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Abstract
To recover the topology of a manifold in the presence of heavy tailed or exponen-
tially decaying noise, one must understand the behavior of geometric complexes
whose points lie in the tail of these noise distributions. This study advances this line
of inquiry, and demonstrates functional strong laws of large numbers for the Euler
characteristic process of random geometric complexes formed by random points out-
side of an expanding ball in R

d . When the points are drawn from a heavy tailed
distribution with a regularly varying tail, the Euler characteristic process grows at a
regularly varying rate, and the scaled process converges uniformly and almost surely
to a smooth function. When the points are drawn from a distribution with an expo-
nentially decaying tail, the Euler characteristic process grows logarithmically, and
the scaled process converges to another smooth function in the same sense. All of the
limit theorems take place when the points inside the expanding ball are densely dis-
tributed, so that the simplex counts outside of the ball of all dimensions contribute to
the Euler characteristic process.
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1 Introduction

1.1 Heavy tailed noise and annuli structure of homological elements

To recover the topology of a manifold using point cloud data, one needs to have a
strong understanding of how the points are perturbed from the manifold. In Niyogi
et al. (2008), given a “nice” manifold, it was shown that one can recover the topol-
ogy of the manifold by a sufficiently dense random sampling of points if the noise
is bounded. In Niyogi et al. (2011) it was shown that the recovery is still possible by
a sufficiently dense random sampling of points if the noise is standard multivariate
Gaussian and the variance is bounded by a function of the reach and dimension of the
manifold. However, if the points on the manifold are perturbed by heavy tailed noise,
the recovery of topology will be severely impacted because of extraneous homolog-
ical elements generated by this noise. In Fig. 1, we wish to recover the topology of
the circle S1 from the union of balls around a random point cloud. In Fig. 1b and c,
the union of balls recover the essential shape of S1, as the size of noise in these cases
is sufficiently small. However, in Fig. 1d the noise added to points in S1 has a heavy
tailed Cauchy distribution. Consequently, three extraneous shape elements appear —
two distinct components and a tiny one-dimensional cycle. This phenomenon in case
(d) raises the question of how the shape of these elements away from the center of S1

may behave in general; this is roughly the idea of what is called topological crackle.
From a more analytic viewpoint, topological crackle is understood as a layered

annuli structure of homological elements of different orders. To make our implication
more clear, we consider the power-law density,

f (x) = C

1 + ‖x‖α
, x ∈ R

d , (1.1)

for some α > d and a normalizing constant C > 0. Suppose a random point cloud
Xn = {X1, . . . , Xn} ⊂ R

d , d ≥ 2, is drawn from this density. Let Ann(K, L)

be a closed annulus with inner radius K and outer radius L, and B(x, t) :={
y ∈ R

d : ‖y − x‖ < t
}

be an open ball of radius t around x ∈ R
d (here ‖·‖ denotes

the Euclidean norm). Then, one can divide R
d in a way that

R
d =

d+1⋃

k=0

Ann(Rk,n, Rk−1,n), (1.2)

where

Rk,n =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∞ k = −1,

(Cn)
1

α−d k = 0,

(Cn)
1

α−d/(k+2) k ∈ {1, . . . , d − 1},
(Cn)1/α k = d,

0 k = d + 1,

(1.3)

so that

Rd,n � Rd−1,n � · · · � R1,n � R0,n, as n → ∞.
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Fig. 1 a A random sample X100 = {X1, . . . , X100} of 100 points, uniformly distributed on the unit circle
S1. b The union of balls of radius 0.2 around each point in X100. c The union of balls when X100 is
perturbed by Gaussian noise. d The union of balls when X100 is perturbed by Cauchy noise. Noise is
applied in the same manner as Niyogi et al. (2011). Topology is recovered by the union of the balls in
cases b and c, but that is not the case if the heavy tailed Cauchy noise is added

From previous studies (Adler et al. 2014; Owada and Adler 2017; Owada 2018),
it is known that the union of balls,

U(t) :=
⋃

X∈Xn

B(X, t), t ≥ 0,

asymptotically generates homological elements (i.e., components and cycles as seen
in Fig. 1d) in the following way: we have, as n → ∞,

– Inside Ann(R0,n, ∞) = B(0, R0,n)
c there are finitely many distinct components,

but none of the cycles of dimensions 1, 2, . . . , d − 1.
– Inside Ann(R1,n, R0,n) there are infinitely many distinct components and finitely

many one-dimensional cycles, but none of the cycles of dimensions 2, 3, . . . , d−
1.

In general, for every k ∈ {2, . . . , d − 1},
– Inside Ann(Rk,n, Rk−1,n) there are infinitely many distinct components and

cycles of dimensions 1, . . . , k − 1, and finitely many k-dimensional cycles, but
none of the cycles of dimensions k + 1, . . . , d − 1,

and finally,
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– Inside Ann(Rd,n, Rd−1,n) there are infinitely many distinct components and
cycles of all dimensions 1, . . . , d − 1.

In the literature (Owada 2017), the innermost ball B(0, Rd,n) is referred to as a
weak core. Inside the weak core, random points are densely scattered and the homol-
ogy of the union of unit balls around them is nearly trivial as n → ∞, i.e., the union
has nearly no cycles of all dimensions 1, . . . , d − 1. With this layered structure in
mind, topological crackle is formally defined as non-trivial homological elements
(i.e., components and cycles) outside of a weak core.

Many of the existing studies in classical extreme value theory (EVT) have focused
on the behavior of a random point cloud in the outermost annulus Ann(R0,n, ∞),
or equivalently outside of B(0, R0,n). For instance, it is well known that the total
number of distinct components outside of B(0, R0,n) converges weakly to a Poisson
distribution as n → ∞ (Resnick 1987; 2007; Embrechts et al. 1997). The objective
of this paper is to go beyond the studies on the spatial distribution of components and
investigate more complicated and higher-dimensional topological features outside of
a weak core.

1.2 Topological crackle and Euler characteristic

After the pioneering paper of Adler et al. (2014), the stochastic properties of crackle
phenomena have been investigated mostly via the behavior of Betti numbers. Loosely
speaking, the kth Betti number counts the number of k-dimensional cycles—which
can be interpreted as the boundary of a (k + 1)-dimensional body. In the related
literature, Owada and Adler (2017) studied the case in which the kth Betti number
of U(t) outside of B(0, Rk,n) converges weakly to a Poisson distribution as n →
∞. Moreover, Owada (2018) established the central limit theorem for the kth Betti
numbers, in the case that infinitely many k-dimensional cycles appear outside of
an expanding ball. Additionally, Owada (2019) gave a rigorous description of the
limiting Betti numbers when the random points are generated by a classical moving
average process, and Owada and Bobrowski (2020) discussed the weak convergence
of a standard graphical representation of cycles.

In contrast to these previous papers, the objective of this paper is to examine
the crackle phenomena from the viewpoint of the Euler characteristic of a geomet-
ric (simplicial) complex. Among many varieties of geometric complexes (see Ghrist
2014), the Vietoris-Rips complex and the Čech complex are specific examples that
deserve our attention.

Definition 1.1 Given a point set X = {x1, . . . , xn} ⊂ R
d and a positive number

t > 0, the Vietoris-Rips complex R(X , t) is defined as follows.

– The 0-simplices are the points in X .
– A k-simplex σ = [xi0 , . . . , xik ] is in R(X , t) if B̄(xip , t/2) ∩ B̄(xiq , t/2) 
= ∅

for every 0 ≤ p < q ≤ k, where B̄(x, t) is the closure of B(x, t).
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Definition 1.2 Given the same X and t > 0, the Čech complex Č(X , t) is defined
as follows.

– The 0-simplices are the points in X .
– A k-simplex σ = [xi0, . . . , xik ] is in Č(X , t) if a family of balls{

B̄(xip , t/2), p = 0, . . . , k
}

has a non-empty intersection.

In this paper, we examine two distinct scenarios of noise distributions that expe-
rience topological crackle: one where the distribution has a regularly-varying tail
and another where the distribution has an exponentially decaying tail. We define
a geometric complex that generalizes both R(X , t) and Č(X , t) above, and then
establish the functional strong law of large numbers (FSLLN) for the corresponding
Euler characteristic process for each of the distributional contexts. One of the pri-
mary benefits of working with the Euler characteristic comes from the fact that it
can be expressed as an alternating sum of Betti numbers of all dimensions (Edels-
brunner and Harer 2010). As a consequence, the Euler characteristic provides a
limit theorem containing information on cycles of all different dimensions, whereas
Betti numbers can only provide separate limit theorems for cycles of a particular
dimension in each individual annulus region of Eq. 1.2. Such global features of the
Euler characteristic help to capture the spatial distribution of cycles in the union of
annuli

⋃d
k=0Ann(Rk,n, Rk−1,n) = R

d \ B(0, Rd,n), even though the nature of the
distribution of cycles differs from region to region.

In conjunction with the recent development of Topological Data Analysis (TDA),
the literature dealing with the asymptotics of the Euler characteristic of random
geometric complexes has flourished (Thomas and Owada 2021; Krebs et al. 2020;
Bobrowski and Adler 2014; Bobrowski and Mukherjee 2015; Hug et al. 2016). How-
ever, none of these studies have paid sufficient attention to the topology of the tail
of a probability distribution. In the context of topological crackle as in Fig. 1, ascer-
taining the topology of noise is an important step in determining how to process the
signal of the manifold. In the light of the results in this paper, one can examine how
the homology (i.e., components and cycles) of extreme-valued noise distributions
evolve. This can be attained by viewing the Euler characteristic as a stochastic pro-
cess, in which the parameter governing the formation of simplices is taken to be the
“time” parameter. The resulting process then relates strongly to persistent homology.
Persistent homology is a topological and algebraic structure that tracks the creation
and destruction of cycles in different dimensions. It is one of the most widely used
and robust tools in the TDA toolbox — see Adler et al. (2010) or Ghrist (2008) for an
introduction to persistent homology and Edelsbrunner and Harer (2010) for a more
thorough treatment. In particular, Examples 3.2 and 4.2 below provide the FSLLNs
in the different scenarios of noise distributions for the integrated Euler characteris-
tic process. This process can be viewed as the Euler characteristic of a persistence
barcode, which is a well known graphical descriptor of persistent homology (Ghrist
2008; Carlsson 2009).
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1.3 Organization of the paper

The remainder of this paper is structured as follows. Section 2 provides a discussion
of the background material necessary for this paper. The paper then proceeds to the
heavy tailed setup and presents the FSLLN for the Euler characteristic in Section 3.
The paper continues with a discussion of the intricacies of the exponentially decay-
ing tail case along with the corresponding FSLLN in Section 4. The proofs of the
main results for both setups are deferred to Section 5. From a technical point of
view, the studies most relevant to this paper are Goel et al. (2019) and Thomas and
Owada (2021), in which the authors established strong laws of large numbers for
topological invariants — such as Betti numbers and the Euler characteristic — in
the non-extreme value theoretic setup. In particular, these studies revealed that if
the topological invariants are scaled proportionally to the sample size, they converge
almost surely to a finite and positive constant. Owing to this fact, the main machin-
ery in their proofs is a direct application of the Borel-Cantelli lemma, together with
the calculation of lower-order moments. On the contrary, the main challenge in this
paper is that the scaling sequence of the Euler characteristic may grow very slowly
(e.g., logarithmically), in which case, a direct application of the Borel-Cantelli lemma
does not work. To overcome this difficulty, we need to identify suitable subsequen-
tial upper and lower bounds of the Euler characteristic to which one can apply the
Borel-Cantelli lemma. This is a standard technique in the theory of random geometric
graphs — see Chapter 3 of the monograph of Penrose (2003). It is possible to extend
these arguments to our higher-dimensional setup since the geometric complexes such
as those in Definitions 1.1 and 1.2 are higher-dimensional analogues of a geometric
graph.

As a final remark, we point out that the other types of limit theorems for the Euler
characteristic still remain as a future topic. For example, it seems feasible to establish
a (functional) central limit theorem for the Euler characteristic via Stein’s method
for normal approximation (see, e.g., Theorem 2.4 in Penrose 2003). Indeed, Owada
(2018) already derived the central limit theorem for the Betti numbers by means of
the aforementioned normal approximation technique. We anticipate that the same
approach is possible for our Euler characteristic. A similar line of research in the non-
extreme value theoretic setup can be found in Thomas and Owada (2021) and Krebs
et al. (2020).

2 Preliminaries

The point cloud of interest in this study is the sample Xn := {X1, . . . , Xn} of n

i.i.d random points in R
d , d ≥ 2 with spherically symmetric density f . Spherical

symmetry of f is far from necessary; the results in this paper could be extended to
densities with ellipsoidal level sets fairly easily. Because of the imposed spherical
symmetry, we can define f (r) := f (rθ) for all r ≥ 0 and θ ∈ Sd−1. Denote λ to be
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Lebesgue measure on R
d and Sd−1 := {x ∈ R

d : ‖x‖ = 1}. Let us here define the
spherical measure

νd−1(A) := d · λ ({x ∈ B(0, 1) : x/‖x‖ ∈ A})
for Borel sets A ⊂ Sd−1. We denote ωd := λ(B(0, 1)) = 2πd/2/ (dΓ (d/2)), and
sd−1 := νd−1

(
Sd−1

) = dωd .
Let F (Rd) be the collection of all non-empty, finite subsets of R

d . For X ∈
F (Rd), a simplicial complex K (X ) is a collection of subsets of X such that if
σ ∈ K (X ) and τ ⊂ σ then τ ∈ K (X ). Evidently, the Vietoris-Rips complex
R(X , t) and the Čech complex Č(X , t) satisfy this condition. We call σ ∈ K (X )

a k-simplex if |σ | = k + 1.
Subsequently, let h : F (Rd) → {0, 1} be an indicator function satisfying the

following conditions.

H1 h(X ) ≤ h(Y ) for all Y ⊂ X .
H2 h is translation invariant — that is, for every X ∈ F (Rd) and y ∈ R

d , we
have h(X + y) = h(X ).

H3 h is locally determined — that is, there exists c > 0 so that h(X ) = 0
whenever diam(X ) > c, where diam(X ) := maxx,y∈X ‖x − y‖.

By abusing notation slightly, for X = {x1, . . . , xm} ∈ F (Rd), we write
h(X ) = h(x1, . . . , xm). Moreover, for X = {x1, . . . , xm} and a ∈ R, we write
aX = {ax1, . . . , axm}. We then define a scaled version of h by

ht (X ) :=
{

h(t−1X ), t > 0,

1 {|X | = 1} , t = 0,

with the additional assumption that

H4 t �→ ht (X ) is right continuous and non-decreasing for each X ∈ F (Rd).

Given such a scaled indicator ht , we can construct the geometric (simplicial)
complex

K (X , t) := {Y ⊂ X : ht (Y ) = 1} . (2.1)

By virtue of (H4) above, Eq. 2.1 induces a filtration of geometric complexes over a
point set X — that is,

K (X , s) ⊂ K (X , t) for all 0 ≤ s ≤ t .

Note that if one takes

h(X ) = 1 {diam(X ) ≤ 1} , X ∈ F (Rd),

then (2.1) induces a Vietoris-Rips filtration. Moreover, if we define

h(X ) = 1

{
⋂

x∈X

B̄(x, 1/2) 
= ∅
}

, X ∈ F (Rd),

then (2.1) induces a Čech filtration.
As mentioned in the Introduction, the objective of this paper is to study “extreme-

value” behavior of random geometric complexes via the Euler characteristic. More

705FSLLNs for Euler characteristic processes of extreme sample clouds



concretely, with a non-random sequence Rn → ∞, we study the filtration of
geometric complexes

K
(
Xn ∩ B(0, Rn)

c, t
)
, t ≥ 0, (2.2)

which are distributed increasingly further from the origin as n → ∞. We now define
the Euler characteristic pertaining to Eq. 2.2 by

χn(t) :=
∞∑

k=0

(−1)kSk,n(t), t ≥ 0, (2.3)

where Sk,n(t) denotes the k-simplex counts in the complex (2.2). Namely,

Sk,n(t) :=
∑

Y ⊂Xn, |Y |=k+1

ht (Y ) 1
{

min
y∈Y

‖y‖ ≥ Rn

}
.

Note that for every n ∈ N = {1, 2, . . . }, Eq. 2.3 is a finite sum as Sk,n(t) ≡ 0 for
all k ≥ n. Furthermore, Eq. 2.3 can be seen as a stochastic process in parameter t ,
with right continuous sample paths and left limits. In the following, we establish the
FSLLN for the Euler characteristic process (χn(t), t ≥ 0) in the space D[0, ∞) of
right continuous functions on [0, ∞) with left limits. In particular, we equip D[0, ∞)

with the uniform topology.
With the notation in Eq. 2.3, if we set t = 0,

χn(0) =
∞∑

k=0

(−1)kSk,n(0) =
n∑

i=1

1 {‖Xi‖ ≥ Rn} (2.4)

represents the number of points outside of an expanding ball B(0, Rn). The asymp-
totics of Eq. 2.4 can be treated in the standard framework of classical EVT (see,
e.g., Resnick 1987, 2007; Embrechts et al. 1997). Unlike this special case, the Euler
characteristic process (2.3) intrinsically involves higher-dimensional topological
structures, which requires much more complicated machinery to analyze.

From the literature of topological crackle (see Adler et al. 2014; Owada 2017,
2018; Owada and Adler 2017; Owada and Bobrowski 2020), it is known that the
behavior of topological invariants significantly depends on the limit value of nf (Rn).
The present study focuses exclusively on the case when the limit of nf (Rn) is a
positive and finite constant — that is,

nf (Rn) → ξ as n → ∞ for some ξ ∈ (0, ∞). (2.5)

As mentioned in the Introduction, the ball B(0, Rn) with nf (Rn) → 1, n → ∞,
is called a weak core. In the special case when the density has a power-law tail as in
Eq. 1.1, the radius of a weak core is equal to (Cn)1/α (see Eq. 1.3). Therefore, if Rn

is determined by Eq. 2.5, B(0, Rn) coincides with the weak core, up to multiplica-
tive constants. The configuration of points between the outside and inside of a weak
core is very different. Inside of the weak core, the homology of the union of balls
becomes almost trivial as n → ∞, i.e., the random points are very densely distributed
and nearly every cycle of every dimension becomes filled in (see Adler et al. 2014;
Owada 2017). Outside of the weak core, however, the random points are distributed
more sparsely, though densely enough so that homology of all feasible dimensions
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becomes not only non-trivial, but abundant. As a consequence, by an appropriate
scaling as a function of Rn in Eq. 2.5, the simplex counts of all dimensions in Eq. 2.3
will contribute to the limit. In contrast, if Rn grows faster, such that nf (Rn) → 0
as n → ∞, then even under an appropriate scaling, the Euler characteristic is domi-
nated asymptotically by the 0-simplices, or the extremal points. In this case, the Euler
characteristic simply counts points in Xn outside B(0, Rn) as n → ∞.

3 Regularly varying tail case

In this section, we detail the large-sample behavior of Eq. 2.3 of an extreme sample
cloud when the distribution of points has a heavy tail. Recall that Xn = {X1, . . . , Xn}
denotes a random sample in R

d with a spherically symmetric density f . We assume
that there exists a tail index α > d , such that

lim
r→∞

f (rtθ)

f (rθ)
= t−α, ∀t > 0, (3.1)

for every (equivalently, some) θ ∈ Sd−1.
Before stating the main result, note that by Eq. 2.5, one can typically take

Rn = ξ−1/α (1/f )← (n), (3.2)

where (1/f )←(x) = inf {y : 1/f (y) ≥ x} is the (left continuous) inverse of 1/f .
Thus, (Rn)n≥1 is a regularly varying sequence of exponent (tail index) 1/α.

Theorem 3.1 Suppose that f is a spherically symmetric density satisfying Eq. 3.1.
Assume that nf (Rn) → ξ as n → ∞ for some ξ ∈ (0, ∞). Then, the Euler
characteristic process in Eq. 2.3 satisfies the following functional SLLN, i.e., as
n → ∞,

(
χn(t)

Rd
n

, t ≥ 0

)
→

( ∞∑

k=0

(−1)ksk(t), t ≥ 0

)

, a.s. in D[0, ∞). (3.3)

where

sk(t) := sd−1ξ
k+1

(k + 1)! (α(k + 1) − d)

∫

(Rd )k
ht (0, y1, . . . , yk)dy, t ≥ 0, k ≥ 1, (3.4)

with s0(t) ≡ sd−1ξ/(α − d). In particular, the limit in Eq. 3.3 is convergent for all
t ≥ 0.

The following example illustrates the uniform convergence that takes place in the
above theorem.

Example 3.2 Consider the power-law density defined by

f (x) = 2

πωd(1 + ‖x‖2d)
, x ∈ R

d .
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Define Rn := (2n/πωd)1/(2d), so that nf (Rn) → 1. We consider the Vietoris-

Rips complex induced by h(X ) = 1
{

diam(X ) ≤ 1/
√

d
}

, where diam is calculated

here with respect to the 
∞ norm. Then, it follows from Theorem 3.1 that, as n → ∞,

(√
πωd

2n
χn(t), t ≥ 0

)
→

( ∞∑

k=0

(−1)ksk(t), t ≥ 0

)

, a.s. in D[0, ∞).

The limiting function above can be simplified as follows:

∞∑

k=0

(−1)ksk(t) = sd−1

∞∑

k=0

(−1)k(t/
√

d)dk

(k + 1)!(2d(k + 1) − d)

∫

(Rd )k
h√

d(0, y1, . . . , yk)dy

= ωd

∞∑

k=0

(−1)k(t/
√

d)dk(k + 1)d

(k + 1)!(2k + 1)
. (3.5)

See Figs. 2 and 3 for actual plots of the limiting function in Eq. 3.5 for d =
2, 3, 4, 5.

One of the implications of Theorem 3.1 is that one can immediately obtain various
limit theorems of functions of the Euler characteristic process. For every continuous

Fig. 2 Plots of random realizations of
√

πωd/(2n) χn(t) for d = 2 (in black) in the setup of Exam-
ple 3.2. In the plots above, as n increases from left to right, the random function converges uniformly to∑∞

k=0(−1)ksk(t) (in red)
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Fig. 3 Plots of
∑∞

k=0(−1)ksk(t) at Eq. 3.5 for d = 2, 3, 4, 5.

function T on D[0, ∞), it indeed holds that, as n → ∞,

T

(√
πωd

2n
χn

)
→ T

( ∞∑

k=0

(−1)ksk

)

, a.s.

For example, if Ua,b : D[0, ∞) → [0, ∞) is defined by Ua,b(x) :=
supa≤x≤b |x(t)|, 0 ≤ a < b < ∞, we have

√
πωd

2n
sup

a≤t≤b

|χn(t)| → sup
a≤t≤b

∣∣∣∣∣

∞∑

k=0

(−1)ksk(t)

∣∣∣∣∣
a.s.

Furthermore, let I : D[0, ∞) → D[0, ∞) be defined by I (x)(t) := ∫ t

0 x(r)dr;
then,
(√

πωd

2n

∫ t

0
χn(r)dr, t ≥ 0

)
→

( ∞∑

k=0

(−1)k
∫ t

0
sk(r)dr, t ≥ 0

)

, a.s. in D[0, ∞).

This result is especially important for applications in TDA. Indeed,
∫ t

0 χn(r)dr

represents an alternating sum of the total length of persistence barcodes of all dimen-
sions, up to time t . A persistence barcode is a graphical descriptor of persistent
homology, which allows us to visualize the birth time and death time of cycles (Ghrist
2008; Carlsson 2009). In light of the TDA literature (e.g., Section 6 of Bobrowski
and Borman 2012), the limit

∫ ∞
0 χn(r)dr is defined as the Euler characteristic of per-

sistence barcodes of the filtration (2.2). This gives us an estimate of how long the
cycles of any dimension live in our extreme sample cloud.
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4 Exponentially decaying tail case

In this section, we consider a density of an exponentially decaying tail. We assume
that the density f is specified by

f (x) = C exp {−ψ( ‖x‖)} , x ∈ R
d , (4.1)

where C is a normalizing constant and ψ : [0, ∞) → [0, ∞) is a regularly varying
function (at infinity) of an exponent τ ∈ (0, 1]. Moreover, ψ is assumed to be twice
differentiable, such that ψ ′(x) > 0 for all x > 0, and ψ ′ is eventually non-increasing.
Namely, there exists z0 > 0 such that ψ ′ is non-increasing in [z0, ∞). Under this
setup, let a(z) := 1/ψ ′(z); then, a is also regularly varying with index 1 − τ (see,
e.g., Proposition 2.5 in Resnick 2007).

Here, it is important to note that the occurrence of topological crackle depends on
the limit value of a(z) as z → ∞ (see Owada and Adler 2017). In particular, Owada
and Adler (2017) showed that crackle occurs if and only if

ζ := lim
z→∞ a(z) ∈ (0, ∞]. (4.2)

Since the main theme of this study is topological crackle, we do not treat the case
ζ = 0. In terms of the regular variation exponent of ψ , we exclude the case τ > 1.
So, for instance, the multivariate Gaussian densities do not belong to the scope of our
study. Note that (4.2) trivially holds for every τ ∈ (0, 1).

Now, we are ready to state the FSLLN below. Interestingly, if ζ = ∞ in Eq. 4.2,
the limiting function in Eq. 4.4 agrees with Eq. 3.4 up to multiplicative constants.

Theorem 4.1 Suppose that f is a density specified by Eq. 4.1 with τ ∈ (0, 1]. If
τ = 1, we assume Eq. 4.2. If d = 2, we restrict the range of τ to (0, 1). Suppose
further that nf (Rn) → ξ as n → ∞ for some ξ ∈ (0, ∞). Then, we have, as
n → ∞,

(
χn(t)

a(Rn)R
d−1
n

, t ≥ 0

)
→

( ∞∑

k=0

(−1)ksk(t), t ≥ 0

)

, a.s. in D[0, ∞), (4.3)

where

sk(t) := ξk+1

(k + 1)!
∫ ∞

0

∫

Sd−1

∫

(Rd )k
ht (0, y1, . . . , yk) e−(k+1)ρ−ζ−1∑k

i=1〈θ,yi 〉 (4.4)

×
k∏

i=1

1
{
ρ + ζ−1〈θ, yi〉 ≥ 0

}
dy dνd−1(θ)dρ, t ≥ 0, k ≥ 1,

with 〈·, ·〉 being the Euclidean inner product and s0(t) ≡ sd−1ξ . In particular, the
limit in Eq. (4.3) is convergent for all t ≥ 0.

Example 4.2 We consider a special case of the density in Eq. 4.1,

f (x) = Ce−‖x‖τ /τ , x ∈ R
d , τ ∈ (0, 1].
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Define Rn = (τ log n + τ log C)1/τ so that nf (Rn) = 1. Then, a(z) = z1−τ ,
z > 0. According to Theorem 4.1,

(
χn(t)

(τ log n)
d−τ

τ

, t ≥ 0

)

→
( ∞∑

k=0

(−1)ksk(t), t ≥ 0

)

, a.s. in D[0, ∞).

where sk(t) is defined in Eq. 4.4. Moreover, applying the continuous functions Ua,b

and I from Example 3.2, we have

supa≤t≤b |χn(t)|
(τ log n)

d−τ
τ

→ sup
a≤t≤b

∣∣∣∣∣

∞∑

k=0

(−1)ksk(t)

∣∣∣∣∣
a.s.

and
( ∫ t

0 χn(r)dr

(τ log n)
d−τ

τ

, t ≥ 0

)

→
( ∞∑

k=0

(−1)k
∫ t

0
sk(r)dr, t ≥ 0

)

, a.s. in D[0, ∞).

5 Proofs of main theorems

Throughout the proofs, denote by C∗ a positive constant that is independent of n

and may vary between (and even within) the lines. Denote by RVρ the collection
of regularly varying sequences (or functions) at infinity with exponent ρ ∈ R. For
a, b ∈ R, write a∧b = min{a, b} and a∨b = max{a, b}. For two sequences (an)n≥1
and (bn)n≥1, an ∼ bn means an/bn → 1 as n → ∞.

First, we present a fundamental result which allows us to extend a pointwise SLLN
to a functional SLLN in the space D[0, ∞).

Proposition 5.1 (Proposition 4.2 in Thomas and Owada 2021) Let (Xn, n ∈ N) be
a sequence of random elements in D[0, ∞) with non-decreasing sample paths. Sup-
pose a : [0, ∞) → R is a deterministic, continuous, and non-decreasing function. If
we have

Xn(t) → a(t), n → ∞, a.s.,

for every t ≥ 0, then it follows that

sup
t∈[0,T ]

|Xn(t) − a(t)| → 0, n → ∞, a.s.,

for every 0 ≤ T < ∞. Hence, it holds that Xn(t) → a(t) a.s. in D[0, ∞) under the
uniform topology.

By virtue of this proposition, for the proof of Theorem 3.1 it suffices to show that
as n → ∞,

χn(t)

Rd
n

→
∞∑

k=0

(−1)ksk(t), a.s.
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for every t ≥ 0. Subsequently, we divide the Euler characteristic process into two
terms:

χn(t) =
∞∑

k=0

S2k,n(t) −
∞∑

k=0

S2k+1,n(t) =: χ(1)
n (t) − χ(2)

n (t). (5.1)

In addition, the limiting function can also be decomposed as

∞∑

k=0

(−1)ksk(t) =
∞∑

k=0

s2k(t) −
∞∑

k=0

s2k+1(t) =: K1(t) − K2(t). (5.2)

From Eqs. 5.1 and 5.2, it is now sufficient to prove that for every t ≥ 0 and i = 1, 2,

χ
(i)
n (t)

Rd
n

→ Ki(t), n → ∞, a.s. (5.3)

In the case of Theorem 4.1, defining χ
(i)
n (t) and Ki(t) analogously, it suffices to

show that for each t ≥ 0 and i = 1, 2,

χ
(i)
n (t)

a(Rn)R
d−1
n

→ Ki(t), n → ∞, a.s. (5.4)

5.1 Proof of Theorem 3.1

The goal of this subsection is to prove (5.3). We handle the case i = 1 only, as the
proof is totally the same regardless of i ∈ {1, 2}. Let

um = �emγ �, m = 0, 1, 2, . . . , (5.5)

for some γ ∈ (0, 1). Then, for every n ∈ N, there exists a unique m = m(n) such
that um ≤ n < um+1. Let us also define

pm = argmax{um ≤ 
 ≤ um+1 : R
}, (5.6)

qm = argmin{um ≤ 
 ≤ um+1 : R
}. (5.7)

It then holds that Rpm = maxum≤
≤um+1 R
 and Rqm = minum≤
≤um+1 R
.
Below, we offer a lemma on the asymptotic moments of certain variants of the

process χ
(1)
n (t), defined by

Tm(t) :=
∞∑

k=0

∑

Y ⊂Xum+1 ,

|Y |=2k+1

ht (Y ) 1
{

min
y∈Y

‖y‖ ≥ Rqm

}
, (5.8)

Um(t) :=
∞∑

k=0

∑

Y ⊂Xum ,

|Y |=2k+1

ht (Y ) 1
{

min
y∈Y

‖y‖ ≥ Rpm

}
(5.9)
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Lemma 5.1 Under the assumptions of Theorem 3.1, we have the following asymp-
totic results on the first and second moments of Tm(t) and Um(t).

lim
m→∞R−d

qm
E [Tm(t)] = K1(t), (5.10)

lim
m→∞R−d

pm
E [Um(t)] = K1(t), (5.11)

sup
m≥1

R−d
qm

Var (Tm(t)) < ∞, (5.12)

sup
m≥1

R−d
pm

Var (Um(t)) < ∞. (5.13)

Proof We begin by offering the proofs of Eqs. 5.10 and 5.11 by extending the argu-
ment in the proof of Proposition 7.2 of Owada (2017). As for Eq. 5.10, it is clear
that

R−d
qm

E [Tm(t)] =
∞∑

k=0

R−d
qm

(
um+1
2k + 1

)
E

[
ht (X1, . . . , X2k+1) 1

{
min

1≤i≤2k+1
‖Xi‖ ≥ Rqm

}]
,

where X1, . . . , X2k+1 are i.i.d random variables with density f . From this, we have

R−d
qm

(
um+1
2k + 1

)
E

[
ht (X1, . . . , X2k+1) 1

{
min

1≤i≤2k+1
‖Xi‖ ≥ Rqm

}]
(5.14)

= R−d
qm

(
um+1
2k + 1

)∫

(Rd )2k+1
ht (x1, . . . , x2k+1)

2k+1∏

i=1

f (xi)1
{‖xi‖ ≥ Rqm

}
dx

= R−d
qm

(
um+1
2k + 1

)∫

Rd

∫

(Rd )2k

ht (0, y1, . . . , y2k)f (x)1
{‖x‖ ≥ Rqm

}

×
2k∏

i=1

f (x + yi)1
{‖x + yi‖ ≥ Rqm

}
dydx,

by the change of variables xi = x + yi−1, i = 1, . . . , 2k + 1 (with y0 ≡ 0) and
the translation invariance of ht . Furthermore, we make the change of variables by
x = Rqmρθ with ρ ≥ 1 and θ ∈ Sd−1, to get that

R−d
qm

(
um+1
2k + 1

)
E

[
ht (X1, . . . , X2k+1) 1

{
min

1≤i≤2k+1
‖Xi‖ ≥ Rqm

}]
(5.15)

=
(

um+1
2k + 1

)
f (Rqm)2k+1

∫ ∞

1

∫

Sd−1

∫

(Rd )2k

ht (0, y)ρd−1 f (Rqmρ)

f (Rqm)

×
2k∏

i=1

f
(
Rqm‖ρθ + yi/Rqm‖)

f (Rqm)
1
{‖ρθ + yi/Rqm‖ ≥ 1

}
dy dνd−1(θ)dρ,

where y = (y1, . . . , y2k) ∈ (Rd)2k . Next, for a fixed constant η ∈ (0, α−d), Potter’s
bounds (see Proposition 2.6 in Resnick 2007) yield that

f (Rqmρ)

f (Rqm)
≤ 2ρ−α+η, (5.16)

713FSLLNs for Euler characteristic processes of extreme sample clouds



and
2k∏

i=1

f
(
Rqm‖ρθ + yi/Rqm‖)

f (Rqm)
1
{‖ρθ + yi/Rqm‖ ≥ 1

} ≤ 22k (5.17)

for sufficiently large m. Since
∫ ∞

1 ρd−1−α+ηdρ < ∞ and
∫
(Rd )2k ht (0, y)dy < ∞ by

property (H3) of h, we can see that the regular variation of f , as well as the dominated
convergence theorem, ensures that the triple integral in Eq. 5.15 converges to

sd−1

∫ ∞

1
ρd−1−α(2k+1)dρ

∫

(Rd )2k

ht (0, y)dy = sd−1

α(2k + 1) − d

∫

(Rd )2k

ht (0, y)dy.

Furthermore, Eq. 2.5 ensures that as m → ∞,
(

um+1
2k + 1

)
f (Rqm)2k+1 ∼

(
um+1f (Rqm)

)2k+1

(2k + 1)! ∼ ξ2k+1

(2k + 1)!
(

um+1

qm

)2k+1

,

so that

1 ≤ um+1

qm

≤ um+1

um

≤ e(m+1)γ −mγ

1 − e−mγ = emγ−1(γ+o(1))

1 − e−mγ . (5.18)

As 0 < γ < 1, the rightmost term above converges to 1 as m → ∞. Hence,
(

um+1
2k + 1

)
f (Rqm)2k+1 → ξ2k+1

(2k + 1)! , as m → ∞.

Combining all of these results, it follows that

R−d
qm

(
um+1
2k + 1

)
E

[
ht (X1, . . . , X2k+1) 1

{
min

1≤i≤2k+1
‖Xi‖ ≥ Rqm

}]
→ s2k(t), as m → ∞,

which yields (5.10) as desired. The proof of Eq. 5.11 is almost the same, so we omit
it here.

Now we will prove Eq. 5.12. We see that

E

[
Tm(t)2

]
=

∞∑

k1=0

∞∑

k2=0

2(k1∧k2)+1∑


=0

E

⎡

⎢⎢⎢
⎣

2∏

i=1

⎛

⎜⎜⎜
⎝

∑

Yi⊂Xum+1 ,

|Yi |=2ki+1

ht (Yi ) 1
{

min
y∈Yi

‖y‖≥Rqm

}
⎞

⎟⎟⎟
⎠
1 {|Y1 ∩ Y2|=
}

⎤

⎥⎥⎥
⎦

=
∞∑

k1=0

∞∑

k2=0

2(k1∧k2)+1∑


=0

(
um+1

2(k1 + k2) + 2 − 


)
(2(k1 + k2) + 2 − 
)!

(2k1 + 1 − 
)! (2k2 + 1 − 
)! 
!
×E

[
ht (X1, . . . , X2k1+1)ht (X1, . . . , X
, X2k1+2, . . . , X2(k1+k2)+2−
)

×1
{

min
1≤i≤2(k1+k2)+2−


‖Xi‖ ≥ Rqm

}]

=:
∞∑

k1=0

∞∑

k2=0

2(k1∧k2)+1∑


=0

(
um+1
2(k1 + k2) + 2 − 


)
(2(k1 + k2) + 2 − 
)!

(2k1 + 1 − 
)! (2k2 + 1 − 
)! 
! E[Ik1,k2,
],

where X1, . . . , X2(k1+k2)+2−
 are i.i.d random points with density f . In the above, if

 = 0, we define

ht (X1, . . . , X
, X2k1+2, . . . , X2(k1+k2)+2−
) := ht (X2k1+2, . . . , X2(k1+k2)+2).
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From this, we see that

R−d
qm

Var (Tm(t)) (5.19)

=
∞∑

k1=0

∞∑

k2=0

2(k1∧k2)+1∑


=1

R−d
qm

(
um+1

2(k1 + k2) + 2 − 


)
(2(k1 + k2) + 2 − 
)!

(2k1 + 1 − 
)! (2k2 + 1 − 
)! 
! E[Ik1,k2,
]

+
∞∑

k1=0

∞∑

k2=0

R−d
qm

(
um+1

2(k1 + k2) + 2

)(
2(k1 + k2) + 2

2k1 + 1

)
E[Ik1,k2,0]

−
∞∑

k1=0

∞∑

k2=0

R−d
qm

(
um+1

2k1 + 1

)(
um+1
2k2 + 1

)
E[Ik1,k2,0]

≤
∞∑

k1=0

∞∑

k2=0

2(k1∧k2)+1∑


=1

R−d
qm

(
um+1

2(k1 + k2) + 2 − 


)
(2(k1 + k2) + 2 − 
)!

(2k1 + 1 − 
)! (2k2 + 1 − 
)! 
! E[Ik1,k2,
],

where the last inequality comes from
(

um+1
2(k1 + k2) + 2

)(
2(k1 + k2) + 2

2k1 + 1

)
−

(
um+1

2k1 + 1

)(
um+1
2k2 + 1

)

=
(

um+1
2k1 + 1

)[(
um+1 − 2k1 − 1
2k2 + 1

)
−

(
um+1
2k2 + 1

)]
< 0.

For our purposes, we must examine the appropriate upper bounds of E[Ik1,k2,
]
for 
 ≥ 1. For every 
 ≥ 1, performing the change of variables, xi = x + yi−1,
i = 1, . . . , 2(k1 + k2) + 2 − 
 (with y0 ≡ 0), we have that

E[Ik1,k2,
] =
∫

(Rd )2(k1+k2)+2−

ht (x1, . . . , x2k1+1)ht (x1, . . . , x
, x2k1+2, . . . , x2(k1+k2)+2−
)

×
2(k1+k2)+2−
∏

i=1

f (xi)1
{‖xi‖ ≥ Rqm

}
dx

=
∫

Rd

∫

(Rd )2(k1+k2)+1−

ht (0, y1, . . . , y2k1 )ht (0, y1, . . . , y
−1, y2k1+1, . . . , y2(k1+k2)+1−
)

×f (x) 1
{‖x‖ ≥ Rqm

} 2(k1+k2)+1−
∏

i=1

f (x + yi) 1
{‖x + yi‖ ≥ Rqm

}
dydx.

As in Eq. 5.15, we apply the polar coordinate transform x = Rqmρθ with ρ ≥ 1
and θ ∈ Sd−1, to obtain that

E[Ik1,k2,
] = Rd
qm

f (Rqm)2(k1+k2)+2−


∫ ∞

1

∫

Sd−1

∫

(Rd )2(k1+k2)+1−

ht (0, y0, y1)ht (0, y0, y2)ρ

d−1

×f (Rqmρ)

f (Rqm)

2(k1+k2)+1−
∏

i=1

f
(
Rqm‖ρθ + yi/Rqm‖)

f (Rqm)
1
{‖ρθ + yi/Rqm‖ ≥ 1

}

d (y0 ∪ y1 ∪ y2)dνd−1(θ)dρ,
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where y0 = (y1, . . . , y
−1), y1 = (y
, . . . , y2k1) and y2 =
(y2k1+1, . . . , y2(k1+k2)+1−
). Appealing to Potter’s bounds as in Eqs. 5.16 and 5.17,
as well as Eq. 2.5, there exists an N ∈ N such that for all m ≥ N ,

R−d
qm

(
um+1

2(k1 + k2) + 2 − 


)
E[Ik1,k2,
]

≤
(
um+1f (Rqm)

)2(k1+k2)+2−


(2(k1 + k2) + 2 − 
)!
∫ ∞

1

∫

Sd−1

∫

(Rd )2(k1+k2)+1−

ht (0, y0, y1)ht (0, y0, y2)ρ

d−1

×2ρ−α+η × 22(k1+k2)+1−
d (y0 ∪ y1 ∪ y2)dνd−1(θ)dρ

≤ (4ξ)2(k1+k2)+2−


(2(k1 + k2) + 2 − 
)! · sd−1

α − d − η

∫

(Rd )2(k1+k2)+1−

ht (0, y0, y1)ht (0, y0, y2)d (y0 ∪ y1 ∪ y2).

By virtue of property (H3) of h,

∫

(Rd )2(k1+k2)+1−

ht (0, y0, y1)ht (0, y0, y2)d (y0 ∪ y1 ∪ y2) ≤

∫

(Rd )2(k1+k2)+1−


2(k1+k2)+1−
∏

i=1

1 {‖yi‖ ≤ ct} dy

=
(
(ct)dωd

)2(k1+k2)+1−


.

Therefore, for all m ≥ N ,

R−d
qm

(
um+1

2(k1 + k2) + 2 − 


)
E[Ik1,k2,
] ≤ (4ξ)2(k1+k2)+2−


(
(ct)dωd

)2(k1+k2)+1−


(2(k1 + k2) + 2 − 
)! · sd−1

α − d − η

≤ (C∗)2(k1+k2)+2−


(2(k1 + k2) + 2 − 
)! . (5.20)

Note that the constant C∗ does not depend on k1, k2, and 
. Returning to Eq. 5.19
and applying the bound in Eq. 5.20, we have that

R−d
qm

Var (Tm(t)) ≤
∞∑

k1=0

∞∑

k2=0

2(k1∧k2)+1∑


=1

(C∗)2(k1+k2)+2−


(2k1 + 1 − 
)! (2k2 + 1 − 
)! 
!

≤ 2
∞∑

k1=0

k1∑

k2=0

k2+1∑


=1

(C∗)k1+k2+2−


(k1 + 1 − 
)! (k2 + 1 − 
)! 
!

≤ 2
∞∑


=1

∞∑

k1=
−1

∞∑

k2=
−1

(C∗)k1+1−


(k1 + 1 − 
)! · (C∗)k2+1−


(k2 + 1 − 
)! · (C∗)



! = 2e3C∗
< ∞.

Since the proof of Eq. 5.13 is very similar to that of Eq. 5.12, we will omit it.

Proof (Theorem 3.1) By the definition of um, pm, and qm, we have, for every n ≥ 1,

Um(t)

Rd
pm

≤ χ
(1)
n (t)

Rd
n

≤ Tm(t)

Rd
qm

.
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Then, Lemma 5.1 gives that

lim sup
n→∞

χ
(1)
n (t)

Rd
n

≤ K1(t) + lim sup
m→∞

Tm(t) − E[Tm(t)]
Rd

qm

, a.s., (5.21)

and

lim inf
n→∞

χ
(1)
n (t)

Rd
n

≥ K1(t) + lim inf
m→∞

Um(t) − E[Um(t)]
Rd

pm

, a.s. (5.22)

Let us continue by showing that

R−d
qm

(Tm(t) − E[Tm(t)]) → 0, m → ∞, a.s., (5.23)

and
R−d

pm
(Um(t) − E[Um(t)]) → 0, m → ∞, a.s. (5.24)

For Eq. 5.23, it follows from Eq. 5.12 in Lemma 5.1 and Chebyshev’s inequality
that, for every ε > 0,

∞∑

m=1

P

(
| Tm(t) − E[Tm(t)] | > εRd

qm

)
≤

∞∑

m=1

Var (Tm(t))

ε2
(
Rd

qm

)2
≤ C∗

∞∑

m=1

1

Rd
qm

.

As Rn ∈ RV1/α (see Eq. 3.2), we have that

Rqm ≥ C∗q1/(2α)
m ≥ C∗u1/(2α)

m ≥ C∗emγ /(3α)

for all m ≥ 1. Now, we have
∑

mR−d
qm

≤ C∗∑
me−dmγ /(3α) < ∞, and the Borel-

Cantelli lemma concludes (5.23). The proof of Eq. 5.24 is analogous by virtue of
Eq. 5.13 in Lemma 5.1. Now, combining (5.21), (5.22), (5.23), and (5.24) completes
the proof.

Finally, let us explicitly demonstrate that the limit in Eq. 3.3 is finite for all t ≥ 0.
By virtue of property (H3) of h,

∣∣∣∣∣

∞∑

k=0

(−1)ksk(t)

∣∣∣∣∣
≤

∞∑

k=0

sd−1ξ
k+1

(k + 1)! (α(k + 1) − d)

∫

(Rd )k

k∏

i=1

1 {‖yi‖ ≤ ct} dy

≤ C∗
∞∑

k=0

(
(ct)dξωd

)k

k! = C∗e(ct)d ξωd < ∞.

5.2 Proof of Theorem 4.1

The goal here is to prove Eq. 5.4. Once again, we deal with the case i = 1 only. The
proof is essentially similar in character to the proof of Theorem 3.1 but involves more
complex machinery. First we take

γ ∈
(

τ

d − τ
, 1

)
(5.25)

(recall that we have restricted the range of τ to (0, 1) when d = 2), and define

um = �emγ �, m = 0, 1, 2, . . .
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as in Eq. 5.5. Moreover, let pm and qm remain as before—see Eqs. 5.6 and 5.7.
Additionally, we also introduce

vm := argmax
{
um ≤ 
 ≤ um+1 : a(R
)R

d−1



}
,

wm := argmin
{
um ≤ 
 ≤ um+1 : a(R
)R

d−1



}
.

Let Tm(t) and Um(t) be defined in the same way as Eqs. 5.8 and 5.9.
The lemma below is analogous to Lemma 5.1 (see also Proposition 7.4 in Owada

2017) that provides the asymptotic moments of Tm(t) and Um(t).

Lemma 5.2 Under the assumptions of Theorem 4.1, we have the following.

lim
m→∞

[
a(Rwm)Rd−1

wm

]−1
E [Tm(t)] = K1(t), (5.26)

lim
m→∞

[
a(Rvm)Rd−1

vm

]−1
E [Um(t)] = K1(t), (5.27)

sup
m≥1

[
a(Rwm)Rd−1

wm

]−1
Var (Tm(t)) < ∞, (5.28)

sup
m≥1

[
a(Rvm)Rd−1

vm

]−1
Var (Um(t)) < ∞. (5.29)

Proof We begin by proving (5.26) and (5.27). By the same change of variables as in
Eq. 5.14 and the translation invariance of ht ,

[
a(Rwm)Rd−1

wm

]−1
E [Tm(t)]

=
∞∑

k=0

[
a(Rwm)Rd−1

wm

]−1
(

um+1
2k + 1

)∫

(Rd )2k+1
ht (x1, . . . , x2k+1)

2k+1∏

i=1

f (xi) 1
{‖xi‖ ≥ Rqm

}
dx

=
∞∑

k=0

[
a(Rwm)Rd−1

wm

]−1
(

um+1
2k + 1

)∫

Rd

∫

(Rd )2k

ht (0, y)f (x) 1
{‖x‖ ≥ Rqm

}

×
2k∏

i=1

f (x + yi) 1
{‖x + yi‖ ≥ Rqm

}
dydx,

where y = (y1, . . . , y2k) ∈ (Rd)2k . Here, we make the change of variable by x =(
Rqm + a(Rqm)ρ

)
θ with ρ ≥ 0 and θ ∈ Sd−1. Then, the integral above becomes

a(Rqm)

∫ ∞

0

∫

Sd−1

∫

(Rd )2k

ht (0, y)
(
Rqm + a(Rqm)ρ

)d−1
f
(
Rqm + a(Rqm)ρ

)

×
2k∏

i=1

f
(∥∥(Rqm + a(Rqm)ρ

)
θ + yi

∥∥) 1
{∥∥(Rqm + a(Rqm)ρ

)
θ + yi

∥∥ ≥ Rqm

}
dydνd−1(θ)dρ,

718 A.M. Thomas, T. Owada



which implies that

[
a(Rwm)Rd−1

wm

]−1
E [Tm(t)] (5.30)

=
∞∑

k=0

a(Rqm)Rd−1
qm

a(Rwm)Rd−1
wm

(
um+1

2k + 1

)
f (Rqm)2k+1

×
∫ ∞

0

∫

Sd−1

∫

(Rd )2k

ht (0, y)
(

1 + a(Rqm)

Rqm

ρ

)d−1 f
(
Rqm + a(Rqm)ρ

)

f (Rqm)

×
2k∏

i=1

f
(∥∥(Rqm + a(Rqm)ρ

)
θ + yi

∥∥)

f (Rqm)
1
{∥∥(Rqm + a(Rqm)ρ

)
θ + yi

∥∥ ≥ Rqm

}
dydνd−1(θ)dρ.

For the last expression, we claim that

a(Rqm)Rd−1
qm

a(Rwm)Rd−1
wm

→ 1, m → ∞, (5.31)

and
(

um+1
2k + 1

)
f (Rqm)2k+1 → ξ2k+1

(2k+1)! , m → ∞. (5.32)

Because of Eq. 2.5, we have ψ(Rn) ∼ log(Cn/ξ) as n → ∞. With the assump-
tions on the density (4.1), Proposition 2.6 in Resnick (2007) gives that ψ← ∈
RV1/τ . It follows from the uniform convergence of regularly varying sequences [see
Proposition 2.4 in Resnick 2007) that

ψ← (ψ(Rn))

ψ← (log(Cn/ξ))
∼

(
ψ(Rn)

log(Cn/ξ)

)1/τ

→ 1, as n → ∞.

Since ψ← (ψ(Rn)) ∼ Rn as n → ∞, the above relation and log(Cn/ξ) ∼ log n,
n → ∞, implies

Rn ∼ ψ← (log n) , n → ∞. (5.33)

Now we are ready to prove (5.31). By the uniform convergence of regularly
varying sequences,

Rqm

Rwm

∼ ψ← (log qm)

ψ← (log wm)
∼

(
log qm

log wm

)1/τ

, m → ∞. (5.34)

Notice that
um

um+1
≤ qm

wm

≤ um+1

um

,

so that um+1/um → 1 as m → ∞ (see Eq. 5.18), and hence, qm/wm → 1, m → ∞.
Now, Eq. 5.34 implies Rqm/Rwm → 1 as m → ∞. Recalling also a ∈ RV1−τ and
using the uniform convergence of regularly varying sequences,

a(Rqm)

a(Rwm)
∼

(
Rqm

Rwm

)1−τ

→ 1, m → ∞;

hence, Eq. 5.31 is obtained.
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Turning to Eq. 5.32, we note that by Eq. 2.5,

(
um+1

2k + 1

)
f (Rqm)2k+1 ∼ 1

(2k + 1)!
(

um+1

qm

)2k+1 (
qmf (Rqm)

)2k+1

∼ ξ2k+1

(2k + 1)!
(

um+1

qm

)2k+1

→ ξ2k+1

(2k + 1)! , m → ∞,

where the last convergence is obtained as a result of Eq. 5.18.
Returning to Eq. 5.30, let us next calculate the limits for each term in the integral,

while finding their appropriate upper bounds. Under our setup, it is straightforward to
see that a′ ∈ RV−τ (see, e.g., Proposition 2.5 in Resnick 2007). Therefore, a(z)/z →
0 as z → ∞, and for all ρ > 0,

(
1 + a(Rqm)

Rqm

ρ

)d−1

→ 1, m → ∞. (5.35)

Note also that Eq. 5.35 is bounded by 2(1 ∨ ρ)d−1 for sufficiently large m.
Next we deal with f

(
Rqm + a(Rqm)ρ

)
/f (Rqm). Write

f
(
Rqm + a(Rqm)ρ

)

f (Rqm)
= exp

{−ψ
(
Rqm + a(Rqm)ρ

) + ψ(Rqm)
}

(5.36)

= exp

{

−
∫ ρ

0

a(Rqm)

a
(
Rqm + a(Rqm)r

)dr

}

.

By the uniform convergence of regularly varying functions and a(z)/z → 0 as
z → ∞, we have for every r ≥ 0 that

a(Rqm)

a
(
Rqm + a(Rqm)r

) → 1, m → ∞.

Therefore, for every ρ > 0,

f
(
Rqm + a(Rqm)ρ

)

f (Rqm)
→ e−ρ, m → ∞.

Additionally, we define a sequence (s
(m), 
 ≥ 0, m ≥ 0) by

s
(m) = ψ← (
ψ(Rqm) + 


) − Rqm

a(Rqm)
,

equivalently, ψ
(
Rqm + a(Rqm)s
(m)

) = ψ(Rqm) + 
. Then, Lemma 5.2 in Balkema
and Embrechts (2004) implies that for any ε ∈ (0, d−1), there exists a positive integer
N = N(ε) such that s
(m) ≤ ε−1e
ε for all m ≥ N and 
 ≥ 0. Since ψ is increasing,
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we can establish the bound of Eq. 5.36 as follows: for m ≥ N ,

exp
{−ψ

(
Rqm + a(Rqm)ρ

) + ψ(Rqm)
}
1 {ρ > 0}

=
∞∑


=0

1 {s
(m) < ρ ≤ s
+1(m)} exp
{−ψ

(
Rqm + a(Rqm)ρ

) + ψ(Rqm)
}

≤
∞∑


=0

1
{

0 < ρ ≤ ε−1e(
+1)ε
}

e−
.

We now discuss the final untreated term from the integral in Eq. 5.30. Let us give
a helpful fact about

∥∥(Rqm + a(Rqm)ρ
)
θ + yi

∥∥ for i ∈ {1, . . . , 2k}. We have that
∥∥(Rqm + a(Rqm)ρ

)
θ + yi

∥∥ − (
Rqm + a(Rqm)ρ + 〈θ, yi〉

)

= ‖yi‖2 − 〈θ, yi〉2
∥∥(Rqm + a(Rqm)ρ

)
θ + yi

∥∥ + Rqm + a(Rqm)ρ + 〈θ, yi〉 =: γm(ρ, θ, yi).

In particular, if
∥∥(Rqm + a(Rqm)ρ

)
θ + yi

∥∥ ≥ Rqm , then

|γm(ρ, θ, yi)| ≤
∣∣ ‖yi‖2 − 〈θ, yi〉2

∣∣

2Rqm + 〈θ, yi〉 → 0, m → ∞. (5.37)

This convergence takes place uniformly for ρ > 0, θ ∈ Sd−1, and yi ∈ R
d with

‖yi‖ ≤ ct , where c is determined by property (H3) of h—see Section 2. Continuing
onward, let

Am =
{
y ∈ R

d : ∥∥(Rqm + a(Rqm)ρ
)
θ + y

∥∥ ≥ Rqm

}
;

then, for each i ∈ {1, . . . , 2k},
f
(∥∥(Rqm + a(Rqm)ρ

)
θ + yi

∥∥)

f (Rqm)
1Am(yi)

= exp
{−ψ

(
Rqm + a(Rqm)ρ + 〈θ, yi〉 + γm(ρ, θ, yi)

) + ψ(Rqm)
}
1Am(yi)

= exp

{

−
∫ ρ+ξm(ρ,θ,yi )

0

a(Rqm)

a
(
Rqm + a(Rqm)r

)dr

}

1Am(yi),

where ξm(ρ, θ, yi) = a(Rqm)−1 (〈θ, yi〉 + γm(ρ, θ, yi)). Note that the last term is
bounded by 1, due to the fact that

∥∥(Rqm + a(Rqm)ρ
)
θ + yi

∥∥ ≥ Rqm ⇔ ρ + ξm(ρ, θ, yi) ≥ 0.

Additionally, Eqs. 4.2 and 5.37 yield that

ξm(ρ, θ, yi) → ζ−1〈θ, yi〉, m → ∞,

for all ρ > 0, θ ∈ Sd−1, and yi ∈ R
d . Thus, as m → ∞,

exp

{

−
∫ ρ+ξm(ρ,θ,yi )

0

a(Rqm)

a
(
Rqm + a(Rqm)r

)dr

}

→ exp
{
−ρ − ζ−1〈θ, yi〉

}
,
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and
1Am(yi) → 1

{
ρ + ζ−1〈θ, yi〉 ≥ 0

}
.

Combining all the bounds derived thus far, the integral in Eq. 5.30 is bounded
above by

2
∫ ∞

0

∫

Sd−1

∫

(Rd )2k

ht (0, y) (1 ∨ ρ)d−1
∞∑


=0

1
{

0 < ρ ≤ ε−1e(
+1)ε
}

e−
dydνd−1(θ)dρ

= C∗
∫ ∞

0

∞∑


=0

1
{

0 < ρ ≤ ε−1e(
+1)ε
}

e−
(1 ∨ ρ)d−1dρ

≤ C∗
(

eε

ε

)d ∞∑


=0

e−(1−εd)
 < ∞,

as ε−1e(
+1)ε ≥ 1 and εd < 1. Now, by the dominated convergence theorem, we can
see that the integral in Eq. 5.30 converges to

∫ ∞

0

∫

Sd−1

∫

(Rd )2k

ht (0, y) e−(2k+1)ρ−ζ−1 ∑2k
i=1〈θ,yi 〉

2k∏

i=1

1
{
ρ + ζ−1〈θ, yi〉 ≥ 0

}
dy dνd−1(θ)dρ.

Because of this convergence, as well as Eqs. 5.31 and 5.32, we can get Eq. 5.26
as required.

The proof of Eq. 5.27 is almost the same as above, so we skip it. We can now
conclude this lemma by showing Eqs. 5.28 and 5.29. However, the proof has been
omitted as it has essentially the same character as the proofs of Eqs. 5.12 and 5.13
in Lemma 5.1—albeit with different upper bounds as discussed above, due to the
differing nature of the tail of the probability densities.

Proof Theorem 4.1 First, for every n ≥ 1,

Um(t)

a(Rvm)Rd−1
vm

≤ χ
(1)
n (t)

a(Rn)R
d−1
n

≤ Tm(t)

a(Rwm)Rd−1
wm

.

Lemma 5.2 yields that

lim sup
n→∞

χ
(1)
n (t)

a(Rn)R
d−1
n

≤ K1(t) + lim sup
m→∞

Tm(t) − E[Tm(t)]
a(Rwm)Rd−1

wm

,

and

lim inf
n→∞

χ
(1)
n (t)

a(Rn)R
d−1
n

≥ K1(t) + lim inf
m→∞

Um(t) − E[Um(t)]
a(Rvm)Rd−1

vm

.

Now, the proof can be finished, if one can show that
[
a(Rwm)Rd−1

wm

]−1
(Tm(t) − E[Tm(t)]) → 0, m → ∞, a.s., (5.38)

[
a(Rvm)Rd−1

vm

]−1
(Um(t) − E[Um(t)]) → 0, m → ∞, a.s. (5.39)
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By Eq. 5.28 in Lemma 5.2, for every ε > 0,
∞∑

m=1

P

(
| Tm(t) − E[Tm(t)] | > εa(Rwm)Rd−1

wm

)
≤ 1

ε2

∞∑

m=1

Var (Tm(t))
(
a(Rwm)Rd−1

wm

)2

≤ C∗
∞∑

m=1

1

a(Rwm)Rd−1
wm

.

Because of the constraint in Eq. 5.25, there exist δi > 0, i = 1, 2, so that

γ (d − τ − δ1)

(
1

τ
− δ2

)
> 1.

Then, a ∈ RV1−τ implies that

a(Rwm)Rd−1
wm

≥ C∗Rd−τ−δ1
wm

for all m ≥ 1. Note that by Eq. 5.33,

Rwm ≥ C∗ψ← (log wm) ≥ C∗ψ←(log um) ≥ C∗mγ(1/τ−δ2)

again for all m ≥ 1. Therefore,

a(Rwm)Rd−1
wm

≥ C∗mγ(d−τ−δ1)(1/τ−δ2),

and ∞∑

m=1

1

a(Rwm)Rd−1
wm

≤ C∗
∞∑

m=1

1

mγ(d−τ−δ1)(1/τ−δ2)
< ∞.

Now, the Borel-Cantelli lemma completes the proof of Eq. 5.38. The proof of
Eq. 5.39 is the same by virtue of Eq. 5.29 in Lemma 5.2.

Before concluding the proof, we show finiteness of the limit in Eq. 4.3. Using
property (H3) of h,

∣∣∣∣∣

∞∑

k=0

(−1)ksk(t)

∣∣∣∣∣
≤

∞∑

k=0

sd−1ξ
k+1

(k + 1)!
∫ ∞

0

∫

(Rd )k

k∏

i=1

1 {‖yi‖ ≤ ct} e−ρdy dρ

≤ C∗
∞∑

k=0

(
(ct)dξωd

)k

k! = C∗e(ct)d ξωd < ∞.
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