also have un+1 = un+1/2 and pn+1 = pn+1/2.

It is interesting to notice that the definitions of y(t) and b(Q(t)) given in (3) and (5), respectively, reduce Eq. (47) to
the single scalar equation

d⇡(t)
dt
=

Q(t)
C

(57)

thereby e↵ectively making the value of ⇡ at the end of Step 1, namely ⇡n+1/2, the pivotal link in the communication
between the two steps, as illustrated in Fig. 4. We emphasize that the splitting algorithm illustrated above does not
include any convergence criterium, since the two steps are solved sequentially without subiterations. We also note
that we have opted for solving the PDE problem in the Step 1 and the ODE problem in Step 2. However, this choice
is not binding and the order of the steps may be switched.

5. 1D-0D example of coupled Biot-circuit system

In this section, we present a 1D-0D version of the 3D-0D coupled Biot-circuit model that can be used to easily
study and compare the performance of the methods based on functional iterations and operator splitting illustrated in
Section 4. Let us consider the Biot domain ⌦ to be given by ⌦ = (x, y, z) 2 (0, c) ⇥ (�a/2, a/2) ⇥ (�b/2, b/2), as
illustrated in Fig. 5. The boundary of ⌦ is @⌦ = �N [ �0 [ ⌃, with �0 = �

t
0 [ �b

0 [ �l
0 [ �r

0 representing the lateral
surface. The symbol W in Fig. 5 represents the point on the surface ⌃ at which the lumped hydraulic circuit of Fig. 6
is physically connected to the domain ⌦.

O
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n

n

n
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�b0
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b
2

� b
2

� a
2

a
2
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Fig. 5: The three-dimensional domain ⌦ and the geometrical notation. The domain boundary is @⌦ = �N [ �0 [ ⌃, with �0 = �
t
0 [ �b

0 [ �l
0 [ �r

0
representing the lateral surface. The symbol n is the outward unit normal vector on @⌦. The dimensions along the axes x, y and z are c, a and b,
respectively, so that the area of the surface ⌃ is equal to ab. W is the point at which the lumped hydraulic circuit ⌥ is connected to the domain ⌦.

Let us assume that the solid displacement u consists of the sole component u along the x-direction, and that u and
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Q(t)

R

C

Q1(t)
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C1

RP(t) ⇡(t) ⇡1(t) p(t)

Connection ⇤ Internal Circuit e⌥

Fig. 6: Schematic representation of the lumped hydraulic circuit ⌥. The connection ⇤ is composed of the linear time-invariant resistor R and the
linear time-invariant capacitor C. The internal circuit e⌥ is composed of one linear time-invariant capacitor C1, one linear time-invariant inductor,
L1, two linear time-invariant resistors, R1 and R, and one pressure source, p = p(t).

p are functions of x and t. Consequently, we can write:

v = �krp =
"
�k
@p(x, t)
@x

, 0, 0
#T

(58a)

T(u, p) =

2
6666666666666666664

K
@u(x, t)
@x

� p(x, t) 0 0

0 �
@u(x, t)
@x

� p(x, t) 0

0 0 �
@u(x, t)
@x

� p(x, t)

3
7777777777777777775

(58b)

where K := � + 2µ is the aggregate modulus. It is easy to check that the boundary conditions (6d)-(6e) on �0 are
automatically satisfied. The interface conditions to be enforced on the surface ⌃ are the same as in (7) and the initial
conditions are the same as in (9).

It is worth noticing that relations (6d)-(6e) have a significant physical interpretation. The boundary conditions (6e)
express the fact that the lateral surface is impermeable and may displace only in the tangential direction. The boundary
conditions (6d) express the fact that the tangential stresses are equal to zero on the lateral surface �0, thus preventing
the occurrence of any shear body motion. The only nonvanishing stress on the lateral surface of the parallelepiped ⌦
is the normal component of the traction Tn, equal to the sum of �@u/@x and the compression �p due to the hydrostatic
pressure; this normal stress keeps the body motion confined along the x-axis.

Having introduced the three-dimensional setting that supports a one-dimensional motion in the body ⌦, we are in
the position to formulate the poroelastic Biot equations (1) as follows:

@

@t

 
@u(x, t)
@x

!
+
@v(x, t)
@x

= S , for x 2 (0, c), t 2 (0,T ) (59a)

@T (x, t)
@x

+ f = 0, for x 2 (0, c), t 2 (0,T ) (59b)

v(x, t) = �k
@p(x, t)
@x

, for x 2 (0, c), t 2 (0,T ) (59c)

T (x, t) = K
@u(x, t)
@x

� p(x, t), for x 2 (0, c), t 2 (0,T ) (59d)

subject to the initial condition

u(x, 0) = �(x), for x 2 (0, c) (59e)

where � = �(x) is a given function. The equation system (59) is complemented by the boundary conditions:

K
@u(0, t)
@x

� p(0, t) = �g(t), t 2 (0,T ), (60a)

@p(0, t)
@x

= 0, t 2 (0,T ), (60b)
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and the interface conditions:

u(c, t) = 0, t 2 (0,T ), (61a)

v(c, t) =
Q(t)
ab
, t 2 (0,T ), (61b)

p(c, t) = P(t) . t 2 (0,T ). (61c)

Let us now focus on the lumped hydraulic circuit coupled with the one-dimensional Biot model. In this specific
example, we consider the circuit ⌥ illustrated in Fig. 6, for which the vector y(t) 2 R3 of state variables is defined as

y(t) = [⇡(t), ⇡1(t),Q1(t)]T , (62a)

so that the vector of state variables ey(t) 2 R2 for the internal circuit e⌥ is

ey(t) = [⇡1(t),Q1(t)]T (62b)

and the matrix A is given by

A =

2
666666666666666666666666664

0 0 � 1
C

0 � 1
RC1

1
C1

1
L1

� 1
L1

�R1

L1

3
777777777777777777777777775

. (62c)

It can be checked that matrix A is nonsingular. The vectors s(t) and b(Q(t)) are defined as

s(t) =
"
0,

p(t)
RC1
, 0

#T

and b(Q(t)) =
"

Q(t)
C
, 0, 0

#T

(62d)

with

Q(t) =
P(t) � ⇡(t)

R
. (62e)

Following (15), the matrix U for this circuit is defined as follows

U =

2
666666666666666664

C 0 0

0 C1 0

0 0 L1

3
777777777777777775
. (62f)

The circuit dynamics is described by the first order, nonhomogeneous linear system of di↵erential equations of the
form (4), whose solution can be written as

y(t) = etAy0 +

Z t

0
e(t�s)A

h
s(s) + b(Q(s))

i
ds (63)

where y0 is the initial condition.

6. Main theorems: numerical properties of functional iterations and operator splitting methods

The functional iteration methods based on PQP and QPQ subiterations rely on seeking the fixed point of suitable
mappings within a discrete time interval (tn, tn+1), as detailed in Section 4. However, it is well known that, depending
on the mathematical properties of such mappings, it may or may not be possible to achieve convergence to the fixed
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point (see [55, 64, 65]). In this section, Theorems 1 and 2 provide su�cient conditions for the convergence of PQP and
QPQ subiterations applied to the 1D-0D coupled problem described in Section 5 discretized in time via a Backward
Euler method.

The operator splitting method does not require subiterations within each time step. Thus, instead of studying its
convergence, we focus on the stability of the numerical solution as a function of the time discretization step �t. In
this section, Theorem 3 shows that the proposed operator splitting scheme in its general formulation illustrated in
Section 4.2 in the absence of external forcing is unconditionally stable with respect to �t.

Theorem 1 (Convergence of PQP subiterations). Let us consider the 1D-0D coupled problem described in Section 5
discretized in time via a Backward Euler method. In this case, a su�cient condition for the convergence of the PQP
subiterations is

|�2(�t)| =
������

1
�1(�t)

 
�tN11(�t)

C
+ R

!������ < 1 (64)

where

�1(�t) =
coth(c⇠)

kab⇠
with ⇠ =

r
1

kK�t

and
N11(�t) = (Ne1)e1 with N(�t) = [I � �tA]�1 .

Proof. To prove this theorem, we are going to obtain an explicit expression for the mapping P = �(P) characterizing
the PQP subiterations in the case of the 1D-0D coupled problem described in Section 5 discretized in time via a
Backward Euler method. The time-discrete version of the 1D Biot problem (115) reads

pn+1(x) � pn(x)
�t

� kK pn+1
xx (x) = g0(tn+1) x 2 (0, c), n = 0, . . . ,NT � 1 (65a)

pn+1
x (0) = 0 (65b)

pn+1
x (c) = �Qn+1

kab
. (65c)

We recall that �t is the discrete time step, tn = n�t for n = 0, . . . ,NT � 1, with the superscripts n and n + 1 indicating
that the specific variable is evaluated at tn or tn+1, respectively, and pn(x) is given. Problem (65) can be solved in
closed form to obtain

pn+1(x) = (�↵1Qn+1 + ↵2)(e⇠x + e�⇠x) +
e⇠x

2⇠

Z x

0
e�⇠s f (s)ds � e�⇠x

2⇠

Z x

0
e⇠s f (s)ds (66)

where

⇠ =

r
1

kK�t

↵1 =
1

kab⇠(e⇠c � e�⇠c)

↵2 = �
1

⇠(e⇠c � e�⇠c)

 
e⇠c

2

Z c

0
e�⇠s f (s)ds � e�⇠c

2

Z c

0
e⇠s f (s)ds

!

f (s) = � 1
kK

 
pn

�t
+ g0(tn+1)

!
.

Leveraging the fact that the pressure Pn+1 at the 1D-0D interface at time tn+1 can be obtained as Pn+1 = pn+1(c), we
can evaluate (66) at x = c to obtain

Pn+1 = ��1(�t) Qn+1 + �2(�t) (67)
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where

�1(�t) =
coth(c⇠)

kab⇠
(68)

�2(�t) = ↵2(e⇠c + e�⇠c) +
e⇠c

2⇠

Z c

0
e�⇠s f (s)ds � e�⇠c

2⇠

Z c

0
e⇠s f (s)ds. (69)

As a note, it is not surprising that, given the linear nature of the problem, the relationship (67) between Pn+1 and Qn+1

is linear. However, it is important to notice that the parameters in this linear relationship depend nonlinearly on the
time discretization parameter �t.

Let us now consider the Backward Euler discretization of the lumped circuit. Starting from the formulation in (4),
the discrete problem reads

yn+1 � yn

�t
= A yn+1 + sn+1 + b(Qn+1) n = 0, . . . ,NT � 1 (70)

with yn given. Solving equation (70) for yn+1 we obtain

yn+1 = N(�t)
⇣
!(�t) + �t b(Qn+1)

⌘
(71)

with N(�t) = [I � �tA]�1 and !(�t) = yn + �t sn+1, both functions of �t. Observing that ⇡n+1 = yn+1 · e1 and
b(Qn+1) · e1 = Qn+1/C, we can write

⇡n+1 = (N(�t)!)(�t) · e1 +
�tN11(�t)

C
Qn+1 (72)

where N11(�t) = (Ne1)e1.
The PQP subiterations compute the approximate solution of the coupled problem at time tn+1 by:

1. solving the Biot problem for a given interface pressure Pn+1
( j) to update the value of the interface flow rate Qn+1

( j+1);
in particular, Eq. (67) allows us to write

Qn+1
( j+1) = �

1
�1(�t)

Pn+1
( j) +

�2(�t)
�1(�t)

; (73a)

2. utilizing the updated value Qn+1
( j+1) to compute the solution of the lumped circuit; in particular, Eq. (72) allows

us to write
⇡n+1

( j+1) = (N(�t)!(�t)) · e1 +
�tN11(�t)

C
Qn+1

( j+1); (73b)

3. updating the value of Pn+1
( j+1) via Poiseuille’s law so that we can write

Pn+1
( j+1) = ⇡

n+1
( j+1) + RQn+1

( j+1) (73c)

until convergence. Combining the steps in (73) leads us to write the PQP subiterations in the form of a fixed-point
algorithm as

Pn+1
( j+1) = �(Pn+1

( j) ) j � 0, (74)

where the mapping � is defined as

�(s) = �1(�t) � �2(�t)s (75)

with:

�1(�t) = (N(�t)!) · e1 + �2(�t)�2(�t)

�2(�t) =
1

�1(�t)

 
�tN11(�t)

C
+ R

!
.



18 Given-name Surname etal / Journal of Computational Physics (2022)

A su�cient condition for the sequence {Pn+1
( j) } generated by (74) to converge is that |�0(s)| = |�2| < 1, where the

apostrophe denotes the ordinary derivative with respect to the independent variable. Thus, a su�cient condition for
convergence of the PQP subiterations is given by

|�2(�t)| =
������

1
�1(�t)

 
�tN11(�t)

C
+ R

!������ < 1.

Fig. 7: Plot of |�2(�t)| for the choice of parameters shown in Table 2.

Fig. 7 shows the plot of |�2| as a function of the time discretization parameter �t in the case where the values of
model parameters are as reported in Table 2. We notice that the dependence of �2 on �t is nontrivial and it gives
rise to a non-monotonic behavior that leads to unexpected consequences on the convergence of the PQP subiterations.
In particular, we can see that, for this particular set of model parameters, the su�cient condition is not satisfied
if �t becomes too small, thereby hindering the hope of achieving convergence by following the usual strategy of
decreasing the time step. Even though the fact that a su�cient condition is not satisfied does not necessarily mean
that convergence is not achieved, the numerical experiments conducted in Section 8 actually show that the PQP
subiterations fail to converge when �t = 0.02 s and converge when �t = 0.1 s. Moreover, in the case of failed
convergence, simulations show that the discrete counterpart of the important coupling term in the energy identity
given in Eq. (24) does not have the sign of a dissipation, as expected from the physics of the problem at the continuous
level. Considerations related to the energy identity role in the case of PQP iterations are also discussed in Section 7.

Theorem 2 (Convergence of QPQ subiterations). Consider the 1D-0D coupled problem described in Section 5 dis-
cretized in time via a Backward Euler method. In this case, a su�cient condition for the convergence of the QPQ
subiterations is

|↵2(�t)| =
������
�1(�t)

R

 
1 � �tM11(�t)

RC

!������ < 1 (76)

where

�1(�t) =
coth(c⇠)

kab⇠
with ⇠ =

r
1

kK�t

and
M11(�t) = (Me1)e1 with M(�t) = [I � �t(A + V)]�1 .

Proof. To prove this theorem, we are going to obtain an explicit expression for the mapping Q =  (Q) characterizing
the QPQ subiterations in the case of the 1D-0D coupled problem described in Section 5 discretized in time via a



Given-name Surname etal / Journal of Computational Physics (2022) 19

Backward Euler method. We consider here the same time-discrete version of the 1D Biot problem that was utilized in
Theorem 1 and, consequently, we can leverage relationship (67) between Pn+1 and Qn+1. However, the lumped circuit
must be considered in its alternate formulation (36), whose time discretization via the Backward Euler method reads

yn+1 � yn

�t
= (A + V) yn+1 + sn+1 + �(Pn+1) n = 0, . . . ,NT � 1 (77)

with yn given. Solving equation (77) for yn+1 we obtain

yn+1 =M(�t)
⇣
!(�t) + �t �(Pn+1)

⌘
(78)

with M(�t) = [I � �t(A + V)]�1 and !(�t) = yn + �t sn+1, both depending on �t. Observing that ⇡n+1 = yn+1 · e1 and
M(�t)�(Pn+1) · e1 = M11(�t)Pn+1/(RC), where M11(�t) = (Me1)e1, we can perform the scalar product of (78) by e1
to obtain

⇡n+1 = (M(�t)!(�t)) · e1 +
�tM11(�t)

RC
Pn+1 . (79)

The QPQ iterations compute the approximate solution of the coupled problem at time tn+1 by:

1. solving the Biot problem for a given interface flow rate Qn+1
( j) to update the value of the interface pressure Pn+1

( j+1);
in particular, Eq. (67) allows us to write

Pn+1
( j+1) = ��1(�t) Qn+1

( j) + �2(�t); (80a)

2. utilizing the updated value Pn+1
( j+1) to compute the solution of the lumped circuit; in particular, Eq. (79) allows us

to write
⇡n+1

( j+1) = (M(�t)!(�t)) · e1 +
�tM11(�t)

RC
Pn+1

( j+1); (80b)

3. updating the value of Qn+1
( j+1) via Poiseuille’s law so that we can write

Qn+1
( j+1) =

Pn+1
( j+1) � ⇡n+1

( j+1)

R
(80c)

until convergence. Combining the steps in (80) leads to write the QPQ subiterations under the form of a fixed-point
algorithm as

Qn+1
( j+1) =  (Qn+1

( j) ) j � 0, (81)

where the mapping  is defined as

 (s) = ↵1(�t) � ↵2(�t)s (82)

with

↵1(�t) = � 1
R

(M(�t)!) · e1 +
�2(�t)
�1(�t)

↵2(�t)

↵2(�t) =
�1(�t)

R

 
1 � �tM11(�t)

RC

!
.

A su�cient condition for the sequence {Qn+1
( j) } generated by (81) to converge is that | 0(s)| = |↵2| < 1, leading to the

following su�cient condition for convergence of the QPQ subiterations

|↵2(�t)| =
������
�1(�t)

R

 
1 � �tM11(�t)

RC

!������ < 1 .
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Fig. 8: Plot of |↵2(�t)| for the choice of parameters shown in Table 2.

Fig. 8 shows the plot of |↵2| as a function of the time discretization parameter �t in the case where the values of
model parameters are as reported in Table 2. Also in this case, the dependence of ↵2 on �t is nontrivial and it gives
rise to a non-monotonic behavior. In contrast with the case of PQP iterations, for this set of model parameters, the
QPQ iterations are predicted to converge if �t is less than 10�4 s and if �t is slightly larger than 10�2 s. Numerical
experiments conducted in Section 8 actually demonstrate that QPQ iterations converge for �t = 0.02 s and fail to
converge for �t = 0.1 s, a value for which, instead, PQP iterations are predicted to converge. Also in this case,
failure to converge is associated with a non-physical sign of the numerical counterpart of the dissipation term (24).
Considerations related to the energy identity role in the case of QPQ iterations are also discussed in Section 7.

Theorem 3 (Stability of operator splitting method). The operator splitting method illustrated in Section 4.2 for the
solution of the multiscale interface coupled problem described in Section 2 in the absence of external forcing is
unconditionally stable with respect to the choice of the time discretization step �t.

Proof. To prove this theorem, we write the energy estimates associated with the problems introduced in the two
steps separately and show that the operator splitting method does not disrupt the energy balance (23) that holds at
the continuous level. This provides an a priori bound on the solution that ensures the desired unconditional stability.
Henceforth, we will use superscripts ·I and ·II to distinguish between the unknown variables involved in the two steps
of the splitting method.

We begin by considering the Biot system in Step 1 of the operator splitting method. Similarly to Section 3, we
obtain the following energy identity

d
dt
E⌦(uI) +D⌦(pI) = F⌦(g, ; uI , pI) � PI(t)QI(t) (83)

where

E⌦(uI) =
�

2
kr · uIk2L2(⌦) + µk"(uI)k2L2(⌦)

D⌦(pI) = kk1/2rpIk2L2(⌦)

F⌦(g, ; uI , pI) =
Z

�N

g · uI
t d�N �

Z

�D,v

 pI d�D,v.

We note that Step 1 also includes the following ODE

dyI

dt
= b(QI(t)) =

"
QI(t)

C
, 0

#T
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which simplifies to the following scalar ODE for ⇡I

d⇡I

dt
=

QI(t)
C

leading to the energy estimate
C
2

d
dt

(⇡I)2 = ⇡I QI . (84)

Now we combine (83) with (84) and obtain the energy identity for the coupled system of Step 1

d
dt

h
E⌦(uI) +

C
2

(⇡I)2
i
+D⌦(pI) +D⇤(QI) = F⌦(g, ; uI , pI) (85)

with
D⇤(QI) = R(QI(t))2 . (86)

It is worth emphasizing that the choice to include the connecting part ⇤ of the lumped circuit within Step 1 along
with the Biot problem ensures that the numerical counterpart of D⇤ is nonnegative, thereby preserving the dissi-
pative nature that this term has at the continuous level. Furthermore, in the absence of external forcing terms, i.e.
F⌦(g, ; uI , pI) = 0, it follows that for n � 0

h
E⌦(uI(tn+1)) +

C
2

(⇡I(tn+1))2
i


h
E⌦(uI(tn)) +

C
2

(⇡I(tn))2
i
. (87)

We also notice that, since we are not updating the variables ⇧i and Qi in this step, we have ⇧I
i (t

n+1) = ⇧I
i (t

n) and
QI

i (t
n+1) = QI

i (t
n) or, equivalently, eyI(tn+1) =eyI(tn). Therefore we have for n � 0

h
E⌦(uI(tn+1)) + E⌥(yI(tn+1))

i


h
E⌦(uI(tn)) + E⌥(yI(tn))

i
. (88)

Let us now consider Step 2 of the operator splitting method, where we need to solve the following ODE system

dyII

dt
= AyII + s(t) . (89)

Using multiplier UyII in the circuit ODE (89) we obtain the following identity

dE⌥(yII)
dt

+D⌥(yII) = F II(s; yII), (90)

where

E⌥(yII) =
C(⇡II)2

2
+

nCX

i=1

Ci(⇧II
i )2

2
+

nLX

i=1

Li(QII
i )2

2
(91)

is the energy stored in the capacitors and inductors within the circuit ⌥. The dissipation in the circuit is given by

D⌥(yII) = (ByII) · yII

where matrix B is defined as in (20) and
F II(s; yII) = (UyII) · s(t).

Thus, in the absence of external forcing terms, i.e. F II(s; yII) = 0, and since the matrix B is positive definite (see
Section 3), it follows that

E⌥(yII(tn+1))  E⌥(yII(tn)) . (92)

We also notice that, since we are not updating the variables u and p in this step, we have uII(tn+1) = uII(tn) and
pII(tn+1) = pII(tn). In particular, this means that

E⌦(uII(tn+1)) = E⌦(uII(tn)) , (93)
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and therefore we have that for n � 0

E⌦(uII(tn+1)) + E⌥(yII(tn+1))  E⌦(uII(tn)) + E⌥(yII(tn)) . (94)

Recall that the initial conditions for Step II are the solutions of Step I, i.e.,

yII(tn) = yn+1/2 = yI(tn+1),

uII(tn) = un+1/2 = uI(tn+1), pII(tn) = pn+1/2 = pI(tn+1) .

Thus combining (94) with (88) we obtain for n � 0

E⌦(uII(tn+1)) + E⌥(yII(tn+1))  E⌦(uII(tn)) + E⌥(yII(tn)) (95a)

= E⌦(uI(tn+1)) + E⌥(yI(tn+1))  E⌦(uI(tn)) + E⌥(yI(tn)). (95b)

The chain of inequalities given in (95) shows that the physical energies E⌦ and E⌥ provide norms for the solution that,
in the absence of external forcing, are bounded a priori by the initial conditions regardless of the choice of the time
discretization step �t, thereby concluding the proof of the theorem.

Remark 2. It is easy to show that the stability result proved in Theorem 3 also holds in the case when a Backward
Euler method is used for the time discretization of both steps. However, the result provided in the theorem is more
general and also holds for other time discretization methods. We also note that the theorem yields unconditional
stability in the absence of external forcing. This is due to the fact that, from the physical viewpoint, if the external
forces are too large the system will derange. However, the theorem could be generalized by assuming an a priori
bound on the forcing terms.

7. Energy considerations for the functional iterations

Theorem 3 shows that the unconditional stability of the operator splitting method stems from the fact that the
splitting does not disrupt the energy balance that holds at the continuous level. In particular, the interface coupling
conditions are solved implicitly in Step 1 together with the Biot problem, thereby ensuring that the dissipative term in
Eq. (86) associated with the resistive connection in ⇤ has a nonnegative sign.

Inspired by this result, let us now investigate the impact of the PQP and QPQ subiterations on the physical energy
balance in order to get an insight into whether there may be issues associated with a potential lack of convergence. To
this end, we begin by writing the energy of the time-discretized version of the fully coupled 1D-0D problem by means
of the Backward Euler method (see Section 7.1), and then analyze it in the context of PQP and QPQ subiterations (see
Sections 7.2 and 7.3)

7.1. Energy inequality for the fully coupled 1D-0D problem discretized in time via the Backward Euler method
We write the energy of the time-discretized version of the 1D-0D coupled problem by means of the Backward

Euler method. Multiplying Eq. (65a) by (1/K)pn+1, integrating over the interval (0, c), multiplying by the cross-
sectional area ab, utilizing conditions (65b)-(65c) and the fact that pn+1(c) = Pn+1 for n = 0, . . . ,NT � 1, we obtain

1
K�t
kpn+1k2L2(⌦) + kkpn+1

x k2L2(⌦) =
ab

K�t

Z c

0
pn pn+1dx + F n+1

⌦ � Qn+1Pn+1 (96)

where
F n+1
⌦ =

ab
K

g0(tn+1)
Z c

0
pn+1dx . (97)

The first term on the right hand side of (96) can be bounded using Young’s inequality to obtain

1
2K�t

kpn+1k2L2(⌦) + kkpn+1
x k2L2(⌦) 

1
2K�t

kpnk2L2(⌦) + F n+1
⌦ � Qn+1Pn+1 . (98)

Defining the discrete versions of the energy and dissipation functionals for the Biot problem as:

En+1
⌦ =

1
2K
kpn+1k2L2(⌦) and Dn+1

⌦ = kkpn+1
x k2L2(⌦), (99)
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we obtain
1
�t
En+1
⌦ +Dn+1

⌦  1
�t
En
⌦ + F n+1

⌦ � Qn+1Pn+1 (100)

which is the time-discretized version of (10) for the simplified 1D-0D problem.
Let us now consider the lumped circuit. By performing the scalar product of (70) with the vector Uyn+1, with U

defined in (62f), we obtain

1
�t

(Uyn+1) · yn+1 + (Byn+1) · yn+1 =
1
�t

(Uyn+1) · yn + F n+1
⌥ + (Uyn+1) · b(Qn+1) (101)

where B = �UA and
F n+1
⌥ = (Uyn+1) · sn+1 . (102)

The first term on the right hand side of (101) can be estimated by Young’s inequality as follows

(Uyn+1) · yn = (U1/2yn+1) · (U1/2yn)  1
2

(U1/2yn+1)2 +
1
2

(U1/2yn)2 .

The last term on the right hand side of (101) can be rewritten utilizing the definitions of the vectors involved and the
Poiseuille law at the interface to obtain

(Uyn+1) · b(Qn+1) = Qn+1⇡n+1 . (103)

Defining the discrete versions of the energy and dissipation functionals for the circuit as:

En+1
⌥ =

1
2

(U1/2yn+1)2 =
C
2

⇣
⇡n+1

⌘2
+

C1

2

⇣
⇡n+1

1

⌘2
+

L1

2

⇣
Qn+1

1

⌘2

Dn+1
⌥ = (Byn+1) · yn+1

we obtain
1
�t
En+1
⌥ +Dn+1

⌥  1
�t
En
⌥ + F n+1

⌥ + Qn+1⇡n+1 (104)

which is the time-discretized version of (21) for the simplified 1D-0D problem. Now, adding (100) and (104) we
obtain

1
�t

⇣
En+1
⌦ + En+1

⌥

⌘
+Dn+1

⌦ +Dn+1
⌥  1

�t

⇣
En
⌦ + En

⌥

⌘
+ F n+1

⌦ + F n+1
⌥ � Qn+1(Pn+1 � ⇡n+1)

and, using Poiseuille’s law, the last term on the right hand side can be written as

�Qn+1(Pn+1 � ⇡n+1) = �RQn+1Qn+1 = �R
⇣
Qn+1

⌘2
=: �Dn+1

⇤ (105)

thereby providing the expected viscous dissipation associated with the resistance R in the Biot-circuit connection ⇤.
Finally, for the time-discretized 1D-0D coupled problem we can write the following energy inequality

1
�t

⇣
En+1
⌦ + En+1

⌥

⌘
+Dn+1

⌦ +Dn+1
⌥ +Dn+1

⇤  1
�t

⇣
En
⌦ + En

⌥

⌘
+ F n+1

⌦ + F n+1
⌥ (106)

which is the discrete counterpart of (23) for the 1D-0D coupled problem. Since all dissipative terms are nonnegative
by definition, we can write

1
�t

⇣
En+1
⌦ + En+1

⌥

⌘
 1
�t

⇣
En
⌦ + En

⌥

⌘
+ F n+1

⌦ + F n+1
⌥ (107)

which, in the particular case of F n+1
⌦
+ F n+1

⌥ = 0, guarantees that the energy of the discretized system decreases as it
happens at the continuous level.

We remark that, in the case of the alternative formulation (77) for the circuit, we can follow the same steps as
above to obtain the following inequality for the discrete energy of the circuit

1
�t
En+1
⌥ +Dn+1

⌥  1
�t
En
⌥ + F n+1

⌥ + (Uyn+1) · (Vyn+1) + (Uyn+1) · �(Pn+1)

=
1
�t
En
⌥ + F n+1

⌥ +
⇡n+1

R

⇣
Pn+1 � ⇡n+1

⌘
(108)

which, upon utilization of Poiseuille’s law and addition to the Biot part, gives the same expression as obtained in (106).
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7.2. Energy inequality in the PQP subiterations
Within each time step (tn, tn+1), the Biot problem is solved for a given interface pressure Pn+1

( j) to update the value
of the interface flow rate Qn+1

( j+1). As a result, the energy inequality (100) for the Biot step becomes

1
�t
En+1
⌦,( j+1) +Dn+1

⌦,( j+1) 
1
�t
En
⌦,( j+1) + F n+1

⌦,( j+1) � Qn+1
( j+1)P

n+1
( j) (109)

The updated interface flow rate Qn+1
( j+1) is then used to solve the circuit. As a result, the energy inequality (104) for the

circuit step becomes
1
�t
En+1
⌥,( j+1) +Dn+1

⌥,( j+1) 
1
�t
En
⌥,( j+1) + F n+1

⌥,( j+1) + Qn+1
( j+1)⇡

n+1
( j+1) (110)

Now adding (109) and (110) we obtain the energy of the coupled system during one PQP iteration

1
�t

⇣
En+1
⌦,( j+1) + En+1

⌥,( j+1)

⌘
+Dn+1

⌦,( j+1) +Dn+1
⌥,( j+1) 

1
�t

⇣
En
⌦,( j+1) + En

⌥,( j+1)

⌘

+ F n+1
⌦,( j+1) + F n+1

⌥,( j+1) � Qn+1
( j+1)(P

n+1
( j) � ⇡n+1

( j+1))

For the last term on the right side of the expression above we apply Poiseuille’s law and we obtain

�Qn+1
( j+1)(P

n+1
( j) � ⇡n+1

( j+1)) = �Qn+1
( j+1)(P

n+1
( j) � Pn+1

( j+1) + RQn+1
( j+1))

= Qn+1
( j+1)(P

n+1
( j+1) � Pn+1

( j) ) � R(Qn+1
( j+1))

2,
(111)

which is not guaranteed to provide a dissipation, as physically expected, because R(Qn+1
( j+1))

2 is nonnegative (i.e., it is
a dissipation term) whereas Qn+1

( j+1)(P
n+1
( j+1) � Pn+1

( j) ) does not have a definite sign. If the PQP iterations converge, then
(Pn+1

( j+1) � Pn+1
( j) ) ! 0 as j ! 1 and the dissipative contribution is recovered despite the unphysical mismatch of the

pressures at the interface. On the contrary, numerical simulations indicate that failure of PQP iterations at satisfying
the convergence condition (64) is accompanied by a rapid blow-up of the term �Qn+1

( j+1)(P
n+1
( j) � ⇡n+1

( j+1)) as shown in the
left panel of Fig. 10.

7.3. Energy inequality in the QPQ subiterations
Within each time step (tn, tn+1), the Biot problem is solved for a given interface flow rate Qn+1

( j) to update the value
of the interface pressure Pn+1

( j+1). As a result, the energy inequality (100) for the Biot step becomes

1
�t
En+1
⌦,( j+1) +Dn+1

⌦,( j+1) 
1
�t
En
⌦,( j+1) + F n+1

⌦,( j+1) � Qn+1
( j) Pn+1

( j+1) (112)

The updated interface pressure Pn+1
( j+1) is then used to solve the circuit. As a result, the energy inequality (108) for the

circuit step becomes

1
�t
En+1
⌥,( j+1) +Dn+1

⌥,( j+1) 
1
�t
En
⌥,( j+1) + F n+1

⌥,( j+1) +
⇡n+1

( j+1)

R

⇣
Pn+1

( j+1) � ⇡n+1
( j+1)

⌘
(113)

Now adding (112) and (113) we obtain the energy of the coupled system during one QPQ iteration

1
�t

⇣
En+1
⌦,( j+1) + En+1

⌥,( j+1)

⌘
+Dn+1

⌦,( j+1) +Dn+1
⌥,( j+1) 

1
�t

⇣
En
⌦,( j+1) + En

⌥,( j+1)

⌘

+ F n+1
⌦,( j+1) + F n+1

⌥,( j+1) � Qn+1
( j) Pn+1

( j+1) +
⇡n+1

( j+1)

R

⇣
Pn+1

( j+1) � ⇡n+1
( j+1)

⌘

Let us consider the last two terms on the right side of the expression above. When applying Poiseuille’s law we now
obtain

�Qn+1
( j) Pn+1

( j+1) +
⇡n+1

( j+1)

R

⇣
Pn+1

( j+1) � ⇡n+1
( j+1)

⌘
= �Qn+1

( j) Pn+1
( j+1) + Qn+1

( j+1)⇡
n+1
( j+1)

= Pn+1
( j+1)(Q

n+1
( j+1) � Qn+1

( j) ) � R(Qn+1
( j+1))

2,

(114)
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which is not guaranteed to provide a dissipation, as physically expected, because R(Qn+1
( j+1))

2 is nonnegative (i.e., it is
a dissipation term) whereas Pn+1

( j+1)(Q
n+1
( j+1) � Qn+1

( j) ) does not have a definite sign. If the QPQ iterations converge, then
(Qn+1

( j+1) � Qn+1
( j) ) ! 0 as j ! 1 and the dissipative contribution is recovered despite the unphysical mismatch of the

flow rates at the interface. On the contrary, numerical simulations indicate that failure of QPQ iterations at satisfying
the convergence condition (76) is accompanied by a rapid blow-up of the term �Qn+1

( j) Pn+1
( j+1) + ⇡

n+1
( j+1)

⇣
Pn+1

( j+1) � ⇡n+1
( j+1)

⌘
/R

as shown in the right panel of Fig. 10.

8. Numerical results

In this section we compare the performance of the PQP and QPQ subiterations and operator splitting method in
the numerical simulation of the coupled Biot-circuit problem. We first study the 1D-0D example considered in Sec-
tion 5, showing that the obtained results are in good agreement with the analytical solution illustrated in Appendix I
(see Section 8.1). Then, we demonstrate in Section 8.2 the potentiality of the proposed methods to treat multidimen-
sional coupled Biot-circuit systems. To this purpose, we first consider in Section 8.2.1 the 3D version of the 1D-0D
formulation, showing that the obtained results are in agreement with those reported in Section 8.1. Then, we illus-
trate in Section 8.2.2 the simulation of a 3D-0D coupled problem where the solution of the Biot subsystem does not
exhibit any spatial symmetry, showing how also in this case the proposed solution methods are capable of enforcing
the boundary condition (7) on ⌃ and maintain the properties of stability and accuracy exhibited in the previous tests.

8.1. Simulation of the 1D-0D Biot coupled system with analytical solution
We consider the case where f , S , and g are equal to zero and the model parameters are equal to the values reported

in Table 2. The derivation of the exact solution of the system is illustrated in Appendix I. The main aim of the analysis
is to investigate, given physical and geometrical parameters of the system, how the choice of �t may a↵ect accuracy,
convergence and stability of the proposed solution methods. For each of the three considered algorithms, we have
adopted the following choices regarding the discretization methods:

1. temporal discretization of Biot and circuit problems is conducted using the Backward Euler method with a
uniform time step �t;

2. spatial discretization of the Biot problem is conducted using the finite element method with piecewise linear
continuous elements for the approximation of the solid displacement u and the fluid pressure p on a uniform
partition of (0, c) made of Mh elements of size h = c/Mh.

The values of Mh and �t adopted in the numerical simulations are shown in Table 1. The table also reports the
number of terms Nterms used to evaluate the series expansions and the number of elements Mint used to evaluate the
integrals between 0 and t with the trapezoidal quadrature rule that are needed to compute the exact solution described
in Section 5.

Table 1: Discretization parameters used in the simulations.

Parameter Description Value

Mh # of intervals for spatial discretization 100
�t Time step 10�1, 2 · 10�2

Nterms # of terms evaluated in the series of the exact solution 100
Mint # of elements for the numerical integration on [0, t] 100

For the PQP fixed-point method, subiterations are stopped as soon as the relative distance between P( j+1) and P( j)
falls below tolP = 10�15. Instead, for the QPQ fixed-point method, subiterations are stopped as soon as the absolute
distance between Q( j+1) and Q( j) falls below tolQ = 10�15, but similar results are obtained by controlling their relative
distance (not shown in this paper). In each case, the maximum number of iterations is set to 100.
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Fig. 9: Left: convergence history of the PQP subiterations for �t = 0.1s. Right: convergence history of the QPQ subiterations for �t = 0.02s.

8.1.1. Convergence and stability of the PQP and QPQ subiterations
We run experiments for two di↵erent values of the time discretization parameter, namely �t1 = 0.1s and �t2 =

0.02s. While the operator splitting method is always stable regardless of the choice of �t, the convergence of the PQP
and QPQ iterations may not be ensured. Specifically, Fig. 7 and Fig. 8 show that |�2(�t1)| < 1 and |↵2(�t1)| > 1,
whereas |�2(�t2)| > 1 and |↵2(�t2)| < 1. Thus, the su�cient conditions in Theorems 1 and 2 guarantee convergence
of the PQP subiterations for �t1 but not for �t2. Conversely, convergence of the QPQ subiterations is guaranteed for
�t2 but not for �t1.

Fig. 9 shows the convergence history of the PQP and QPQ methods in the cases where the su�cient conditions are
satisfied. Results indicate that the number of iterations required for any of the two fixed-point methods to converge at
each time level does not exceed 27 for the PQP iterations and 12 for the QPQ iterations. It is worth noticing that the
actual number of functional iterations required by the PQP and QPQ fixed-point methods at each time level may:

• vary depending on the time level, since the change in the solution may not be uniform with respect to time. In
this regard, choosing the time step in an adaptive way may help, but it may not be straightforward due to the
non-monotonic behavior of |�2(�t)| and |↵2(�t)|;

• vary depending on the specific value chosen for the tolerances;

• vary depending on whether the relative or absolute distance is used for the convergence criterium.

To better investigate how the convergence of the PQP and QPQ subiterations depend on �t, we show in Fig. 10 the
time evolution of the term �Qn+1

( j+1)(P
n+1
( j) � ⇡n+1

( j+1)) in Eq. (111) and the term �Qn+1
( j) Pn+1

( j+1) + ⇡
n+1
( j+1)

⇣
Pn+1

( j+1) � ⇡n+1
( j+1)

⌘
/R in

Eq. (114) for the choices of �t when convergence is not guaranteed. We note that these terms have the physical units
of a power, namely Watt (W), with W = Kg m2 s�3.We remark that these terms are on the right hand side of the energy
balance, thereby providing a dissipation if they are nonpositive.

Results show that, when the su�cient condition for convergence is not verified, the terms in Eq. (111) and
Eq. (114) become positive, instead of being negative as required by the physics of dissipative mechanisms. Fur-
thermore, these terms blow-up resulting in machine overflow. These results confirm that the lack of convergence of
the PQP and QPQ iterations is associated with a disruption of the physics embodied in the interface conditions.

8.1.2. Accuracy of the PQP and QPQ subiterations compared to the Operator Splitting method
Fig. 11 shows a comparison between the exact circuit variables and their numerical approximations obtained with

the PQP and operator splitting methods for �t = 0.1s. A close inspection of the plots of P, Q and Q1 reveals that
the PQP subiterations provide a more accurate solution than the operator splitting method at the price, however, of a
higher computational cost.

Fig. 12 shows a comparison between the exact circuit variables and their numerical approximations obtained with
the QPQ and operator splitting methods for �t = 0.02s. Results indicate that QPQ and operator splitting methods
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Fig. 10: Left: Plot of the term �Qn+1
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( j+1)) in Eq. (111) for �t = 0.02s, when the su�cient condition for the convergence of the PQP

subiterations is not satisfied. Right: Plot of the term �Qn+1
( j) Pn+1

( j+1)+⇡
n+1
( j+1)

⇣
Pn+1

( j+1)�⇡n+1
( j+1)

⌘
/R in Eq. (114) for �t = 0.1s, when the su�cient condition

for the convergence of the QPQ subiterations is not satisfied.

provide solutions of similar (good) accuracy except in the case of the variables Q and Q1, for which the QPQ fixed-
point method fails to provide an accurate computation. The inaccurate evaluation of Q and Q1 may be ascribed to
the combination of (i) the reduced coercivity of the boundary value problem for solid displacement and fluid pressure
associated with Neumann boundary conditions at both endpoints of the Biot domain, and (ii) the round-o↵ error
arising from cancellation problems in evaluating the di↵erence between P and ⇡ (see Eq. (43)).

Fig. 13 shows a comparison between the exact energy functional E(t) = E⌦(t) + E⌥(t) and its numerical approxi-
mations computed with the PQP, QPQ, and operator splitting methods for �t = 0.1s and �t = 0.02s. We remark that
the physical units of energy is Joule (J), with J = Kg m2 s�2. In the case �t = 0.1s, the su�cient condition for conver-
gence is satisfied by the PQP subiterations but not for the QPQ subiterations. Interestingly, the PQP method computes
an accurate approximation of the energy, whereas the approximation computed by the QPQ method blows up at the
first time level, t = 0.1s. In the case �t = 0.02s, the situation reverses as now the su�cient condition for convergence
is satisfied only in the case of the QPQ iterations. Interestingly, the approximation computed by the PQP method
blows up at t = 0.06s, whereas the QPQ method computes an accurate approximation of the energy. Remarkably, for
each value of �t, the operator splitting method is stable and computes an accurate approximate energy.

8.2. Simulation of the 3D-0D Biot-circuit problem
In this section we implement the solution methods proposed in this article to numerically approximate the coupled

Biot-circuit system in the case where the computational domain ⌦ is a three-dimensional open bounded subset of R3.
For the spatial discretization of the 3D part of the coupled system, we propose a Hybridized Discontinuous Galerkin
method (HDG), which has several attractive features: i) it provides optimal approximation of both primal and flux
variables; ii) it requires less globally coupled degrees of freedom than DG methods of comparable accuracy; iii) it
naturally handles integral boundary conditions (IBCs). Well-posedness analysis of a Poisson model problem equipped
with IBCs has been addressed in [66] and can be easily extended to system (129). In the presence of an integral
boundary condition on a given portion of @⌦, the scalar solution of the Poisson problem is required to be equal to an
(unknown) constant on that portion of @⌦ [66]. Details about the HDG discretization and its implementation for the
PQP and QPQ subiterations and for the operator splitting algorithm are given in Appendix II. Discontinuous finite
elements of degree 1 are employed in all the numerical experiments illustrated in the remainder of the section. The
three-dimensional computational domain analyzed in Section 8.2.1 is discretized with a fully unstructured grid made
of 1577 tetrahedra whereas in the test case studied in Section 8.2.2 a finer unstructured grid with 97806 tetrahedra is
used.

8.2.1. Simulation of the 3D-0D Biot coupled system with one-dimensional solution
We begin by considering the 3D-0D problem that led to the 1D-0D example introduced in Section 5. Snapshots

of the 3D fields obtained as a solution of the 3D-0D coupled problem via operator splitting are reported in Fig. 14.
Results closely agree with those obtained by solving the same problem in the 1D-0D case in Section 8.1. In particular,
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Fig. 11: Comparison between the exact circuit variables and their numerical approximations obtained with the PQP and operator splitting (OS)
methods for �t = 0.1s.
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we see how the pressure varies only along the axis of the parallelepiped, and that also the velocity and displacement
fields are unidirectional.

A comment is in order to justify the added value of the above results with respect to those obtained in Section 8.1.
As a matter of fact, despite the 3D-0D problem treated in the present section has the same mathematical solution as the
1D-0D problem, the computational algorithm to determine the spatial distributions of the dependent variables of the
Biot subsystem is based on a fully unstructured geometrical discretization of the parallelepiped shown in Fig. 5 which
does not take advantage of the one-dimensional nature of the problem, thereby making the verification of the correct
outcome of the 3D-0D simulation a nontrivial check. It is well-known, indeed, that finite element computations
on unstructured grids may give rise to undesired mesh-orientation e↵ects which are not occurring with the HDG
formulation utilized in our numerical solver (see, e.g., [67] in the case of advection-di↵usion equations and [68] in
the case of structural mechanics).

8.2.2. Simulation of the 3D-0D Biot coupled system with a three-dimensional solution
In this section we consider the same computational domain as in Section 8.2.1, but we adopt the following di↵erent

set of boundary conditions:

Tn = 0, K
1/2ṽ · n = 0, on �N ⇥ (0,T ),

u = 0, K
1/2ṽ · n =  , on �D,v ⇥ (0,T ),

with:

�N = { x 2 @⌦ | y = 0.05 or z = �0.05 or z = 0.05 } ,
�D,v = { x 2 @⌦ | x = 0 or y = �0.05 } ,

and

 (x, y, z) =

8>><
>>:
�0.2 cos(10⇡y) cos(10⇡z)(1 + 0.5 cos(0.2⇡t)) for x = 0,
0.2e�1000⇤((x�0.45)2+z2)(1 � 0.5 sin(0.3⇡t)) for y = �0.05.

We also let �D,p = �0 = ;, and impose on ⌃ = { x 2 @⌦ | x = 0.5 } the same integral boundary condition as in
Section 8.2.1. The above choice of the boundary conditions gives rise to a solution that, unlike the case studied in
Section 8.2.1, does not exhibit any spatial symmetric behavior. In particular, the Gaussian form of the function  at
y = �0.05 is meant to simulate the localized presence at x = 0.45 of a leakage fluid flow.

Snapshots of the solutions at the final time level t = Tend obtained with the operator splitting method for �t = 0.1s
are shown in Figures 15, 16 and 17.
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Fig. 14: Simulation of a 3D-0D coupled Biot-circuit system with a one-dimensional solution. Plot of the approximate Biot variables at t = 10 s
obtained with the operator splitting (OS) method for �t = 0.10 s. Specifically, pressure (top, left), velocity (top, right) and displacement (bottom)
are displayed. In (c), the initial configuration (white wireframe) is reported along with the deformed configuration (blue wireframe).
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(a) Color maps of the fluid pressure (left) and the magnitude of the discharge velocity (right) at x = 0.45m.

(b) Color maps of the fluid pressure (left) and the magnitude of the discharge velocity (right) at x = 0.5m.

Fig. 15: Simulation of a 3D-0D coupled Biot-circuit system with a three-dimensional solution. Color maps of the approximate fluid pressure and
discharge velocity at x = 0.45m and at the interface ⌃ (x = 0.5m), on the deformed configuration at the final time level t = Tend. The initial
configuration is shown by the black outline.
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Fig. 16: Simulation of a 3D-0D coupled Biot-circuit system with a three-dimensional solution. Streamlines of the discharge velocity ṽh and
magnitude of the total stress Th on the deformed configuration at the final time level t = Tend.
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Fig. 17: Simulation of a 3D-0D coupled Biot-circuit system with a three-dimensional solution. Numerical approximations of the energy function
Eh(t) = Eh,⌦(t) + Eh,⌥(t) computed with operator splitting (OS) method for decreasing values of the time step �t.
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The color plots in the top panel of Fig. 15 indicate the presence of a leakage fluid flow at x = 0.45m. In particular,
we see the presence of an horizontal gradient from right to left in the pressure color plot (top panel, left) which
determines the nonuniform distribution of velocity magnitude illustrated in the right side of the top panel, Fig. 15
shows also the ability of the integral boundary condition to comply with the conservation of mass requirement at the
3D-0D coupling, despite the flow leakage at x = 0.45m.

The color plots in the bottom panel of Fig. 15 demonstrate the ability of the operator splitting method, combined
with the HDG discretization, in describing a spatially nonuniform velocity over the interface ⌃ at x = 0.5m (bottom
panel, right) while computing at the same time a spatially constant pressure (bottom panel, left), unlike what happens
in Section 8.2.1.

The vector plot in the left panel of Fig. 16 represents the streamlines of the discharge velocity ṽh at the final time
level t = Tend and confirm that the fluid flow is far from being spatially uniform throughout the computational domain,
especially in the proximity of the outlet section at x = 0.5m.

The color plot in the right panel of Fig. 16 represents the magnitude of the total stress Th on the deformed
configuration at the final time level t = Tend. In particular, we see that the total stress magnitude increases from left to
right and, consistently, the solid material exhibits a larger deformation on the right side of the parallelepiped.

Finally, Fig. 17 illustrates the time evolution of the total energy function computed by the operator splitting method
in combination with the HDG discretization as a function of the time step �t. We see that the slightly ”wavy” shape of
the energy occurring for a larger value of �t tends to vanish as �t becomes smaller. At the same time, we see that no
blow-up occurs as time increases, for any value of the time discretization parameter, thus confirming the unconditional
stability of the operator splitting approach.

9. Conclusions and future developments

The present work studies and compares numerical strategies for the solution of a PDE-ODE coupled system rep-
resenting the flow of a fluid through a poroelastic medium connected with a lumped hydraulic circuit. This multiscale
coupling leads to interface conditions enforcing the continuity of mass and the balance of stresses across di↵erent
scales, and this constitutes the main challenge in the numerical solution of the problem.

Starting from the continuous level in space, we have formulated two algorithms that compute the problem depen-
dent variables through a partition of the time interval into a finite number of subintervals of uniform width �t. The
first solution approach is based on functional iterations, specifically PQP and QPQ subiterations, whereas the second
approach is based on the operator splitting method.

The main conclusion of our theoretical and computational investigation is that it is not possible, as it is often the
case in Numerical Analysis, to neatly identify whether a formulation is definitely superior to the other because both
have advantages and disadvantages.

Specifically, operator splitting does not require any subiteration step during the advancement from the discrete
time level tn to the discrete time level tn+1, so that its computational cost basically depends on the product of the
number of degrees of freedom for space discretization times the number of discrete time levels. On the contrary, PQP
and QPQ subiterations are subject to certain conditions to properly function, which are related to the contractivity
property of the associated fixed-point map, and these conditions depend nonlinearly on model parameters and �t.
Therefore, the amount of computational resources needed by the functional iteration approach cannot be predicted
before hand since it heavily depends on the interplay between convergence conditions and convergence criteria used to
terminate the iteration process. This aspect may be particularly cumbersome when dealing with problems in multiple
spatial dimensions.

Interestingly, when functional iterations fail to converge, results show that the solution blows up and the problem
cannot be simply solved by reducing �t (which would be the most natural remedy) because the dependence of the
contractivity constant on �t is nonmonotone. This problem does not arise in the operator splitting method thanks to
its unconditional stability with respect to �t. However, when the functional iterations converge, results suggest that
the PQP subiterations provide a solution characterized by a better time accuracy when compared with the operator
splitting method, given the same number of spatial and temporal degrees of freedom. We note that each considered
solution approach could be made more sophisticated than examined in this article by introducing, for example, a relax-
ation parameter in the functional iterations or symmetrization in the operator splitting method. These improvements
go beyond the scope of this paper, which aims at unveiling the fundamental di↵erences between the two approaches.

In this perspective, an important aspect that we have thoroughly analyzed in this work is related to how the
proposed methods are able to preserve at the discrete level the energy balance that is verified by the coupled PDE-
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ODE system at the continuous level. Our theoretical analysis shows that in the absence of external source terms,
the operator splitting method ensures that the total energy stored in the system is a decreasing function of time, this
property being due to the fact that the dissipative term associated with the resistive connection between the Biot part
of the system and the lumped circuit maintains a definite sign during the simulations. On the contrary, functional
iterations fail in general to ensure a-priori that the above mentioned dissipative term has a definite sign, because they
introduce a spurious contribution which can be seen to tend to zero or blow up depending on the fact that the iterations
succeed or fail to satisfy the contractivity convergence condition. This spurious contribution is due to the fact that, in
the functional iterations, the interface conditions are decoupled in two separate steps, thereby disrupting the energy
balance at the interface. Conversely, the operator splitting method solves the interface conditions implicitly together
with the PDE subproblem, thereby preventing artificial disruptions of the interface energy balance.

Based on this markedly di↵erent behavior of the two proposed solution approaches, as far as energy conservation
is concerned, the operator splitting method appears to be a promising technique for a physically sound and robust
treatment of several other applications in applied sciences characterized by the mathematical modeling of coupled
multiscale systems. In addition to fluid flow through complex systems, other applications may include the design and
simulation of integrated circuits (ICs) in nanoelectronics in which the PDE part of the model is typically devoted to the
detailed study of the microscopic properties of a single component of the IC, whereas the electric lumped parameter
circuit part of the model describes the remainder of the IC.
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Appendix I: analytical solution of the 1D-0D example of coupled Biot-circuit system

In this section we illustrate how to reformulate the 1D Biot model introduced in Section 5 so that an analytical
expression for its solution can be derived. Then, we exhibit a particular solution that is used to assess the performance
of the numerical schemes investigated in this work.

Reformulation of the 1D Biot model. Let us consider the special case in which the volumetric sources S and f
in Eqs. (59a) and (59b) are equal to zero. Furthermore, let us denote by �x the partial derivative of � with respect to
x for any function � : [0, c] ⇥ R such that (x, t)! �(x, t). In this case, the 1D Biot model (59) can be reformulated as
the following parabolic system for the pressure variable p (see [28]):

8>>>>>>>>><
>>>>>>>>>:

pt � kK pxx = g0(t), x 2 (0, c), t 2 (0,T )
px(0, t) = 0, t 2 (0,T )

px(c, t) = �Q(t)
kab
, t 2 (0,T )

p(x, 0) = p0(x), x 2 (0, c)

(115)

where g0(t) is the time derivative of g = g(t) and p0(x) = Kux(x, 0) + g(0) = K�x(x) + g(0). We note here that once
we solve (115) for p(x, t), we can recover the elastic displacement u(x, t) from the following relations:

ux(x, t) =
1
K

⇣
p(x, t) � g(t)

⌘
and u(c, t) = 0.

In order to solve (115), we first homogenize the boundary conditions. To this end, we introduce the auxiliary
dependent variable

bp(x, t) = p(x, t) +
Q(t)
kab

h
x +

1
2c

(x � c)2
i

(116)

and note that bp satisfies the following heat equation with homogeneous Neumann boundary conditions:
8>>>>>>>><
>>>>>>>>:

bpt � kK bpxx = F(x, t), x 2 (0, c), t 2 (0,T )
bpx(0, t) = 0, t 2 (0,T )
bpx(c, t) = 0, t 2 (0,T )
bp(x, 0) = bp0(x), x 2 (0, c)

(117)
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where
F(x, t) = g0(t) +

1
kab

Q0(t)
h
x +

1
2c

(x � c)2
i
� K

abc
Q(t),

and
bp0(x) = p0(x) +

1
kab

Q(0)
h
x +

1
2c

(x � c)2
i
.

Analytical solution of the 1D-0D coupled problem. Let (·, ·)L2(0,c) denote the scalar product in the space L2(0, c).
Then the solution to (115) is given by

p(x, t) =
1X

0

pne�
n2⇡2

c2 kKt cos
⇣n⇡x

c

⌘

+

1X

0

 Z t

0
wn(⌧)e�

n2⇡2

c2 kK(t�⌧) d⌧
!

cos
⇣n⇡x

c

⌘

� 1
kab

Q(t)
h
x +

1
2c

(x � c)2
i

(118)

where

p0 =
1
c

⇣
bp0(x), 1

⌘
L2(0,c)

pn =
2
c

⇣
bp0(x), cos

⇣n⇡x
c

⌘⌘
L2(0,c)

, n � 1

w0(⌧) =
1
c

⇣
F(x, ⌧), 1

⌘
L2(0,c)

, ⌧ 2 [0, t]

wn(⌧) =
2
c

⇣
F(x, ⌧), cos

⇣n⇡x
c

⌘⌘
L2(0,c)

, ⌧ 2 [0, t], n � 1.

Now we further simplify the model and assume that the boundary source g = 0, and the initial condition � = 0. Then
the solution retains the formula

p(x, t) =
1X

0

pne�
n2⇡2

c2 kKt cos
⇣n⇡x

c

⌘

+

1X

0

 Z t

0
wn(⌧)e�

n2⇡2

c2 kK(t�⌧) d⌧
!

cos
⇣n⇡x

c

⌘

� 1
kab

Q(t)
h
x +

1
2c

(x � c)2
i

(119)

with:

F(x, t) =
1

kab
Q0(t)

h
x +

1
2c

(x � c)2
i
� K

abc
Q(t) =

1
2

Q0(t)
kabc

(x2 + c2) � K
abc

Q(t)

bp0(x) =
1

kab
Q(0)

h
x +

1
2c

(x � c)2
i
=

1
2

Q(0)
kabc

(x2 + c2)

p0 =
1
c

⇣
bp0(x), 1

⌘
L2(0,c)

=
2c

3kab
· Q(0)

pn =
2
c

⇣
bp0(x), cos

⇣n⇡x
c

⌘⌘
L2(0,c)

=
2(�1)n

n2⇡2 ·
c

kab
· Q(0), n � 1

w0(⌧) =
1
c

⇣
F(x, ⌧), 1

⌘
L2(0,c)

=
2c

3kab
· Q0(⌧) � K

abc
Q(⌧), ⌧ 2 [0, t]

wn(⌧) =
2
c

⇣
F(x, ⌧), cos

⇣n⇡x
c

⌘⌘
L2(0,c)

=
2(�1)n

n2⇡2 ·
c

kab
· Q0(⌧), ⌧ 2 [0, t], n � 1
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From (119), we then recover the pressure P(t) at the Biot-circuit interface as

P(t) = p(c, t) =
1X

0

pne�
n2⇡2

c2 kKt(�1)n +

Z t

0

1X

0

wn(⌧)e�
n2⇡2

c2 kK(t�⌧)(�1)n d⌧ � c
kab

Q(t). (120)

We recall that, in addition, Q(t) and P(t) must satisfy Poiseuille’s law given in (62e), where the pressure ⇡(t) can be
computed as ⇡(t) = y(t) · e1, y(t) being given by (63). Overall, equations (120), (62e) and the first component of (63)
constitute a system of three nonlinear equations that can be solved to obtain the three unknown functions P(t), Q(t)
and ⇡(t). Lastly, the pressure p(x, t) can be recovered in ⌦ ⇥ (0,T ) using formula (119).

Particular solution of the 1D-0D example. In order to compare the accuracy of the proposed numerical methods,
we consider the particular case in which the flow rate Q(t) at the interface is given by

Q(t) = �eQ(1 � e�(↵t)s
) (121)

where eQ, ↵ and s are positive constants. Then, the pressure P(t) at the interface can be calculated using (120) and the
pressure p(x, t) in the whole Biot domain can be calculated using (119). Next, the velocity v(x, t) and the displacement
u(x, t) can be obtained as:

v(x, t) = �k
@p(x, t)
@x

(122)

u(x, t) =
Z t

0
(v(c, s) � v(x, s)) ds . (123)

We notice that the displacement u = u(x, t) can be recovered also through the following alternate expression

u(x, t) =
1
K

"Z x

0
p( , t) d �

Z c

0
p( , t) d 

#
.

Let us now consider the state variables of the lumped circuit. Utilizing expressions (121) and (120) in the Poiseuille
law (62e), we can calculate the expression for ⇡(t) as

⇡(t) = P(t) � R Q(t) . (124)

Next, using the circuit state equations and the expressions obtained so far, we can calculate Q1(t) and ⇡1(t) as

Q1(t) = Q(t) �C
d⇡(t)

dt
(125)

⇡1(t) = ⇡ � R1Q1(t) � L1
dQ1(t)

dt
(126)

and we can define the imposed pressure p(t) as

p(t) = R C1
d⇡1(t)

dt
+ ⇡1(t) � R Q1(t) . (127)

The particular solution exhibited above satisfies the following initial conditions:

u(x, 0) = 0 and y(0) = 0 . (128)

The parameter values summarized in Table 2 are utilized in the numerical simulations reported in Section 8.
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Table 2: Model parameters used in the numerical simulations.

Parameter Description Value Unit

a Domain width 0.1 m
b Domain height 0.1 m
c Domain length 0.5 m

Tend Final time 10 s
k Permeability 1 m4N�1s�1

K Aggregate modulus 1 Nm�2

R Resistance 1 Nsm�5

C Capacitance 10�3 m5N�1

R1 Resistance 1 Nsm�5

C1 Capacitance 10�1 m5N�1

L1 Inductance 1 Ns2m�5

R Resistance 1 Nsm�5

eQ Parameter in (121) 10�4 m3s�1

↵ Parameter in (121) 2/Tend s�1

s Parameter in (121) 4 -

Appendix II: HDG discretization and its implementation

For the numerical treatment of the three dimensional Biot system, we rewrite it in mixed form:

v +Krp = 0,

@r · u
@t
+ r · v = S ,

AT + PT pI � E = 0,

r · T + f = 0,

(129)

where the hydraulic permeability K is a symmetric positive-definite matrix, A is the compliance tensor and PT =
1

3�+2µ . Note thatAT = c1T + c2 tr(T)I, with

c1 =
1

2µ
, c2 = �

1
2µ(2µ/� + 3)

.

On the interface ⌃ we impose the following conditions:

u(x, t) = 0, (130a)
Z

⌃

v(x, t) · n(x) dx = Qtarget(t), p(x, t) = C(t), (130b)

where C(t) is an unknown function that only depends on t.

Let Th denote a conforming triangulation of ⌦ made of shape-regular d-simplices K. We denote by @Th the set
{@K : K 2 Th}. For an element K 2 Th, F = @K\@⌦ is a boundary face if the d�1 Lebesgue measure of F is nonzero.
For two elements K+ and K� of Th, F = @K+ \ @K� is the interior face between K+ and K� if the d � 1 Lebesgue
measure of F is nonzero. Let E0

h and E@h denote the set of interior and boundary faces, respectively. We denote by Eh
the union of E0

h and E@h. Assuming that Th is such that for faces F 2 E@h either F ⇢ �D,v, F ⇢ �D,p, F ⇢ �N , F ⇢ �0 or
F ⇢ ⌃, the sets of boundary faces can be further split into the subsets E�D,v

h , E�D,p

h , E�N
h , E�0

h and E⌃h .
Let Pk(D) denote the set of polynomials of degree at most k on a domain D. Also, if S (D) denotes a space of

scalar-valued functions defined on D, the corresponding space of vector-valued functions is S(D) = (S (D))d and
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the corresponding space of matrix-valued functions is S(D) = (S (D))d⇥d. Finally, S(D)sym denotes the symmetric
subspace of S(D). We are going to use the following discontinuous finite element spaces:

V
u
h =

n
⌧ 2 L

2(⌦)sym
��� ⌧|K 2 Pk(K)sym 8K 2 Th

o
,

Wu
h =

n
w 2 L2(⌦)

��� w|K 2 Pk+1(K) 8K 2 Th
o
,

Mu
h =

n
µ 2 L2(Eh)

��� µ|F 2 Pk(F) 8 F 2 Eh
o
,

Vp
h =

n
r 2 L2(⌦)

��� r|K 2 Pk(K) 8K 2 Th
o
,

W p
h =

n
q 2 L2(⌦)

��� q|K 2 Pk⇤ (K) 8K 2 Th
o
,

eMp
h = { ⌘ 2 L2(Eh) | ⌘|F 2 Pk(F)

8F 2 E0
h [ E

�D,v
h [ E�D,p

h [ E�N
h [ E

�0
h , ⌘|⌃ = 0 },

M⇤,ph =
n
⌘ 2 L2(Eh)

��� ⌘|⌃ = ↵,↵ 2 R, ⌘|Eh\⌃ = 0
o
,

Mp,1
h = eMp

h � M⇤,ph ,

Mp,2
h =

n
⌘ 2 L2(Eh)

��� ⌘|F 2 Pk(F) 8 F 2 Eh
o
,

where k⇤ 2 {k, k + 1}. For functions w, v in L
2(D), we denote (w, v)D =

Pd
i=1, j=1

R
D wi jvi j. For functions w, v in

L2(D), we denote (w, v)D =
R

D w · v if D ⇢ Rd and hw, viD =
R

D w · v if D ⇢ Rd�1. For functions w, v in L2(D), we
denote (w, v)D =

R
D wv if D ⇢ Rd and hw, viD =

R
D wv if D ⇢ Rd�1. We then introduce

(w, v)Th =
X

K2Th

(w, v)K , hµ, ⌘i@Th =
X

K2Th

hµ, ⌘i@K ,

for w, v defined on Th and µ, ⌘ defined on @Th. In analogy with [69], we define the scaled velocity ṽ = K
�1/2v. This

choice allows a better control of the gradient of the fluid pressure. A more detailed explanation is outside the scope of
the current work, but can be provided using similar arguments as in [69]. The HDG method for the Biot system (129)
using the scaled velocity, equipped with the given boundary conditions, and using the backward Euler method for
temporal discretization, seeks to define (Tn+1

h ,u
n+1
h , û

n+1
h , ṽn+1

h , p
n+1
h , p̂

n+1
h ) 2 V

u
h ⇥Wu

h ⇥ Mu
h ⇥ Vp

h ⇥W p
h ⇥ Mp,1

h at time
step n + 1 as the solution of the following system [70, 66]:

(ṽn+1
h , r)Th + h(Kn+1)1/2r · n, p̂n+1

h i@Th � (pn+1
h ,r · ((Kn+1)1/2r))Th = 0, (131a)

1
�t

(r · un+1
h , q)Th + hv̂n+1

h · n, qi@Th � ((Kn+1)1/2ṽn+1
h ,rq)Th =

1
�t

(r · un
h, q)Th + (S n+1, q)Th , (131b)

c1(Tn+1
n , ⌧)Th + c2(tr(Tn+1

h ), tr(⌧))Th + (un+1
h ,r · ⌧)Th � h⌧n, ûn+1

h i@Th

+PT (pn+1
h , tr(⌧))Th = 0, (131c)

hT̂n+1
h n,wi@Th � (Tn+1

h ,rw)Th + ( f n+1,w)Th = 0, (131d)

hv̂n+1
h · n, ⌘i@Th\@⌦ + hv̂n+1

h · n, ⌘i�D,v + hv̂n+1
h · n, ⌘i⌃ =

h n+1, ⌘i�D,v + Qn+1
target|⌃|�1hµ, 1i⌃, (131e)

h p̂n+1
h , ⌘i�D,p = 0, p̂n+1

h |⌃ = unknown constant, (131f)

hT̂n+1
h n,µi@Th\@⌦ + hT̂n+1

h n,µi�N = hgn+1,µi�N (131g)

hûn+1
h ,µi�D,p[�D,v[⌃ = 0 hûn+1

h · n,µ · ni�0 = 0, (131h)

for all V
u
h ⇥Wu

h ⇥ Mu
h ⇥ Vp

h ⇥W p
h ⇥ Mp,1

h , where:

T̂
n+1
h n = T

n+1
h n� ⌧S (PMu u � ûn+1

h ) on @Th, (132a)

v̂n+1
h · n = (Kn+1)1/2ṽn+1

h · n+ ⌧F(PMp pn+1
h � p̂n+1

h ) on @Th. (132b)
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The operator PMu (PMp ) denotes the standard L2-orthogonal projection from L2(Eh) (L2(Eh)) onto Mu
h (Mp,1

h ). Also,
|⌃| denotes the d � 1 Lebesgue measure of ⌃.

Here (Tn+1
h ,u

n+1
h , û

n+1
h , ṽn+1

h , p
n+1
h , p̂

n+1
h ) represents the numerical approximation to the exact solution (T,u,u|Eh , ṽ, p, p|Eh )

at time tn+1. We could prove that p̂n+1
h |⌃ is the Lagrange multiplier associated with the integral boundary condition

embedded in (131e), thereby implying the condition on the right hand side of (131f) [66].

Implementation in the PQP subiterations. In Step 1 of the PQP subiterations, p̂n+1
h and the test function ⌘ are

taken in the space Mp,2
h rather than Mp,1

h . Also, the IBC (130b) is replaced by p(x, tn+1) = P( j) on ⌃⇥ (tn, tn+1), so that
equations (131e) and (131f) become, respectively:

hv̂n+1
h · n, ⌘i@Th\@⌦ + hv̂n+1

h · n, ⌘i�D,v = h n+1, ⌘i�D,v ,

hp̂n+1
h , ⌘i�D,p = 0, h p̂n+1

h , ⌘i⌃ = P( j),

for all ⌘ 2 Mp,2
h .

Implementation in the QPQ subiterations. The problem we have to solve in Step 1 of the QPQ subiterations is
identical to (131), provided that we take Qn+1

target = Q( j).
Implementation in then operator splitting method. In Step 1 of the operator splitting method, we have to solve

a system analogous to (131), provided that the we impose an appropriate IBC on ⌃. The interface conditions on ⌃
discretized by the backward Euler method read

hv̂n+1
h · n, ⌘i⌃ = Qn+1, p̂n+1

h = Pn+1, Qn+1 =
Pn+1 � ⇡n+1

R
. (133)

Moreover, the simple circuit to be solved in Step 1 is equivalent to the scalar ODE d⇡
dt =

Q(t)
C , which is discretized as

follows
⇡n+1 � ⇡n

�t
=

Qn+1

C
. (134)

By combining (134) with the rightmost equation of (133), we get

⇡n+1 =
�t

RC + �t
Pn+1 +

RC
RC + �t

⇡n, (135)

which can be combined with the leftmost equation of (133) to obtain

hv̂n+1
h · n, ⌘i⌃ = Qn+1 =

Pn+1 � ⇡n+1

R
=

C
RC + �t

(Pn+1 � ⇡n). (136)

The last equation is ready to be used in the HDG discretization (131). In particular, after recasting the system (131) in
terms of a global linear system for the unknowns ûn+1

h , p̂
n+1
h by using a static condensation approach and by observing

that p̂n+1
h |⌃ = Pn+1, the IBC (136) resorts to adding the value � C

RC+�t⇡
n to the global right hand side in the degree of

freedom corresponding to p̂n+1
h |⌃, say i, and adding � C

RC+�t to the (i, i)-th element of the global matrix. After solving
the linear system and retrieving the value of p̂n+1

h |⌃, equation (135) can be used to compute ⇡n+1, which is then used
to update the initial condition for Step 2.
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