The Inextricability of Students’ Mathematical and Physical Reasoning in
Quantum Mechanics Problems

Mathematics and physics have an interconnected, reflexive relationship. Physical
problems motivated the origins of several mathematics concepts, and the mathematization of
physical phenomena often enables the development of physical theory (e.g., Dirac, 1947).
According to Uhden et al. (2012), “the role of mathematics in physics has multiple aspects: it
serves as a tool (pragmatic perspective), it acts as a language (communicative function) and it
provides a way of logical deductive reasoning (structural function)” (p. 486). Mathematics is not
only a tool for computational manipulations; Mathematics is also commonly connected to
physics content and can be used to reason about physics concepts and structure physical thought.
For instance, differential equations are central to myriad key ideas in physics, such as harmonic
oscillation, projectile motion, Newton’s Law of Cooling, and the Schrodinger Equation. In
multivariate calculus, students learn gradient, divergence, and curl, which are central to
electromagnetism. In linear algebra, the notions of change of basis, orthonormality, and inner
products are crucial in conceptualizing and computing the probability that a measurement of a
particle’s spin angular momentum would yield a particular value (in particular, an eigenvalue of
a relevant operator). Physics students have to make connections between concepts, notation
systems, and procedures they have learned in both mathematics and physics courses, and these
sometimes vary between the two disciplinary cultures. Due to the interconnected nature of
mathematics and physics, it is essential for undergraduate students to learn how to reason with
mathematics as they address physical problems.

In this paper, we examine the complexity of undergraduate physics students’
mathematical reasoning used as they solve two probability problems in the context of quantum
mechanics. We address the following research question: How do undergraduate physics students
reason with mathematical concepts and procedures as they solve quantum mechanics problems?
In particular, our research goal was to investigate the linear algebra reasoning students leveraged
in their solutions and explanations regarding the quantum mechanics problems shown in Figure
1. Our results demonstrate the intricacy of students’ problem-solving methods and exhibit how
students draw on their understanding of concepts from both mathematics and physics to inform
their flexibility in choosing an appropriate problem-solving approach. This paper offers insights
into how students reason about mathematics content in ways that are interconnected with and
inseparable from physics content. Readers who teach undergraduate mathematics courses in
which physics majors (or other STEM-discipline students) are enrolled will benefit from this
paper by learning more about how the mathematics commonly taught in a linear algebra course
is leveraged in other STEM disciplines.



Consider the quantum state vector [y) = % |+) + v,% |-).

a) Calculate the probabilities that the spin component is up or down along the z-axis.
b) Calculate the probabilities that the spin component is up or down along the y-axis.

Fig. 1 The quantum mechanics problems addressed in this study

Brief Physics Background

To assist the reader in following the students’ work on the problems in Figure 1, we
provide a brief summary of relevant content'. Quantum mechanical systems can be assigned to a
Hilbert space, every possible state of the physical system is associated with a vector in the
Hilbert space, and every possible observable is associated with a Hermitian operator. For
example, spin is a measure of a particle’s intrinsic angular momentum, which is related to the
particle’s magnetic moment. This observable is represented mathematically by an operator such
as S, (where the z indicates the particle’s axis of rotation; the analogous information can be
determined for other axes of rotation, such as y). In a spin-Y2 system, there are only two possible

h . .
results for the S, measurement: + > and these are the (necessarily real) eigenvalues of the

Hermitian operator S,. After the measurement the system will be found in the corresponding
eigenstate.

Using the notation system introduced by Dirac (1939), a state vector is denoted as a ket
|p). The eigenstates corresponding to the possible measurements of an observable create an
orthonormal basis for the associated Hilbert space. For example, the eigenstates for the spin-/2

operator S, can be expressed as |+) and |—), and they correspond to the measurements gand %h ,
respectively. Any quantum state [i) in this system can be expressed as a linear combination of
|+) and |—), namely: |¢) = a|+) + b|—) for scalars a, b € C. The complex conjugate transpose
of'a ket [y) is called a bra and is symbolized as (| = a*(+| + b*(—|. The probabilistic
interpretation of the principle of superposition in quantum mechanics means that |1p) will
sometimes have attributes that resemble those of |+) and sometimes those of |—). More
precisely, if the particle is in a state |Y), the measurement of its spin along the z-axis will yield
one of the eigenvalues g and %h with probability proportional to the modulus squared of the

projection of [1) along either the eigenvector |+) or |—), respectively. The state of the system
will change from 1) to |+) or |—) as a result of the measurement.

Problem A (see Figure 1) asks for the probability of obtaining g or %h in a measurement

of observable S, on a system in state [1)). The solution is calculated by P, = |(£|)|?, where
(£|y) is an inner product between one of the z-basis kets and psi. The solution for problem B
(see Figure 1) is calculated by P = |, (%[1))|?, where ,,([1)) is an inner product between one
of the y-basis kets and psi. To complete problem B, a change of basis is involved because the
given state |) is written in terms of the z-basis, but the prompt asks for the probability that the

! The summary draws from Mclntyre et al. (2012), Shankar (2012), and Wawro et al. (2020).



spin component is up or down along the y-axis. The two main approaches are to either change

|Y) to be written in terms of the y-basis (denoted |1),) and calculate P, ,, = |, (x[y),
change the y-basis vectors to be written in terms of the z-basis and calculate Py ,, =

2
, or

: 2
(% (+| + % (—DI¥)| . In either approach, one would need to utilize the equations |+), = %
[+) £ 2.

Literature Review

Several mathematical concepts are involved in the problems shown in Figure 1, including
probability, inner products, basis, and change of basis. Some studies have investigated student
understanding of probability in quantum mechanics contexts (e.g., Close et al., 2013; Passante et
al., 2018). Wan et al. (2019) investigated student understanding of inner products in relation to
quantum probabilities. They asserted that students need a functional understanding of inner
products and quantum states in order to understand how to determine quantum probabilities.
Serbin et al. (2021) analyzed quantum mechanics students’ and instructors’ discourse in the
context of solving probability problems by identifying aspects of their culturally shared social
language (Gee, 2005) particular to basis and change of basis. They found that students’ and
instructors’ discourse about change of basis referred to either changing the form of a vector,
writing a vector in another form, changing a vector into another vector, or switching bases. They
conjectured that these varied forms of discourse could be indicative of different ways of
reasoning about change of basis within the quantum mechanics context. Schermerhorn et al.
(2019) investigated physics students’ reasoning about basis and change of basis in the context of
calculating expectation value problems. They claimed that several students “did not attend to the
basis representation of vectors or matrices when carrying out matrix multiplication” (p. 020144-
17). They found that a challenge for most students was choosing an appropriate basis in which to
express the matrices and vectors involved in the calculation. The ubiquitous use of basis and
change of basis in solving quantum mechanics problems warrants research about how students
reason about these central concepts from linear algebra.

There is a growing body of literature related to student understanding of basis (e.g.,
Bagley & Rabin, 2016). Focusing on students’ productive ways of intuitively reasoning about
basis, Adiredja and Zandieh (2017) and Zandieh et al. (2019) conducted interviews to investigate
students’ conceptual metaphors for basis. Students described real-life examples of basis,
including contexts such as recipes, fashion outfit choices, marching band, and religious
teachings. In the students’ explanations of how the real-life examples related to basis, they
described bases as minimal, maximal, representative, essential, different, and non-redundant.
Zandieh et al. (2019) found students used real-life examples to illustrate the roles of a basis as
generating, structuring, and traveling, and the characteristics different and essential. Stewart and
Thomas (2010) found that when students in their study reasoned about basis, they mainly
focused on symbolic matrix manipulations such as row-reduction but often did not seem to
understand how the matrix-based calculations were related to finding a basis for a vector space.



In addition, the students often did not connect span and linear independence with basis as they
created concept maps, nor did they attend to embodied conceptualizations of basis. Schlarmann
(2013) found that two students focused on linear independence as they determined a basis for a
particular subspace of R™ and on span as they verified their set actually formed a basis. We
found few studies that focused on student understanding of change of basis. One exception is
Hillel (2000), who posited challenges students may face with the algebraic notion of change of
basis; Hillel stated that students who conceptualize a vector as a string of numbers may not
understand how two strings of numbers (i.e., the same vector in two different bases) can be
equivalent. These researchers focused on student understanding of linear algebra concepts within
undergraduate mathematics, but there is additional complexity associated with students’ use of
this mathematical understanding in physics contexts.

At a larger grain size, how students reason about the relationship between mathematics
and physics is of great interest to educational researchers. Studies have focused on physics
students’ understanding of calculus (e.g., Bajracharya & Thompson, 2016; Christensen &
Thompson, 2012; Lopez-Gay et al., 2015; Schermerhorn & Thompson, 2019), differential
equations, (e.g., Wittmann & Cakir, 2008), and linear algebra (e.g., Karakok, 2019; Serbin et al.,
2020; Wawro et al., 2020; Wawro et al., 2019). Physics students are often required to take
several undergraduate mathematics courses, as the content is often leveraged in their physics
courses. Quantum mechanics, in particular, draws on several linear algebra topics, such as
matrices, vector spaces, bases, inner products, and eigentheory. Undergraduate physics students
thus have to use what they learned in their Linear Algebra courses within the context of quantum
mechanics (e.g., Karakok, 2019). As Caballero et al. (2015) noted, researchers have documented
that reasoning about undergraduate mathematics in physics contexts can be a difficult endeavor
for students.

“Math may be the language of science, but math-in-physics is a distinct dialect of that
language” (Redish, 2006, p. 1). This presents a potential challenge in that mathematics content
can be used differently in physics courses than in what students previously encountered in their
undergraduate mathematics courses. Caballero et al. (2015) explained, “While students see many
of the mathematical tools and techniques used in upper-division physics in their math courses,
the operationalization of these tools in their physics courses can be strikingly different” (p. 5).
For instance, bases of vector spaces in quantum mechanics contexts are orthonormal, whereas
that is not the case for all vector spaces students encounter in their linear algebra courses. A
second example involves the spin component operator matrix S,, = h _COSH. sinfe~*?
2[sinfe'®  —cosh
along the general direction 71; determining its eigenvalues and eigenvectors involves utilizing
Euler’s identity and trigonometric identities, normalizing, and relegating imaginary components
to the second term to arrive at |[+),, = cos2|+) + sinZei®|—) and |-),, = sin?|+) — e'?cos?|—-)

: : A —h :
as eigenvectors for eigenvalues > and ~ respectively.

The previous example, which has eigenvectors written as a superposition of kets in Dirac
notation, leads to another potential challenge inherent in this math-in-physics dialect: the



different representations and notation systems used in quantum mechanics courses and
mathematics courses (e.g., Wagner et al., 2011). One particular example that is very pertinent to
quantum mechanics is demonstrating flexibility in using both matrix notation and Dirac notation
(e.g., Gire & Price, 2015; Schermerhorn et al., 2019; Wan et al., 2019). Wawro et al. (2020)
investigated physics students’ metarepresentational competence with these two notation systems.
They found that “students’ rich understanding of linear algebra and quantum mechanics includes
and is aided by their understanding and flexible use of different notational systems” (p. 020112-
2). Wan et al. (2019) discussed how structural features of quantum notations can foster or hinder
students’ reasoning about inner products and quantum probabilities. They found that Dirac
notation brackets helped students make sense of inner products of energy eigenstates and state
vectors. Overall, familiarity with using both matrix notation and Dirac notation is essential for
solving problems in quantum mechanics, but developing fluency within and across both notation
systems could be nontrivial for students.

Another potential challenge in reasoning about mathematics in physics contexts is that
students have to connect the two domains by interpreting the mathematical symbols in terms of
the physical phenomena they symbolize. Redish (2006) suggested that physicists and
mathematicians may interpret equations differently due to the meanings they attribute to
symbols. Thus, students may reason about equations and symbols differently in mathematics and
physics contexts (e.g., Wagner et al., 2011). Caballero et al. (2015) reviewed literature on student
reasoning about mathematics in upper division physics courses and found that “fluency with
procedural mathematics is often not the primary barrier to student success” (p. 4), rather
“students often struggle to interpret/make sense of mathematical expressions in terms of the
appropriate physics (i.e., connecting the math and physics)” (p. 4). Her and Loverude (2020)
discussed a similar finding that physics students demonstrated fluency in using mathematical
procedures but experienced difficulty with interpreting matrix equations in terms of a physical
system. Learning to interpret mathematical symbols and structures in terms of physical
phenomena is an important, yet nontrivial, endeavor for physics students as they reason about
mathematics in physics contexts. We further investigate the complexity of physics students’
mathematical reasoning in the current study.

Theoretical Framework

One common theorizing of students’ reasoning about and use of mathematics within a
physical context leverages the notion of a modeling cycle. For example, such modeling cycles
include Redish and Bing’s (2009) model (see Figure 2a), Wilcox et al.’s (2013) Activation,
Construction, Execution, Reflection (ACER) Framework (see Figure 2b), and Blum and Leil3’s
(2005) cognitive modelling cycle (see Figure 2¢). Despite their prevalence in mathematics and
physics education research literature, it has been documented that cycles are not always suitable
for tasks in engineering and physics contexts because student reasoning does not always follow a
cyclical pattern (e.g., Czocher, 2013). Thus, we draw on the theoretical constructs of



mathematization and interpretation that are commonly presented in these models, instead of
leveraging their cyclical nature.
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Fig. 2 Various modeling cycles for students’ use of mathematics in physical problems

The aspects of mathematization and interpretation are commonly used in models of
student reasoning about mathematics in physics. Redish and Bing (2009) indirectly referred to
mapping physical structures into mathematical ones as mathematizing, Blum and Leif3 (2005)
explained it as what transforms the real model into a mathematical one, and Wilcox et al.’s
(2013) “Construction of the model” step is likened by Caballero et al. (2015) to mathematization
as described by Karam (2014):

Mathematizing is understood as the process of constructing a mathematical

representation for a physical situation (in the broad sense). This process can be

seen as a translation from the physical world (e.g., observations and experiments)

into mathematical structures (e.g., numbers, functions, and vectors). (p. 5-6)
Mathematizing is an essential problem-solving skill that students need to develop to structure
physical situations in terms of mathematics, which allows them to use mathematical procedures



and properties to solve problems. Researchers have investigated students’ ability to mathematize
and how instructors can support students’ development of mathematizing skills (e.g., Caballero
et al., 2015; Kanderakis, 2016; Karam, 2014). Researchers have also focused on physics
students’ ability to interpret mathematical symbols and structures in terms of physical concepts.
The notion of interpreting involves making sense of mathematics in terms of physics, such as in
explaining the physical meaning of mathematical symbols (Uhden et al., 2012).

These reasoning skills of mathematizing and interpreting are central aspects of Uhden et
al.’s (2012) mathematical-physical model (Figure 2d), which frames our study. We draw on
Uhden, Pietrocola, Karam, and Pospiech’s theory proposed in several of their works (Karam,
2014; Karam et al., 2011; Pietrocola, 2008; Uhden et al., 2012). Uhden et al. (2012) used the
distinction of technical and structural skills to propose a modelling cycle of how mathematical
knowledge is used in modelling physical situations (see Figure 2d). In their modelling cycle, one
simplifies and structures phenomena from the world and performs varying degrees of
mathematization, denoted by the upward arrows in the figure. One uses technical skills to
perform mathematical operations, denoted by the loop to and from the pure mathematics part of
the figure. These technical skills involve reasoning with mathematical concepts and procedures.
One interprets mathematical structures in terms of the corresponding physical phenomena
denoted by the downward arrows in the figure. We chose to draw on Uhden et al.’s model
because it highlights the entanglement of mathematics and physics that students navigate. We
leverage Uhden et al.’s constructs of technical and structural skills as a framework for analyzing
physics students’ reasoning about mathematics on a quantum mechanics problem.

Technical skills involve employing properties of mathematical systems in physics
contexts, such as in performing algorithms. They are characterized as being “connected to the
internal context of mathematical knowledge” (Pietrocola, 2008, p. 7). Technical skills are
associated with the instrumental ability to use knowledge of mathematical concepts and
procedures as a tool to solve problems in physics; this particular use of mathematical skills is
independent of connections to physics. Karam (2014) elucidated two types of technical skills:
procedural and conceptual. Technical-procedural skills involve using mathematics to perform
manipulations or procedures, such as in solving an equation. These skills are related to
procedural knowledge (Hiebert & Lefevre, 1986; Star, 2005), which encompasses “knowledge of
procedures that is associated with comprehension, flexibility, and critical judgment” (Star, 2005,
p. 408). We focus on the aspect of flexibility, a central facet of students’ decision-making when
choosing a particular problem-solving approach. It “incorporates knowledge of multiple ways to
solve problems and when to use them” (Rittle-Johnson & Star, 2007, p. 562). Thus, we posit that
flexibility in choosing procedures is an important aspect of students’ use of technical-procedural
skills. Technical-conceptual skills involve giving conceptual explanations of mathematical rules
and procedures. These skills are akin to Hiebert and Lefevre’s (1986) conceptual knowledge,
defined as “knowledge that is rich in relationships...a connected web of knowledge, a network in
which the linking relationships are as prominent as the discrete pieces of information” (p. 3—4).



Structural skills incorporate reasoning about the interconnectedness of mathematics and
physics and are “based on the capacity of employing the mathematical knowledge for structuring
physical situations” (Pietrocola, 2008, p. 7). Karam et al. (2011) suggest that structural skills are
related to “the recognition of the deep connection between the physical content and the
mathematical formulation of a particular concept” (p. 2), and the authors describe different types
of structural skills: mathematizing, interpreting, deriving, and analogizing. Broadly speaking,
they associate mathematizing with translating from physics to mathematics and interpreting as
translating from mathematics to physics. Karam et al. suggested that the structural-
mathematizing skill is the process of translating from the physical world to mathematical
structures and formulas, and that this “depends on being able to think mathematically, which
involves not only a significant understanding of mathematical concepts and theories, but also the
ability of abstracting, idealizing and modelling physical phenomena” (p. 2). The structural-
interpreting skill involves making sense of mathematics in terms of physics, such as in
explaining the physical meaning of mathematical expressions or equations, such as interpreting
mathematical symbols in a formula in terms of the physical phenomena that they symbolize.
Furthermore, interpreting is an important aspect of the advancement of science. As Karam
(2014) stated:

The fact that we are able to find more physics through the interpretation of mathematical

expressions testifies that mathematics is not merely a language that offers a precise

description of physical phenomena, but that in many cases the mathematical formalism

guides the physical thought. (p. 9)

Indeed, in Dirac’s seminal text (1947), after delineating a set of assumptions that completely
defined relations between states of a dynamical system at a point in time, Dirac stated that the
relations “appear in mathematical form, but they imply physical conditions” (p. 23). He further
offered a preliminary example: “if two states are orthogonal, it means at present simply a certain
equation in our formalism, but this equation implies a definite physical relationship between the
states, which further developments of the theory will enable us to interpret” (p. 23) empirically.
Even in the early stages of the development of quantum mechanical theory, interpreting was
paramount.

Methods

The participants were 12 undergraduate physics students, of which eight (pseudonyms
A#) were enrolled in a junior-level Quantum Mechanics course at University A, a large research
institution in the Northwest US. The other four participants (pseudonyms C#) were enrolled in a
senior-level Quantum Mechanics course at University C, a medium-sized research institution in
the Northeast US. The second author assigned these numeric pseudonyms to identify participants
from course rosters. All but one student, A32, had taken a Linear Algebra course prior to
enrolling in the Quantum Mechanics course. Based on University A and C’s Linear Algebra
course descriptions, the content covered included: linear equations, row echelon form, matrix
algebra, determinants, linear independence, orthogonality, vector spaces, matrix representations
of linear transformations, eigenvalues, and eigenvectors. At University A, two students, A8 and



Al1, were concurrently enrolled in a second Linear Algebra course that covered vector spaces,
linear transformations, eigenspaces, diagonalization, singular value decomposition,
orthogonality, inner product spaces, and spectral theorems. At University A, the Quantum
Mechanics course began with a review of linear algebra content, including determinants, matrix
operations, eigenvalues, eigenvectors, linear transformations, and properties of Hermitian
matrices. At University C, the students took a separate Mathematical Methods in Physics course
that covered pertinent linear algebra content.

Semi-structured interviews (Bernard, 1988) with each participant were conducted with
the broad goal of gaining insight into how students reason with linear algebra concepts in
quantum mechanics contexts. The interviews were recorded, transcribed, and written work was
retained. We analyzed the participants’ responses to the problems shown in Figure 12. Follow-up
questions were asked as needed during the interview to gain clarity regarding a participant’s
response.

Our analysis process involved first performing inductive open coding (Miles et al., 2013)
on each student’s transcript, labeling chunks with a code capturing what knowledge or skill the
student implicitly used or explicitly described as they engaged with the problems. The authors
independently open coded four students’ transcripts, compared, and created a primary code list,
which the first author used to code the remaining transcripts. When new codes emerged from
interpreting the remaining transcripts, the new codes were added to the original list’. To check
for internal consistency, the transcripts were coded again to ensure that no transcript segments
were missed or miscoded.

We then performed deductive coding by assigning these original codes one of four a
priori parent codes: structural-mathematizing, structural-interpreting, technical-conceptual, or
technical-procedural. These parent codes derive from Uhden et al.’s (2012) and Karam’s (2014)
descriptions of structural and technical skills, as well as Hiebert and Lefevre’s (1986) and Star’s
(2005) description of conceptual and procedural knowledge. We coded the students’ reasoning as
leveraging structural skills whenever students translated between mathematical objects and their
corresponding physical entities via interpreting or mathematizing. We assigned the parent code
of structural-mathematizing when the student reasoned about physics content in terms of
mathematical structures. We used the structural-interpreting code when the student interpreted
the mathematical symbols or results in terms of the physics context. These coded structural skills
differ from technical skills, which students can perform solely by using mathematical knowledge
or procedures that are not tied to the physical context. We thus coded the students’ reasoning as
leveraging technical skills whenever the students used mathematical conceptual or procedural
knowledge on the tasks without having to reason about the mathematical structures or properties
in terms of any physical entities. We assigned the technical-conceptual code when the student

2 Two of the 12 students did not complete Problem a) because of time constraints during the interview.

3 Our subjectivities influenced our data analysis and code creation. What we noticed in the interview data was
influenced by our knowledge of mathematics and quantum mechanics. For instance, we could infer that a student
used a mathematical property (e.g., distributivity) in their written work, even if they did not explicitly verbalize that.



used their conceptual knowledge of mathematical concepts (by either explicitly explaining the
concept or implicitly using that concept in their solution) and the technical-procedural procedural
code when the student used mathematical procedures or procedural flexibility as they solved the
interview problems. The original codes, grouped according to their parent codes, are presented in
Figure 3. Two of the original codes of recognizing that probabilities sum to one and using the
inner products (+|—) = 0, (+|+) = 1 were assigned two parent codes of technical-conceptual
[M1 and M3, respectively] and technical-procedural [®12 and @15, respectively] because
students simultaneously demonstrated skills in reasoning about these concepts and using these
procedures as they solved the problems. Overall, coding in this manner allowed us to investigate
the students’ use of structural and technical skills. See the Results section for a discussion of how
we analyzed these coded structural and technical skills to inform our claims.

Results

Our analysis revealed two main findings. First, we found that students use intricate,
nonuniform problem-solving methods with reasoning that moves fluidly between structural
(mathematizing and interpreting) and technical (conceptual and procedural) skills in quick
succession, in their solutions for problems A and B (Figure 1). Second, we found that students’
technical and structural skills related to reasoning with inner products, orthonormal bases, basis,
change of basis, and probability supported their flexibility in choosing an appropriate problem-
solving approach on these problems. Our analysis leveraged Uhden et al.’s (2012) model, which
facilitates an illumination of the entanglement of mathematics and physics. We discuss these
findings and use the symbols @#, A#, ®#, and B# listed in Figure 3 to refer to the coded
technical and structural skills throughout the Results.

The Intricacy of Students’ Problem-Solving Methods

Our first main finding highlights the intricacy of students’ problem-solving methods that
were evident in their responses to problems A and B. Students’ reasoning moved fluidly between
structural (mathematizing and interpreting) and technical (conceptual and procedural) skills in
quick succession. They did so in ways that were nonuniform across the students. This highlights
the complexity of the students’ mathematical and physical work, which could not be adequately
captured by a more straightforward modeling cycle such as Redish and Bing’s (2009) map-
process-interpret-evaluate model or Wilcox et. al’s (2013) activate-construct-execute-reflect
model.

To determine this finding, we organized the codes of each student’s technical and
structural skills in chronological order according to when the student used the skill during their
work on the problem. We then compared the skills progression across students to try to identify
patterns in the sequence of the skills used. We found no apparent patterns, which illustrates the
idiosyncratic and intricate problem-solving methods used by the students. Figures 4 and 5
illustrate the progression of each student’s use of structural-mathematizing, structural-
interpreting, technical-procedural, and technical-conceptual skills on problems A (Figure 4) and
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@ Structural - Interpreting

A Structural - Mathematizing

@ Technical - Procedural

W Technical - Conceptual

Skills Codes Skills Codes Skills Codes Skills Codes
®1 | Recognize ) isina A1 | Recognize [+) and |—) form A 12 | Know to use probability el |Usel—-P =Pto @17 | Square numbers W] | Recognize that
different basis a basis formula calculate probability probabilities sum to one
®2 | Recognize Basis and axis A2 | Recognize that having 2 A 13 | Recognize that measuring o2 Add linear combinations of @18 | Substitute [+) and |=) in terms M2 | Recognize that change of
match possible results implies there spin up or down implies one kets of y-basis basis results in vectors
are 2 probabilities should square the coefficient being in terms of the same
of |[+) or | =) basis
@3 | Interpret probability solution A3 Acknowledge alternative A 14 | Recognizes that approach @3 Perform arithmetic with real @19 | Substitute |+), in terms of z-basis M3 | Recognize inner products
in context procedure or approach works for finding probability and complex numbers (+—)=0,(++) =1
of both spin up and down
@4 | Interpret result to be A4 | Reason that if basis and axis A 15 | Recognize quantum state @4 | Change |+), or |-}, tobe @20 | Substitute |1} in terms of z-basis M4 | Recognize that norm of { is
incorrect/irrelevant match, then use Born Rule vectors need to be normalized in terms of z-basis 1
®5 | Recognize a ket is a lincar A5 | Reason that if basis and axis A 16 | Recognize that vectors in ®5 Change basis that [} is in @21 | Usechange of basis equations M5 | Recognize that change of
combination of basis vectors match, then use probability inner product do not match, so terms of basis is necessary to
or is in a basis formula a change of basis is needed compute inner product
#6 Know how to check answer A6 Recognize that basis vectors A 17 | Reason that [i) being e6 Recognize that coefficients e22 Acknowledge y(H and J,(*I have m6 Recognize that vectors in
here are orthonormal normalized implies remain after inner product different equations inner product must be in
probabilities add to one terms of same basis
@7 | Recognize resulting A7 Recognize that change of A 18 | Anticipate probability eo7 Use commutativity of scalars @23 | Conflate coefficients m7 | Define basis
probabilities are the same basis is necessary with bras & kets
@3 | Recognize that result of A8 | Recognize that changing [+), | A 19 | Acknowledge that probability o8 Distribute @24 | Forget to conjugate H8 | Acknowledge that
calculation is |1f) in terms of is easier than changing 1) is the norm squared of the conjugation results in other
- basis probability amplitude probability result
#9 | Recognize that vectors are in A9 | Recognize that solving the A20 | Acknowledge that state is @9 | Exhibit flexibility in choosing | @25 | Use “Freshman's Dream” rule WO | Acknowledge that inner
(terms of) same basis problem is casier when the superposition/ LC of an approach to the problem product is same as dot
basis and axis match eigenvectors product
A 10 | Know to use Dirac notation A21 | Acknowledge that terms @10 | Determine Hermitian #26 | Know when they are done W10 | Acknowledge that inner
irrelevant to the measurement adjoint/complex conjugate product is same as matrix
drop out of the computation multiplication
A 11 | Recognize that measuring A 22 | Translate between Dirac and @11 | Recognize that inner product @27 | Recognize that probability is M11 | Recognize that neglecting
spin up or down implies one column vector/matrix notation is product of bra and ket between 0 and 1 to conjugate the bra will
should work with [+} or |=} mess up solution
@12 | Use the inner products @28 | Check that a state is normalized W2 | Acknowledge that change
{+|=) =0,(+[+) =1 of basis does not change
norm of vector
@13 | Calculate the norm/modulus 829 | Acknowledge that changing basis is
substituting components
@14 | Use order of operations @30 | Perform outer product
@15 | Reason that probabilities sum | @31 | Perform different products of
to one matrices and vectors
@16 | Solveasystem of equations

Fig. 3 Codes for structural-interpreting, structural-mathematizing, technical-procedural, and technical-conceptual skills
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problem B (Figure 5). For brevity, we omit some codes in the description of students’ reasoning
throughout the results section. In the following three subsections, we provide in-depth analysis of
three students’ problem-solving methods, namely A13 on problem A and C12 and A8 on
problem B, to illustrate students’ varied and intricate use of structural and technical skills. We
chose these students as illustrative examples to exhibit work from both Universities A and C and
to highlight A8’s unique (within this dataset) problem-solving method.

A13’s Use of Structural and Technical Skills on Problem A
A13 used intricate problem-solving methods evident their use of a variety of structural
and technical skills throughout their* work on problem A. They began by setting up the formula
needed for calculating the probability that psi’s spin component is up along the z-axis. A13
explained their reasoning as:
“So probability is given by... you take the bra of what you were expecting out versus the
ket of what's coming in, and you take the norm of that squared. So, in the case of this,
you'd have what's coming out, well you want the spin component up or down. It's in the
z-axis, so we'll do plus first, plus bra with the psi ket, and you'd square. So, this would,
expanding that out, you get the plus, uh, bra for the z-axis.”
A13 recognized that the basis and axis matched in the problem setting, so they could use the
probability formula from the probability postulate [ A S, A 12]. They also recognized that it was
appropriate to use Dirac notation to calculate the inner product [ A 10]. A13 also knew that to
determine the probability that the spin component was up along the z-axis, they needed to use
(+]as the bra in the inner product [ A 11]. Overall, A13 used several structural skills to
mathematize the problem situation to the equation P = |[(+|y)|?.

Pauliad) = 1PN
¢ 3
- |\ 3510

- |)-\‘=_9-
= | 3 \

P 1l = (N lorik

) \‘_
Sl 13

Fig. 6 A13’s written work for Problem A

A13 then completed the probability calculation using P = |(+|y)|2. They performed the

technical-procedural skills of substituting \/%_3 |+) + —)in for |y) and writing the inner

V13

* We use the gender-neutral singular pronouns “they” and “their” to refer to the students throughout this paper.
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product as a product of a bra and a linear combination of kets (see Figure 6) [®11,€20]. A13
then used structural-interpreting, technical-conceptual, and structural-mathematizing skills as
they explained their reasoning: “It's good because they're both in the z basis, the kets are both in
the z basis 'cause [if] this was like in the x you'd have this longer, more complicated math to do.”
A13 interpreted the mathematical symbols to acknowledge that the kets in the inner product are

both expressed in terms of the z basis [@5]. In doing so, they interpreted the symbols \/% |+) +

% |—) and the problem statement to conclude the basis and axis match [@2], and they reasoned
that kets in an inner product must be expressed in the same basis [6]. They acknowledged that
if |y) was expressed in terms of a different basis that did not match the axis, they would have
“more complicated math to do,” as that would require a change of basis [ A3]. Thus, A13
switched between using various technical and structural skills as they completed calculated the
probability calculation using the formula P = |(+|)|?%, and they then used structural-
interpreting, technical-conceptual, and structural-mathematizing skills to explain their reasoning.
Finally, A13 used more technical skills to finish their calculation of the probability P =
|(+|)|?. After using the distributive property and the commutativity of vector addition and
scalar vector multiplication [®7,@8]. A13 then described the skipped steps in their calculation of
(+]+) = 1 and (+|—) = 0, saying, “A bra times a ket with the same value is just 1, and then a
bra times a ket of different values plus one- one would be 0.” We coded this as A13 using the
technical-conceptual and procedural skill of reasoning about the inner products of the
orthonormal z-basis vectors being (+|+) = 1 and(+|—) = 0 [®12,M3]. A13 then finished the

calculation by taking the norm of \/% and squaring it to find the probability of % [(®@13,@17].

They then interpreted the result of the calculation, explaining “so you get 9 over 13 would be the
probability, and it would get spin up” [@3].

A13 used a similar approach for calculating the probability that the spin component of
angular momentum was down along the z-axis. A13 explained, “Then likewise for spin down,
you'd have uh, minus and your psi squared,” and they wrote P = |(—|y)|2. We coded this as the
structural-mathematizing skill of recognizing that the same approach works for finding both the
up and down spin probabilities [ A 14]. After using technical-conceptual and technical-procedural
skills to explain and complete their calculation, A13 at first reached an incorrect conclusion but
quickly self-corrected: “...And so the, uh norm of that would be 2i times negative 21i, so that
would go, so it'd just be 2 over 13. Or no, scratch that. 4 over 13. Not 2.” A13 used the
structural-interpreting skill to interpret their result to be incorrect for the problem [@4]. They
explained:

“I forgot to do 2 times 2. Yeah. So, 2 times 2 is actually 4...'cause I was thinking not, 2

plus 9 is not 13, 'cause you'd get a total probability of 1, 'cause the particle has to go up or

down, so if that was 2, you'd get a total probability of 11 thirteenths, which is not 1, but
looking at it now, 4 thirteenths over 9 thirteenths is 13 over 13, which is 1, so the

probability, total probability is 1.”
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In this explanation, A13 used various structural-mathematizing, structural-interpreting, technical-
conceptual, and technical procedural skills in quick succession. A13 recognized that there were
two possible results of the measurement that corresponded to two probabilities [ A 2]. They then
recognized that the two possible probabilities add to one [®15,M1], and they made sense of their

probability solution in the problem context, which helped them check their answer [#3,86].
Overall, A13 began problem A by using several structural skills to mathematize the
situation described in the prompt, set up the probability formula needed for the calculation, and
explain their thinking. A13 switched between using structural-interpreting, technical-conceptual,
and structural-mathematizing skills primarily related to reasoning about basis and inner products
as they explained their reasoning. They used mostly technical-procedural skills to finish their
calculation of the probabilities P = |[(+]y)|? and P = |(—|y)|?. A13 then used various structural
and technical skills related to reasoning about probability in this quantum mechanics context to
interpret and correct their results. A13 thus used various structural and technical skills in quick
succession, and these skills did not follow a particular sequence. This highlights the intricacy of
students’ use of technical and structural skills while solving this quantum mechanics problem.

C12’s Use of Structural and Technical Skills on Problem B

All of the students in our data set used various structural and technical skills as they
worked on and reasoned about problem B, which necessarily involved a change of basis. C12’s
work serves as an exemplar for the intricacy of the details evident in students’ problem-solving
methods. C12 first mathematized the situation in the problem prompt using the structural-
mathematizing skills of knowing to use Dirac notation for the calculation [ A 10], using the
probability formula [ A 12], using ,(+| and ,,(—| in the inner product part of the probability

2
formulas P, ,, = | ,(+|) | and P_,, = | ,(—|9))
that the spin component was up or down along the y-axis [ A 11]. C12 then recognized that a

2, respectively, when finding the probability

change of basis was necessary [ A 7] and changed ,,(+| to be written in terms of the z basis using
the appropriate change of basis equations [®4,@21]. As they did so, C12 wrote the Hermitian
adjoint of | +),, as , (+| = % (+| — %i (—| and explained, “since this is the complex conjugate,
um, [ flipped the sign for i’ [@10]. C12 then substituted ,,(+| and [¢) in the inner

product ,,(+|) to write it as a product of linear combinations of bras and kets: (% (+]| =
1, 3 2i

FLEDHEH+5H
commutativity of scalars with bras and kets, arithmetic with real and complex numbers, the
appropriate order of operations, and the orthonormality properties of the basis vectors (i.e.,

[03,07,08 012 014 W3]

|—)) [®11,19,@20]. They then used the used the distributivity and

(£]£) = 1 and (£|+) = 0) to compute the inner product to equal \/%
In total, C12’s problem-solving method to begin their work first utilized structural-
mathematizing skills and then mostly technical-procedural skills to compute the inner product.
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Next, C12 took the norm squared of this result of the inner product to determine P, ,,

| \/_| == They explained, “I have to square this. It's 25 over 26. If I didn't make a math error,

then to my knowledge, it would be 1 over 26... Okay that's good. It adds up to one.” C12 thus
used the technical-procedural skills of finding the norm and squaring the number [®13, ®17] and
the structural-mathematizing skill of recognizing that two possible results of the measurement
(i.e., up or down along the y-axis) yields two probabilities [ A2]. C12 used this along with their
technical-conceptual and technical-procedural skills of reasoning that the sum of the probabilities

of all possible outcomes is one to subtract E from one to find the other probability, that the spin

component of angular momentum was down along the y-axis, as - [01 ®15 M1]. CI2 repeated
their method to check that their anticipated result for the probab111ty that the spin component of

angular momentum was down along the y-axis was in fact % (see Figure 7). C12 then interpreted

their determined probabilities in the context of the problem [@3].

In total, C12’s problem solving method integrated all four varieties of structural and
technical skills in quick succession. This example of C12’s method on problem B demonstrates
the complexity of students’ use of technical and structural skills and the intertwined nature of
mathematical and physical reasoning while solving this quantum mechanics problem.
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Fig. 7 C12’s written work on Problem B

A8’s Use of Structural and Technical Skills on Problem B

A8 exhibited a complex problem-solving approach (and thus method) that differed from
C12’s. A8 began by comparing possible approaches for changing basis (see written work in
Figure 8a). They explained:
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There are two ways to go about it, um, one of them is to put this vector in some
phi prime that’s in the y basis, and then just do y plus phi prime y, cause it makes
calculations, and it follows the same rules as this. Um, the other possibility is to
do, is to take the spin up y and go to whatever it is in the z, in the z basis, cause we
have this in the z basis. Um, they’re both equivalent.

A8 explained that they could either change |1)) to be “in the y-basis” (i.e., a linear combination

of y-basis vectors) and use the probability formula P = | y{+ |l,b)y |2, or they could change ,(+|

2
|G+ =i (=DIw)| . They used a
variety of structural and technical skills just in their initial dehberation of problem B. A8 used
structural-mathematizing skills of acknowledging an alternative procedure [ A 3], knowing to use
the probability formula [ A 12], and recognizing that they needed to perform a change of basis

[ A7]. A8 also used the technical-conceptual skill of recognizing that a change of basis was
necessary to perform the inner product [ M5] and the technical-procedural skill of having

to “whatever it is in the z-basis,” which would yield

flexibility in choosing an appropriate problem-solving approach [®9]. A8 then used the
structural-interpreting skill of recognizing that the two problem-solving approaches would result
in the same probabilities [@7].
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Fig. 8 A8’s written work on Problem B

A8 decided to change |) to be a linear combination of y-basis vectors, the first option
they had mentioned. They then went on to use various technical-procedural skills as they
performed the change of basis A8 added the change of basis equations (given on a reference

sheet) [+), = \/_|+) +i—= | yand |—), = \/_|+) - l\/_| ), which yielded |+)y + =)y =
\/_ |+) [02,05,021]. They then divided both sides of the equation by V2 to get = NG |+)y

5 |—), = [+), which is a z-basis vector written as a linear combination of the y-basis vectors
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(Figure 8b). A8 then subtracted the change of basis equations, which yielded |+), — [—), =
%u—), and divided both sides by v2i to get\/% [+, — % |-}, = |-) to get the other z-basis
vector written as a linear combination of the y-basis vectors (Figure 8b) [©3,07,@14,@16]. They
. 1 1 1 1 . 3 2
substituted |+) = 5|+)y + ﬁl_)y and |—) = EI-&-)y ~ & |—)y into [p) = \/T_3|+> + \/%I—)

and simplified the equation to yield [¢), = (Figure 8c) [02,03,03 ®18].

=y =)y
A8 then verified their work by checking that the resulting vector “is normalized because, because
twenty, you just double check, 25 and 1 is 26.” A8 knew that quantum state vectors need to be
normalized [ A 15], so they checked that the quantum state |y) was indeed normalized [®28]. A8
then used the structural-interpreting skill to recognize that the result of the calculation was a
vector in the y-basis [@8]. This work was all in service of changing |} to be a linear
combination of y-basis vectors so that the requested probabilities could be calculated.

To calculate the probability that the spin component is up along the y-axis, A8 computed

|y (+p)y |’

y{+|—)y= 0. They explained, “now we can really easily pull out the probabilities ... we just

= % by squaring the coefficient of |+),,, taking for granted that ,(+|+), = 1 and

have that plus y, squared is gonna be... 25/26, and for the other one, this is gonna be 1/26”. A8
mathematized the situation to conclude that they could square the coefficients when the vectors
in the inner product are expressed in terms of the same basis [ A 4] and mathematized that
because there are two possible results of the measurement (i.e., up or down along the y-axis),
there are two probabilities [ A2]. A8 also used the technical-procedural skills of taking the norm
of the coefficient [@®13] and squaring it to find the probability [®17], as well as subtracting that
probability from 1 to find the complementary probability [®1]. Overall, A8’s method on problem
B serves as an exemplar of the observed complexity in the students’ problem-solving methods.
They used various structural and technical skills in nonuniform ways that did not follow a
particular sequence, illustrating the intricacy of students’ mathematical and physical reasoning
while solving a quantum mechanics problem requiring a change of basis.

Students’ Technical and Structural Skills Supported their Flexibility in Choosing an
Appropriate Problem-solving Approach

Our second main result that we present from our data analysis is that students’ technical
and structural skills supported their flexibility in choosing an appropriate approach for the
problems. We explored the students’ reasoning behind their decisions to use certain problem-
solving approaches. To perform this analysis, we identified segments of the students’ interview
transcripts where the student justified their choice in using a particular approach and assigned
those segments the code, “Flexibility in Choosing Approach” [®9]. We aggregated all of the
segments labeled with this code and identified which part of the problems the students were
working on as they decided which approach to use. We identified three places in the students’
work in which they described their choice of problem-solving approach: calculating |(+]|y)|?

and |[(—|)|?, calculating | , (+]|y) 2, and calculating | ,(—[y) ?To see which technical and
y y
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structural skills the students used as they chose their problem-solving approach or reflected on
their choice, we identified all of the other codes that were assigned within those segments. We
then decided which coded technical and structural skills were relevant to the students’ choice of
problem-solving approach. This helped us identify which technical and structural skills
supported the students’ flexibility.

Students’ technical and structural skills related to inner products and orthonormal bases
supported their flexibility in their approach for calculating |(+|y)|?and |(—|)|?

The students’ technical and structural skills supported them in choosing between two
possible approaches that could be used to calculate the probability that the spin component of
angular momentum was up or down along the z-axis (i.e., [(+|y)|? and |[{—|)|?). For Problem
A, there are two main approaches that could be used to calculate the probability that the spin
component of angular momentum was up or down along the z-axis: that is, to compute P, =

|(£|y)|%. The first approach involved calculating P, = |(+|1/J)|2 by substituting ) = \/i_ [+) +

2i
T |—) into the inner product to get P, = |(+|( e |+) + ))l using the distributive and

commutative properties to find P, = | \/_(+|+) + \/_(+| )| , using known properties (+|+) =

1 and (+|—) = 0 to reduce the equation to P, = , and simplifying to P, = 9/13. The

=l
procedure for determining the complementary probability P~ = |[(—|i)|? can be performed

Y
similarly to conclude that P_ = |% = 4/13. Alternatively, the second approach allows
students to skip most of the procedures in the former approach: students could square the norm
of the coefficient of |+) or |—), respectively, in |¢p) = i |+) + 2L |—) to find P, and P_. Most

of the students used the latter procedure, as it is simple and efﬁc1ent. For instance, when the
interviewer asked C12 why they chose to use this procedure, they said “because it's the quickest
way. Um, yeah. I mean I could go through all the Dirac stuff and all that, which is ultimately just
going to lead me here.” We include this description of the approaches that the students
considered using because their reasoning here includes the acts of considering various options
and using their understandings of the mathematical or physical concepts to decide on an
approach. In what follows, we discuss how students’ technical and structural skills related to
inner products [@5,M6] and orthonormal bases [ A 1, A6,@12, W3] supported their flexibility
[®9] in choosing an appropriate approach to calculating |(+|y)|?and |[(—|y)|?.

First, students’ technical and structural skills related to inner products [#5,M6]

supported their flexibility in choosing this problem-solving approach. To be able to skip the steps
in the first aforementioned approach of evaluating the inner product (+| ( = |[+) + = \/_ =),
students first used the structural skill of 1nterpret1ng the mathematical symbols to recognize that

the vectors in the inner product (+| ( = [+) + |—)) were linear combinations of vectors from
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the same basis [@®5]. Their technical-conceptual skill of recognizing that vectors in an inner
product must be in terms of the same basis [ 6] then allowed them to use the inner products of
z-basis vectors. For instance, A8 described their reasoning about this as:

Because this is written along the z-axis, I’'m assuming that we’re working in the z-basis

here, standard representation. Then you do ... norm squared of plus with psi [|{(+]|y)]?],

and by the same rule I talked about earlier, about how we have this just plus plus minus
minus equals 1 [(£|£) = 1], then all you get here is plus and minus. Literally just pull
out these same coefficients, so you get 3 over root 13 squared and 2 over root 13 squared.

So you get 4/13 and 9/13.

A8 acknowledged that “we’re working in the z-basis here,” meaning that the vectors in the inner
product were either elements of the z-basis or linear combinations of z-basis vectors [@5]. Their
technical-conceptual skill of knowing that the vectors in the inner product were expressed in
terms of the same basis [M6] allowed them to take advantage of properties of the z-basis.
Overall, the students’ skills related to reasoning about inner products supported their flexibility
in choosing this approach to problem A.

Second, the students’ technical and structural skills related to properties of orthonormal
bases [A1,A 6,012 W3] supported their flexibility in choosing to use the more efficient
approach to solving problem A. The students used structural-mathematizing skills to recognize
that |+) and |—) comprise an orthonormal basis [ A 1, A 6] which allowed them to use technical
skills involved in using the inner products of orthogonal basis vectors: (£|+) = 1,(+|+) =0
[@12,M3]. For example, when asked about how they found their answer, A11 explained:

Since this is a basis, uh, plus with a plus is equal to 1 [(+|+) = 1], whereas plus with a

minus is equal to 0 [(+|—) = 0]. So, if [ was to distribute a plus [{+]|] out to all of these,

this would give us zero automatically because they're orthogonal. This would go to 1, so |

square that. Same thing with the other way, because minus plus is equal to 0.

Reasoning about orthonormal bases, namely that (+|+) = 1 and (+|F) = 0 [®12,M3], allowed

students to anticipate that evaluating inner products by distributing [®8] (+] to (\/%_3 [+) +
21 3 21 .
N |—)) and (—| to (\/__ |+) + 75 |—)) would leave only the coefficient of |+) and |—), namely

\/3_ and —= \/_, respectlvely [®6]. This allowed them to skip these steps and instead calculate the
probabilities by squaring the norm of the coefficients of |+) and |—). Overall, the students’
technical and structural skills related to reasoning with inner products [@5,M6] and orthonormal

bases [A 1,A 6,012, W3] supported their flexibility [®9] for calculating Py = [([)]?.

Students’ technical and structural skills related to basis and change of basis supported their
flexibility in their approach for calculating |, (+|)|?
To calculate |, (+[1)|?, the students recognized a need to perform a change of basis, and

they had the choice to either change |) = |+) + 2 |—) to be written in terms of the y-basis
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or change |+), to be written in terms of the z-basis. The students’ technical and structural skills
supported their decision in choosing their problem-solving approach. In particular, the students’
technical and structural skills related to reasoning about the basis that the vectors in the inner
product were expressed in terms of and about the properties of orthonormal bases supported
their choice to perform a change of basis. Their technical and structural skills also supported
their flexibility in deciding which of the aforementioned two possible approaches to use.

The students’ technical and structural skills related to reasoning with basis [@1] and inner
products [l2 5 M6, A 16] supported their choice to perform a change of basis. For example,
A13 described their reasoning on this problem as:

You'd either have to change this [|1)] to y-basis to fit this, which would not be fun

probably, or change your y-basis to z-basis... psi is in a completely different basis, so you

can't just multiply out in- when they're in different bases, so you have to switch bases.
As exemplified in A13’s reasoning, the students used their structural skill of interpreting that
“psi is in a completely different basis” [@1]. They recognized that |) is a linear combination of
z-basis vectors, which does not match the basis expression of ,, (+|, the other vector in the inner
product. The students then used their technical-conceptual skills to recognize that the vectors in
the inner product needed to be expressed in terms of the same basis for them to be able to
perform the inner product [ 2, M5 M6]. For instance, C6 claimed, “you can’t do anything until
you’re in the same basis.” The students then used the structural-mathematizing skill of
recognizing that a change of basis is necessary to be able to perform that inner product [ A 16].
Thus, the students’ technical and structural skills related to reasoning about the basis of the
vectors in the inner product supported their choice to perform a change of basis.

The students’ technical and structural skills related to the orthonormality of the bases and
the associated inner product values also supported their choice to perform a change of basis
[A 6,012, W3] Some students discussed how changing basis made the calculations simpler
because of the orthonormality of the bases. For instance, A21 explained:

I wanna be able to read off those coefficients really easily and do this in bra ket notation

if these are in the same uh basis. If I'm expressing plus y [,,(+|] in the z-basis then I can

make all those assumptions about one, you know, the pluses and the minuses, the cross

terms are gonna be zero. But if I were to do this in the y-basis ... like write this out as like

let’s say y plus, but against all of this [\/%_3 |+) + % |—)], then I can’t make any

assumptions about that, so I don’t really know how to calculate that in bra ket language.
A21 claimed it was necessary to change basis to make assumptions about the inner products of
the various (orthonormal) basis elements, such as (+|¥) = 0 [@12,M3]. A21 suggested that

leaving the inner product as ,(+| (\/% |+) + % |—)) with the vectors expressed in terms of

different bases would not allow them to use (£|+) = 0. Thus, the need to take advantage of the
orthonormality property [ A 6,012, W3] informed their choice to perform a change of basis. C5
also suggested that a change of basis was necessary for the “inner products to be nice” [Ml5]:

21



Because my state vector was given in the z-basis, if I'm doing the inner product of the

positive y with that, I need that to be written in the z-basis, or to do those inner products

to be nice. So I guess the plus and plus gives you one [(+]|+) = 1]. The plus and minus

gives you zero [(+|—) = 0].

Taking advantage of the orthonormal basis properties motivated the students’ selection of the
change of basis approach. The students used their structural-mathematizing and technical-
conceptual skills to leverage that the y-basis and the z-basis are both orthonormal [ A 6], which
implies that (+|+) = 1, (£|F) = 0, ,(£| +), = 1, and ,(+| F), = 0 [®12,M3]. These
structural and technical skills informed their choice of approach and therefore their flexibility.

In addition to informing their decision to perform a change of basis, the students’
structural and technical skills also supported their flexibility in choosing a change of basis
approach: either changing [¢) to be a linear combination of y-basis vectors or changing ,,(+] to
be a linear combination of z-basis vectors. Three students attempted the former approach; A8 did
so correctly after acknowledging the two possible approaches:

There are two ways to go about it, um, one of them is to put this vector [|1))] in some phi

prime that’s in the y-basis, and then just do y plus phi prime y [ ,(+["), ] ... it follows

the same rules as this. Um, the other possibility is to do, is to take the spin up y and go to
whatever it is in the z, in the z-basis. Um, they’re both equivalent.

Expressing |1) as a linear combination of y-basis vectors allowed A8 to square the norms of
coefficients of y-basis vectors [ A4]. A8 recognized that both methods were “equivalent” and
yielded the same probability result [@7]. A8 reflected on their choice of approach and compared
the efficiency of the two methods: “The other method is probably faster if you think of it.
Actually, I don’t know if it’s really faster. You just save so much time on this side, if you do it
this way” [@9]. In summary, A8’s structural-mathematizing skill [ A 4] and structural-
interpreting skill [@7] supported their flexibility [®9] in acknowledging the two approaches,
comparing their efficiency, and choosing one for solving the problem.

Most students chose to use the approach of changing ,,(+] to be a linear combination of z-
basis vectors, and their structural and technical skills [ A 8,®19,@21] supported their flexibility
[®9] in doing so. Some students chose this one due to computational ease. For instance, A6
explained:

Change of basis was up here, the very first thing, so you can't do anything until you're in

the same basis. So, this vector [ ,,(+]] is itself, I mean I can just call this a plus y in the y

basis, but I needed plus y in the z basis, because this was in the z basis. If I really wanted

to, I could have changed this [[)] to the y basis. Um, this [ ,,(+]] is a lot easier because
we had the spins sheet, so I changed this from the y basis to the z basis here, so then both
of them were in the z basis.

The students had access to a “spins sheet” containing the equation | +), = % |+) + % |—) . This

made the change of basis procedure “a lot easier,” only involving substitution [®19] and not the
solution of a system of equations. These students’ technical-procedural skills of using
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substitution [®19] and given equations [®21] supported their flexibility by allowing them to
compare the efficiency of possible approaches. A13 also acknowledged that changing |i) to be
in terms of the y-basis vectors “would not be fun probably,” so they chose to change the basis
that ,(+| was expressed in terms of, instead. A11 similarly recognized that changing [i) to be in
terms of the y-basis vectors would involve more work, explaining, “I didn't really want to have to
deal with that math, but like- like I could have done it, because I know that's something you can
do now, but I didn't really want to.” These students’ structural-mathematizing skill of
recognizing that changing ,, (+| to be in terms of the z-basis vectors was easier for them than
changing |) to be in terms of the y-basis vectors [ A 8] supported their flexibility ®9] in
choosing an appropriate way to change basis. Overall, the students’ structural and technical skills
related to reasoning about change of basis [ A 8] via substituting and using equations [®19,@21]
supported their flexibility in choosing this method of changing basis.

Students’ technical and structural skills related to reasoning with probability supported their
flexibility in their approach for calculating | y(—|1p)|2

To calculate | y(—|1/))|2, the probability that the spin component of angular momentum
was down along the y-axis for the given state, the students could either use the same approach

y(+[Y) |2 from 1. Over half of the students

performed or suggested the latter. For instance, C5 explained, “The probability of minus y is
equal to one minus 25 over 26, and so it’s 1 over 26” (see Figure 9). In general, the students first
used their structural skill of mathematizing the scenario of having two possible outcomes (i.e.,
the spin component of angular momentum being either up or down) to recognize that there are

they used to calculate | y(+|l/))|2 or subtract

only two possible probabilities, P, and P_ [ A2]. The students used their technical conceptual
and procedural skills to reason that the probabilities of two possible outcomes sum to 1 [@15,

M 1]. Given that the first probability they determined was P, = g, the students used the fact
25 1

—[®1].

26 26

Py = 1 23 =.

Fig. 9 C5’s written work for calculating the probability that the spin component of angular

P, + P_=1toconclude P. =1 —

momentum is down along the y-axis on Problem B

Some students acknowledged that this method was more efficient than using the same

method used to calculate | y{(+[) |2 [A3,09]. All explained: “if you really want to do the math
again, it would be the same thing as just 1 minus the 1 over 26.” A11 acknowledged an
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alternative of “doing the math again” and that it would result in the same answer. This

demonstrated that A11 was aware of multiple approaches [ A 3] and consciously chose one that

helped them avoid “doing the math again” [®9]. A21 similarly acknowledged the alternative

approach [ A 3]: “The probability of going up or down is gonna be a hundred in this case, but

yeah I’'m just gonna go with 1/26. But if [ was doing this on a test, and I was taking my time, I

would just calculate this out by using minus in the y-basis.” A21’s explanation implied that the
25

alternative approach took more time, so they instead used P~ = 1 — e % [@1,09]. Thus,

A21’s technical-conceptual and technical-procedural skills [@ 15, 1] of reasoning about the
probabilities of two possible outcomes adding to 100% supported them in choosing their

problem-solving approach. Overall, drawing on their structural and technical skills related to
reasoning with probability [ A2,@1,@15,M1] supported the students’ flexibility by enabling

them to choose an appropriate approach for calculating | (=) |2.

Discussion

Given the entanglement of mathematics and physics, it is essential for undergraduate
physics students to learn how to reason with mathematics as they address physical problems.
This is a complex endeavor for students as it involves potentially using mathematical concepts in
different ways than in their mathematics courses and connecting their mathematics and physics
reasoning via interpreting and mathematizing. The constructs of interpreting and mathematizing
are commonly used in researchers’ models of student reasoning about mathematics in physics. In
this study, we leveraged Uhden et al.’s (2012) and Karam’s (2014) framework of students’
technical (conceptual and procedural) and structural (mathematizing and interpreting) skills to
investigate the intricacy and flexibility of physics students’ reasoning about mathematics in
relation to physics content addressed in two quantum mechanics problems. We addressed the
research question: How do undergraduate physics students reason with mathematical concepts
and procedures as they solve quantum mechanics problems? Through our qualitative analysis of
interview data from twelve physics students, we presented two primary findings: 1) the students
used intricate problem-solving methods that leveraged several mathematical concepts with
reasoning that moves fluidly between structural and technical skills in quick succession, and 2)
the students’ technical and structural skills related to reasoning about linear algebra and
probability concepts informed their flexibility in choosing a problem-solving approach.

Our results identified that the students used idiosyncratic problem-solving methods that
did not follow simplified sequential patterns of reasoning such as mathematize, perform
computations, interpret. The students’ reasoning relied on and moved fluidly between structural
(mathematizing and interpreting) and technical (conceptual and procedural) skills, which
illustrates the intricacy of students’ reasoning on these problems. No student’s reasoning
followed patterns or cycles as straightforward as models suggested by previous research in both
mathematics education and physics education (Blum & Leif3, 2005; Redish & Bing, 2009;
Wilcox et al., 2013). Although these models have merit for various pedagogical or research
purposes, they do not adequately capture the complexity of the students’ intertwined
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mathematical and physical work. Using the Uhden et al. (2012) model (Figure 2d) allowed us to
tease apart the nuances of students’ mathematizing, interpreting, and technical skills as they
engaged in problem solving.

Our results also demonstrated how these students reasoned about various linear algebra
concepts in their work, particularly: properties of bases, orthonormal bases, inner products, and
change of basis. This contributes to what is known about student reasoning with these concepts.
The students’ work on these quantum mechanics problems illustrates ways that physics students
have to leverage their understanding of several linear algebra concepts within that context.
Furthermore, how these concepts were leveraged or used in computation in this context often
differed from what students would typically encounter in an undergraduate Linear Algebra
course. For instance, a basis for a vector space is a linearly independent set that spans the space -
- there is no orthogonality or normality condition on a basis in general. However, the bases
students used in these quantum mechanics problems, naming the z-basis (|+) and |—)) and y-
basis (|+), and |—),) for the spin-/ system, are necessarily orthonormal because of quantum
mechanical properties®. Furthermore, the z-basis and y-basis are two of the most frequently used
bases in this system. In fact, the relationship between them was derived in the students’ courses
and kept track of as an important relationship; it was notated as a linear combination (linear

superposition) of the basis kets in Dirac notation: |1), = % |+) + % |—). Thus, when the

students carried out a change of basis from y to z or vice versa, they carried out algebraic
substitutions using these equations. This differs from the approach common in linear algebra
courses that utilizes coordinate vectors and change-of-basis matrices.

Our second main result shows that students’ technical and structural skills related to
reasoning about linear algebra and probability concepts supported their flexibility in choosing a
problem-solving approach. Flexibility is an essential aspect of problem-solving, as it involves
being aware of multiple approaches to solve a problem and choosing an appropriate one. Other
researchers have demonstrated how conceptual knowledge can support procedural flexibility
(e.g., Rittle-Johnson et al., 2015). This finding is furthered in our study. In particular, when
students draw on their mathematical knowledge to inform their approach for solving these
quantum mechanical problems, it relies on their understanding of how the mathematical concepts
and physics concepts are intertwined. Students using their mathematical conceptual
understanding in their work on these problems has more complexity involved than just reasoning
about the mathematical concepts and procedures because students have to reason about them in
relation to the physical concepts with which they correspond. Students do not only perform
mathematical computations; they also keep track of what those mathematical structures mean in
terms of the physics. Thus, it is not just that mathematics and physics are entangled, but rather
that the students’ reasoning about mathematics and physics is also entangled.

®In the spin-% system, the spin observable has only two possible measurement values, + #/2. A postulate of
quantum mechanics conveys that the only possible measurements of an observable are the eigenvalues of the
corresponding operators. Measurements are real-valued, which necessitates using Hermitian operators, which
provide an eigenbasis for the corresponding system.
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Engaging in this research has raised for us the deliberation of what qualifies as
mathematics and what qualifies as physics, particularly at this content level. To what extent are
mathematics and physics actually inextricable within quantum mechanics? For instance, the way
in which Dirac explicated the benefit of his newly-developed notation conveys a sentiment of
inseparability:

This notation allows a more direct connexion to be made between the formalism in terms

of the abstract quantities corresponding to states and observables and the formalism in

terms of representatives-in fact the two formalisms become welded into a single

comprehensive scheme. (Dirac, 1947, page v, emphasis added)
Kets in Dirac notation behave mathematically like vectors, and the mathematics of vector spaces
frame the structural behavior of vectors such as scalar multiplication, vector addition, and inner
product computation. Thus, when solving a problem in Dirac notation, there isn’t a clean line
between when students are reasoning about mathematics and when they are reasoning about
physics. We hope our research can further the conversation between mathematics and physics
education research about productive ways to frame and theorize both learning and our content
areas so as to best make sense of student reasoning across and within the disciplines.

With respect to teaching implications, our research contributes to raising the mathematics
community’s awareness of what concepts from mathematics courses are used and in what way
by students in physics courses. Our analysis revealed the centrality of: basis, orthogonality,
normality, change of basis, algebraic substitution and simplification of vector equations or
system of equations, and inner product in the solution process for a quantum mechanical
problem. Linear algebra instructors could integrate problems into their course that not only
facilitate the development of conceptual and procedural skills from linear algebra but also
demonstrate the mathematization of linear algebra in quantum mechanics. See Figure 10 for such
an example.

Linear Algebra is central to much of the mathematical structure of quantum mechanics. States of a physical system
are associated with a normalized vector, and observables are associated with Hermitian operators. For example, spin
is a measure of a particle’s intrinsic angular momentum, which is related to the particle’s magnetic moment. The
eigenstates of the spin observable create an orthonormal basis for the associated vector space.

NEIR comprise what is known as the “z-basis,”

1. Suppose ¥ = E’J . Normalize ¥ and label the normalized vector as 1.

In a spin-1/2 system, { {1]

2. Determine the coordinate vector of ¢ relative to the z, x, and y bases. That is, determine [¢/],, [¢/],, and [Q/J]y.

3. Suppose you did not need to change the basis for a specific state vector but rather needed to know how to

do so for any given state vector. Determine the change of basis matrix [I]] that changes z-coordinates into
x-coordinates, and the matrix [I]Y that changes a-coordinates into y-coordinates.

4. Prove that the eigenvalues of Hermitian operators are always real-valued. This property is important in
quantum mechanics because eigenvalues are associated with the measured values of an observable.

Fig. 10 Instructional example of problems that relate change of basis to quantum mechanics
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Fig. 11 A13’s work on the spin-up aspect of Problem B
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While the aforementioned concepts are all core to a linear algebra course, additional
mathematical concepts were shown to be central to students’ problem-solving approaches,
namely the probabilistic relationship of complementary and mutually exclusive events,
distribution, and operations with complex numbers. Although not a focus of this paper,
competency with algebraic simplifications related to moduli and exponents were essential to this
problem. For instance, two students made a computation error similar to what is often
colloquially known as “Freshman’s Dream” in Problem B. For example, A13 computed

2 _ 4 _1 3
|* = + = 2, rather than | NeT

|\/___«/__ — EIZ = |\/§|2 =%(see line 2 in Figure 11)5.
All of these mathematlcs concepts are relevant for larger spin systems as well as other quantum
mechanical observables; for example, measuring position involves an infinite-dimensional
Hilbert space and the inner product for the probability calculation involves integration of
complex-valued functions. The analysis in this study focused on one specific type of quantum
mechanical problem in a specific physical context. Future research could further address how
physics students leverage their understanding of linear algebra concepts in other quantum

mechanical contexts.
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