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Abstract

To recover the topology of a manifold in the presence of heavy tailed or exponen-
tially decaying noise, one must understand the behavior of geometric complexes
whose points lie in the tail of these noise distributions. This study advances this line
of inquiry, and demonstrates functional strong laws of large numbers for the Euler
characteristic process of random geometric complexes formed by random points out-
side of an expanding ball in R¢. When the points are drawn from a heavy tailed
distribution with a regularly varying tail, the Euler characteristic process grows at a
regularly varying rate, and the scaled process converges uniformly and almost surely
to a smooth function. When the points are drawn from a distribution with an expo-
nentially decaying tail, the Euler characteristic process grows logarithmically, and
the scaled process converges to another smooth function in the same sense. All of the
limit theorems take place when the points inside the expanding ball are densely dis-
tributed, so that the simplex counts outside of the ball of all dimensions contribute to
the Euler characteristic process.
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1 Introduction
1.1 Heavy tailed noise and annuli structure of homological elements

To recover the topology of a manifold using point cloud data, one needs to have a
strong understanding of how the points are perturbed from the manifold. In Niyogi
et al. (2008), given a “nice” manifold, it was shown that one can recover the topol-
ogy of the manifold by a sufficiently dense random sampling of points if the noise
is bounded. In Niyogi et al. (2011) it was shown that the recovery is still possible by
a sufficiently dense random sampling of points if the noise is standard multivariate
Gaussian and the variance is bounded by a function of the reach and dimension of the
manifold. However, if the points on the manifold are perturbed by heavy tailed noise,
the recovery of topology will be severely impacted because of extraneous homolog-
ical elements generated by this noise. In Fig. 1, we wish to recover the topology of
the circle S! from the union of balls around a random point cloud. In Fig. 1b and c,
the union of balls recover the essential shape of S 1 as the size of noise in these cases
is sufficiently small. However, in Fig. 1d the noise added to points in S' has a heavy
tailed Cauchy distribution. Consequently, three extraneous shape elements appear —
two distinct components and a tiny one-dimensional cycle. This phenomenon in case
(d) raises the question of how the shape of these elements away from the center of S'
may behave in general; this is roughly the idea of what is called fopological crackle.

From a more analytic viewpoint, topological crackle is understood as a layered
annuli structure of homological elements of different orders. To make our implication
more clear, we consider the power-law density,

fx) = eR?, (1.1)

1+ [lxfje”
for some o > d and a normalizing constant C > 0. Suppose a random point cloud
Zn = {X1,...,X,} C RY, d > 2, is drawn from this density. Let Ann(K, L)
be a closed annulus with inner radius K and outer radius L, and B(x,t) :=
{y eR?: Iy —x| < t} be an open ball of radius ¢ around x € R (here | - || denotes

the Euclidean norm). Then, one can divide R ina way that

d+1
R = |_) Amn(Ryn, Ri—1.0), (1.2)
k=0
where
00 k=—1,
(Cmyaa k=0,
Ren =1 (Cn)y#@®@ ke(l,....d—1), (13)
(Cn)l/ k=d,
0 k=d+1,
so that

Rin K Ri—1p K- <Ry KRopp, asn — oo.
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Fig. 1 a A random sample 200 = {X1, ..., X100} of 100 points, uniformly distributed on the unit circle

S'. b The union of balls of radius 0.2 around each point in Z}gp. ¢ The union of balls when 27 is
perturbed by Gaussian noise. d The union of balls when 27 is perturbed by Cauchy noise. Noise is
applied in the same manner as Niyogi et al. (2011). Topology is recovered by the union of the balls in
cases b and c, but that is not the case if the heavy tailed Cauchy noise is added

From previous studies (Adler et al. 2014; Owada and Adler 2017; Owada 2018),
it is known that the union of balls,

U= J BX.n. t=0,
XeZ,

asymptotically generates homological elements (i.e., components and cycles as seen
in Fig. 1d) in the following way: we have, as n — oo,

— Inside Ann(Ry,,, o0) = B(0, Ro,,)¢ there are finitely many distinct components,

but none of the cycles of dimensions 1,2, ...,d — 1.

— Inside Ann(R; ,, Ro ) there are infinitely many distinct components and finitely
many one-dimensional cycles, but none of the cycles of dimensions 2, 3, ...,d—
1.

In general, forevery k € {2,...,d — 1},

— Inside Ann(Rg n, Rk—1,,) there are infinitely many distinct components and

cycles of dimensions 1, ...,k — 1, and finitely many k-dimensional cycles, but
none of the cycles of dimensions k 4+ 1,...,d — 1,
and finally,
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— Inside Ann(Ry.,, Rg—1,,) there are infinitely many distinct components and
cycles of all dimensions 1, ...,d — 1.

In the literature (Owada 2017), the innermost ball B(0, Ry ) is referred to as a
weak core. Inside the weak core, random points are densely scattered and the homol-
ogy of the union of unit balls around them is nearly trivial as n — 00, i.e., the union
has nearly no cycles of all dimensions 1,...,d — 1. With this layered structure in
mind, topological crackle is formally defined as non-trivial homological elements
(i.e., components and cycles) outside of a weak core.

Many of the existing studies in classical extreme value theory (EVT) have focused
on the behavior of a random point cloud in the outermost annulus Ann(Ry_,, 00),
or equivalently outside of B(0, Ry ,). For instance, it is well known that the total
number of distinct components outside of B(0, Ry ,) converges weakly to a Poisson
distribution as n — oo (Resnick 1987; 2007; Embrechts et al. 1997). The objective
of this paper is to go beyond the studies on the spatial distribution of components and
investigate more complicated and higher-dimensional topological features outside of
a weak core.

1.2 Topological crackle and Euler characteristic

After the pioneering paper of Adler et al. (2014), the stochastic properties of crackle
phenomena have been investigated mostly via the behavior of Betti numbers. Loosely
speaking, the kth Betti number counts the number of k-dimensional cycles—which
can be interpreted as the boundary of a (k + 1)-dimensional body. In the related
literature, Owada and Adler (2017) studied the case in which the kth Betti number
of U (t) outside of B(0, Ry ) converges weakly to a Poisson distribution as n —
00. Moreover, Owada (2018) established the central limit theorem for the kth Betti
numbers, in the case that infinitely many k-dimensional cycles appear outside of
an expanding ball. Additionally, Owada (2019) gave a rigorous description of the
limiting Betti numbers when the random points are generated by a classical moving
average process, and Owada and Bobrowski (2020) discussed the weak convergence
of a standard graphical representation of cycles.

In contrast to these previous papers, the objective of this paper is to examine
the crackle phenomena from the viewpoint of the Euler characteristic of a geomet-
ric (simplicial) complex. Among many varieties of geometric complexes (see Ghrist
2014), the Vietoris-Rips complex and the Cech complex are specific examples that
deserve our attention.

Definition 1.1 Given a point set 2" = {x,...,x,} C R4 and a positive number
t > 0, the Vietoris-Rips complex Z(Z, t) is defined as follows.

— The O-simplices are the points in 2. B B
- Ak-simplex 0 = [xj,, ..., x;]isin Z(XZ, 1) if B(xi,,t/2) N B(xi,,1/2) # @
forevery 0 < p < g <k, where E’(x, t) is the closure of B(x, t).
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Definition 1.2 Given the same 2 and ¢ > 0, the Cech complex C(Z, 1) is defined
as follows.

— The O-simplices are the points in 2 . 5
- A k-simplex o = [xiy,...,x;] is in C(Z,t) if a family of balls
{B(x,-p, t/2), p =0, ..., k} has a non-empty intersection.

In this paper, we examine two distinct scenarios of noise distributions that expe-
rience topological crackle: one where the distribution has a regularly-varying tail
and another where the distribution has an exponentially decaying tail. We define
a geometric complex that generalizes both Z(%", t) and C (Z,t) above, and then
establish the functional strong law of large numbers (FSLLN) for the corresponding
Euler characteristic process for each of the distributional contexts. One of the pri-
mary benefits of working with the Euler characteristic comes from the fact that it
can be expressed as an alternating sum of Betti numbers of all dimensions (Edels-
brunner and Harer 2010). As a consequence, the Euler characteristic provides a
limit theorem containing information on cycles of all different dimensions, whereas
Betti numbers can only provide separate limit theorems for cycles of a particular
dimension in each individual annulus region of Eq. 1.2. Such global features of the
Euler characteristic help to capture the spatial distribution of cycles in the union of
annuli UZZOAHH(Rk,n, Ri—1.n) = R4 \ B(0, R4.,), even though the nature of the
distribution of cycles differs from region to region.

In conjunction with the recent development of Topological Data Analysis (TDA),
the literature dealing with the asymptotics of the Euler characteristic of random
geometric complexes has flourished (Thomas and Owada 2021; Krebs et al. 2020;
Bobrowski and Adler 2014; Bobrowski and Mukherjee 2015; Hug et al. 2016). How-
ever, none of these studies have paid sufficient attention to the topology of the tail
of a probability distribution. In the context of topological crackle as in Fig. 1, ascer-
taining the topology of noise is an important step in determining how to process the
signal of the manifold. In the light of the results in this paper, one can examine how
the homology (i.e., components and cycles) of extreme-valued noise distributions
evolve. This can be attained by viewing the Euler characteristic as a stochastic pro-
cess, in which the parameter governing the formation of simplices is taken to be the
“time” parameter. The resulting process then relates strongly to persistent homology.
Persistent homology is a topological and algebraic structure that tracks the creation
and destruction of cycles in different dimensions. It is one of the most widely used
and robust tools in the TDA toolbox — see Adler et al. (2010) or Ghrist (2008) for an
introduction to persistent homology and Edelsbrunner and Harer (2010) for a more
thorough treatment. In particular, Examples 3.2 and 4.2 below provide the FSLLNs
in the different scenarios of noise distributions for the integrated Euler characteris-
tic process. This process can be viewed as the Euler characteristic of a persistence
barcode, which is a well known graphical descriptor of persistent homology (Ghrist
2008; Carlsson 2009).
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704 A.M. Thomas, T. Owada

1.3 Organization of the paper

The remainder of this paper is structured as follows. Section 2 provides a discussion
of the background material necessary for this paper. The paper then proceeds to the
heavy tailed setup and presents the FSLLN for the Euler characteristic in Section 3.
The paper continues with a discussion of the intricacies of the exponentially decay-
ing tail case along with the corresponding FSLLN in Section 4. The proofs of the
main results for both setups are deferred to Section 5. From a technical point of
view, the studies most relevant to this paper are Goel et al. (2019) and Thomas and
Owada (2021), in which the authors established strong laws of large numbers for
topological invariants — such as Betti numbers and the Euler characteristic — in
the non-extreme value theoretic setup. In particular, these studies revealed that if
the topological invariants are scaled proportionally to the sample size, they converge
almost surely to a finite and positive constant. Owing to this fact, the main machin-
ery in their proofs is a direct application of the Borel-Cantelli lemma, together with
the calculation of lower-order moments. On the contrary, the main challenge in this
paper is that the scaling sequence of the Euler characteristic may grow very slowly
(e.g., logarithmically), in which case, a direct application of the Borel-Cantelli lemma
does not work. To overcome this difficulty, we need to identify suitable subsequen-
tial upper and lower bounds of the Euler characteristic to which one can apply the
Borel-Cantelli lemma. This is a standard technique in the theory of random geometric
graphs — see Chapter 3 of the monograph of Penrose (2003). It is possible to extend
these arguments to our higher-dimensional setup since the geometric complexes such
as those in Definitions 1.1 and 1.2 are higher-dimensional analogues of a geometric
graph.

As a final remark, we point out that the other types of limit theorems for the Euler
characteristic still remain as a future topic. For example, it seems feasible to establish
a (functional) central limit theorem for the Euler characteristic via Stein’s method
for normal approximation (see, e.g., Theorem 2.4 in Penrose 2003). Indeed, Owada
(2018) already derived the central limit theorem for the Betti numbers by means of
the aforementioned normal approximation technique. We anticipate that the same
approach is possible for our Euler characteristic. A similar line of research in the non-
extreme value theoretic setup can be found in Thomas and Owada (2021) and Krebs
et al. (2020).

2 Preliminaries

The point cloud of interest in this study is the sample 2, = {Xi,..., X,} of n
i.i.d random points in R?, d > 2 with spherically symmetric density f. Spherical
symmetry of f is far from necessary; the results in this paper could be extended to
densities with ellipsoidal level sets fairly easily. Because of the imposed spherical
symmetry, we can define f(r) := f(r0) forallr > 0and 0 € $9=1 Denote A to be
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Lebesgue measure on R? and §9~! := {x € R? : ||x|| = 1}. Let us here define the
spherical measure

vi-1(A) :==d -1 ({x € BO, 1) : x/llx|| € A})

for Borel sets A C S4~!. We denote wy = A(B(0, 1)) = 2792/ (dI"(d/2)), and
Sd—1 ‘= V4—1 (Sd_l) =dwy.

Let .Z (RY) be the collection of all non-empty, finite subsets of R?. For 2~ €
F(RY), a simplicial complex # (%) is a collection of subsets of 2~ such that if
o € X (Z)and t C o then T € J#(Z). Evidently, the Vietoris-Rips complex
R(Z 1) and the Cech complex C (Z, 1) satisfy this condition. We call o € Z(Z")
a k-simplex if |o| = k + 1.

Subsequently, let 4 : .Z(R?) — {0, 1} be an indicator function satisfying the
following conditions.

Hl W(Z)<W)foral % Cc Z.

H2 £ is translation invariant — that is, for every 2" € .Z(RY) and y € R9, we
have h(Z + y) = h(Z).

H3 £ is locally determined — that is, there exists ¢ > 0 so that /(Z") = 0
whenever diam(2") > ¢, where diam(2") := max, ye 2 [x — y/.

By abusing notation slightly, for 2" = {x1,...,x,} € Z(R?), we write
hWZ) = h(xy,...,xy). Moreover, for & = {x1,...,x,} and a € R, we write
aZ =l{axi,...,ax,}. We then define a scaled version of & by

_het 2y, t>0,
hil2) "{1{|%|=1}, (=0,

with the additional assumption that
H4 1+ h,(Z) is right continuous and non-decreasing for each 2" € .7 (R%).

Given such a scaled indicator h,, we can construct the geometric (simplicial)
complex
(X)) =¥ C X :h(¥)=1}. 2.1

By virtue of (H4) above, Eq. 2.1 induces a filtration of geometric complexes over a
point set 2" — that is,

K (X ,s) C H(Z,t) forall0 <s <1t.
Note that if one takes
WZ) =1{diam(2) <1}, 2 € Z[RY),

then (2.1) induces a Vietoris-Rips filtration. Moreover, if we define

W) = 1{ () Bx.1/2) # Q)} , 2 e FRY,
xeZ

then (2.1) induces a Cech filtration.
As mentioned in the Introduction, the objective of this paper is to study “extreme-
value” behavior of random geometric complexes via the Euler characteristic. More
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706 A.M. Thomas, T. Owada

concretely, with a non-random sequence R, — oo, we study the filtration of
geometric complexes

A (2N BO, Ry, 1), =0, (2.2)

which are distributed increasingly further from the origin as n — co. We now define
the Euler characteristic pertaining to Eq. 2.2 by

Xn(®) =Y (=DESea(), >0, 2.3)

k=0
where Sk, (¢) denotes the k-simplex counts in the complex (2.2). Namely,

Skalt) == Y ht<@>1{myg||y||an}.

YLy |V |=k+1 Y€

Note that for every n € N = {1, 2, ...}, Eq. 2.3 is a finite sum as S; ,(¢) = O for
all k > n. Furthermore, Eq. 2.3 can be seen as a stochastic process in parameter ¢,
with right continuous sample paths and left limits. In the following, we establish the
FSLLN for the Euler characteristic process (x,(t), t > 0) in the space D[0, co) of
right continuous functions on [0, co) with left limits. In particular, we equip D[0, oo)
with the uniform topology.

With the notation in Eq. 2.3, if we set t = 0,

o n
K@) = (=D Sk (©) = Y 1{IXill = Ra) 24)
k=0 i=1
represents the number of points outside of an expanding ball B(0, R;). The asymp-
totics of Eq. 2.4 can be treated in the standard framework of classical EVT (see,
e.g., Resnick 1987, 2007; Embrechts et al. 1997). Unlike this special case, the Euler
characteristic process (2.3) intrinsically involves higher-dimensional topological
structures, which requires much more complicated machinery to analyze.

From the literature of topological crackle (see Adler et al. 2014; Owada 2017,
2018; Owada and Adler 2017; Owada and Bobrowski 2020), it is known that the
behavior of topological invariants significantly depends on the limit value of nf (R;,).
The present study focuses exclusively on the case when the limit of nf(R,) is a
positive and finite constant — that is,

nf(R,) — & asn — oo for some & € (0, 00). 2.5)

As mentioned in the Introduction, the ball B(0, R,)) with nf(R,) — 1,n — oo,
is called a weak core. In the special case when the density has a power-law tail as in
Eq. 1.1, the radius of a weak core is equal to (Cn)/ (see Eq. 1.3). Therefore, if R,
is determined by Eq. 2.5, B(0, R,) coincides with the weak core, up to multiplica-
tive constants. The configuration of points between the outside and inside of a weak
core is very different. Inside of the weak core, the homology of the union of balls
becomes almost trivial as n — 00, i.e., the random points are very densely distributed
and nearly every cycle of every dimension becomes filled in (see Adler et al. 2014;
Owada 2017). Outside of the weak core, however, the random points are distributed
more sparsely, though densely enough so that homology of all feasible dimensions
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FSLLNs for Euler characteristic processes of extreme sample clouds 707

becomes not only non-trivial, but abundant. As a consequence, by an appropriate
scaling as a function of R, in Eq. 2.5, the simplex counts of all dimensions in Eq. 2.3
will contribute to the limit. In contrast, if R, grows faster, such that nf(R,) — 0
as n — 00, then even under an appropriate scaling, the Euler characteristic is domi-
nated asymptotically by the O-simplices, or the extremal points. In this case, the Euler
characteristic simply counts points in .2, outside B(0, R,) asn — oo.

3 Regularly varying tail case

In this section, we detail the large-sample behavior of Eq. 2.3 of an extreme sample
cloud when the distribution of points has a heavy tail. Recall that 2, = {X1, ..., X}
denotes a random sample in R? with a spherically symmetric density f. We assume
that there exists a tail index « > d, such that

f(@rt0) —
m =t
r—00 f(r@)

. Vi >0, 3.1

for every (equivalently, some) 6 € S9!
Before stating the main result, note that by Eq. 2.5, one can typically take

Ry =&7Y“(1/H" (n), (3.2)

where (1/f)(x) = inf{y : 1/f(y) > x} is the (left continuous) inverse of 1/f.
Thus, (R,),>1 is a regularly varying sequence of exponent (tail index) 1/c.

Theorem 3.1 Suppose that f is a spherically symmetric density satisfying Eq. 3.1.
Assume that nf(R,) — & as n — oo for some & € (0,00). Then, the Euler
characteristic process in Eq. 2.3 satisfies the following functional SLLN, i.e., as
n— oo,

(X;fj), ‘> 0) > (Z(—l)ksk(r), ‘= 0) . as.inD[0,00).  (33)

k=0

sk(t) = heO,y1,...,y0)dy, t>0, k>1, 34)

(k+ D! (alk + 1) — d) Jigay

with so(t) = sq—1& /(o — d). In particular, the limit in Eq. 3.3 is convergent for all
t>0.

The following example illustrates the uniform convergence that takes place in the
above theorem.

Example 3.2 Consider the power-law density defined by

2

— . xeR4
mwg(1+ [lx]1>9)

fx) =
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708 A.M. Thomas, T. Owada

Define R, := (2n/nwd)l/(2d), so that nf(R,) — 1. We consider the Vietoris-
Rips complex induced by h(27) =1 {diam(% )y <1//d }, where diam is calculated

here with respect to the £°° norm. Then, it follows from Theorem 3.1 that, as n — oo,
Tw >
( |22 1), t > 0) — Z(—l)ksk(t), t>0), as.in D[0, o).
2n =

The limiting function above can be simplified as follows:

P T N o VN TRV
g( DEse(r) = sd_lkg(ﬂl)!(%(k“)_d) g A0y

o0

(=DF/Vd)y* (k + 1)
w0 k+DI2k+1)

(3.5)
k=0

See Figs. 2 and 3 for actual plots of the limiting function in Eq. 3.5 for d =
2,3,4,5.

One of the implications of Theorem 3.1 is that one can immediately obtain various
limit theorems of functions of the Euler characteristic process. For every continuous

n=100 n = 1,000

Fig. 2 Plots of random realizations of /7wws/(2n) x,(t) for d = 2 (in black) in the setup of Exam-
ple 3.2. In the plots above, as n increases from left to right, the random function converges uniformly to
Yo (—DEsi () (in red)
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5 Dimension

— d=2
d=3
d=4

— d=5

5ol 1sile)

0 2 4 6 8 10

Fig.3 Plots of Z,fio(fl)ksk (t) at Eq.3.5ford = 2,3,4,5.

function T on DJ[0, c0), it indeed holds that, as n — oo,

T (W;Q - T (Z( l)ksk> a.s.

For example, if U,p : DI[0,00) — [0,00) is defined by U,p(x) =
SUP, <y <p |x()],0 <a < b < oo, we have

Tw,
V5o sup (D] - sup
2" a<t<b a<t<b

Furthermore, let I : D[0, oc0) — DJ0, co) be defined by I(x)(¢) := fotx(r)dr;
then,

t
(/””d / X (r)dr, t>0> (Z( Dk f se(rydr, tzO), a.s. in D[0, 00).
0

This result is especially important for applications in TDA. Indeed, fot Xn(r)dr
represents an alternating sum of the total length of persistence barcodes of all dimen-
sions, up to time 7. A persistence barcode is a graphical descriptor of persistent
homology, which allows us to visualize the birth time and death time of cycles (Ghrist
2008; Carlsson 2009). In light of the TDA literature (e.g., Section 6 of Bobrowski
and Borman 2012), the limit fooo Xn(r)dr is defined as the Euler characteristic of per-
sistence barcodes of the filtration (2.2). This gives us an estimate of how long the
cycles of any dimension live in our extreme sample cloud.

Z( DEse ()

k=0
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4 Exponentially decaying tail case

In this section, we consider a density of an exponentially decaying tail. We assume
that the density f is specified by

fx) = Cexp{—y(lxID}, x e RY, (4.1)

where C is a normalizing constant and ¥ : [0, co) — [0, 00) is a regularly varying
function (at infinity) of an exponent t € (0, 1]. Moreover, ¥ is assumed to be twice
differentiable, such that ¥’(x) > Oforall x > 0, and ¥’ is eventually non-increasing.
Namely, there exists zo > 0 such that v is non-increasing in [zg, o©). Under this
setup, let a(z) := 1/v/'(z); then, a is also regularly varying with index 1 — 7 (see,
e.g., Proposition 2.5 in Resnick 2007).

Here, it is important to note that the occurrence of topological crackle depends on
the limit value of a(z) as z — oo (see Owada and Adler 2017). In particular, Owada
and Adler (2017) showed that crackle occurs if and only if

¢ := lim a(z) € (0, o0]. 4.2)
— 00
Since the main theme of this study is topological crackle, we do not treat the case
¢ = 0. In terms of the regular variation exponent of i, we exclude the case T > 1.
So, for instance, the multivariate Gaussian densities do not belong to the scope of our
study. Note that (4.2) trivially holds for every t € (0, 1).

Now, we are ready to state the FSLLN below. Interestingly, if ¢ = oo in Eq. 4.2,
the limiting function in Eq. 4.4 agrees with Eq. 3.4 up to multiplicative constants.

Theorem 4.1 Suppose that f is a density specified by Eq. 4.1 with t € (0, 1]. If
T = 1, we assume Eq. 4.2. If d = 2, we restrict the range of T to (0, 1). Suppose

further that nf(R,) — & as n — oo for some & € (0,00). Then, we have, as
n— oo,

Xn (1) > o .
——t>0) - (—D)%si(t), t >0), as.in D[0,00), (4.3)
(a(mRz"l (;;0 ¢ )

where

Sel(f) = o / oo/ / R (0, y1. ... yg) e~ CHDP=E T 000 (4.4
k+D!Jo  Jsa-1 Jway

k
< [Tt{o+c7"0. 3 = 0faydvy 1 @)dp, 120, k=1,
i=1

with (-, -) being the Euclidean inner product and so(t) = sq—1&. In particular, the
limit in Eq. (4.3) is convergent for all t > 0.

Example 4.2 'We consider a special case of the density in Eq. 4.1,
fo)=Ce M7 x e Rz e (0,11
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FSLLNs for Euler characteristic processes of extreme sample clouds 71

Define R, = (tlogn +rlogC)l/T so that nf(R,) = 1. Then, a(z) = z!77,
z > 0. According to Theorem 4.1,

(Xn_@, = 0) - (Z(—l)"skm, = 0) » as.in D[0, o).

d—t
(tlogn) = k=0

where sy () is defined in Eq. 4.4. Moreover, applying the continuous functions Uy p
and / from Example 3.2, we have

SUPg<¢<b [xn ()]

> (=D

- — sup a.s.
(rlogn) = ast=b |
and
t o0
r)dr !
((fol)(n( ))“7 ‘> O) = (Z(_l)k/() sp(r)dr, t > 0> , a.s.in DI[0, c0).
tlogn) = k=0

5 Proofs of main theorems

Throughout the proofs, denote by C* a positive constant that is independent of n
and may vary between (and even within) the lines. Denote by RV, the collection
of regularly varying sequences (or functions) at infinity with exponent p € R. For
a,b € R, write a Ab = min{a, b} and a v b = max{a, b}. For two sequences (a,),>1
and (b)n>1, an ~ b, means a, /b, — 1 asn — oo.

First, we present a fundamental result which allows us to extend a pointwise SLLN
to a functional SLLN in the space D[0, 00).

Proposition 5.1 (Proposition 4.2 in Thomas and Owada 2021) Let (X,, n € N) be
a sequence of random elements in D[0, oo) with non-decreasing sample paths. Sup-
pose a : [0, 00) — R is a deterministic, continuous, and non-decreasing function. If
we have

X, () > a(t), n—> oo, as.,
for every t > 0, then it follows that

sup |X,(t)—a@®)| — 0, n —> o0, as.,
1€[0,T]
forevery 0 < T < oo. Hence, it holds that X, (t) — a(t) a.s. in D[0, 0o) under the
uniform topology.

By virtue of this proposition, for the proof of Theorem 3.1 it suffices to show that
asn — oo,

X;(;) = S Drs(), as.

n k=0
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712 A.M. Thomas, T. Owada

for every ¢+ > 0. Subsequently, we divide the Euler characteristic process into two
terms:

Xn@®) =" Son® =Y Surra®) = %0 = x> ). (5.1)

k=0 k=0

In addition, the limiting function can also be decomposed as

DD ) =) s = Y sura () = Ki(1) — Ka(1).  (5.2)
k=0 k=0 k=0

From Eqgs. 5.1 and 5.2, it is now sufficient to prove that forevery t > Oandi =1, 2,

X (0)
RY

— Ki(t), n— oo, as. 5.3)

In the case of Theorem 4.1, defining X,gi)(t) and K; (¢) analogously, it suffices to
show that foreacht > Oandi =1, 2,

(@)

i — Kl(t), n — o0, a.s. (54)
a(Rn) Ry

5.1 Proof of Theorem 3.1

The goal of this subsection is to prove (5.3). We handle the case i = 1 only, as the
proof is totally the same regardless of i € {1, 2}. Let

U = "], m=0,1,2,..., (5.5)

for some y € (0, 1). Then, for every n € N, there exists a unique m = m(n) such
that u,, <n < up41.Letus also define

Pm = argmax{u, < € < umi1: Ry}, (5.6)
qm = argmin{u,, <€ < upi1: Re}. (5.7
It then holds that R, = max, <¢<u,,,, Re and Ry, = miny,, <¢<y, ., Re.

Below, we offer a lemma on the asymptotic moments of certain variants of the
process x,gl) (1), defined by

o0
Tu@®) =Y >  h(@)1 {mi@g Iyl = Rq,,,}, (5.8)
k=0 FC Ly, -
|9 |=2k+1
o0
Un() ==Y > (@)1 {mip Iyl = R,J,,l} (5.9)
k=0 D Zrpy. yed
|2 |=2k+1
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FSLLNs for Euler characteristic processes of extreme sample clouds 713

Lemma 5.1 Under the assumptions of Theorem 3.1, we have the following asymp-
totic results on the first and second moments of T,, (t) and U, (t).

mlgmeandE [T()] = K1(0), (5.10)
mlgme;fE [Un()] = K1(2), (5.11)
suquijar(Tm(t)) < o0, (5.12)
sup R, 4 Var (Up, (1)) < oo. (5.13)
m>1

Proof We begin by offering the proofs of Eqs. 5.10 and 5.11 by extending the argu-
ment in the proof of Proposition 7.2 of Owada (2017). As for Eq. 5.10, it is clear
that

RIE(T,, (t)]—Zan (g,’jjr‘l)E[h,(xl,...,szH)l{ min [1X;]| > Rq,,,”,

where X1, .. X 2k+ 1 are i.i.d random variables with density f From this, we have

u
Rq,,,<2,'jj:1> [t(xl,...,xm])l{ min [IX; ||>Rq,,,H (5.14)
2k+1

—d [ Um+1 ) )
<2k+ 1> Rd)2k+l t(-xla '7x2k+1) l_! f('xl)l{”xl || Z qu}dx
1

d Um+1
0,y1,... 1 >R
et ) L [ O ret {1l = R, )

x ﬂ Fa+y0{lx + yill = Ry, } dydx,
i=1

w

|
h::

by the change of variables x; = x + y;—1,1 = 1,...,2k 4+ 1 (with yp = 0) and
the translation invariance of /,. Furthermore, we make the change of variables by
x =Ry, p0 withp > 1 and 6 € §9-1 1o get that

—d [ Um+1 .
R, <2]’?+ 1)IE|:hz(X1,...,X2k+1)1{ 11112113{+1 1 X1 > qu” (5.15)

Um+1 2k+1 d— 1f( 4n P)
<2k+1) S Rn) / /SM/W)ZA hi (0. 9)p f(Ry,)

2k

£ (Rap 106 + yi/ Ry I
<11 7Ry

1{1lp0 + yi /Ry, |l = 1} dy dva—1(6)dp,
i=1

wherey = (y1, ..., yu) € (R?)Z. Next, for a fixed constant 5 € (0, @ —d), Potter’s
bounds (see Proposition 2.6 in Resnick 2007) yield that
f(R‘an) < 2[07014'77’

ey = (5.16)
qm
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714 A.M. Thomas, T. Owada

and

f—"[ f (Rq 1196 + 3i/ Ry, 1)
11 f(Ry,)
for sufficiently large m. Since [ p?~!=**7dp < 0o and f(Rd)zk h:(0, y)dy < oo by
property (H3) of i, we can see that the regular variation of f, as well as the dominated
convergence theorem, ensures that the triple integral in Eq. 5.15 converges to

oo
B d—1-a(2k+1) 4 B0, y)dy = —24=1 / R (0, y)dy.
Sd 1/1 4 p[(Rd)zk 1(0, y)dy a @k + D) —d o +(0, y)dy
Furthermore, Eq. 2.5 ensures that as m — o0,
2k+1
Um+1 f(R )2k+1 N (”m-i—lf(qu)) N §2k+1 Um+1 2kt
2k+1 n 2k + 1)! (2k 4 1)! ’
so that

{1100 + yi /Ry, Il > 1} < 2% (5.17)

(m+1)Y —=m? m? 1 (y+o(1))
u u e e
| < aml _ Hmil = , (5.18)

T ogm T um T 1—e 1 —em

As 0 < y < 1, the rightmost term above converges to 1 as m — oco. Hence,

EZk-H

Um+1 2k+1
(2k+1)f(R‘7'") _>—(2k+1)!’ as m — oQ.

Combining all of these results, it follows that
R4 (ggjrl 1 ) E [h,(Xl ..... x2k+1)1{ mm il = ” — so(), asm — o0,

which yields (5.10) as desired. The proof of Eq. 5.11 is almost the same, so we omit
it here.
Now we will prove Eq. 5.12. We see that

oo oo 2(kiAky)+1 2
E[T.0?] = ZZ EITIl X t@)l{mmnwwq,ﬂ} L{I% N %] =)
=0k=0  ¢=0 i=1 | ZCc X,y
| % |=2k; +1

2(ky Ak2)+1
~ i i (MXi) ( U1 > 2(k1 + ko) +2 = £)!
- 2 2— N — e
s = (ki +k)+2—=C ) Qky +1—-0)! Qhka+1—-0)1 0!
E[h(X1,..., Xok+Dhe (X1, -, Xy Xoky 425+ » Xo(ky+ko)+2—1)

><1{ min 1 X zqu”
1<i <2(k+kp)+2—¢

B i iﬂ“zkﬂ“ - Qi+k)+2-0! o
Y 20ki + k) +2—0 ) @k + 1= ky + L — gyrer Rkt
2=

where X1, ..., X2(k,+ky)+2—¢ are i.i.d random points with density f. In the above, if
£ = 0, we define

he(X1, ooy Xe, Xoky425 -+ Xotkg+h)+2—0) 7= he(Xok 425 - -y X2k +hp)+2)-

@ Springer



FSLLNs for Euler characteristic processes of extreme sample clouds 715

From this, we see that

R;dear (T (1)) (5.19)
oo oo 2(kinkp)+1

- 2(ky +k2) +2—0)!
= R4 Um+1 ( B[]
Z, Z,O Z " (2<k1+kz>+2—€ ki +1— 01 @k 41— o1 ]

— U1 2ky +k2) +2
ZZ <2(k1+1:r2)+2)< 2%ei + 1 )]E[’kl’kzﬁ]

[e ] o0
Um+1 Um+1
Z Z <2k1 - 1) <2k2 - 1>E[Ik|,k2,0]

ki=
2(ky Nk 1
- i i ('Ai“ o= i1 Qi +h) +2-01 L
= P dm \ 2(ki +k2)+2 =€ ) Qki+1 =01 Qhkr +1 — )1 2! bR
—0k0 (=

where the last inequality comes from
Um+1 2(ki + k) +2Y  ( ump Um+1
2(ky + ko) +2 2k + 1 2k + 1 2ky + 1

o umt Um1 —2k1 — 1\ (um -0
T\ 2k +1 2ky +1 2ky + 1 ’

For our purposes, we must examine the appropriate upper bounds of E[/, ,.¢]
for ¢ > 1. For every £ > 1, performing the change of variables, x; = x + yi_,
i=1,...,2(k; + kp) + 2 — € (with yp = 0), we have that

E[] = he(xt, ooy X002 )R (X1, ooy Xpy X241 42, « oy X2 o
[k, ky,e] v— r O e Xogg DR ( 2 X5 X2k + (ky+ko)+2—€)

2(ky+ky)+2—¢

x [T reor{ixl = Ry, }dx

i=1
= f / he(0, y1, ooy Y2 (0, Y15 ooy Yom1s Yoky 410 -+ -5 Y20k ko) +1—€)
RA J (R )2k o)1=

2(k1+ky)+1—¢

xfOH{lxl = Rg, ) []  Fa+y)1{lx+yill = Ry, }dydx.
i=1

As in Eq. 5.15, we apply the polar coordinate transform x = R, 06 with p > 1
and 6 € $97! to obtain that

Elly ky.t] = RY f(Ry,)>1HF22¢ / / f h: (0, y0. YDA (0, y0, y2)p* "
gd—1 (Rti)2(k|+K2)+l -t

F(Rgp) “"‘*ﬁ*‘ “F (Rg 106 + i/ Ry 1)
F(Rg 11 7Ry

d(yo Uy Uyz)dvg—1(6)dp,

1{ll00 + yi/ Ry, || = 1}
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where yo = (O1,...,y-1), Y1 = (e...,y) and y» =
(V2ky 415 - - - » Y2(ky +ko)+1—¢)- Appealing to Potter’s bounds as in Eqs. 5.16 and 5.17,
as well as Eq. 2.5, there exists an N € N such that forallm > N,

—d Um+1
Ra ( 2(ky + ko) +2—¢ ) Ellk k.01

2(ky+kp)+2—¢
(um+1f(R4m)) /Oo/ / d—1
< h: (0, yo, y1)h: (0, yo,
= T Qkithk) r2—0)! 1 Jsie Jgayriori-e (0. y0, YA (0, yo, y2) 0
x2p =T x 22T (yo Uy Uys)dvg—1()dp
(45)2(k1+k2)+2—l

Sd—1
T QUhki+k)+2-0)! a—d—n

he (0, ¥0, YD (0, yo, y2)d (yo U y1 Uya2).
(RA)2Mk o)+

By virtue of property (H3) of ,

2(ky+ka)+1—¢

[T il sendy

i=1

/ 11 (0, ¥o. ¥kt (0. yo. y2)d (3o Uyt Uya) < /
(R11>2(k1+k2)+1—( (R

(I)Z(kl +hp)+1-¢

)2(k|+k2)+l—e

= ((eneq

Therefore, for allm > N,
_ 2(ky+k 1-¢
R Um+1 Bl 1 0] < (4g)2kitka)+2 [((Cl)da)d) (k1+ka)+ s
am \ 2(k1 + ko) +2 -4 bEEE = @2k + ko) +2 = 0)! a—d—n
(C*)Z(k1+k2)+2—Z

T QU+ k)+2-0

(5.20)

Note that the constant C* does not depend on k1, k7, and £. Returning to Eq. 5.19
and applying the bound in Eq. 5.20, we have that

., oo 0o 2(kiAka)+1 (C*)z(k1+k2)+2—l
R_“Var (T,,(t)) <
g VAT (T (0)) = klZ::Ok;) Z k10 @k -0
oo ki kp+1 ki +ky+2—¢
(C*) 1Tk
<2
- k12=:0k22=042=; ki +1 -0k +1—-0!2!
00 00 00
c* ki+1—¢ c* ko+1—¢ C* £ .
a3y oy © ) e

P ety Sy sl k1 +1-=0)" (o +1-20)! 2!

Since the proof of Eq. 5.13 is very similar to that of Eq. 5.12, we will omitit. [

Proof (Theorem 3.1) By the definition of u,,, p,,, and g,,, we have, for every n > 1,

1
Un(®) _ s (0 _ Tu0)
d — d — d
Rpm R" qu
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Then, Lemma 5.1 gives that

(1)
t T (t) — E[T,, (¢
lim sup =2 ®) §K1(t)+limsupM, , (5.21)
n—o0 n m—00 qu
and o
Un(t) — E[U,((t
lim inf X* @) > K (t) + liminf m (1) — Bl ’”()], (5.22)
”—>00 Rn m—00 Rgm
Let us continue by showing that
R4 (T (t) — E[Tn()]) > 0, m — o0, as., (5.23)
and
R, (Un(t) —=E[Un()]) —> 0, m — o0, as. (5.24)

For Eq. 5.23, it follows from Eq. 5.12 in Lemma 5.1 and Chebyshev’s inequality
that, for every € > O,

S B (1) ~ BT, 011 = ekt ) = 3 Y0 0) o gn L

7 =
m=1 m=1 €2 (Rd) m=1""9qm
q’11

As R, € RV, (see Eq. 3.2), we have that
qu > C* 1/Qa) > C*ul/(2ﬂl) > C*emV/(%t)

for all m > 1. Now, we have >, R ~d < C*Y" e7dm"/G0 < oo and the Borel-
Cantelli lemma concludes (5.23). The proof of Eq. 5.24 is analogous by virtue of
Eq. 5.13 in Lemma 5.1. Now, combining (5.21), (5.22), (5.23), and (5.24) completes
the proof.

Finally, let us explicitly demonstrate that the limit in Eq. 3.3 is finite for all # > 0.
By virtue of property (H3) of &,

% k > Sd 1€k+l k
- p 1 il =
k:zo( o] = — (k+Dlak+1)—d (Rd)kg {lyill < ct}dy

) d k
t
3 % _ ol eon _ o,

IA

k=0

5.2 Proof of Theorem 4.1

The goal here is to prove Eq. 5.4. Once again, we deal with the case i = 1 only. The
proof is essentially similar in character to the proof of Theorem 3.1 but involves more
complex machinery. First we take

T
y € <ﬁ, 1) (5.25)

(recall that we have restricted the range of 7 to (0, 1) when d = 2), and define

U = "], m=0,1,2,...
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as in Eq. 5.5. Moreover, let p,, and g, remain as before—see Eqgs. 5.6 and 5.7.
Additionally, we also introduce

Uy = argmax ium <L =<upyr: a(Rl)Rg_l} )
wy, = argmin {um <L =<upyr: a(RZ)Rgil} :

Let T, (t) and Uy, (¢) be defined in the same way as Eqgs. 5.8 and 5.9.
The lemma below is analogous to Lemma 5.1 (see also Proposition 7.4 in Owada
2017) that provides the asymptotic moments of 7, (¢) and U, (¢).

Lemma 5.2 Under the assumptions of Theorem 4.1, we have the following.

tim_ [aRo, RS BITa01 = K1) (5.26)
~1

im_[a(Ry, )R] B WU 0] = K1), (5.27)
~1

sup [a(me)Ri;l] Var (T, (1)) < 00, (5.28)

m>1

sup [a(RUm)Rffm_l]il Var (Up (1)) < o0. (5.29)

m>1

Proof We begin by proving (5.26) and (5.27). By the same change of variables as in
Eq. 5.14 and the translation invariance of 4,

[aRu RS R T 00

00 2k+1
! Um+1

g[amwmm ol (2k+ 1)/(Rd)w et [T £ 1l 2 Ry} o
- a-1]7" ( tmt / /
g[amwm R (G0 ) fy Je @970 131 2 Ry

2%
< [Tr&+y01{lx+ill = Ry, } dydx,

i=1

where y = (y1, ..., yu) € (R%)?*. Here, we make the change of variable by x =

(qu +a(Ry,) p) 6 with p > 0and @ € S¢~!. Then, the integral above becomes

a(qu) / / / ht (O’ y) (qu + a(qu)p)d_l f (R‘/m + a(R‘Im)p)
0 gd—1 (Rd)zk

2k

< [T£ (I(Rg, +a(Rg,)0) 6 + yi ) 1{]|(Ry,, +a(Ry,)p) 0 + i = Ry, } dydva_1(®)dp,
i=1
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which implies that

[a(me)R;i,,,‘] E[T,,(1)] (5.30)

00 d—1
_ a(Ry, )Ry Um+1 F(R, )2
C L aRy, R N2k "

Q(qu) )d_l f (qu +a(qu)p)
h (0, 1
X/ /SLH /(Rd)zk ( y)( + Ry, P f(Ry,)

l_[ “ R‘Im +a(qu)'0)6+yl H)
i f(Rg,)

1{]| (Rg,, + a(Rg,)p) 0 + yi| = Ry, } dydva—i (0)dp.

For the last expression, we claim that

d—1
i 1. m = oo, 531)
and
Um+1 2k+1
<2kmj__ 1 ) f(qu)2k+1 — %, m — oQ. (5.32)

Because of Eq. 2.5, we have ¥ (R,) ~ log(Cn/§) as n — oo. With the assump-
tions on the density (4.1), Proposition 2.6 in Resnick (2007) gives that ¥~ €
RV It follows from the uniform convergence of regularly varying sequences [see
Proposition 2.4 in Resnick 2007) that

v (Y (Rn)) ~< ¥ (Rn)
¥ (log(Cn/8)) log(Cn/§)

Since ¥ (Y (R,)) ~ R, as n — 00, the above relation and log(Cn/&) ~ logn,
n — 0o, implies

1/t
) — 1, asn — oo.

R, ~ v (logn), n— oo. (5.33)
Now we are ready to prove (5.31). By the uniform convergence of regularly
varying sequences,
R < l/f
qm ~ w (IOng) ~ <logqm> . m— oo.
Ry, ¢ (logwy)  \logwn
Notice that

(5.34)

Um < q_m < um+1’
Um+1 Wi Um
so that uy,1/u, — 1 asm — oo (see Eq. 5.18), and hence, ¢, /wy,, — 1, m — o0.
Now, Eq. 5.34 implies R;,,/Ry,, — 1 as m — oo. Recalling also a € RV;_; and

using the uniform convergence of regularly varying sequences,
a (qu?l) ~ < qu
a(R Wi ) R W
hence, Eq. 5.31 is obtained.

1-7
) -1, m— oo;
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Turning to Eq. 5.32, we note that by Eq. 2.5,

Um+1 2k-+1 1 1 ) 2k+1
2k + 1 f(RlIm) ~ (qu(R‘Im))

Qk+D! \ gm
N $2k+1 Ut 1 2k+1 . $2k+1 s
Ck+ D!\ gm Qk+ 1)’ ’

where the last convergence is obtained as a result of Eq. 5.18.

Returning to Eq. 5.30, let us next calculate the limits for each term in the integral,
while finding their appropriate upper bounds. Under our setup, it is straightforward to
see thata’ € RV_; (see, e.g., Proposition 2.5 in Resnick 2007). Therefore, a(z)/z —
0as z — o0, and for all p > 0,

<1 + R—‘”"p) -1, m— oco. (5.35)
qﬂl

Note also that Eq. 5.35 is bounded by 2(1 Vv p)?~! for sufficiently large m.
Next we deal with f (qu + a(qu),o) /f(Ryg,). Write

f (Ry, +a(Rg,)p)
f(Ry,)

= exp{—V (Ry, +a(Ry,)p) +¥(Ry,)}  (5.36)

a(Ry,)

P
= exp {—/0 p (qu +a(qu)r)dr} .

By the uniform convergence of regularly varying functions and a(z)/z — 0 as
7z — 00, we have for every r > 0 that

a(qu)

— 1, m— oo.
a (qu + a(qu)r)

Therefore, for every p > 0,

f (Ry,, +a(Rg,)p)
f(Rq/n)

Additionally, we define a sequence (s¢(m), £ > 0, m > 0) by

w(_ (w(qu) + E) - RCIm
a(Ry,)

sg(m) =

’

equivalently, ¥ (Ry,, + a(Rg,)s¢(m)) = ¥/ (R, ) + €. Then, Lemma 5.2 in Balkema
and Embrechts (2004) implies that for any € € (0, d~"), there exists a positive integer
N = N (¢€) such that s,(m) < e Lete forallm > N and £ > 0. Since Y is increasing,
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we can establish the bound of Eq. 5.36 as follows: form > N,

exp{—v (Ry, +a(Ry,)p) + ¥(Ry,)} 1{p > 0}

=Y Lisetm) < p < seri(m)}exp {—y (Ry, +a(Ry,)p) + ¥ (Ry,) )
=0

oo
< Zl {O <p< efle““)el et
=0
We now discuss the final untreated term from the integral in Eq. 5.30. Let us give
a helpful fact about || (qu + a(qu)p) 0+ y; || fori € {1,...,2k}. We have that
” (qu + a(qu),O) 0+ yi ” - (qu +a(Ry,)p + (0, yi>)
Iyl = (6. i)

= =: , 0, vi).
(R +a(R)p) 0 + 1] + Ry + aRyip + 0oy /0020
In particular, if | (R, + a(Ry,)p)0 + yi| > Ry, then
[yill® = (0, yi)?|
[Ym (0,0, yi)| < 2Ry T 6, 1) -0, m— oo. (5.37)

This convergence takes place uniformly for p > 0,0 € S9!, and y; € R? with
lyill < ct, where c is determined by property (H3) of ~—see Section 2. Continuing
onward, let

Am = {y € R |(Ry, +a(Ry,)0) 0+ y] = Ry, }:
then, foreachi € {1, ..., 2k},
I (|(Rg,, +a(Ry,)p) 0 + yi H)
f(Ry,)
= exp {—¥ (Rg,, +a(Rg,)p + (0, yi) + vm(0, 0, 3)) + ¥(Rg,)} 14, (i)

p+ém(0,0,yi) R
= exp —f W) e 14, 0,
0 a (R(Im + a(qu)}")

L4, (Vi)

where &, (p, 0, y;) = a(qu)_l (0, yi) + ym(p, 6, y;)). Note that the last term is
bounded by 1, due to the fact that

I(Rg, +a(Rg,)p)0 + yi| = Ry, & p+En(p.0,y) = 0.
Additionally, Eqs. 4.2 and 5.37 yield that
Em(0,6.31) = £7H0, i), m — oo,
forall p > 0,0 € $9-1 and Vi € R4, Thus, as m — oo,

P~ /pﬂ?m(p’e’yi) @Ry ) dr ; — exp {—,0 — ¢, )’i)} )
0 a (Ry, + a(Ry,)r)
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and
La, 00 > 1{p+¢70. ) 2 0}
Combining all the bounds derived thus far, the integral in Eq. 5.30 is bounded
above by

00 o
2 [T oyt o< pz et
0 §d—1 (Rd)Zk =0

e~tdydvg_1(0)dp

co
C*/ ZI{O <p 5e_le(“l)e}e_[(l\/,o)d_ldp
0

e\ &
c* <_> Ze—(l—ed)e < o0,
€
£=0

as e Le*tDe > 1 and ed < 1. Now, by the dominated convergence theorem, we can
see that the integral in Eq. 5.30 converges to

IA

2k
0 _ oIy g _
[ [ [ m@we e SR [T fo 60,30 = 0] dydui 03p.

i=1

Because of this convergence, as well as Eqgs. 5.31 and 5.32, we can get Eq. 5.26
as required.

The proof of Eq. 5.27 is almost the same as above, so we skip it. We can now
conclude this lemma by showing Eqs. 5.28 and 5.29. However, the proof has been
omitted as it has essentially the same character as the proofs of Eqs. 5.12 and 5.13
in Lemma 5.1—albeit with different upper bounds as discussed above, due to the
differing nature of the tail of the probability densities. O

Proof Theorem 4.1 First, for everyn > 1,
Un®)  _ @ _ Tu(®)
a(Ry, )RS T a(RHRI™T ™ a(Ru,) R,
Lemma 5.2 yields that

(D
t T,(t) — E[T,, (¢
lim sup A D (3 T = K1 (t) + lim sup —m( ) [dm(l )]
n—oco a(R,)R,~ m—oo  a(Ry, )Ry,

and

XD (1) Un (1) — E[Up (1)]

liminf > Ki(t) + liminf

=20 a(Ry)Ry ! m=0c a(Ry, )R,
Now, the proof can be finished, if one can show that

[a(Rw,,,)Ri;l]fl (Tn(1) = E[T,(1)]) > 0, m — oo, as., (5.38)

[a(Rv,,,)Rf,’,;l]_l Un(t) —E[U,(H)]) = 0, m — oo, as. (5.39)
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By Eq. 5.28 in Lemma 5.2, for every € > O,

§P<|Tm(t) ~E[Ta(0]] > €a(Ru, ) RE') < izm (a(me)me )2

Because of the constraint in Eq. 5.25, there exist §; > 0, i =1,2,so that

i Var (T, (1))

/\

a(me)R

y(d—1t—381) (——82) > 1.
Then, a € RV|_; implies that
a(Ry, )RS > C*RY ™0
for all m > 1. Note that by Eq. 5.33,
Ry, > C*y < (logwy) > C*y~(loguy) > C*m?(1/7=82)
again for all m > 1. Therefore,
a(me)Ri;l > C*my(d—r—él)(l/r—éz)’

and
o

1 . 1

Now, the Borel-Cantelli lemma completes the proof of Eq. 5.38. The proof of
Eq. 5.39 is the same by virtue of Eq. 5.29 in Lemma 5.2.

Before concluding the proof, we show finiteness of the limit in Eq. 4.3. Using
property (H3) of i,

]

k+1
€;+

0 () Sd_1 00 k
—Dfsrny| = Y F—=— 1{|lyill < ct} e Pdyd
INCETIEDS e | /W)kﬂ (il < 1) e~Pdydp

00 d k
=c Z M — Crele0s o,
k=0 ’
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