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Regression models with crossed random effect errors can be very expen-
sive to compute. The cost of both generalized least squares and Gibbs sam-
pling can easily grow as N3/2 (or worse) for N observations. Papaspiliopou-
los, Roberts and Zanella (Biometrika 107 (2020) 25–40) present a collapsed
Gibbs sampler that costs O(N), but under an extremely stringent sampling
model. We propose a backfitting algorithm to compute a generalized least
squares estimate and prove that it costs O(N). A critical part of the proof
is in ensuring that the number of iterations required is O(1), which follows
from keeping a certain matrix norm below 1 − δ for some δ > 0. Our condi-
tions are greatly relaxed compared to those for the collapsed Gibbs sampler,
though still strict. Empirically, the backfitting algorithm has a norm below
1 − δ under conditions that are less strict than those in our assumptions. We
illustrate the new algorithm on a ratings data set from Stitch Fix.

1. Introduction. To estimate a regression when the errors have a nonidentity covariance
matrix, we usually turn first to generalized least squares (GLS). Somewhat surprisingly, GLS
proves to be computationally challenging in the very simple setting of the unbalanced crossed
random effects models that we study here. For that problem, the cost to compute the GLS
estimate on N data points grows at best like O(N3/2) under the usual algorithms. If we ad-
ditionally assume Gaussian errors, then Gao and Owen (2020) show that even evaluating the
likelihood one time costs at least a multiple of N3/2. These costs make the usual algorithms
for GLS infeasible for large data sets such as those arising in electronic commerce.

In this paper, we present an iterative algorithm based on a backfitting approach from Buja,
Hastie and Tibshirani (1989). This algorithm is known to converge to the GLS solution. The
cost of each iteration is O(N) and so we also study how the number of iterations grows
with N .

The crossed random effects model we consider has

(1) Yij = xT
ijβ + ai + bj + eij , 1 ≤ i ≤ R,1 ≤ j ≤ C

for random effects ai and bj and an error eij with a fixed effects regression parameter β ∈ Rp

for the covariates xij ∈ Rp . We assume that ai
iid∼ (0,σ 2

A), bj
iid∼ (0,σ 2

B), and eij
iid∼ (0,σ 2

E) are
all independent. It is thus a mixed effects model in which the random portion has a crossed
structure. The GLS estimate is also the maximum likelihood estimate (MLE), when ai , bj

and eij are Gaussian. Because we assume that p is fixed as N grows, we often leave p out of
our cost estimates, giving instead the complexity in N .

The GLS estimate β̂GLS for crossed random effects can be efficiently estimated if all R×C
values are available. Our motivating examples involve ratings data where R people rate C
items and then it is usual that the data are very unbalanced with a haphazard observational
pattern in which only N & R × C of the (xij , Yij ) pairs are observed. The crossed random
effects setting is significantly more difficult than a hierarchical model with just ai + eij but
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no bj term. Then the observations for index j are “nested within” those for each level of
index i. The result is that the covariance matrix of all observed Yij values has a block diagonal
structure allowing GLS to be computed in O(N) time.

Hierarchical models are very well suited to Bayesian computation (Gelman and Hill
(2006)). Crossed random effects are a much greater challenge. Gao and Owen (2017) find
that the Gibbs sampler can take O(N1/2) iterations to converge to stationarity, with each iter-
ation costing O(N) leading once again to O(N3/2) cost. For more examples where the costs
of solving equations versus sampling from a covariance attain the same rate, see Goodman
and Sokal (1989) and Roberts and Sahu (1997). As further evidence of the difficulty of this
problem, the Gibbs sampler was one of nine MCMC algorithms that Gao and Owen (2017)
found to be unsatisfactory. Furthermore, Bates et al. (2015) removed the mcmcsamp func-
tion from the R package lme4 because it was considered unreliable even for the problem of
sampling the posterior distribution of the parameters from previously fitted models, and even
for those with random effects variances near zero.

Papaspiliopoulos, Roberts and Zanella (2020) presented an exception to the high cost of a
Bayesian approach for crossed random effects. They propose a collapsed Gibbs sampler that
can potentially mix in O(1) iterations. To prove this rate, they make an extremely stringent
assumption that every index i = 1, . . . ,R appears in the same number N/C of observed data
points and similarly every j = 1, . . . ,C appears in N/R data points. Such a condition is
tantamount to requiring a designed experiment for the data and it is much stronger than what
their algorithm seems to need in practice. Under that condition, their mixing rate asymptotes
to a quantity ρaux, described in our discussion section, that in favorable circumstances is
O(1). They find empirically that their sampler has a cost that scales well in many data sets
where their balance condition does not hold.

In this paper, we study an iterative linear operation, known as backfitting, for GLS. Each
iteration costs O(N). The speed of convergence depends on a certain matrix norm of that
iteration, which we exhibit below. If the norm remains bounded strictly below 1 as N → ∞,
then the number of iterations to convergence is O(1). We are able to show that the matrix
norm is O(1) with probability tending to one, under conditions where the number of obser-
vations per row (or per column) is random and even the expected row or column counts may
vary, though in a narrow range. While this is a substantial weakening of the conditions in
Papaspiliopoulos, Roberts and Zanella (2020), it still fails to cover many interesting cases.
Like them, we find empirically that our algorithm scales much more broadly than under the
conditions for which scaling is proved.

We suspect that the computational infeasibility of GLS leads many users to use ordi-
nary least squares (OLS) instead. OLS has two severe problems. First, it is inefficient with
var(β̂OLS) larger than var(β̂GLS). This is equivalent to OLS ignoring some possibly large
fraction of the information in the data. Perhaps more seriously, OLS is naive. It produces an
estimate of var(β̂OLS) that can be too small by a large factor. That amounts to overestimating
the quantity of information behind β̂OLS, also by a potentially large factor.

The naivete of OLS can be countered by using better variance estimates. One can bootstrap
it by resampling the row and column entities as in Owen (2007). There is also a version of
Huber–White variance estimation for this case in econometrics. See, for instance, Cameron,
Gelbach and Miller (2011). While these methods counter the naivete of OLS, the inefficiency
of OLS remains.

The method of moments algorithm in Gao and Owen (2020) gets consistent asymptotically
normal estimates of β , σ 2

A, σ 2
B and σ 2

E . It produces a GLS estimate β̂ that is more efficient
than OLS but still not fully efficient because it accounts for correlations due to only one of the
two crossed random effects. While inefficient, it is not naive because its estimate of var(β̂)
properly accounts for variance due to ai , bj and eij .
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In this paper, we get a GLS estimate β̂ that takes account of all three variance components,
making it efficient. We also provide an estimate of var(β̂) that accounts for all three compo-
nents, so our estimate is not naive. Our algorithm requires consistent estimates of the variance
components σ 2

A, σ 2
B and σ 2

E in computing β̂ and v̂ar(β̂). We use the method of moments esti-
mators from Gao and Owen (2017) that can be computed in O(N) work. By Gao and Owen
((2017), Theorem 4.2), these estimates of σ 2

A, σ 2
B and σ 2

E are asymptotically uncorrelated and
each of them has the same asymptotic variance it would have had were the other two variance
components equal to zero. It is not known whether they are optimally estimated, much less
optimal subject to an O(N) cost constraint. The variance component estimates are known to
be asymptotically normal (Gao (2017)).

The rest of this paper is organized as follows. Section 2 introduces our notation and as-
sumptions for missing data. Section 3 presents the backfitting algorithm from Buja, Hastie
and Tibshirani (1989). That algorithm was defined for smoothers, but we are able to cast the
estimation of random effect parameters as a special kind of smoother. Section 4 proves our
result about backfitting being convergent with a probability tending to one as the problem size
increases. Section 5 shows numerical measures of the matrix norm of the backfitting operator.
It remains bounded below and away from one under more conditions than our theory shows.
We find that even one iteration of the lmer function in lme4 package Bates et al. (2015) has a
cost that grows like N3/2 in one setting and like N2.1 in another, sparser one. The backfitting
algorithm has cost O(N) in both of these cases. Section 6 illustrates our GLS algorithm on
some data provided to us by Stitch Fix. These are customer ratings of items of clothing on
a ten-point scale. Section 7 has a discussion of these results. An Appendix contains some
regression output for the Stitch Fix data.

2. Missingness. We adopt the notation from Gao and Owen (2020). We let Zij ∈ {0,1}
take the value 1 if (xij , Yij ) is observed and 0 otherwise, for i = 1, . . . ,R and j = 1, . . . ,C.
In many of the contexts, we consider, the missingness is not at random and is potentially
informative. Handling such problems is outside the scope of this paper, apart from a brief
discussion in Section 7. It is already a sufficient challenge to work without informative miss-
ingness.

The matrix Z ∈ {0,1}R×C , with elements Zij has Ni• = ∑C
j=1 Zij observations in ‘row

i’ and N•j = ∑R
i=1 Zij observations in “column j .” We often drop the limits of summation

so that i is always summed over 1, . . . ,R and j over 1, . . . ,C. When we need additional
symbols for row and column indices, we use r for rows and s for columns. The total sample
size is N = ∑

i

∑
j Zij = ∑

i Ni• = ∑
j N•j .

There are two coobservation matrices, ZTZ and ZZT. Here, (ZTZ)js = ∑
i ZijZis gives

the number of rows in which data from both columns j and s were observed, while (ZZT)ir =∑
j ZijZrj gives the number of columns in which data from both rows i and r were observed.
In our regression models, we treat Zij as nonrandom. We are conditioning on the actual

pattern of observations in our data. When we study the rate at which our backfitting algorithm
converges, we consider Zij drawn at random. That is, the analyst is solving a GLS condition-
ally on the pattern of observations and missingness, while we study the convergence rates
that analyst will see for data drawn from a missingness mechanism defined in Section 4.2.

If we place all of the Yij into a vector Y ∈ RN and xij compatibly into a matrix X ∈ RN×p ,
then the naive and inefficient OLS estimator is

(2) β̂OLS = (
X TX

)−1X TY.

This can be computed in O(Np2) work. We prefer to use the GLS estimator

(3) β̂GLS = (
X TV−1X

)−1X TV−1Y,
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where V ∈ RN×N contains all of the cov(Yij , Yrs) in an ordering compatible with X and Y . A
naive algorithm costs O(N3) to solve for β̂GLS. It can actually be solved through a Cholesky
decomposition of an (R + C) × (R + C) matrix (Searle, Casella and McCulloch (1992)).
That has cost O(R3 + C3). Now N ≤ RC, with equality only for completely observed data.
Therefore, max(R,C) ≥

√
N , and so R3 + C3 ≥ N3/2. When the data are sparsely enough

observed it is possible that min(R,C) grows more rapidly than N1/2. In a numerical example,
in Section 5 we have min(R,C) growing like N0.70. In a hierarchical model, with ai but no
bj we would find V to be block diagonal and then β̂GLS could be computed in O(N) work.

A reviewer reminds us that it has been known since Strassen (1969) that systems of equa-
tions can be solved more quickly than cubic time. Despite that, current software is still domi-
nated by cubic time algorithms. Also none of the known solutions are quadratic and so in our
setting the cost would be at least a multiple of (R + C)2+γ for some γ > 0, and hence not
O(N).

We can write our crossed effects model as

(4) Y = Xβ + ZAa + ZBb + e

for matrices ZA ∈ {0,1}N×R and ZB ∈ {0,1}N×C . The i’th column of ZA has ones for all
of the N observations that come from row i and zeroes elsewhere. The definition of ZB is
analogous. The observation matrix can be written Z = ZT

AZB . The vector e has all N values
of eij in compatible order. Vectors a and b contain the row and column random effects ai and
bj . In this notation,

(5) V = ZAZT
Aσ 2

A + ZBZT
Bσ 2

B + INσ 2
E,

where IN is the N × N identity matrix.
Our main computational problem is to get a value for U = V−1X ∈ RN×p . To do that, we

iterate toward a solution u ∈ RN of Vu = x, where x ∈ RN is one of the p columns of X .
After that, finding

(6) β̂GLS = (
X TU

)−1(
YTU

)T

is not expensive, because X TU ∈ Rp×p and we suppose that p is not large.
If the data ordering in Y and elsewhere sorts by index i, breaking ties by index j , then

ZAZT
A ∈ {0,1}N×N is a block matrix with R blocks of ones of size Ni• × Ni• along the

diagonal and zeroes elsewhere. The matrix ZBZT
B will not be block diagonal in that ordering.

Instead PZBZT
BP T will be block diagonal with N•j × N•j blocks of ones on the diagonal,

for a suitable N × N permutation matrix P .

3. Backfitting algorithms. Our first goal is to develop computationally efficient ways to
solve the GLS problem (6) for the linear mixed model (4). We use the backfitting algorithm
that Hastie and Tibshirani (1990) and Buja, Hastie and Tibshirani (1989) use to fit additive
models. We write V in (5) as σ 2

E(ZAZT
A/λA + ZBZT

B/λB + IN) with λA = σ 2
E/σ 2

A and λB =
σ 2

E/σ 2
B , and define W = σ 2

EV−1. Then the GLS estimate of β is

(7) β̂GLS = arg min
β

(Y − Xβ)TW(Y − Xβ) = (
X TWX

)−1X TWY

and cov(β̂GLS) = σ 2
E(X TWX )−1.

It is well known (e.g., Robinson (1991)) that we can obtain β̂GLS by solving the following
penalized least-squares problem:

(8) min
β,a,b

‖Y − Xβ − ZAa − ZBb‖2 + λA‖a‖2 + λB‖b‖2.

Then β̂ = β̂GLS and â and b̂ are the best linear unbiased prediction (BLUP) estimates of the
random effects. This derivation works for any number of factors, but it is instructive to carry
it through initially for one.
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3.1. One factor. For a single factor, we simply drop the ZBb term from (4) to get

Y = Xβ + ZAa + e.

Then V = cov(ZAa + e) = σ 2
AZAZT

A + σ 2
EIN , and W = σ 2

EV−1 as before. The penalized
least squares problem is to solve

(9) min
β,a

‖Y − Xβ − ZAa‖2 + λA‖a‖2.

We show the details as we need them for a later derivation.
The normal equations from (9) yield

0 = X T(Y − X β̂ − ZAâ) and(10)

0 = ZT
A(Y − X β̂ − ZAâ) − λAâ.(11)

Solving (11) for â and multiplying the solution by ZA yields

ZAâ = ZA
(
ZT

AZA + λAIR
)−1ZT

A(Y − X β̂) ≡ SA(Y − X β̂),

for an N × N ridge regression “smoother matrix” SA. As we explain below, this smoother
matrix implements shrunken within-group means. Then substituting ZAâ into equation (10)
yields

(12) β̂ = (
X T(IN − SA)X

)−1X T(IN − SA)Y.

Using the Sherman–Morrison–Woodbury (SMW) identity, one can show that W = IN − SA

and hence β̂ above equals β̂GLS from (7). This is not in itself a new discovery; see, for
example, Robinson (1991) or Hastie and Tibshirani (1990), Section 5.3.3.

To compute the solution in (12), we need to compute SAY and SAX . The heart of the
computation in SAY is (ZT

AZA + λAIR)−1ZT
AY . But ZT

AZA = diag(N1•,N2•, . . . ,NR•) and
we see that all we are doing is computing an R-vector of shrunken means of the elements
of Y at each level of the factor A; the ith element is

∑
j ZijYij /(Ni• + λA). This involves a

single pass through the N elements of Y , accumulating the sums into R registers, followed
by an elementwise scaling of the R components. Then premultiplication by ZA simply puts
these R shrunken means back into an N -vector in the appropriate positions. The total cost
is O(N). Likewise SAX does the same separately for each of the columns of X . Hence the
entire computational cost for (12) is O(Np2), the same order as regression on X .

What is also clear is that the indicator matrix ZA is not actually needed here; instead all
we need to carry out these computations is the factor vector fA that records the level of factor
A for each of the N observations. In the R language (R Core Team (2015)), the following
pair of operations does the computation:

hat_a = tapply(y,fA,sum)/(table(fA)+lambdaA)
hat_y = hat_a[fA]

where fA is a categorical variable (factor) fA of length N containing the row indices i in an
order compatible with Y ∈ RN (represented as y) and lambdaA is λA = σ 2

A/σ 2
E .

3.2. Two factors. With two factors, we face the problem of incompatible block diag-
onal matrices discussed in Section 2. Define ZG = (ZA : ZB) (R + C columns), Dλ =
diag(λAIR,λBIC), and gT = (aT,bT). Then solving (8) is equivalent to

(13) min
β,g

‖Y − Xβ − ZGg‖2 + gTDλg.

A derivation similar to that used in the one-factor case gives

(14) β̂ = HGLSY for HGLS = (
X T(IN − SG)X

)−1X T(IN − SG),
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where the hat matrix HGLS is written in terms of a smoother matrix

(15) SG = ZG
(
ZT

GZG + Dλ
)−1ZT

G.

We can again use SMW to show that IN − SG = W and hence the solution β̂ = β̂GLS in (7).
But in applying SG we do not enjoy the computational simplifications that occurred in the
one factor case, because

ZT
GZG =

(
ZT

AZA ZT
AZB

ZT
BZA ZT

BZB

)

=
(

diag(Ni•) Z

ZT diag(N•j )

)

,

where Z ∈ {0,1}R×C is the observation matrix which has no special structure. Therefore, we
need to invert an (R + C) × (R + C) matrix to apply SG, and hence to solve (14), at a cost
of at least O(N3/2) (see Section 2).

Rather than group ZA and ZB , we keep them separate, and develop an algorithm to apply
the operator SG efficiently. Consider a generic response vector R (such as Y or a column of
X ) and the optimization problem

(16) min
a,b

‖R − ZAa − ZBb‖2 + λA‖a‖2 + λB‖b‖2.

Using SG defined at (15) in terms of the indicator variables ZG ∈ {0,1}N×(R+C), it is
clear that the fitted values are given by R̂ = SGR. Solving (16) would result in two blocks of
estimating equations similar to equations (10) and (11). These can be written

(17)
ZAâ = SA(R − ZB b̂) and

ZB b̂ = SB(R − ZAâ),

where SA = ZA(ZT
AZA +λAIR)−1ZT

A is again the ridge regression smoothing matrix for row
effects and similarly SB = ZB(ZT

BZB + λBIC)−1ZT
B the smoothing matrix for column ef-

fects. We solve these equations iteratively by block coordinate descent, also known as back-
fitting. The iterations converge to the solution of (16) (Buja, Hastie and Tibshirani (1989),
Hastie and Tibshirani (1990)).

It is evident that SA,SB ∈ RN×N are both symmetric matrices. It follows that the limit-
ing smoother SG formed by combining them is also symmetric. See Hastie and Tibshirani
((1990), page 120). We will need this result later for an important computational shortcut.

Here, the simplifications we enjoyed in the one-factor case once again apply. Each step
applies its operator to a vector (the terms in parentheses on the right-hand side in (17)).
For both SA and SB , these are simply the shrunken-mean operations described for the one-
factor case, separately for factor A and B each time. As before, we do not need to actually
construct ZB , but simply use a factor fB that records the level of factor B for each of the N
observations.

The above description holds for a generic response R; we apply that algorithm (in parallel)
to Y and each column of X to obtain the quantities SGX and SGY that we need to compute
HGLSY in (14). Now solving (14) is O(Np2) plus a negligible O(p3) cost. These computa-
tions deliver β̂GLS; if the BLUP estimates â and b̂ are also required, the same algorithm can
be applied to the response Y − X β̂GLS, retaining the a and b at the final iteration. We can
also write

(18) cov(β̂GLS) = σ 2
E

(
X T(IN − SG)X

)−1
.

It is also clear that we can trivially extend this approach to accommodate any number of
factors.
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3.3. Centered operators. The matrices ZA and ZB both have row sums all ones, since
they are factor indicator matrices (“one-hot encoders”). This creates a nontrivial intersec-
tion between their column spaces, and that of X since we always include an intercept that
can cause backfitting to converge more slowly. In this section, we show how to counter this
intersection of column spaces to speed convergence. We work with this two-factor model,

(19) min
β,a,b

‖Y − Xβ − ZAa − ZBb‖2 + λA‖a‖2 + λB‖b‖2.

LEMMA 3.1. If X in model (19) includes a column of ones (intercept), and λA > 0 and
λB > 0, then the solutions for a and b satisfy

∑R
i=1 ai = 0 and

∑C
j=1 bj = 0.

PROOF. It suffices to show this for one factor and with X = 1. The objective is now

(20) min
β,a

‖Y − 1β − ZAa‖2 + λA‖a‖2.

Notice that for any candidate solution (β, {ai}R1 ), the alternative solution (β + c, {ai − c}R1 )

leaves the loss part of (20) unchanged, since the row sums of ZA are all one. Hence, if λA > 0,
we would always improve a by picking c to minimize the penalty term

∑R
i=1(ai − c)2, or

c = (1/R)
∑R

i=1 ai . !

It is natural then to solve for a and b with these constraints enforced, instead of waiting
for them to simply emerge in the process of iteration.

THEOREM 3.2. Consider the generic optimization problem

(21) min
a

‖R − ZAa‖2 + λA‖a‖2 subject to
R∑

i=1

ai = 0.

Define the partial sum vector R+ = ZT
AR with components R+

i = ∑
j ZijRij , and let

wi = (Ni• + λ)−1
∑

r (Nr• + λ)−1 .

Then the solution â is given by

(22) âi = R+
i − ∑

r wrR+
r

Ni• + λA
, i = 1, . . . ,R.

Moreover, the fit is given by

ZAâ = S̃AR,

where S̃A is a symmetric operator.

The computations are a simple modification of the noncentered case.

PROOF. Let M be an R × R orthogonal matrix with first column 1/
√

R. Then ZAa =
ZAMMTa = G̃γ̃ for G̃ = ZAM and γ̃ = MTa. Reparametrizing in this way leads to the
equivalent problem

(23) min
γ̃

‖R − G̃γ̃ ‖2 + λA‖γ̃ ‖2 subject to γ̃1 = 0.
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To solve (23), we simply drop the first column of G̃. Let G = ZAQ where Q is the matrix M
omitting the first column, and γ the corresponding subvector of γ̃ having R − 1 components.
We now solve

(24) min
γ̃

‖R − Gγ ‖2 + λA‖γ̃ ‖2

with no constraints, and the solution is γ̂ = (GTG + λAIR−1)
−1GTR. The fit is given by

Gγ̂ = G(GTG + λAIR−1)
−1GTR = S̃AR, and S̃A is clearly a symmetric operator.

To obtain the simplified expression for â, we write

Gγ̂ = ZAQ
(
QTZT

AZAQ + λAIR−1
)−1

QTZT
AR

= ZAQ
(
QTDQ + λAIR−1

)−1
QTR+(25)

= ZAâ,

with D = diag(Ni•). We write H = Q(QTDQ + λAIR−1)
−1QT and Q̃ = (D + λAIR)

1
2 Q,

and let

(26) H̃ = (D + λAIR)
1
2 H(D + λAIR)

1
2 = Q̃

(
Q̃TQ̃

)−1
Q̃T.

Now (26) is a projection matrix of RR onto a R − 1 dimensional subspace. Let q̃ = (D +
λAIR)−

1
2 1. Then q̃TQ̃ = 0, and so

H̃ = IR − q̃q̃T

‖q̃‖2 .

Unraveling this expression, we get

H = (D + λAIR)−1 − (D + λAIR)−1 11T

1T(D + λAIR)−11
(D + λAIR)−1.

With â = HR+ in (25), this gives the expressions for each âi in (22). Finally, S̃A = ZAHZT
A

is symmetric. !

3.4. Covariance matrix for β̂GLS with centered operators. In Section 3.2, we saw in (18)
that we get a simple expression for cov(β̂GLS). This simplicity relies on the fact that IN −
SG = W = σ 2

EV−1, and the usual cancellation occurs when we use the sandwich formula to
compute this covariance. When we backfit with our centered smoothers, we get a modified
residual operator IN − S̃G such that the analog of (14) still gives us the required coefficient
estimate:

(27) β̂GLS = (
X T(IN − S̃G)X

)−1X T(IN − S̃G)Y.

However, IN − S̃G -= σ 2
EV−1, and so now we need to resort to the sandwich formula

cov(β̂GLS) = HGLSVH T
GLS with HGLS from (14). Expanding this, we find that cov(β̂GLS)

equals
(
X T(IN − S̃G)X

)−1X T(IN − S̃G) · V · (IN − S̃G)X
(
X T(IN − S̃G)X

)−1
.

While this expression might appear daunting, the computations are simple. Note first that
while β̂GLS can be computed via S̃GX and S̃GY this expression for cov(β̂GLS) also involves
X TS̃G. When we use the centered operator from Theorem 3.2 we get a symmetric matrix
S̃G. Let X̃ = (IN − S̃G)X , the residual matrix after backfitting each column of X using these
centered operators. Then because S̃G is symmetric, we have

(28)
β̂GLS = (

X TX̃
)−1X̃ TY and

cov(β̂GLS) = (
X TX̃

)−1X̃ T · V · X̃ (
X TX̃

)−1
.
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Since V = σ 2
E(ZAZT

A/λA + ZBZT
B/λB + IN) (two low-rank matrices plus the identity), we

can compute V · X̃ very efficiently, and hence also the covariance matrix in (28). The entire
algorithm is summarized in Section 6.3.

4. Convergence of the matrix norm. In this section, we prove a bound on the norm
of the matrix that implements backfitting for our random effects a and b and show how this
controls the number of iterations required. In our algorithm, backfitting is applied to Y as well
as to each nonintercept column of X so we do not need to consider the updates for X β̂ . It is
useful to take account of intercept adjustments in backfitting, by the centerings described in
Section 3 because the space spanned by a1, . . . , aR intersects the space spanned by b1, . . . , bC

since both include an intercept column of ones.
In backfitting, we alternate between adjusting a given b and b given a. At any iteration,

the new a is an affine function of the previous b and then the new b is an affine function
of the new a. This makes the new b an affine function of the previous b. We will study that
affine function to find conditions where the updates converge. If the b updates converge, then
so must the a updates.

Because the updates are affine they can be written in the form

b ← Mb + η

for M ∈ RC×C and η ∈ RC . We iterate this update and it is convenient to start with b = 0.
We already know from Buja, Hastie and Tibshirani (1989) that this backfitting will converge.
However, we want more. We want to avoid having the number of iterations required grow
with N . We can write the solution b as

b = η +
∞∑

k=1

Mkη,

and in computations we truncate this sum after K steps producing an error
∑

k>K Mkη. We
want supη -=0 ‖∑

k>K Mkη‖/‖η‖ < ε to hold with probability tending to one as the sample
size increases for any ε, given sufficiently large K . For this, it suffices to have the spectral
radius λmax(M) < 1 − δ hold with probability tending to one for some δ > 0.

Now for any 1 ≤ p ≤ ∞, we have

λmax(M) ≤ ‖M‖p ≡ sup
x∈RC\{0}

‖Mx‖p

‖x‖p
.

The explicit formula

‖M‖1 ≡ sup
x∈RC\{0}

‖Mx‖1

‖x‖1
= max

1≤s≤C

C∑

j=1

|Mjs |

makes the matrix L1 matrix norm very tractable theoretically and so that is the one we study.
We look at this and some other measures numerically in Section 5.

4.1. Updates. Recall that Z ∈ {0,1}R×C describes the pattern of observations. In a model
with no intercept, centering the responses and then taking shrunken means as in (17) would
yield these updates

ai ←
∑

s Zis(Yis − bs)

Ni• + λA
and bj ←

∑
i Zij (Yij − ai)

N•j + λB
.
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The update from the old b to the new a and then to the new b takes the form b ← Mb + η
for M = M(0) where

M
(0)
js = 1

N•j + λB

∑

i

ZisZij

Ni• + λA
.

This update M(0) alternates shrinkage estimates for a and b but does no centering. We do not
exhibit η because it does not affect the convergence speed.

In the presence of an intercept, we know that
∑

i ai = 0 should hold at the solution and we
can impose this simply and very directly by centering the ai , taking

ai ←
∑

s Zis(Yis − bs)

Ni• + λA
− 1

R

R∑

r=1

∑
s Zrs(Yrs − bs)

Nr• + λA
and

bj ←
∑

i Zij (Yij − ai)

N•j + λB
.

The intercept estimate will then be β̂0 = (1/C)
∑

j bj , which we can subtract from bj upon
convergence. This iteration has the update matrix M(1) with

(29) M
(1)
js = 1

N•j + λB

∑

r

Zrs(Zrj − N•j /R)

Nr• + λA

after replacing a sum over i by an equivalent one over r .
In practice, we prefer to use the weighted centering from Section 3.3 to center the ai be-

cause it provides a symmetric smoother S̃G that supports computation of ĉov(β̂GLS). While it
is more complicated to analyze it is easily computable and it satisfies the optimality condition
in Theorem 3.2. The algorithm is for a generic response R ∈ RN such as Y or a column of
X . Let us illustrate it for the case R = Y . We begin with vector of N values Yij − bj and so
Y+

i = ∑
s Zis(Yis − bs). Then wi = (Ni• + λA)−1/

∑
r (Nr• + λA)−1 and the updated ar is

Y+
r − ∑

i wiY
+
i

Nr• + λA
=

∑
s Zrs(Yrs − bs) − ∑

i wi
∑

s Zis(Yis − bs)

Nr• + λA
.

Using shrunken averages of Yij − ai , the new bj are

bj = 1
N•j + λB

∑

r

Zrj

(
Yrj −

∑
s Zrs(Yrs − bs) − ∑

i wi
∑

s Zis(Yis − bs)

Nr• + λA

)
.

Now b ← Mb + η for M = M(2), where

(30) M
(2)
js = 1

N•j + λB

∑

r

Zrj

Nr• + λA

(
Zrs −

∑
i

Zis
Ni•+λA∑

i
1

Ni•+λA

)
.

Our preferred algorithm applies the optimal update from Theorem 3.2 to both a and b
updates. With that choice we do not need to decide beforehand which random effects to center
and which to leave uncentered to contain the intercept. We call the corresponding matrix
M(3). Our theory below analyzes ‖M(1)‖1 and ‖M(2)‖1, which have simpler expressions
than ‖M(3)‖1.

Update M(0) uses symmetric smoothers for both A and B: they are both shrunken averages.
The naive centering update M(1) uses a nonsymmetric smoother ZA(IR − 1R1T

R)(ZT
AZA +

λAIR)−1ZT
A on the ai with a symmetric smoother on bj , and hence it does not generally

produce a symmetric smoother needed for efficient computation of ĉov(β̂GLS). The update
M(2) uses two symmetric smoothers, one optimal and one a simple shrunken mean. The
update M(3) takes the optimal smoother for both A and B . Thus both M(2) and M(3) support
efficient computation of ĉov(β̂GLS).
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4.2. Model for Zij . We will state conditions on Zij under which both ‖M(1)‖1 and
‖M(2)‖1 are bounded below 1 with probability tending to one, as the problem size grows.
We need the following exponential inequalities.

LEMMA 4.1. If X ∼ Bin(n,p), then for any t ≥ 0,

Pr(X ≥ np + t) ≤ exp
(−2t2/n

)
and

Pr(X ≤ np − t) ≤ exp
(−2t2/n

)
.

PROOF. This follows from Hoeffding’s theorem. !

LEMMA 4.2. Let Xi ∼ Bin(n,p) for i = 1, . . . ,m, not necessarily independent. Then,
for any t ≥ 0,

Pr
(

max
1≤i≤m

Xi ≥ np + t
)

≤ m exp
(−2t2/n

)
and

Pr
(

min
1≤i≤m

Xi ≤ np − t
)

≤ m exp
(−2t2/n

)
.

PROOF. This is from the union bound applied to Lemma 4.1. !

Here is our sampling model. We index the size of our problem by S → ∞. The sample
size N will satisfy E(N) ≥ S. The number of rows and columns in the data set are

R = Sρ and C = Sκ

respectively, for positive numbers ρ and κ . Because our application domain has N & RC,
we assume that ρ + κ > 1. We ignore that R and C above are not necessarily integers.

In our model, Zij ∼ Bern(pij ) independently with

(31)
S

RC
≤ pij ≤ ϒ

S

RC
for 1 ≤ ϒ < ∞.

That is 1 ≤ pijS
ρ+κ−1 ≤ ϒ . Letting pij depend on i and j allows the probability model to

capture stylistic preferences affecting the missingness pattern in the ratings data.

4.3. Bounds for row and column size. Letting X " Y mean that X is stochastically
smaller than Y , we know that

Bin
(
R,S1−ρ−κ) "N•j " Bin

(
R,ϒS1−ρ−κ)

and

Bin
(
C,S1−ρ−κ) "Ni• " Bin

(
C,ϒS1−ρ−κ)

.

By Lemma 4.1, if t ≥ 0, then

Pr
(
Ni• ≥ S1−ρ(ϒ + t)

) ≤ Pr
(
Bin

(
C,ϒS1−ρ−κ) ≥ S1−ρ(ϒ + t)

)

≤ exp
(−2

(
S1−ρ t

)2
/C

)

= exp
(−2S2−κ−2ρ t2)

.

Therefore, if 2ρ + κ < 2, we find using using Lemma 4.2 that

Pr
(
max

i
Ni• ≥ S1−ρ(ϒ + ε)

)
≤ Sρ exp

(−2S2−κ−2ρε2) → 0
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for any ε > 0. Combining this with an analogous lower bound,

(32) lim
S→∞

Pr
(
(1 − ε)S1−ρ ≤ min

i
Ni• ≤ max

i
Ni• ≤ (ϒ + ε)S1−ρ

)
= 1.

Likewise, if ρ + 2κ < 2, then for any ε > 0,

(33) lim
S→∞

Pr
(
(1 − ε)S1−κ ≤ min

j
N•j ≤ max

j
N•j ≤ (ϒ + ε)S1−κ

)
= 1.

4.4. Interval arithmetic. We will replace Ni• and other quantities by intervals that
asymptotically contain them with probability one and then use interval arithmetic in order
to streamline some of the steps in our proofs. For instance,

Ni• ∈ [
(1 − ε)S1−ρ, (ϒ + ε)S1−ρ] = [1 − ε,ϒ + ε] × S1−ρ = [1 − ε,ϒ + ε] × S

R

holds simultaneously for all 1 ≤ i ≤ R with probability tending to one as S → ∞. In interval
arithmetic,

[A,B] + [a, b] = [a + A,b + B] and [A,B] − [a, b] = [A − b,B − a].
If 0 < a ≤ b < ∞ and 0 < A ≤ B < ∞, then

[A,B] × [a, b] = [Aa,Bb] and [A,B]/[a, b] = [A/b,B/a].
Similarly, if a < 0 < b and X ∈ [a, b], then |X| ∈ [0,max(|a|, |b|)]. Our arithmetic operations
on intervals yield new intervals guaranteed to contain the results obtained using any members
of the original intervals. We do not necessarily use the smallest such interval.

4.5. Coobservation. Recall that the coobservation matrices are ZTZ ∈ {0,1}C×C and
ZZT ∈ {0,1}R×R . If s -= j , then

Bin
(
R,

S2

R2C2

)
" (

ZTZ
)
sj " Bin

(
R,

ϒ2S2

R2C2

)
.

That is, Bin(Sρ, S2−2ρ−2κ)" (ZTZ)sj " Bin(Sρ,ϒ2S2−2ρ−2κ). For t ≥ 0,

Pr
(
max

s
max
j -=s

(
ZTZ

)
sj ≥ (

ϒ2 + t
)
S2−ρ−2κ

)
≤ C2

2
exp

(−(
tS2−ρ−2κ)2

/R
)

= C2

2
exp

(−t2S4−3ρ−4κ)
.

If 3ρ + 4κ < 4, then

Pr
(
max

s
max
j -=s

(
ZTZ

)
sj ≥ (

ϒ2 + ε
)
S2−ρ−2κ

)
→ 0 and

Pr
(
min

s
min
j -=s

(
ZTZ

)
sj ≤ (1 − ε)S2−ρ−2κ

)
→ 0,

for any ε > 0.

4.6. Asymptotic bounds for ‖M‖1. Here, we prove upper bounds for ‖M(k)‖1 for k =
1,2 of equations (29) and (30), respectively. The bounds depend on ϒ and there are values
of ϒ > 1 for which these norms are bounded strictly below one, with probability tending to
one.
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THEOREM 4.3. Let Zij follow the model from Section 4.2 with ρ,κ ∈ (0,1), that satisfy
ρ + κ > 1, 2ρ + κ < 2 and 3ρ + 4κ < 4. Then, for any ε > 0,

Pr
(∥∥M(1)

∥∥
1 ≤ ϒ2 − ϒ−2 + ε

) → 1 and(34)

Pr
(∥∥M(2)

∥∥
1 ≤ ϒ2 − ϒ−2 + ε

) → 1(35)

as S → ∞.

PROOF. Without loss of generality, we assume that ε < 1. We begin with (35). Let M =
M(2). When j -= s,

Mjs = 1
N•j + λB

∑

r

Zrj

Nr• + λA
(Zrs − Z̄•s),

for Z̄•s =
∑

i

Zis

Ni• + λA

/ ∑

i

1
Ni• + λA

.

Although |Zrs − Z̄•s | ≤ 1, replacing Zrs − Z̄•s by one does not prove to be sharp enough for
our purposes.

Every Nr• + λA ∈ S1−ρ[1 − ε,ϒ + ε] with probability tending to one and so

Z̄•s

N•j + λB

∑

r

Zrj

Nr• + λA
∈ Z̄•s

N•j + λB

∑

r

Zrj

[1 − ε,ϒ + ε]S1−ρ

⊆ [1 − ε,ϒ + ε]−1Z̄•sS
ρ−1.

Similarly,

Z̄•s ∈
∑

i Zis[1 − ε,ϒ + ε]−1

R[1 − ε,ϒ + ε]−1 ⊆ N•s

R
[1 − ε,ϒ + ε][1 − ε,ϒ + ε]−1

⊆ S1−ρ−κ [1 − ε,ϒ + ε]2[1 − ε,ϒ + ε]−1

and so

(36)
Z̄•s

N•j + λB

∑

r

Zrj

Nr• + λA
∈ S−κ [1 − ε,ϒ + ε]2

[1 − ε,ϒ + ε]2 ⊆ 1
C

[( 1 − ε

ϒ + ε

)2
,

(
ϒ + ε

1 − ε

)2]
.

Next, using bounds on the coobservation counts,

(37)
1

N•j + λB

∑

r

ZrjZrs

Nr• + λA
∈ Sρ+κ−2(ZTZ)sj

[1 − ε,ϒ + ε]2 ⊆ 1
C

[1 − ε,ϒ2 + ε]
[1 − ε,ϒ + ε]2 .

Combining (36) and (37),

Mjs ∈ 1
C

[ 1 − ε

(ϒ + ε)2 −
(

ϒ + ε

1 − ε

)2
,
ϒ2 + ε

1 − ε
−

( 1 − ε

ϒ + ε

)2]
.

For any ε′ > 0, we can choose ε small enough that

Mjs ∈ C−1[
ϒ−2 − ϒ2 − ε′,ϒ2 − ϒ−2 + ε′]

and then |Mjs | ≤ (ϒ2 − ϒ−2 + ε′)/C.
Next, arguments like the preceding give |Mjj | ≤ (1 − ε′)−2(ϒ + ε′)Sρ−1 → 0. Then with

probability tending to one,
∑

j

|Mjs | ≤ ϒ2 − ϒ−2 + 2ε′.

This bound holds for all s ∈ {1,2, . . . ,C}, establishing (35).
The proof of (34) is similar. The quantity Z̄•s is replaced by (1/R)

∑
i Zis/(Ni• +λA). !

It is interesting to find the largest ϒ with ϒ2 − ϒ−2 ≤ 1. It is ((1 + 51/2)/2)1/2 .= 1.27.
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FIG. 1. The large shaded triangle is the domain of interest D for Theorem 4.3. The smaller shaded triangle
shows a region where the analogous update to a would have acceptable norm. The points marked are the ones we
look at numerically, including (0.88,0.57), which corresponds to the Stitch Fix data in Section 6.

5. Convergence and computation. In this section, we make some computations on syn-
thetic data following the probability model from Section 4. First, we study the norms of our
update matrix M(2), which affects the number of iterations to convergence. In addition to
‖ · ‖1 covered in Theorem 4.3, we also consider ‖ · ‖2, ‖ · ‖∞ and λmax(·). Then we compare
the cost to compute β̂GLS by our backfitting method with that of lmer (Bates et al. (2015)).

The problem size is indexed by S. Indices i go from 1 to R = 1Sρ2 and indices j go from
1 to C = 1Sκ2. Reasonable parameter values have ρ,κ ∈ (0,1) with ρ + κ > 1. Theorem 4.3
applies when 2ρ + κ < 2 and 3ρ + 4κ < 4. Figure 1 depicts this triangular domain of in-
terest D. There is another triangle D′ where a corresponding update for a would satisfy the
conditions of Theorem 4.3. Then D ∪ D′ is a nonconvex polygon of five sides. Figure 1 also
shows D′ \ D as a second triangular region. For points (ρ,κ) near the line ρ + κ = 1, the
matrix Z will be mostly ones unless S is very large. For points (ρ,κ) near the upper corner
(1,1), the matrix Z will be extremely sparse with each Ni• and N•j having nearly a Pois-
son distribution with mean between 1 and ϒ . The fraction of potential values that have been
observed is O(S1−ρ−κ).

Given pij , we generate our observation matrix via Zij
ind∼ Bern(pij ). These probabilities

are first generated via pij = UijS
1−ρ−κ where Uij

iid∼ U[1,ϒ] and ϒ is the largest value for
which ϒ2 − ϒ−2 ≤ 1. For small S and ρ + κ near 1, we can get some values pij > 1 and in
that case we take pij = 1.

The following (ρ,κ) combinations are of interest. First, (4/5,2/5) is the closest vertex of
the domain of interest to the point (1,1). Second, (2/5,4/5) is outside the domain of interest
for the b but within the domain for the analogous a update. Third, among points with ρ = κ ,
the value (4/7,4/7) is the farthest one from the origin that is in the domain of interest. We
also look at some points on the 45 degree line that are outside the domain of interest because
the sufficient conditions in Theorem 4.3 might not be necessary.

In our matrix norm computations, we took λA = λB = 0. This completely removes shrink-
age and will make it harder for the algorithm to converge than would be the case for the
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FIG. 2. Norm ‖M(2)‖1 of centered update matrix versus problem size S for different (ρ,κ).

positive λA and λB that hold in real data. The values of λA and λB appear in expressions
Ni• + λA and N•j + λB where their contribution is asymptotically negligible, so conserva-
tively setting them to zero will nonetheless be realistic for large data sets.

We sampled from the model 10 times at various values of S and have plotted ‖M(2)‖1
versus S on a logarithmic scale. Figure 2 shows the results. We observe that ‖M(2)‖1 is
below 1 and decreasing with S for all the examples (ρ,κ) ∈ D. This holds also for (ρ,κ) =
(0.60,0.60) /∈ D. We chose that point because it is on the convex hull of D ∪ D′.

The point (ρ,κ) = (0.40,0.80) /∈ D. Figure 2 shows large values of ‖M(2)‖1 for this case.
Those values increase with S, but remain below 1 in the range considered. This is a case
where the update from a to a would have norm well below 1 and decreasing with S, so
backfitting would converge. We do not know whether ‖M(2)‖1 > 1 will occur for larger S.

The point (ρ,κ) = (0.70,0.70) is not in the domain D covered by Theorem 4.3 and we
see that ‖M(2)‖1 > 1 and generally increasing with S as shown in Figure 3, which uses
10 replicates. This does not mean that backfitting must fail to converge. Here, we find that
‖M(2)‖2 < 1 and generally decreases as S increases. This is a strong indication that the num-
ber of backfitting iterations required will not grow with S for this (ρ,κ) combination. We
cannot tell whether ‖M(2)‖2 will decrease to zero but that is what appears to happen.

We consistently find in our computations that λmax(M
(2)) ≤ ‖M(2)‖2 ≤ ‖M(2)‖1. The

first of these inequalities must necessarily hold. For a symmetric matrix M , we know that
λmax(M) = ‖M‖2 which is then necessarily no larger than ‖M‖1. Our update matrices are
nearly symmetric but not perfectly so. We believe that explains why their L2 norms are close
to their spectral radius and also smaller than their L1 norms. While the L2 norms are empiri-
cally more favorable than the L1 norms, they are not amenable to our theoretical treatment.

We believe that backfitting will have a spectral radius well below 1 for more cases than
we can as yet prove. In addition to the previous figures showing matrix norms as S increases
for certain special values of (ρ,κ), we have computed contour maps of those norms over
(ρ,κ) ∈ [0,1] for S = 10,000. See Figure 4. Each point in our contour plots was based on an
average of 10 independent replicates.
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FIG. 3. The left panel shows ‖M(2)‖1 versus S. The right panel shows ‖M(2)‖2 versus S with a logarithmic
vertical scale. Both have (ρ,κ) = (0.7,0.7).

FIG. 4. Numerically computed matrix norms for M(2) using S = 10,000. The color code varies with the subfig-
ures.
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FIG. 5. Time for one iteration versus the number of observations, N at two points (ρ,κ). The cost for lmer is
roughly O(N3/2) in the left panel and O(N2.1) in the right panel. The costs for OLS and backfitting are O(N).

To compare the computation times for algorithms we generated Zij as above and also took
xij

iid∼ N (0, I7). That gives 7 fixed effect parameters and then the intercept makes it p = 8.
Although backfitting can run with λA = λB = 0, lmer cannot do so for numerical reasons. So
we took σ 2

A = σ 2
B = 1 and σ 2

E = 1 corresponding to λA = λB = 1. The cost per iteration does
not depend on Yij , and hence not on β either. We used β = 0.

Figure 5 shows computation times for one single iteration when (ρ,κ) = (0.52,0.52) and
when (ρ,κ) = (0.70,0.70). The time to do one iteration in lmer grows roughly like N3/2 in
the first case. For the second case, it appears to grow at the even faster rate of N2.1. Solv-
ing a system of Sκ × Sκ equations would cost S3κ = S2.1 = O(N2.1), which explains the
observed rate. This analysis would predict O(N1.56) for ρ = κ = 0.52 but that is only mini-
mally different from O(N3/2). These experiments were carried out in R on a computer with
the macOS operating system, 16 GB of memory and an Intel i7 processor. Each backfitting
iteration entails solving (17) along with the fixed effects.

The cost per iteration for backfitting follows closely to the O(N) rate predicted by the
theory. OLS only takes one iteration and it is also of O(N) cost. In both of these cases,
‖M(2)‖2 is bounded away from one so the number of backfitting iterations does not grow
with S. For ρ = κ = 0.52, backfitting took 4 iterations to converge for the smaller values
of S and 3 iterations for the larger ones. For ρ = κ = 0.70, backfitting took 6 iterations for
smaller S and 4 or 5 iterations for larger S. In each case, our convergence criterion was a
relative change of 10−8 as described in Section 6.3. Further backfitting to compute BLUPs
â and b̂ given β̂GLS took at most 5 iterations for ρ = κ = 0.52 and at most 10 iterations for
ρ = κ = 0.7. In the second example, lme4 did not reach convergence in our time window so
we ran it for just 4 iterations to measure its cost per iteration.

6. Example: Ratings from Stitch Fix. We illustrate backfitting for GLS on some data
from Stitch Fix. Stitch Fix sells clothing. They mail their customers a sample of items. The
customers may keep and purchase any of those items that they want, while returning the
others. It is valuable to predict the extent to which a customer will like an item, not just
whether they will purchase it. Stitch Fix has provided us with some of their client ratings
data. It was anonymized, void of personally identifying information, and as a sample it does
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not reflect their total numbers of clients or items at the time they provided it. It is also from
2015. While it does not describe their current business, it is a valuable data set for illustrative
purposes.

The sample sizes for this data are as follows. We received N = 5,000,000 ratings by
R = 762,752 customers on C = 6318 items. These values of R and C correspond to the point
(0.88,0.57) in Figure 1. Thus C/N

.= 0.00126 and R/N
.= 0.153. The data are not dominated

by a single row or column because maxi Ni•/N
.= 9 × 10−6 and maxj N•j /N

.= 0.0143. The
data are sparse because N/(RC)

.= 0.001.

6.1. An illustrative linear model. The response Yij is a rating on a ten-point scale of
the satisfaction of customer i with item j . The data come with features about the clients and
items. In a business setting, one would fit and compare possibly dozens of different regression
models to understand the data. Our purpose here is to study large scale GLS and compare it
to ordinary least squares (OLS) and so we use just one model, not necessarily one that we
would have settled on. For that purpose, we use the same model that was used in Gao and
Owen (2020). It is not chosen to make OLS look as bad as possible. Instead it is potentially
the first model one might look at in a data analysis. For client i and item j ,

Yij = β0 + β1matchij + β2I{client edgy}i + β3I{item edgy}j
+ β4I{client edgy}i ∗ I{item edgy}j + β5I{client boho}i
+ β6I{item boho}j + β7I{client boho}i ∗ I{item boho}j
+ β8 materialj + ai + bj + eij .

Here, materialj is a categorical variable that is implemented via indicator variables for
each type of material other than the baseline. Following Gao and Owen (2020), we chose
‘Polyester’, the most common material, as the baseline. Some customers and some items
were given the adjective “edgy” in the data set. Another adjective was “boho,” short for “Bo-
hemian.” The variable matchij ∈ [0,1] is an estimate of the probability that the customer
keeps the item, made before the item was sent. The match score is a prediction from a base-
line model and is not representative of all algorithms used at Stitch Fix. All told, the model
has p = 30 parameters.

6.2. Estimating the variance parameters. We use the method of moments method from
Gao and Owen (2020) to estimate θT = (σ 2

A,σ 2
B,σ 2

E) in O(N) computation. That is in turn
based on the method that Gao and Owen (2017) use in the intercept only model where Yij =
µ + ai + bj + eij . For that model, they set

UA =
∑

i

∑

j

Zij

(
Yij − 1

Ni•

∑

j ′
Zij ′Yij ′

)2
,

UB =
∑

j

∑

i

Zij

(
Yij − 1

N•j

∑

i′
Zi′jYi′j

)2
and

UE = N
∑

ij

Zij

(
Yij − 1

N

∑

i′j ′
Zi′j ′Yi′j ′

)2
.

These are, respectively, sums of within row sums of squares, sums of within column sums of
squares and a scaled overall sum of squares. Straightforward calculations show that

E(UA) = (
σ 2

B + σ 2
E

)
(N − R),

E(UB) = (
σ 2

A + σ 2
E

)
(N − C) and
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E(UE) = σ 2
A

(
N2 −

∑

i

N2
i•

)
+ σ 2

B

(
N2 −

∑

j

N2
•j

)
+ σ 2

E

(
N2 − N

)
.

By matching moments, we can estimate θ by solving the 3 × 3 linear system



0 N − R N − R

N − C 0 N − C

N2 − ,N2
i N2 − ,N2

j N2 − N









σ 2
A

σ 2
B

σ 2
E



 =



UA

UB

UE





for θ .
Following Gao and Owen (2017), we note that ηij = Yij − xT

ijβ = ai + bj + eij has the
same parameter θ as Yij have. We then take a consistent estimate of β , in this case β̂OLS

that Gao and Owen (2017) show is consistent for β , and define η̂ij = Yij − xT
ij β̂OLS. We then

estimate θ by the above method after replacing Yij by η̂ij . For the Stitch Fix data, we obtained
σ̂ 2

A = 1.14 (customers), σ̂ 2
B = 0.11 (items) and σ̂ 2

E = 4.47.

6.3. Computing β̂GLS. The estimated coefficients β̂GLS and their standard errors are pre-
sented in a table in the Appendix. Open-source R code at https://github.com/G28Sw/backfit_
code does these computations. Here is a concise description of the algorithm we used:

(1) Compute β̂OLS via (2).
(2) Get residuals η̂ij = Yij − xT

ij β̂OLS.
(3) Compute σ̂ 2

A, σ̂ 2
B and σ̂ 2

E by the method of moments on η̂ij .
(4) Compute X̃ = (IN − S̃G)X using doubly centered backfitting M(3).
(5) Compute β̂GLS by (28).
(6) If we want BLUPs â and b̂ backfit Y − X β̂GLS to get them.
(7) Compute ĉov(β̂GLS) by plugging σ̂ 2

A, σ̂ 2
B and σ̂ 2

E into V at (28).

Stage k of backfitting provides (S̃GX )(k). We iterate until

‖(S̃GX )(k+1) − (S̃GX )(k)‖2
F

‖(S̃GX )(k)‖2
F

< ε,

where ‖ · ‖F is the Frobenius norm (root mean square of all elements). Our numerical results
use ε = 10−8.

When we want ĉov(β̂GLS) then we need to use a backfitting strategy with a symmetric
smoother S̃G. This holds for M(0), M(2) and M(3) but not M(1). After computing β̂GLS, one
can return to step 2, form new residuals η̂ij = Yij − xT

ij β̂GLS and continue through steps 3–7.
We have seen small differences from doing this.

6.4. Quantifying inefficiency and naivete of OLS. In the Introduction, we mentioned two
serious problems with the use of OLS on crossed random effects data. The first is that OLS is
naive about correlations in the data and this can lead it to severely underestimate the variance
of β̂ . The second is that OLS is inefficient compared to GLS by the Gauss–Markov theo-
rem. Let β̂OLS and β̂GLS be the OLS and GLS estimates of β , respectively. We can compute
their corresponding variance estimates ĉovOLS(β̂OLS) and ĉovGLS(β̂GLS). We can also find
ĉovGLS(β̂OLS), the variance under our GLS model of the linear combination of Yij values
that OLS uses. This section explore them graphically.

We can quantify the naivete of OLS via the ratios ĉovGLS(β̂OLS,j )/ĉovOLS(β̂OLS,j ) for j =
1, . . . , p. Figure 6 plots these values. They range from 1.75 to 345.28 and can be interpreted
as factors by which OLS naively overestimates its sample size. The largest and second largest

https://github.com/G28Sw/backfit_code
https://github.com/G28Sw/backfit_code
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FIG. 6. OLS naivete ĉovGLS(β̂OLS,j )/ĉovOLS(β̂OLS,j ) for coefficients βj in the Stitch Fix data.

ratios are for material indicators corresponding to “Modal” and “Tencel,” respectively. These
appear to be two names for the same product with Tencel being a trademarked name for
Modal fibers (made from wood). We can also identify the linear combination of β̂OLS for
which OLS is most naive. We maximize the ratio xTĉovGLS(β̂OLS)x/xTĉovOLS(β̂OLS)x over
x -= 0. The resulting maximal ratio is the largest eigenvalue of

ĉovOLS(β̂OLS)−1ĉovGLS(β̂OLS)

and it is about 361 for the Stitch Fix data.
We can quantify the inefficiency of OLS, coefficient by coefficient, via the ratio

ĉovGLS(β̂OLS,j )/ĉovGLS(β̂GLS,j ). Figure 7 plots these values. They range from just over 1 to
50.6 and can be interpreted as factors by which using OLS reduces the effective sample size.
There is a clear outlier: the coefficient of the match variable is very inefficiently estimated
by OLS. The second largest inefficiency factor is for the intercept term. The most inefficient
linear combination of β̂ reaches a variance ratio of 52.6, only slightly more inefficient than
the match coefficient alone.

The variables for which OLS is more naive tend to also be the variables for which it is
most inefficient. Figure 8 plots these quantities against each other for the 30 coefficients in
our model.

6.5. Convergence speed of backfitting. The Stitch Fix data have row and column sample
sizes that are much more uneven than our sampling model for Z allows. Accordingly, we
cannot rely on Theorem 4.3 to show that backfitting must converge rapidly for it.

The sufficient conditions in that theorem may not be necessary and we can compute our
norms and the spectral radius on the update matrices for the Stitch Fix data using some sparse

FIG. 7. OLS inefficiency ĉovGLS(β̂OLS,j )/ĉovGLS(β̂GLS,j ) for coefficients βj in the Stitch Fix data.
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FIG. 8. Inefficiency vs. naivete for OLS coefficients in the Stitch Fix data.

matrix computations. Here, Z ∈ {0,1}762,752×6318, so M(k) ∈ R6318×6318 for k ∈ {0,1,2,3}.
The results are





∥∥M(0)
∥∥

1
∥∥M(0)

∥∥
2

∣∣λmax
(
M(0))∣∣

∥∥M(1)
∥∥

1
∥∥M(1)

∥∥
2

∣∣λmax
(
M(1))∣∣

∥∥M(2)
∥∥

1
∥∥M(2)

∥∥
2

∣∣λmax
(
M(2))∣∣

∥∥M(3)
∥∥

1
∥∥M(3)

∥∥
2

∣∣λmax
(
M(3))∣∣



 =





31.9525 1.4051 0.64027
11.2191 0.4512 0.33386
8.9178 0.4541 0.33407
9.2143 0.4546 0.33377



 .

All the updates have spectral radius comfortably below one. The centered updates have L2
norm below one but the uncentered update does not. Their L2 norms are somewhat larger than
their spectral radii because those matrices are not quite symmetric. The two largest eigenvalue
moduli for M(0) are 0.6403 and 0.3337 and the centered updates have spectral radii close to
the second largest eigenvalue of M(0). This is consistent with an intuitive explanation that the
space spanned by a column of N ones that is common to the columns spaces of ZA and ZB

is the biggest impediment to M(0) and that all three centering strategies essentially remove
it. The best spectral radius is for M(3), which employs two principled centerings, although in
this data set it made little difference. Our backfitting algorithm took 8 iterations when applied
to X and 12 more to compute the BLUPs. We used a convergence threshold of 10−8.

7. Discussion. We have shown that the cost of our backfitting algorithm is O(N) under
strict conditions that are nonetheless much more general than having Ni• = N/R for all
i = 1, . . . ,R and N•j = N/C for all j = 1, . . . ,C as in Papaspiliopoulos, Roberts and Zanella
(2020). As in their setting, the backfitting algorithm scales empirically to much more general
problems than those for which rapid convergence can be proved. Our contour map of the
spectral radius of the update matrix M shows that this norm is well below 1 over many more
(ρ,κ) pairs that our theorem covers. The difficulty in extending our approach to those settings
is that the spectral radius is a much more complicated function of the observation matrix Z

than the L1 norm is.
Theorem 4 of Papaspiliopoulos, Roberts and Zanella (2020) has the rate of convergence

for their collapsed Gibbs sampler for balanced data. It involves an auxiliary convergence rate
ρaux defined as follows. Consider the Gibbs sampler on (i, j) pairs where given i a random
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j is chosen with probability Zij/Ni• and given j a random i is chosen with probability
Zij/N•j . That Markov chain has invariant distribution Zij/N on (i, j) pairs and ρaux is the
rate at which the chain converges. In our notation,

ρPRZ = Nσ 2
A

Nσ 2
A + Rσ 2

E

× Nσ 2
B

Nσ 2
B + Cσ 2

E

× ρaux.

In sparse data, ρPRZ ≈ ρaux and under our asymptotic setting |ρaux − ρPRZ| → 0. Papaspilio-
poulos, Roberts and Zanella (2020) remark that ρaux tends to decrease as the amount of data
increases. When it does, then their algorithm takes O(1) iterations and costs O(N). They
explain that ρaux should decrease as the data set grows because the auxiliary process then
gets greater connectivity. That connectivity increases for bounded R and C with increasing
N and from their notation, allowing multiple observations per (i, j) pair it seems like they
have this sort of infill asymptote in mind. For sparse data from electronic commerce, we think
that an asymptote like the one we study where R, C and N all grow is a better description. It
would be interesting to see how ρaux develops under such a model.

In Section 5.3, Papaspiliopoulos, Roberts and Zanella (2020) state that the convergence
rate of the collapsed Gibbs sampler is O(1) regardless of the asymptotic regime. That section
is about a more stringent “balanced cells” condition where every (i, j) combination is ob-
served the same number of times, so it does not describe the “balanced levels” setting where
Ni• = N/R and N•j = N/C. Indeed they provide a counterexample in which there are two
disjoint communities of users and two disjoint sets of items and each user in the first com-
munity has rated every item in the first item set (and no others) while each user in the second
community has rated every item in the second item set (and no others). That configuration
leads to an unbounded mixing time for collapsed Gibbs. It is also one where backfitting takes
an increasing number of iterations as the sample size grows.

There are interesting parallels between methods to sample a high-dimensional Gaussian
distribution with covariance matrix , and iterative solvers for the system ,x = b. See
Goodman and Sokal (1989) and Roberts and Sahu (1997) for more on how the convergence
rates for these two problems coincide. We found that backfitting with one or both updates cen-
tered worked much better than uncentered backfitting. Papaspiliopoulos, Roberts and Zanella
(2020) used a collapsed sampler that analytically integrated out the global mean of their
model in each update of a block of random effects.

Our approach treats σ 2
A, σ 2

B and σ 2
E as nuisance parameters. We plug in a consistent

method of moments based estimator of them in order to focus on the backfitting iterations.
In Bayesian computations, maximum a posteriori estimators of variance components under
noninformative priors can be problematic for hierarchical models Gelman (2006), and so
perhaps maximum likelihood estimation of these variance components would also have been
challenging.

Whether one prefers a GLS estimate or a Bayesian one depends on context and goals. We
believe that there is a strong computational advantage to GLS for large data sets. The cost of
one backfitting iteration is comparable to the cost to generate one more sample in the MCMC.
We may well find that only a dozen or so iterations are required for convergence of the GLS.
A Bayesian analysis requires a much larger number of draws from the posterior distribution
than that. For instance, Gelman and Shirley (2011) recommend an effective sample size of
about 100 posterior draws, with autocorrelations requiring a larger actual sample size. Vats,
Flegal and Jones (2019) advocate even greater effective sample sizes.

It is usually reasonable to assume that there is a selection bias underlying which data points
are observed. Accounting for any such selection bias must necessarily involve using infor-
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mation or assumptions from outside the data set at hand. We expect that any approach to take
proper account of informative missingness must also make use of solutions to GLS perhaps
after reweighting the observations. Before one develops any such methods, it is necessary to
first be able to solve GLS without regard to missingness.

Many of the problems in electronic commerce involve categorical outcomes, especially
binary ones, such as whether an item was purchased or not. Generalized linear mixed models
are then appropriate ways to handle crossed random effects, and we expect that the progress
made here will be useful for those problems.

APPENDIX

Table 1 shows results of OLS and GLS regression for the Stitch Fix data in Section 6.
OLS is estimated to be naive when ŜEOLS(β̂OLS) < ŜEGLS(β̂OLS) and inefficient when
ŜEGLS(β̂OLS) > ŜEGLS(β̂GLS). Estimates that are more than double their corresponding stan-
dard error get an asterisk.

TABLE 1
Stitch Fix regression results

β̂OLS ŜEOLS(β̂OLS) ŜEGLS(β̂OLS) β̂GLS ŜEGLS(β̂GLS)

Intercept 4.635∗ 0.005397 0.05148 5.103∗ 0.01092
Match 5.048∗ 0.01174 0.1297 3.442∗ 0.01823
I{client edgy} 0.001020 0.002443 0.004444 0.003041 0.003550
I{item edgy} −0.3358∗ 0.004253 0.03307 −0.3515∗ 0.01375
I{client edgy}
∗I{item edgy} 0.3925∗ 0.006229 0.01233 0.3793∗ 0.005916
I{client boho} 0.1386∗ 0.002264 0.004211 0.1296∗ 0.003356
I{item boho} −0.5499∗ 0.005981 0.02713 −0.6266∗ 0.01485
I{client boho}
∗I{item boho} 0.3822∗ 0.007566 0.01001 0.3763∗ 0.007123
Acrylic −0.06482∗ 0.003778 0.03371 −0.005360 0.01909
Angora −0.01262 0.007848 0.08530 0.07486 0.05177
Bamboo −0.04593 0.06215 0.2096 0.03251 0.1535
Cashmere −0.1955∗ 0.02484 0.1414 0.008930 0.1048
Cotton 0.1752∗ 0.003172 0.04220 0.1033∗ 0.01612
Cupro 0.5979∗ 0.3016 0.4519 0.2089 0.4363
Faux Fur 0.2759∗ 0.02008 0.07694 0.2749∗ 0.06691
Fur −0.2021∗ 0.03121 0.1388 −0.07924 0.1182
Leather 0.2677∗ 0.02482 0.07759 0.1674∗ 0.06545
Linen −0.3844∗ 0.05632 0.2429 −0.08658 0.1499
Modal 0.002587 0.009775 0.1816 0.1388∗ 0.05804
Nylon 0.03349∗ 0.01552 0.08878 0.08174 0.05751
Patent Leather −0.2359 0.1800 0.3838 −0.3764 0.3771
Pleather 0.4163∗ 0.008916 0.08774 0.3292∗ 0.04468
PU 0.4160∗ 0.008225 0.07989 0.4579∗ 0.03737
PVC 0.6574∗ 0.06545 0.3462 0.9688∗ 0.3441
Rayon −0.01109∗ 0.002951 0.04074 0.05155∗ 0.01329
Silk −0.1422∗ 0.01317 0.08907 −0.1828∗ 0.04871
Spandex −0.3916∗ 0.00931 0.1373 0.4140∗ 0.1141
Tencel 0.4966∗ 0.01729 0.1712 0.1234∗ 0.05982
Viscose 0.04066∗ 0.006953 0.08519 −0.02259 0.03145
Wool −0.06021∗ 0.006611 0.07211 −0.05883 0.03319
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