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Abstract—Maulti-robot systems provide a scalable and robust
solution for monitoring tasks. In time-intensive missions such as
search and rescue, the inclusion of a human has the potential
advantage of incorporating prior knowledge about the target
location or dynamics. In this paper we develop a general
information-theoretic framework to control multiple autonomous
robots in search and rescue missions that include a human
teleoperator. Human prior knowledge is modeled to capture
target location and dynamics, and mutual information based
control is formulated to let autonomous robots weight between
two strategies: independent search or assisting the human by
staying in proximity. The control actions optimize a weighted
sum of normalized mutual information calculated using particle
filtered estimates of the target and the reference robot. We imple-
ment the framework to simulate two widely different scenarios
designed after search and rescue missions from literature and
incorporate varying levels of accuracy in human prior knowledge.
Our results indicate that mission performance depends on how
robots weight between the two strategies, with the amount of
the optimal control effort shared between strategies affected
by prior knowledge and number of robots. Comparison with
existing strategies point to benefits of an information-based
control in situations where human prior knowledge is inaccurate.
The proposed information-theoretic abstraction of human robot
interaction can be implemented on a wide variety of scenarios
and the results highlight the role of human prior knowledge
towards effective robotic assistance in time-intensive missions.

Index Terms—mutual information, human robot interaction,
particle filtering, search and rescue, teleoperation.

I. INTRODUCTION

Multi-robot systems are particularly well suited for mis-
sions that involve spanning large unstructured environments
such as search and rescue (SAR) missions and environmental
monitoring [11], [2], [3]], [4]. A multi-robot solution typically
entails using robots that are inexpensive and controlled in
a distributed manner [S], [6], [7], [8], [9]. As opposed to
coordinated strategies that may require centralized control
[LO], distributed control of robotic members scale robustly
to larger problems. Controlling multiple robots to solve chal-
lenging problems, however, is an open area of research with
questions related to navigation, detection, and security that
often require high levels of autonomy [L1], [12], [[L3], [14].
In this context, human-robot interaction (HRI), and in par-
ticular, human-swarm interaction (HSI) is an upcoming field
concerned with solving complex problems where humans can
participate directly as a member of the swarm, or indirectly as
a remote operator [L1], [[15], [16]. The inclusion of humans
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increases the capability of a robotic swarm by offloading the
challenges associated with navigation, resource allocation, and
security concerns. For humans, having robotic assistance in
time-intensive missions leaves them with more time to focus
on high level tasks such as navigation and resource planning.

We specifically focus on setups where the human can par-
ticipate through a first-person view from a teleoperated robot,
which in turn exerts control on nearby members of the swarm
through shared information and movement [11]]. The adoption
of teleoperated robots during SAR missions in firefighting and
on park trails has been motivated by demanding environments,
the need for protective clothing that can severely increase
physiological strain on the human, and the urgency to search a
large area in the smallest possible time which cannot be done
on foot [2], [L7], [18]], [19]. A teleoperated robot not only
mitigates the physiological stress, but also reduces the chance
of exposure to poisonous toxins, hazardous materials, and
extreme temperature fluctuations, while giving the operator
freedom and capability to explore large areas [[L7], [20], [21],
[16]. A teleoperator may independently control a single or
multiple robots [22]], and interpreting their actions or beliefs
entails programming additional mediation layers [23]].

A significant cognitive benefit of human involvement during
SAR missions is that humans are bound to carry some form
of prior knowledge with an associated confidence level [24],
[20]. This knowledge may be related to the environment
such as building layouts [25], [26] or could be related to
the target being rescued and based on experience such as
typical locations to find a missing person in a firefighting
scene [25]], general behavior of how a person may move when
lost in a park, or platform specific such as how to operate a
robot [27]], [19], [28]], [20]. Despite the benefits of such prior
knowledge, how it may be exploited by autonomous robots
during a mission is an open question [29]. It is possible for
example that the prior knowledge creates an internal belief
map that initially drives the human searcher to steer towards
a particular location within the search domain [24]. However,
how this prior knowledge must be translated into an actual
control strategy that can be assigned to robots is an open
question [30]. Relatedly, the accuracy of this prior knowledge,
which the human may be aware of, could play a significant
role in how exactly each robot should assist the human.

Recent work on human robot interaction that explicitly
accounts for human participation on an equal basis with the
robots include mixed initiative systems, where robotic agents
and humans collaborate while switching between independent
and human-assigned tasks [31f], [32], and policy blending
setups where the control strategy involves calculating a blend



of human and autonomous input [33], [34]. While mixed ini-
tiative strategies demonstrate a clear advantage over exclusive
roles in SAR and monitoring missions [31], [32] they are
often designed to be task-specific and binary in collaboration
decisions (the robots can either follow or lead), which makes
it difficult to identify the optimal degree of collaboration as
a function of task performance and human expertise unless
a large number of experiments are performed. A recently
proposed framework based on homotopy classes enables navi-
gation decisions driven by resource sharing [35], however this
approach is designed for complementary sharing tasks and
may not account for situations where robotic assistance may
be better utilized through working together. Policy blending
approaches provide a relatively more flexible arrangement
of combining human and autonomous robot inputs but its
effective use requires connecting the blending strategy to
human and robot interpretation of the situation [33], [34]. In
this context, a control framework that (a) abstracts the mission
in terms of low-level objectives, (b) is responsive to human
knowledge of the domain, and (c) enables encoding multiple
objectives in a single measure can serve to highlight optimal
collaboration strategies in a wide variety of settings.

Information-based control, which relies on an information-
theoretic interpretation of the mission goal, is an approach
that has been found to be especially useful in abstracting
complex scenarios into instantaneously measurable objectives
[36], [37], [38]. This is because the control objective is
encoded in the form of mutual information gain, as opposed
to for example minimizing the distance to an object in an
unknown location or covering a region [36]], [37]]. Information-
theoretic approaches, however, control the robots as they
maximize mutual information with respect to a single entity—
the target—and therefore need to be expanded for inclusion of
humans in the loop.

The contribution of this work is twofold. First we present
a framework that builds on particle filtering and mutual
information-based control to realistically capture human robot
interaction in a search and rescue setting: the framework
allows a human to possess and act on prior knowledge about
the target position and the autonomous robot to preferen-
tially assist the human by staying close and thus reducing
target uncertainty in their proximity. Second we utilize this
framework to analyze the dependence of mission performance
on the degree of robotic assistance provided to the human
and the accuracy of human prior knowledge in two realistic
scenarios simulated with parameters informed from litera-
ture. While we generally expect to see a combined strategy
outperform independent roles based on results from mixed-
initiative research [32], we also expect to find optimal division
of control effort for different types and accuracies of human
prior knowledge. To provide context with respect to search
strategies that also weight between competing objectives, we
perform search within the same two scenarios with two other
strategies used commonly in the literature: mixed initiative
and linear blending of control. With respect to latter, the
approach described here could be interpreted as linear blending
of mutual information with respect to target uncertainty in
different regions of the domain.

This paper is organized as follows: Section [[] formulates
the problem of the generic SAR scenario for a human robot
interaction setup; Section provides a background on par-
ticle filtering and mutual information-based control. Next, in
Section we present the framework for modeling human
prior knowledge and a weighted mutual information function
that incorporates varying degrees of human assistance by
an autonomous robot. Section [V| describes and analyzes the
results of a SAR mission within an indoor environment, and
Section [VI| describes and evaluates a SAR mission in a large
park. Section compares the results with largest number
of robots with mixed initiative and linear blending strategies
where a human is able to control the movement of all robots.
We conclude in Section with a summary of main results
and a discussion of future directions.

II. A GENERIC SAR SETUP FOR A HUMAN ROBOT TEAM

Consider a human robot team consisting of N robots and a
single target. All but one robots are autonomous. The human
controls a single robot hereby called the reference robot.
The state of a robot at a discrete time step k consists of
two dimensional position (x,yy) and orientation v, and is
denoted by X, € R3. The target state is denoted by two-
dimensional position @ within a two dimensional domain
© C R2. The kinematics of a robot i can be represented by a
nonlinear motion model f* as

Xiq = FUXE,ug, W), (1)

where uf€ € RZ! is the control input, and w? is the distur-
bance, which captures our confidence in the motion model.
The target location, if it falls within the sensor range, can be
sensed by both the autonomous and reference robots based on
a known measurement model h' that relates robot and target
position to measurement Z-? € R=! by the robot as

Z;,° = h'(X},6;) + 7', )

where 7¢ is additive noise. All robots are assumed to be able to
communicate with each other throughout the search domain,
although a reference robot may only be able to communicate
its location.

Target kinematics are modeled using a constant velocity
motion model as

0 =01 +VAL+ D, 3)

where v € R? is the velocity, 9 € R? is the disturbance, and
At is the length of the time step. The human may possess prior
knowledge about target location or dynamics and is expected
to search accordingly. The goal of the human-robot team is
to find the missing target in minimum possible time. This
is equivalent to minimizing the uncertainty in target location
estimate.

III. BACKGROUND

In this section we provide an overview of the particle
filtering methods and mutual information based control that
we utilize in formulating an HSI control strategy for search
and rescue.



A. PFarticle filtering

Particle filters belong to the class of sequential Monte Carlo
methods that are used to perform Bayesian estimation [39].
Unlike Kalman filters which expect linearized dynamics and
measurement models of the underlying process, and assume
additive Gaussian disturbance and noise, particle filters make
no such assumptions and can be used directly with nonlinear
motion models and non-Gaussian noise distributions [39].

In a particle filter, a continuous probability density function
(pdf), p(X), of a random variable X € R", is approximated
by weights corresponding to [V, points in the sample space.
These points are called particles. Accordingly, the probability
of a point X is

NP
X) = wgd(X, - X), (4)
=1

where w, is the weight of the particle ¢, withg =1,2,... N,
as the particle index, and 0(-) is the Dirac delta function. The
Dirac delta function §(X, — X) acts as a kernel in that it sets
the probability of values that are exactly the same as as one
of the particles X = Xg) as equal to the weight wy; at the
same time, the probability of a value that is not part of the
particle representation (X # X,) is zero. Therefore, the only
way to make this representation of a probability distribution
more accurate is to use more particles.

A particle filter estimates a dynamic quantity Xj as it
evolves according to a known dynamics and is sensed with a
known measurement model. This is equivalent to maximizing
the posterior pdf conditioned on all measurements up until
the current time step k, p(Xg|Z1.x), by recursively iterating
through predict and update steps; here Zi.;, denotes all mea-
surements up to k. The predict step evolves the state of each
particle through a motion model such as (I). The update step
involves applying the Bayesian rule to calculate the probability
of a state conditioned on a measurement obtained through
(2). In a particle filter, this is accomplished by resampling
the particles according to weights calculated as [39]

P(Zk|Xk,q), ®)

where the likelihood function p(Zy|Xy ) captures the mea-
surement model; for example if the measurement model

has Gaussian noise 7 with standard deviation o, then
p(Zk\Xm) = N(Zk, h(Xk’q,Bk}q), O'n), where On is the
standard deviation of Gaussian noise 7.

Being amenable to nonlinear representations, a particle
filtering framework is adequately suited to model human prior
knowledge in the form of a pdf, nonlinear sensing with limited
visual range, and measurement sharing between autonomous
robots by combining likelihood functions.

Wk,q =

B. Mutual information based control

Search and rescue operations entail finding a missing target.
This amounts to identifying the control action out of a range
of possible actions that actively maximize the posterior pdf of
the target location p(6|Z¢ ) [36]], where the superscript 6 on
Z denotes the target measurement.

Information theory provides an intuitive framework to ac-
tively search for a missing target. In an information the-
oretic sense, maximizing the posterior pdf is equivalent to
minimizing the uncertainty in the target estimate. Within
this framework information entropy is used to quantify the
uncertainty in an estimate. With respect to target location
0y, information entropy of the pdf p(6) is defined as

H(0y) = — |o p(Ok)log, p(0)d6},, and is measured in bits
[40]. Maximizing the posterior pdf is equivalent to minimizing
the entropy of target estimate conditioned on current measure-
ment H(6;|Z%).

Minimizing the uncertainty of current target estimate, how-
ever, does not enable an active control strategy, which must act
future possibilities. Therefore, we consider mutual information
between the current target prediction denoted by 6, and
possible target measurements ZZ’f € Z, within a support Z,
defined as [36]

1(0,:2y7) = H(0;) —
=H(Z)") -

H(0;1Z57)
H(Z]716;),

(6a)
(6b)

where H(0*|Z9’_) for example is the entropy of 6, con-
ditioned on knowing Zg’ Based on this expression, we
note that minimizing uncertainty H (0, |Z 7) is equivalent
to maximizing the mutual information 1(6,;Z, ™).

Calculating mutual information is possible in a particle-
filtering framework by computing the two quantities on the
right hand side of equation (6b) as [36]

H(Z!™) = - /z P(Z0 ) logy p(Z0)dZ!
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where wy,  is the weight of the g-th particle after resampling,
and the support for measurement space Z is made of M
distinct values. Note that the likelihood function p(ZZ ~16y)
represents the probability of a measurement conditioned on



a possible move by the target and the robot and therefore
contributes to the effect of possible control input on the un-
certainty of the target estimate. The control input is determined
by solving the following optimization problem at every time
step for a robot [36]]

— . eﬂ_
U = 11?68‘5(1(0k ’ Zk )7 (9)

where U represents the range of control inputs available to the
robot. These range of inputs for example can be in the form
of speeds and turn rates that the robot may apply at the next
time step, or over a sequence of time steps [37].
Implementing this control on a target search scenario gives
rise to several intuitive search strategies [36]: in the case of a
bearings-only measurement model, multiple robots expectedly
move towards the target in trying to minimize the uncertainty
by reducing the distance between themselves and the target,
and in the case of range-only measurements, multiple robots
encircle the target to gain a wide range of perspectives.

IV. INFORMATION BASED SEARCH WITH PRIOR
KNOWLEDGE

We seek to develop a robot control strategy which can assist
a human with prior knowledge about target location or dynam-
ics in a search and rescue mission. The human is expected to
initiate their search according to this prior knowledge possibly
favoring certain parts of the search domain; in contrast, all
autonomous robots are expected to search through the domain
without any location preference. To model robotic assistance in
an information-theoretic sense, we seek to formulate a control
strategy that weights between an independent exploratory
search of the environment and improving human’s search
efficiency by reducing the uncertainty of target location within
the neighborhood of the reference robot.

We assume that human prior knowledge can exist either in
the form of a particular location within the search domain (for
example, a location where witnesses say the victim was last
seen prior to a fire) or in the form of dynamics (for example,
a lost person will walk randomly from the position last seen
with a speed of 1 m/s). We model human prior knowledge
about location as initial target distribution p(87), where the
superscript /i, whenever present, is used to denote variables
related to reference robot.

The form of p(A%) depends on the type of knowledge,
which may be about a particular location within the domain,
in which case it can be modeled as a Gaussian distribution, or
about a certain region within the search domain, in which case
it can be modeled as a uniform distribution within specific
bounds contained inside the search domain. In contrast, the
initial target distribution p(8y) of autonomous robots, who do
not have such prior knowledge is uniform through the search
domain. Human prior knowledge about target dynamics is
modeled by assigning values to parameters within the constant
velocity motion model in (3] such as velocity v or disturbance
9. Target search by the human is accomplished using the
mutual information based control (@) so that the reference
robot naturally explores a preferred target location.

For the human robot collaboration setup, we note that
the human is not able to directly communicate with the
autonomous robot beyond broadcasting its location. This for
example represents a human controlled robot in a first-person
view sense as in [L1], [41]. Although it may be possible for
a human to both teleoperate and communicate their beliefs to
other robots, such a setup will likely put additional burden on
the human as they continuously indicate a level of confidence
they have regarding a particular location. Robotic assistance
here entails a search strategy that reduces target location
uncertainty near the reference robot.

In particular, an autonomous robot can reduce local un-
certainty near the reference robot, which likely has a further
limited sensor range, by being in the proximity of the reference
robot itself. In terms of a mutual information based control
strategy similar to (9) this can be achieved by taking actions
that reduce the uncertainty of the reference robot location. A
distance-dependent measurement model will automatically en-
able actions to reduce uncertainty near the reference robot with
reduction in distance. An example of a distance-dependent
measurement is that from a bearings-only sensor. Accordingly,
the goal of the information theoretic control strategy for an
autonomous robot that only assists will be to equivalently
minimize the location uncertainty of the reference robot
conditioned on possible distance-dependent measurements,
H (XZ’TZL’E’*). This in turn amounts to maximizing the
mutual information I(X}"~;Z};™"), where X} denotes the
reference robot’s two-dimensional position, and Zz’h denotes
a distance-dependent measurement by the autonomous robot.

The relative weighting between the two types of strategies
can be captured with a parameter 0 < o < 1; o = 1 for
example should enable searching for a target only thus deploy-
ing a ‘explore’ only strategy by the robot and o = 0 should
keep the robot close to the reference robot thus increasing
the effective field of view of the human in a ‘exploit’ only
strategy with the human. Accordingly, the combined mutual
information function is formulated as

~ ~

w, = max a(0;3 Z;"7) + (1 - ) T(XP 523" 7)]
(10)
where, for example

f(g;; ZZ’Q’_) - Lzlke_)
H(Z;"")

represents the normalized value of the mutual information of
that target searched in the entire domain. Normalization of
mutual information with respect to measurement uncertainty
allows for meaningful comparison of strategies from two
widely different sources of measurement: the target, who
likely has random dynamics and whose location is unknown
until it falls within a limited sensing range, and the human,
who may have relatively more deterministic dynamics and
whose location is known throughout the domain. (Fig. S1
in Supplementary information shows un-normalized mutual
information values for comparison.) Algorithm 1 summarizes
the mutual information based SAR implemented using particle
filter in this paper.



Algorithm for HSI-SAR with mutual information

Input: Motion model, f i and measurement model, h® for all
robots, target dynamics, relative weighting o

Initialize:  target estimates of human p(@%), and robot p(6y), search
start location

Output: Mutual information based control at a time step k, uy

For each time step £ = 1,2,...
For each autonomous robot %

1. Update target estimate, Op, and reference robot estimate, X ko DY
resampling particle weights according to (5) and sensor model h?

2. Calculate optimal control ug accordlng to l 0) u@ln f? and likelihood
functions p(Zy, |65 ) and p(Zk|XL) in equations l ) and

3. Apply control uy to move robot according to model f* and predict
target and reference robot locations according to models and f*.

For the reference robot

1. Update target estimate, €, by resampling particle weights according
to (5) and sensor model A’

2. Calculate optimal control ug according to @) using f* and likelihood
function p(Zy,|60%) in equations (8) and (7)

3. Apply control uy to move the reference robot according to model f?
and predict target location according to the model (3)

We note that even though the control (I0) is designed for
an autonomous robot to weight between two strategies, the
formulation can be extended to a multi-strategy setup (such as
for example following multiple members of a human team
based on their level of expertise and prior knowledge) by
attaching separate weights to each strategy. We analyze a two-
strategy scenario in this work to allow an in-depth analysis of
the dependence of task performance on relative weighting.

V. SCENARIO I: INDOOR ENVIRONMENT

We utilized the mutual information based control to first
evaluate the dependence of time to find a missing stationary
target within an indoor environment on the relative weighting
parameter « and the accuracy of human prior knowledge.
Human prior knowledge was assumed to exist in the form
of a preferred location for initial search within the domain.
We simulated differentially driven ground robots with sensor
ranges and motion parameters informed by actual experiments
from the literature [25[], [37], [42], [21], which focus on
search and rescue within indoor environments and firefighting
operations. Specifically, we adopted the size of the domain
from [25] and robot dynamics based on [37], [21]. The range
of speeds and turn rates for the robot were based on the design
from [25]], [42], [37].

A. Setup

The indoor environment consisted of a 30 x 30 m obstacle
free region with the target located in one of three different
locations as shown in Fig. |I} These locations were picked so
that they are at same distance of 15 m from the search start
location at the corner of the region and the only difference in
time to find would be due to searching in the wrong part of
the region. Human prior p(@}) was modeled as a Gaussian
distribution centered at one of the locations with standard
deviation o3p.

Each autonomous robot maintained local estimates of loca-
tion of the target and that of the reference robot by running
an onboard sampling importance resampling (SIR) particle
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Fig. 1. Setup for SAR in Scenario I showing the reference robot starting
position (blue square) and autonomous robots’ starting positions (red circles).
Three different target positions are shown with black diamonds; human prior
knowledge was always in the form of Gaussian distribution of possible target
locations (blue dots) centered on target location 1.

filter [39]; the reference robot maintained an estimate of target
location only. All robots were modeled as differentially driven
ground robots with the motion model
Tl = b | +vhcosl At + W cosi_ | At
Yi = Yi—1 + v sing)_ At + w sin gy At
Vi =Ph_y + QLA+ wh A,

Y

where Qi € U denotes the turn rate and v, € V denotes
the speed, with ¥ and V denoting the range of possible
turn rates and speeds; wi and wé denote zero-mean Gaussian
disturbances with standard deviations o, and oq, in the robot
velocity and turn rate respectively, and At = 1 second is the
length of a time step.

All robots also had the same limited-range bearings-only
measurement model for sensing the target, with the reference
robot having a limited field of view of 70° based on field
of view as seen in pictures of similar experiments [25[, and
the autonomous robot having a full 360° field of view. The
likelihood function representing the sensing of the target by
all robots is

N (250 (X5, 00), )
RV i’ g,

(12)

denotes bearing measurement of the target,

,0k),04) denotes a normal distribution with

Bk) and standard deviation 0’ sampled at Z;’ oLl

0,0 |~i
P(Zk |Xk) =

where Z,i’e
N(z.? hi(
mean h' (X%
rlk’a is the dlstance between the target and the robot, and
U(O) \ p* denotes a uniform distribution sampled within the
two-dimensional search domain that excludes a circular sensor
range with radius p*. The bearings-only measurement model
h' (Supplementary document Fig. S3) relates the robot and
target state to target measurement as
0 0 _ A

VA S (13)
where 1/),2’9 is the robot orientation, and @Z’a is the angular
position of the target with respect to robot position, and 7" is
the observation noise of the sensor.



A bearings-only sensor also serves as an effective distance-
dependent measurement so that mutual information based con-
trol may be computed at all times. We also note that the
assumption of being able to sense the location of the telerobot
throughout the domain is not a significant limitation in RF
based communication in small domains [37]]. The likelihood
function representing the tracking of a reference robot by an
autonomous robot is also set to bearings-only sensing as

p(ZXE) = N (28 W (XL X)), ()
where Z,i,’h is the bearing measurement of the reference robot.

This setup assumes that estimates of the target and hu-
man robot location can be updated by sharing synchronous
measurements and measurement models between autonomous
robots within a communication range, k., which spans the
entire domain in this Scenario. Accordingly the combined
likelihood function for an autonomous robot is

p(z+, 20 %) = T [ xd) - p("1x3)] . as)
je{x'}
where {x'} is the set of all robots, including i, that are within
k! distance of 1.

Collision with other robots and the boundary of the environ-
ment is handled so that upon a collision, the robot is able to
sense the side on which the collision takes place with respect
to its heading. A collision on the left causes the robot to turn
right and vice versa. Accordingly, upon a collision, the robots
change their instantaneous turn rate to Q; = —K.v., where
the gain K. = 1.5 determines the intensity of the turn, and 7},
is the angle that the point of collision makes with the robot
heading.

B. Simulations

Simulations were run to investigate the dependence of
mission performance quantified by time to find the target on (a)
the relative weighting parameter o = {0,0.25,0.5,0.75,1},
(b) the accuracy of human prior knowledge, and (c) the number
of autonomous robots deployed in the search (0-2). We
considered three levels of accuracy of human prior knowledge
ranging from high accuracy so that the true target location
aligned with the center of the Gaussian distribution which
models the human prior knowledge about target location,
to low accuracy where the target location is far from the
center of the human prior (Fig. [I). In all cases the distance
of the target from the start location was the same. The
target was considered found when it fell within the sensor
range p*? of any robot (autonomous or reference). Imperfect
sensing was implemented by setting a probability of detection,
pah = 0.77 for the reference robot [43]] and pg = 0.66 for
the autonomous robot, assuming that it is equipped with an
advanced convolutional neural network based target detection
[44]). Table I lists the parameters used to simulate this scenario.

Twenty simulations were run according to the the algorithm
in Section [IV] for each of the conditions and average time
to search recorded in each case. The number of particles in
the particle filter was determined on the basis of minimizing
the variance of target estimate across ten runs in the same

TABLE I

SCENARIO I SIMULATION PARAMETERS
Parameter  Description Value
v range of turn rates {—0.25,0,0.25} rad/s
\4 range of speeds {0, .415,.833} m/s
K communication range between robots 30 m
pt sensor range for all robots 3m
L size of domain 30 X 30 m
v target velocity 0 m/s
oy standard dev. of target motion disturbance 0.05 m/s
g standard dev. of human prior 4.5 m
oy standard dev. in robot speed disturbance 0.1 m/s
o0 standard dev. in robot turn rate disturbance  0.01 rad/s
on standard dev. in target sensing noise 0.1 rad
Np number of particles in particle filter 600
pZ detection probability for reference robot 0.77
Py detection probability for autonomous robot  0.66

domain. Specifically, we ran a particle filter with the number
of particles ranging between 100 and 1600 to search for a
stationary target. The number of particles N, were selected
as the value after which reduction in variance of position
estimate was not significant [45] (Fig. S2 in Supplementary
information).

Simulations were initialized with each robot placed at ran-
dom location near the (0, 0) location and oriented at an angle
of between 0 and 45 degrees with the reference robot was
always oriented at 20 degrees. Simulations that took more than
2000 seconds were stopped with the time to search recorded
as the maximum value.

C. Results

Target location: 1
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Fig. 2. Average time to find the target for each of the target locations (levels
of accuracy of human prior knowledge) and values of the relative weighting
parameter . The number of robots always includes a reference robot and the
dotted line marks the standard deviation for search with a single reference
robot. Error envelopes denote + standard deviation.

Figure [2] shows mission performance in terms of the time
taken to find the target in terms of the relative weighting
parameter « for three different levels of accuracy of human
prior knowledge. We immediately note that the time to find the
target for a single reference robot increases as the human prior
knowledge becomes more inaccurate. With target location 3,
the reference robot is never able to find the target within the
limited time. Furthermore, if the human prior knowledge is
accurate there appears to be no significant advantage afforded
by the presence of autonomous robots. In all situations where
human prior knowledge was inaccurate, the presence of an
autonomous robot significantly improves performance.

As expected, when the human prior knowledge becomes
inaccurate, we begin to see a dependence both on the relative
weighting « as well as the number of robots. First, we note



that dependence on « is amplified as prior knowledge becomes
inaccurate. Specifically, with respect to relative weighting,
when the human is accompanied with one robot and the prior
knowledge is inaccurate by about 10 m, the time to find the
target does not appear to change significantly, but does so
when the prior knowledge is inaccurate by 20 m, where we see
a clear U shape in the curve attaining a minimum at o = 0.25.

With respect to the number of robots, the time to search
lowers in both scenarios where human knowledge was inac-
curate. In the case of target location 2, the time to find at
a = 0.25 drops to less than two-thirds when two robots are
assisting than when only one robot is assisting the human; in
the case of target location 3, the time to find drops by nearly
half at o = 1 as the number of robots increase from two to
three.
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Fig. 3. Sample trajectories in blue of the reference robot with starting posi-
tions (blue square) and for three different target locations (black diamonds).

Figures [3] shows sample trajectories of the reference robot
searching for the target at three different locations. These
trajectories exemplify how a human teleoperator may initially
search for the target according to their prior knowledge even
if it is inaccurate.
Target location: 1 Target location: 2 Target location: 3
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Fig. 4. Average distance of the autonomous robots to the reference robot
for different target locations and a range of « values and number of robots.
The number of robots in the legend denotes the total number of robots in
the mission including the reference robot. Error envelopes denote + standard
deviation.

Figure 4| confirms the role of the relative weighting parame-
ter o in terms of proximity to the reference robot. Specifically,
on average autonomous robots tend to stay further from the
reference robot with increase in a with for example the
distance between a single autonomous robot and the reference
robot increasing from 2.8 £ 0.5 m at « = 0 to 7.5 =+
23 at « = 1. This trend is maintained when the number
of autonomous robots increase to two where they maintain
approximately the same distance from the reference robot as
« is increased. This reduction in distance to the reference robot
as the weighting parameter decreases is an evidence of belief
induced swarming where robots tend to come close to each
other to reduce uncertainty.

=000 a =050 a=075 a =100

0 0 0
20 30 o 10 20 3 0 10 20 30 0

0 10 20 30 0o 10
X (m) X (m) X (m) X (m) X (m)

Fig. 5. Sample trajectories of the reference robot (solid blue) with a single
autonomous robot (dot-dash red) with its starting position (red circle) for
different target locations (individual rows).

Figure [5] shows sample trajectories of two-robot setup with
one autonomous and one reference robot. We see that as the
o parameter is increased from O to 1, the autonomous robot
has an increased tendency search far from the reference robot.
When the human prior knowledge is inaccurate (second and
third rows from top), the benefit of partially weighting the
control strategy with respect to the reference robot is evident
as « is increased with the autonomous robot finding the target
on its own (red cross appears near the target). (See sample
trajectories of for all scenarios in Supplementary document.)

VI. SCENARIO II: MOVING TARGET IN A PARK

In this scenario we evaluated the effect of accuracy of
human prior knowledge and relative weighting parameter on
the time to find a missing person in a large park; human
prior knowledge is assumed to exist the form of a probability
of area (POA) in the search zone. The POA is a high-
probability circular region centered at the position last seen
(PLS) [46]. We simulated fixed-wing UAVs with sensor ranges
and motion parameters informed by experiments from the
literature [[19]], [42]], [47]], which focus on search and rescue in
outdoor park environments. Specifically we utilized the same
park environment as in [27], dynamics were based on the use
of fixed-wing airplanes in [19], and the range of speeds and
bank angles were based on [19], [48].

A. Setup

The park consisted of a 10 x 8 km region with the target
last seen at a location marked ‘X’ (Fig. [6). Based on search
and rescue strategies in the literature [46l], [19], human prior
knowledge, p(65), was modeled in the form of a trail favoring
distribution within a circular PO A region centered on the PLS
[46]. We note that lost person dynamics are complex and likely
depend on a number of factors including age, motivation,
energy levels, and topography [49], [28], [S0], [46l. Here, we
adopt a simple representation and assume that all these aspects
can be captured in the form of disturbance ¥ of the target
executing a random walk based on that favors walking
along a trail. In particular, the disturbance ¥ € R? is sampled
as from a two-dimensional Gaussian distribution N (0, oy;.),



C'OSC —sin C} { Ou  with
sin¢  cosC | |oy4/1 —exp (—dy)?

¢ representing the local orientation of the trail, o, the speed
of the random walker, and d;, the distance from the trail in
meters; the variable d;, is used to vary the eccentricity of the
covariance ellipse of the random variable so that a walker on
the trail will tend to move along the trail, however once off
the trail, the tendency to move along the trail will decrease
exponentially. The angle ( is computed by fitting a line to ten
closest pixels on the trail.

Human prior knowledge distribution was created by weight-
ing a uniform distribution with a blurred image of the map of
the trails (in white) and rivers (in black). With a constant time
between when the target was seen and the initiation of the
search, this amounts to varying sizes of the POA (Fig. [6).

where oy = [

4464

Longitude

44.57

-63.92 -63.80

Latitude

Fig. 6. Setup for SAR in scenario II with search area map adopted from
[27]]. Both reference and autonomous fixed-wing UAVs start from position
(red X). Trails are shown in dark brown and rivers in blue. Search areas
corresponding to three different sizes of PO A are shown as circles with the
target location shown as a black diamond; human prior knowledge distribution
of target location estimate is shown for one of the PO As

All UAVs were modeled as fixed-wing Dubins airplanes
adapted to fly at zero pitch so that [51]]
xh =2kt 4+ vk cosl_ At +wl cosi At
yh =y, +oLsingh At 4 w!sinl_ At
U= iyt o tanGiAL

(16)

where 7, yi, and v}, denote the position and orientation of the
UAY, u,i denotes the speed, g is acceleration due to gravity,
and ¢} is the commanded bank angle of the UAV at time
step k that is constrained to be less than 7 radians, the max
allowable bank angle of the aircraft [48], and At = 1 second
is the length of a time step. As in scenario I all robots also
have the same bearings-only measurement model, with the
reference UAV having a limited field of view of 70°, and
the autonomous UAV having a full 360° field of view. All
UAVs were set to localize themselves at every time step with
GPS-like accuracy so that their estimate of their own position
was updated to a Gaussian distribution centered on their true
position with a standard deviation of 10 m.

Differently from scenario I, the UAVs do not avoid collision
among themselves, as they can be made to fly at different
heights. The UAVs are however steered to stay within the
search boundary based on the bearing v} of the nearest point
on the boundary within 400 m. Specifically, the instantaneous
bank angle is set to ¢! = —K.v., where K. = 1 is the
gain. Additionally, because RF range is limited for such large
domains, we limit the communication range x; = 500 m [52].

B. Simulations

We investigated the dependence of mission performance
quantified by time to find the target on (a) the weighting
parameter « = {0,0.25,0.5,0.75,1}, (b) the accuracy of
human prior knowledge in terms of the three different PO As,
and (c) the number of autonomous robots deployed in the
search (0-7). The accuracy of human prior knowledge was
varied according to the amount of disturbance in the target
dynamics which in turn affected the size of the POA. In
particular, we model the real target to move at a speed of
2 m/s from the PLS, which corresponds to the distance of
0.72 km (943600 x 36) [53] moved by a random walker in
thirty-six hours. We then set the values of oy = {1, 2,3} m/s.
The corresponding POAs were set to uniform distributions
within circular regions with radii 0.36 km, 0.72 km and 1.08
km centered on the PLS. The position of the target was
arbitrarily set at 0.64 km away from the PLS towards the West.
Accordingly, the POA = 0.36 km corresponded to searching
inaccurately within too small a region, the POA = 0.72
km corresponded to an accurate and efficient search, and
POA = 1.08 km, where the UAVs will search a region larger
than needed, corresponds to an inefficient search.

Twenty simulations were run according to the algorithm
described in Section |IV|for each of the conditions and average
time to find the target recorded in each case. Simulations were
run as follows: first the initial distribution of human prior
was created by sampling from a uniform distribution within
the POA. Next, the search was initialized with each robot
placed at random location near the PLS and oriented towards
East. The reference robot was constrained to stay within the
POA by utilizing a boundary avoidance control similar to
the one used to keep all robots within the search boundary.
As in scenario I, the target was considered found when it
came within the sensor ranges with probabilities of detection,
pah = 0.77 for the reference robot [43]] and pg = 0.66 for the
autonomous robot [44]. Simulations were run for one hour
(3600 seconds) at which point they were stopped and the
maximum time to find recorded.

TABLE II

SCENARIO II SIMULATION PARAMETERS
Parameter  Description Value
e range of commanded bank angles {—7/4,0,7/4} rad
o range of speeds {20,30}m/s
K" communication range for all robots 0.5 km
P sensor range for all robots 80 m
L size of domain 10 x 8 km
v target velocity 0 m/s
oy standard dev. of target motion disturbance {1,2,3} m/s
oy standard dev. of robot speed disturbance 10 m/s
on standard dev. of target sensing noise 0.1 rad
Np number of particles in particle filter 1500
pZ detection probability for reference robot 0.77
Py detection probability for autonomous robot  0.66
C. Results

Differently from scenario I, here the reference UAV ex-
plored a predetermined POA around the PLS. Therefore, we
expected that unless the POA for reference UAV contained the
target the searching with reference UAV only would never be
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different sizes of the POA as a function of the relative weighting parameter
«. Error envelopes denote + standard deviation.

successful. On the other hand, if the POA was larger than
needed, searching with reference UAV only could succeed
but would be inefficient. Therefore, the lowest time to find
the target with a reference UAV only would occur when the
(POA = 0.72 km) is just large enough to contain the target.
We find this trend in our results (dashed lines in Fig. [7).

When autonomous UAVs were included in the search, we
find a dependence on the relative weighting parameter o when
the search region is inaccurate and the number of UAVs are
more than equal to four. In particular, when POA = 0.36
km, the lowest time to find was found with o« = 0.25. In
contrast when the search region was larger than needed, the
only dependence on « is noted when four robots are used and
they remain close to the reference robot (Fig. [§).

An increase in the number of UAVs amplifies the depen-
dence on o when POA = 0.36 km, highlighting the role of a
combined strategy in situations where human prior knowledge
may not be accurate and the best utilization of robotic teams
may involve a strategy that is aware of the accuracy in the
prior knowledge. Interestingly, we find a dependence on «
with eight UAVs even when the search region is accurate
at POA = 0.72 km with the lowest time to find attained
when o = 0.25. This suggests that a large team is needed
to effectively increase the sensor range of the human even
resulting in higher performance even if the prior knowledge
is accurate. (See sample trajectories with two, four, and eight
UAVs in Supplementary document.)

VII. COMPARISON WITH EXISTING STRATEGIES

To provide context for these results within the larger lit-
erature of search and rescue missions with multiple robots,
we simulated the two scenarios where multiple autonomous

robots were globally controlled using two different strategies:
mixed initiative control [31]] and linear blending [29].

A. Mixed initiative control

To simulate a mixed initiative type strategy, we let all the
robots select between an independent sweep strategy of the
full domain, and if unable to find the target in a single sweep,
switch to searching in a contained region.

For Scenario I, a parallel sweep was performed by three
robots from the same initial position. The spacing between
robots and their trajectories were set up to avoid overlap of
sensor ranges. Upon the switch, the robots move towards
the perceived target location and conduct a parallel sweep
within a bounded region of 10x10 m centered around target
1 location, corresponding to human prior knowledge. The
robots performed the sweep with the same average speed v
as in the information-based control strategies presented in this
paper. All other parameters including sensory range, detection
probability, actual and perceived target locations were kept the
same.

For Scenario II, the initial sweep was performed by eight
robots as they start from the same initial position and move
outward in an Archimedes spiral reaching up to the edge of
the park along the river. Robots were placed in a grid-like
arrangement ensuring no sensory overlap and large coverage.
The width of the sweep was selected to ensure that robots
achieve an approximately 60% success rate in a single sweep
based on similar success rate with adaptive autonomy in [31].
Upon the switch the robots move to the corresponding POA
and sweep back-and-forth in a smaller spiral.

Table compares the results of twenty simulations of
mixed initiative type control for each scenario with the
weighted mutual-information based control with equal number
of robots. For both scenarios, the mixed initiative either takes
the same or more time to find the target than the minimum time
attained by the weighted mutual-information based control. We
also emphasize that the way a target is searched in a mutual
information-based strategy versus a sweep are very different.
In a mutual information-based search, control actions are
optimized to improve target estimates over time and therefore
once they are close to the target, a robot that optimizes mutual
information with respect to future measurements spends more
time near the target leading to a reinforcement of target mea-
surements. In contrast, the mixed initiative approach sweeps
by the target which implies that at lower detection rates such
a strategy is likely to perform even worse.

B. Linear blending

For linear blending of control, we envision a scenario where
a swarm of robots are controlled by a human, and the robots
tune their control to blend operator input with random search.
We accordingly defined a parameter 8 = {0,0.25,0.5,0.75,1}
which represents the degree to which the robots controlled
directly; 5 = 0 corresponds to full control (robots go to
specific locations) and 8 = 1 no control (robots perform
a random search). All robots move with the speed v, with
detection rates and sensor ranges as in the weighted mutual



information based control. For Scenario I, we accordingly
implement the following control strategy at each timestep
4,0

Q). = BU(—0.25,0.25) + 0.25(1 — 5)%, (17)

where U(—0.25,0.25) represents a uniformly distributed ran-
dom variable between —0.25 and 0.25, and (; ¢ is the bearing
to the target location 1. The normalization by 7 ensures that
the turn rate does not exceed the range limits. For Scenario
II, we implement the following control strategy at each step

i,0
6= BU(-7, )+ 11— B)

where (; ¢ is the bearing to the target location #pp 4, updated
every twelve minutes, within the corresponding POA. The
twelve-minute update would reflect human intent to call the
swarm to search different locations and is informed by the
time it would take to scatter search a region once a possible
cue is detected [8]].

Table [l lists the average time to find the target over twenty
simulations of linear blending control strategy for each value
of . In Scenario I, as expected, we note that when the
robots are steered towards the correct target location (Target
1), the time to find is a few seconds more than the weighted
information strategy; however, any actions steering toward a
miscalculated target location are heavily penalized and the
best times are only attained with a completely random search
ignoring any human prior knowledge. This is expected because
a blending approach directly converts incorrect knowledge
to a control action. Such a strategy, therefore leaves no
room for ignoring the control input based on current levels
of uncertainty, a feature which occurs automatically in the
weighted mutual information based control (I0).

For Scenario II, we find that for high values of 3 (perform
random search more compared to being steered to a location)
linear blending outperforms weighted information strategy
when POA = 0.36 km. This is because a moderate amount
of steering to stay within the POA is able to constrain the
area of search, ultimately resulting in a random search within
a smaller region that contains the target. Contrastingly, for
lower values of « (search close to the reference robot), linear
blending takes more time to find the target than weighted
information based strategy. This is because all the robots
follow steering commands to move together within a few select
regions resulting in largely unsuccessful search. Here too, as
in the mixed initiative strategy, because robots pass by the
target, lower detection rates will likely lead to worse times to
find.

2k (18)
™

VIII. CONCLUSION

Large robot teams can robustly handle large scale complex
missions, however they lack the prior knowledge that a human
may possess through training and experience. In this context, a
solution integrating humans within a multi-robot team should
be able to exploit such knowledge. In this paper, a weighted
information-theoretic control was formulated to evaluate the
effectiveness of multiple robots as they vary their degree of
assistance to human. A particle filtering framework allowed

TABLE III

COMPARISON OF MIXED INITIATIVE AND LINEAR BLENDING CONTROL
WITH THE WEIGHTED MUTUAL INFORMATION STRATEGY. VALUES OF 3

AND « ARE IN PARENTHESES.

Strategy

Mixed initiative (s)

Linear blending (s)

Witd. mutual information (s)

Scenario I

Condition,
speed (m/s)

3 autonomous

3 autonomous

2 autonomous & 1 reference

40.4 £ 0.88 (0) 33.6 L 4.72(0)
41.2 £ 1.19 (0.25) 40.3 £ 9.5 (0.25)
Location 1, 462 + 3.8 44.5 + 3.8 (0.5) 35.6 + 7.4 (0.5)
7 =0.35 54.2 4 17.89 (0.75) 39.7 4+ 4.9 (0.75)
115.7 4 103.38 (1) 39.9 £ 9.6 (1)
2000 + 0 (0) 351.3 + 229.2 (0)
2000 £ 0.22 (0.25) 208 + 181.5 (0.25)
Location 2, 1543 + 25 1490.2 4+ 749.7 (0.5) 175.2 + 150.7 (0.5)
v =0.27 150.9 4+ 116.85 (0.75) 167.5 &+ 250.1 (0.75)
174 £+ 171.32 (1) 191.8 + 291.57 (1)
2000 £ 0 (0) 887 £ 647.9 (0)
2000 £ 0 (0.25) 328.5 + 225.3 (0.25)
Location 3, 3431+ 1.3 2000 + .22 (0.5) 598.8 + 530.1 (0.5)
7 =0.18 1999 =+ 489 (0.75) 422.2 + 413.3 (0.75)
222 £ 190.5 (1) 580.2 + 495.01 (1)
Scenario IT
8 autonomous 8 autonomous 7 autonomous & 1 reference
3210.7 & 803.5 (0) 1805.3 £ 1225.5 (0)
3385 + 607.7 (0.25) 1037.3 £ 1375.9 (0.25)
POA =0.36 km, 2756 + 1499.8 2321 + 1394.8 (0.5) 1584.2 + 1555.6 (0.5)

v = 20.5

359.9 £ 354 (0.75)
1383.8 £ 1300.7 (1)

2547.6 + 1549.6 (0.75)
2309 + 1528.7 (1)

POA =0.72 km,

v =208

1150.1 & 1056.5

25785 & 14984 (0)
2681.7 + 1331.2 (0.25)
1776 + 15333 (0.5)
12743 + 13727 (0.75)
1265.3 + 1332.7 (1)

14994 £ 6268 (0)
955.9 + 662.1 (0.25)
1724.3 + 1262.2 (0.5)
2129.6 + 1122.1 (0.75)
1692 + 11704 (1)

POA =1.08 km,

v =20.4

1699.4 £ 992.2

2751.3 £+ 1514.8 (0)
2293.3 4 1410.8 (0.25)
2035.6 & 1531.2 (0.5)
1406.8 £ 1281.1 (0.75)
1957.5 £ 1429.9 (1)

2247.8 = 919.2 (0)
1836.7 £ 880.9 (0.25)
1793 £ 1470.8 (0.5)
1992.8 & 1304.9 (0.75)
1805.7 £ 1435 (1)

for a realistic representation and Bayesian update of human
prior knowledge as well as limited-range sensor models while
searching for a missing target. Simulations in two widely dif-
ferent scenarios with parameters informed from experiments in
the literature revealed a dependence of mission performance on
the weighting parameter as well as the accuracy of human prior
knowledge. Specifically, when the human prior knowledge is
inaccurate, both in terms of location or the size of the region
to search, robotic assistance is effective if autonomous robots
weigh between complete independence and human assistance.
Comparison with existing strategies where robots are globally
controlled with mixed initiative and linear blended inputs
highlights the importance of weighing information in search
and rescue missions with uncertainties.

We note that the first-person teleoperation is in contrast to
many swarm-robotic approaches that have explored teleoper-
ation at a global level. In these instances, the human typically
extends a leader-like role to reference robots, and therefore,
the research focus shifts to improving swarm performance
through leader selection [54]], relative positioning [53]], direct-
ing through waypoints [56], or managing the collective state
[56] of the swarm. Compared to global control of robotic
swarm, a first-person view is able to directly utilize human
knowledge albeit at the cost of limiting the degree of control
on the rest of the swarm.

There are several directions where this work can be contin-
ued in the future including a better understanding of human
integration as well as formulation of human-aware optimal
control strategies. With respect to understanding the role of a
human in SAR missions, the task-specific representation and
update of prior knowledge requires a data-driven approach. Re-
latedly, we also assumed a static value of the relative weighting



parameter, however, it is possible that a time-dependent o may
constitute an optimal search strategy that is also responsive to
human awareness of the mission. Implementing such a strategy
will require online estimation of human behavior and intent, a
growing area of research within human-robot interaction [57],
[58]. Another direction that can be pursued is with respect
to tuning the interaction rules between autonomous robots
towards a certain objective such as maintaining a particular
formation [S9] or by adaptively sharing information with select
neighbors as has been shown to improve performance in parti-
cle swarm optimization [60]. Finally, a ground robotic test bed
is being developed for a human-subjects study that will be used
to collect data for modeling human bias in complex search and
rescue missions. Additionally, the proposed formulation can
be extended to evaluate combinations of strategies in complex
scenarios where multiple humans with varying degrees of prior
knowledge team with robots with different capabilities.
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