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ABSTRACT: Methylene-selective C—H functionalization is a significant hurdle that remains to be addressed in the field of Pd(II)
catalysis. We report a Pd(II)-catalyzed synthesis of benzocyclobutenes by methylene-selective C(sp®>)—H arylation of ketones. The
reaction utilizes glycine as a transient directing group and a 2-pyridone ligand, which may govern the methylene selectivity by
making intimate molecular associations with the substrate during concerted metalation—deprotonation. This reaction is shown to be
highly selective for intramolecular methylene C(sp®)—H arylation, thus enabling sequential C(sp®)—H functionalization.
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formation when possible'® (Figure 1 B). Herein we report the
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arylation via a Pd(II/IV) catalytic redox manifold, a first in the " o

formation of these useful carbocycles. BCB formation by

reductive elimination (RE) from Pd(IV) has been shown in Figure 1. (A) Comparison of methyl/methylene regioselectivity
stoichiometric studies of organometallic Palladlum complexes patterns of intramolecular C(sp®)—H arylation in ligand-promoted
but has proven to be elusive in catalysis. Pd(II) catalysis. (B) Benzocyclobutene (BCB) synthesis by Pd(0)-

We prev10us1y demonstrated a Pd(II /IV) system to achieve catalyzed C(sp3)—H arylation. (©) Synthesis of BCBs by methylene-

. 3 .
the synthesis of indanes,"” and in the course of that study we selective Pd(II)-catalyzed C(sp’)—H arylation.

sought to create benzo-fused carbocycles with different ring
sizes using homologous iodoaryl ketones. As shown in Figure Received: = September 3, 2021
1A, previous examples of monoprotected amino acid (MPAA)- Published: November 24, 2021
ligand-promoted intramolecular C(sp*)—H/C(sp*)—H cou-
pling with a monodentate directing group (DG) revealed an
exclusive reactivity pattern of methyl C(sp®)—H activation
leading to six-membered tetralins.””*' In the cyclization
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reaction in Figure 1C, 2-pyridone-promoted C(sp®)—H
activation in concert with a bidentate transient directing
group (TDG) induces selective intramolecular methylene
C(sp®)—H arylation to form the alternate ring isomer, the
benzocyclobutene.

Selectivity is a significant question for any C—H
functionalization because of the universality of C—H bonds
in organic molecules. In cases where a DG is employed, the
choice of which C(sp*)—H bond will undergo activation at a
Pd(II) center has been demonstrated numerous times: unless
blocked,””™** C—H palladation ty%)_ically proceeds through a
five- or six-membered palladacycle™ and preferentially occurs
at a primary C—H bond over a secondary C—H bond
equidistant to the DG.”® A notable but isolated exception to
the primary selectivity has been observed for cyclopropyl 2°
C—H bonds, which may have higher reactivity at Pd(II) than
1° C—H bonds.”” Inverting this inherent reactivity pattern of
primary selectivity to deliver alternate constitutional isomers is
indeed a fundamental challenge to the field of palladium-
catalyzed C(sp®)—H functionalization.

Leaving a methyl intact may be necessary for the final
molecule desired in a synthesis. The methyl functionality is
important in bioactive compounds for the enhancement of
potency and pharmacokinetics, which is known as the “magic
methyl effect”.”® Additionally, an intact methyl functionality
could enable other subsequent C—H functionalization
reactions, which are known to occur more readily at primary
C—H bonds (oxygenation,” arylation,’® alkynylation,”"
olefination,*” amidation,>® amination,®* halogenation,‘?’5 alkyla-
tion,>° carbonylation,37 and borylation,38 among others39).
Indeed, recent advances in Pd-catalyzed C(sp*)—H function-
alization have vaulted this modest unreactive functionality to
privileged status. Specific to the class of a-methyl ketone
products produced in this report, several auxiliaries and TDGs
provide opportunities for high-yielding elaboration via directed
C(sp*)—H functionalization of the residual @-methyl.*”*>*>*!
We anticipated that such transformations could be part of an
attractive overall strategy for constructing structurally diverse
frameworks via iterative functionalizations of methylene and
methyl groups. Our development of this process is described
herein.

Under the reaction conditions shown in Table 1, we found
that iodoaryl ketones of type 1 could be directly converted to
diverse BCBs. By this method, benzocyclobutene 2a was
generated in 83% yield (90% yield by "H NMR spectroscopy)
(Table 1), while tetralin 3 was coproduced in trace quantities.
Strikingly, this reaction selectively consumes the C—I bond
required for BCB formation, leaving intact the iodine atom
found in BCB 2b, which was isolated in 70% yield. Products
2a, 2¢, and 2g were isolated in yields exceeding 80%. The
selective formation of 2i in favor of the constitutionally
isomeric acetyltetralin indicates that the reaction is intrinsically
selective for methylene arylation leading to four-membered-
ring formation. Relatively electron-rich products such as 2h
require lower temperatures (e.g., 120 °C) to avoid electrocyclic
ring openings (vide infra). Unbranched benzocyclobutenes 21
and 2m may also be produced by this method, although the
yields of these products were moderate.

The substrate scope showcases how complementary this
Pd(I1/1V)-catalyzed process is to the Dyker/Baudoin Pd(0/1I)
system: while the Pd(0) system can generate only gem-
disubstituted BCBs (as in Figure 1B), monosubstituted and
vicinally disubstituted BCBs (2k) are accessible by this

Table 1. Scope of Benzocyclobutene Formation by
Methylene-Selective Arylation”

Pd(OAG); (10 mol%)

TDG (100 mol%) R
\ R TFA (1.5 equiv.) Z /I
0o H N /I L1 or L2 (80 mol%) o N
™ : o
R? Ag3PO, (0.5 equiv.) R?
R HFIP, 0.04 M R
1 120-150 °C 24-36 h (air) 2
s aYa N
Ligands
o H e 0
HyC * o \(I L1X=CF,
N O L2X=N
CH, aH, N 0,
2a 3
83% (L2) (90%P, 1.1:1 dr) trace ipe
85%" (L1) “2"\)1\0“
VAN
| Br F
(o] (o] [o]
H,C H;C H;C
CH; CH,3 CH;
2b 2¢ 2d
70% (L2) 84% (L2) (90%P) 53%9 (L2)

CH,

F
cl
E
o (o]
F o)
H;C H;C HeC
CHj 3
2e

CH,
2f 2g
65% (L2) 58% (L2) 85% (L2)
CH, CF3
o [o] o
H;C H;C H;C
CHj Bu CH,
2h 2i 2j
58% (L2)¢ 71% (L2)® 75% (L2)
[o] (o]
H;C
HyC M
H
2k 2| 2m
65% (L2) 41%" (L2) 33% (L2)

“Reactions were run on a 0.1 mmol scale. Yields were determined
from isolated masses unless otherwise noted, and the dr was 1:1
unless otherwise noted. “The yield was determined by 'H NMR
spectroscopy using CH,Br, as an internal standard. “The reaction was
run at 120 °C. “The reaction was run on an 0.084 mmol scale.

reaction. Product 2k was isolated as a mixture of both trans-
BCB diastereomers in a combined yield of 65%. Furthermore,
reducible moieties like iodo-, bromo-, and chloroarenes are
unaltered, whereas they are commonly not tolerated under
Pd(0/1I) catalysis.

When we subjected the challenging methoxy-bearing
substrate 4 to the reaction conditions shown in Scheme 1,
naphthalene 8 was isolated from the mixture of products. We
reason that BCB § undergoes conrotatory electrocyclic ring
opening to yield the isomeric o-quinodimethane and that

https://doi.org/10.1021/jacs.1c09368
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Scheme 1. An Unexpected 6- Electrocyclization

oo
CH,

ome Pd(OAG), (10 mol%)

L2 (80 mol%), TDG (100 mol%)
[o] H
HsC

Ag3PO,4 (0.5 equiv.)

TFA (1.5 equiv.), HFIP, 0.04 M

CH, i 150°C 36 h R
4 40%
R Voo
e
4 MeO. CH3 MeO CH;
PR o

+- H*

formation of the fused six-membered ring subsequently occurs
by 67 electrocyclization via enol tautomer 6.

On the basis of reports concerning the torquoselectivity of
this ring opening,42 Houk predicted that donor substituents
bound to C-7 in intermediate § would result in an electronic
bias toward the “outward” geometry by stabilizing the LUMO.
Here, the enol form of § may be fully formed and constitute a
donor group before ring opening occurs, indicating that this
reversible process captures a minor “inward opening” species in
the equilibrium formed by reversible ring opening of S.

After 6m electrocyclization takes place, acid-catalyzed
elimination of water from 7 would give rise to 8. The
formation of 8 suggests that the electron-rich arene renders
BCB S more prone to ring opening. Transformations of
analogous electron-rich aryl iodides could provide a useful

synthesis of naphthalenes.”**™*°

Through competition experiments, we discovered that
intermolecular and intramolecular C—H arylation could be
highly selective. As shown in Scheme 2A, when 2 equivalents
of iodobenzene were present in the reaction mixture developed
for intramolecular arylation, the only identifiable product was
2a; no intermolecular arylation product was observed.
Alternatively, when 1 was subjected to conditions for
intermolecular arylation,”” only 9 was isolated, and no BCB
products were observed.

The inter/intramolecular selectivity switch between these
two conditions apparently derives from the Ag(I) source and
the acetate/2-pyridone ligand choice. One conclusion could be
that acetate is slow to activate methylene C—H bonds by
concerted metalation—deprotonation (CMD),"” while the 2-
pyridone-mediated CMD . easily facilitates linear meth-
ylene C(sp3) H cleavage,”” enabling exclusive access to BCB
2a. Fagnou™® and Deboef' demonstrated that regioselectivity
in indole C(sp*)—H arylation could be controlled by the
oxidant choice, but in this example the regioselectivity,
chemoselectivity (methyl/methylene), and inter/intramolecu-
larity of C(sp®)—H functionalization can all be controlled.

Sequential site-selective C(sp*>)—H functionalizations are
also possible. For example, compound 2a was advanced to 10
via directed arylation of the residual methyl group (Scheme 2
B). As expected, the BCB substrates obtained by this method
are capable of undergoing ring opening to give substituted o-
quinodimethanes en route to Diels—Alder products. Heating a
mixture of 2f and N-methylmaleimide in toluene at 200 °C for
16 h afforded endo cycloadduct 11 in 74% yield (Scheme 2 B).

To understand what drove the selective formation of 2a
instead of isomer 3 under the conditions shown in Table 1, we
undertook a computational study of the two competing
pathways at the PBE0-D3(BJ)*>°'/6-311++G(d,p),”> SDD-
(Pd,1),”*** SMD*? (generic, eps = 16.7, ep-sinf = 1.625625)//

Scheme 2. (A) Competition Experiments Showing High
Selectivity for Inter- and Intramolecular Reactivity; (B)
Subsequent Reactivity of the Scaffold Including Sequential
C—H Arylation and Diels-Alder Reactivity

A. Selective reactivity controlled by conditions choice

Pd(OAc), (10 mol%)
TDG (1.0 equiv.)
AgsPO; (0.5 equiv.)

intramolecular conditions L2 (80 mol%) CH,

TFA (1.5 equiv.)
HFIP (0.04 M) 2a
150 °C, 36 h 40%2

% Pd(OAc)2 (10 mol%)

2 equiv. TDG (0.5 equiv.)
AgTFA (1.5 equiv.)
S

3:1 HFIP:ACOH (0.2 M) 9
110 °C, 36 h 48%

(2a not detected)

(9 not detected)

intermolecular conditions

B. Subsequent reactivity of BCB products
sequential C-H arylation of residual methyl group

Pd(OAc); (10 mol%) ‘
COOCH TDG (0.5 equiv.) Q
3 AgTFA (1.5 equiv.)
CH; +
T3 HFPACOH G

110 °C, 36 h
2 equiv. COOCH;

o

Diels-Alder r ion via substi d orth inodimeth

W <§ toluene

200 °C, 16 h

o M
74%

“Yield determined by 'H NMR spectroscopy using CH,Br, as an
internal standard

B3LYP-D3°°7%?/6-31G(d), LANL2DZ(Pd,1)*°%* level with
conformational searches”~*® (see the Supporting Informa-
tion) in conjunction with some experimentation. This
proposed mechanism is based on the presumption that
Ag:PO, is first slowly converted to AgTFA before it operates
as an iodide abstractor.'”

TS1-A is favored over TS1-B by 2.4 kcal/mol as a result of
two contributing factors (Figure 2B). First, an attractive 7—7
interaction between the substrate arene and the pyridone
ligand during CMD stabilizes the preferred TS1-A. Second,
steric repulsion between the phenylene moiety and pyridone
ligand disfavors TS1-B. In calculations, when the iodoarene
substituent was replaced with a hydrogen atom, diminished
energy differences between TS1-A and TS1-B were observed
because of the missing 77—z stacking interaction and
pyridone—phenylene steric repulsion (Figure S76).

As shown in Figure 2, TS2-A is 10.1 kcal lower in energy
than TS2-B. In TS2-B, the planar geometry of the §,5
palladacycle undergoes greater disturbance in order to
accommodate oxidation by the approaching aryl iodide,
leading to the strained seven-membered Pd(IV) metallacycle
IN3-B. The approach of an oxidant to Pd(II) is favored from
the equatorial aspect, as in TS2-A, while approach from the
axial aspect is disfavored, as in TS2-B. This large energy
difference between oxidative addition (OA) transition states
leads to the alternate products. The reductive elimination (RE)
step via TS3-B is favored by 2.7 kcal/mol over that via TS3-A
because of the stability of INS-B.

https://doi.org/10.1021/jacs.1c09368
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IN3-B AG=-1.1 AG=-15

RE TS3-B

Figure 2. (A) Comparison of reaction pathways leading to benzocyclobutene INS-A and tetralin INS-B. (B) Optimized structures.

On the basis of the calculated potential energy surface
(Figure 2A, blue trace), we expected the methyl CMD
proceeding through TS1-B to be reversible, and as shown in
Figure 3, the H/D scrambling experiment confirmed a
reversible methyl CMD, as indicated by significant H/D
scrambling. Furthermore, the higher rate at which intra-
molecular methylene arylation takes place compared with
methyl H/D scrambling is congruent with the indication by
the calculations that the methylene CMD is irreversible
(Figure 2A, red trace). However, as we continue to study
methyl/methylene control by the ligand, we expect more
mechanistic experimentation to be necessary.

Pd(OAG), (10 mol%)

5
TDG (100 mol%) 90%D
Dy TFA (1.5 equiv) cD, 0
wcm L2 (80 mol%) ©:\/K'(CH3 @\Hl\c
S — .
. + Hs
o Ag3P0O, (0.5 equiv o CD.
! e (0404'13/I : ! 71% D7
dy-1a 150°C,5h ds-1a dz-2a
33%2 48%2

Figure 3. H/D scrambling experiment. “Yields were determined by
"H NMR spectroscopy using CH,Br, as an internal standard.

While previous reports have demonstrated that CMD under
similar conditions is reversible,'”®’ calculations and an isotopic

https://doi.org/10.1021/jacs.1c09368
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labeling study are consistent with accounts of mechanistic
variations caused by small changes in the substrate.”’ In this
case, the methylene selectivity may be due to two factors: (1)
ligand—substrate interactions that promote methylene selec-
tivity and (2) the geometry of Pd at the competing OA
transition states. This result is distinct from our earlier
publication that described indane cyclizations by reversible
CMD." Work on broadening this result to achieve general
ligand-controlled methylene selectivity is ongoing in our
laboratory.

In conclusion, we have developed an efficient process for
synthesizing BCBs by Pd(II)-catalyzed methylene C(sp®)—H
arylation with a transient directing group. This reaction is
highly selective for the formation of four-membered rings by
methylene arylation. Because of the high selectivity for
methylene arylation, an intact methyl group is available for
subsequent C(sp®)—H functionalization.
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