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Regression models with crossed random effect errors can be very expen-
sive to compute. The cost of both generalized least squares and Gibbs sam-
pling can easily grow as N 3/2 (or worse) for N observations. Papaspiliopou-
los, Roberts and Zanella (Biometrika 107 (2020) 25-40) present a collapsed
Gibbs sampler that costs O(N), but under an extremely stringent sampling
model. We propose a backfitting algorithm to compute a generalized least
squares estimate and prove that it costs O(N). A critical part of the proof
is in ensuring that the number of iterations required is O (1), which follows
from keeping a certain matrix norm below 1 — § for some § > 0. Our condi-
tions are greatly relaxed compared to those for the collapsed Gibbs sampler,
though still strict. Empirically, the backfitting algorithm has a norm below
1 — & under conditions that are less strict than those in our assumptions. We
illustrate the new algorithm on a ratings data set from Stitch Fix.

1. Introduction. To estimate a regression when the errors have a nonidentity covariance
matrix, we usually turn first to generalized least squares (GLS). Somewhat surprisingly, GLS
proves to be computationally challenging in the very simple setting of the unbalanced crossed
random effects models that we study here. For that problem, the cost to compute the GLS
estimate on N data points grows at best like O (N>/?) under the usual algorithms. If we ad-
ditionally assume Gaussian errors, then Gao and Owen (2020) show that even evaluating the
likelihood one time costs at least a multiple of N3/2. These costs make the usual algorithms
for GLS infeasible for large data sets such as those arising in electronic commerce.

In this paper, we present an iterative algorithm based on a backfitting approach from Buja,
Hastie and Tibshirani (1989). This algorithm is known to converge to the GLS solution. The
cost of each iteration is O(N) and so we also study how the number of iterations grows
with N.

The crossed random effects model we consider has

(1) Yij=xp+ai+bj+ej, 1<i<R1<j=<C

for random effects a; and b; and an error ¢;; with a fixed effects regression parameter g € R”
. iid iid iid
for the covariates x;; € R”. We assume that a; ~ (0, af‘), b ~ (0, al%), and ¢;; ~ (0, aé) are

all independent. It is thus a mixed effects model in which the random portion has a crossed
structure. The GLS estimate is also the maximum likelihood estimate (MLE), when a;, b;
and ¢;; are Gaussian. Because we assume that p is fixed as N grows, we often leave p out of
our cost estimates, giving instead the complexity in N.

The GLS estimate ,éGLS for crossed random effects can be efficiently estimated if all R x C
values are available. Our motivating examples involve ratings data where R people rate C
items and then it is usual that the data are very unbalanced with a haphazard observational
pattern in which only N <« R x C of the (x;;, Y;;) pairs are observed. The crossed random
effects setting is significantly more difficult than a hierarchical model with just a; + ¢;; but
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no b; term. Then the observations for index j are “nested within” those for each level of
index i. The result is that the covariance matrix of all observed Y;; values has a block diagonal
structure allowing GLS to be computed in O (N) time.

Hierarchical models are very well suited to Bayesian computation (Gelman and Hill
(2006)). Crossed random effects are a much greater challenge. Gao and Owen (2017) find
that the Gibbs sampler can take O (N !/2) iterations to converge to stationarity, with each iter-
ation costing O (N) leading once again to O (N3/?) cost. For more examples where the costs
of solving equations versus sampling from a covariance attain the same rate, see Goodman
and Sokal (1989) and Roberts and Sahu (1997). As further evidence of the difficulty of this
problem, the Gibbs sampler was one of nine MCMC algorithms that Gao and Owen (2017)
found to be unsatisfactory. Furthermore, Bates et al. (2015) removed the mcmcsamp func-
tion from the R package Ime4 because it was considered unreliable even for the problem of
sampling the posterior distribution of the parameters from previously fitted models, and even
for those with random effects variances near zero.

Papaspiliopoulos, Roberts and Zanella (2020) presented an exception to the high cost of a
Bayesian approach for crossed random effects. They propose a collapsed Gibbs sampler that
can potentially mix in O (1) iterations. To prove this rate, they make an extremely stringent
assumption that every index i =1, ..., R appears in the same number N /C of observed data
points and similarly every j = 1,..., C appears in N/R data points. Such a condition is
tantamount to requiring a designed experiment for the data and it is much stronger than what
their algorithm seems to need in practice. Under that condition, their mixing rate asymptotes
to a quantity p,yx, described in our discussion section, that in favorable circumstances is
O(1). They find empirically that their sampler has a cost that scales well in many data sets
where their balance condition does not hold.

In this paper, we study an iterative linear operation, known as backfitting, for GLS. Each
iteration costs O (). The speed of convergence depends on a certain matrix norm of that
iteration, which we exhibit below. If the norm remains bounded strictly below 1 as N — oo,
then the number of iterations to convergence is O(1). We are able to show that the matrix
norm is O (1) with probability tending to one, under conditions where the number of obser-
vations per row (or per column) is random and even the expected row or column counts may
vary, though in a narrow range. While this is a substantial weakening of the conditions in
Papaspiliopoulos, Roberts and Zanella (2020), it still fails to cover many interesting cases.
Like them, we find empirically that our algorithm scales much more broadly than under the
conditions for which scaling is proved.

We suspect that the computational infeasibility of GLS leads many users to use ordi-
nary least squares (OLS) instead. OLS has two severe problems. First, it is inefficient with
var(BoLs) larger than var(BgrLs). This is equivalent to OLS ignoring some possibly large
fraction of the information in the data. Perhaps more seriously, OLS is naive. It produces an
estimate of Var(BOLs) that can be too small by a large factor. That amounts to overestimating
the quantity of information behind Bos. also by a potentially large factor.

The naivete of OLS can be countered by using better variance estimates. One can bootstrap
it by resampling the row and column entities as in Owen (2007). There is also a version of
Huber—White variance estimation for this case in econometrics. See, for instance, Cameron,
Gelbach and Miller (2011). While these methods counter the naivete of OLS, the inefficiency
of OLS remains.

The method of moments algorlthm 1n Gao and Owen (2020) gets consistent asymptotically
normal estimates of 8, o7 e O'B and O'E It produces a GLS estimate ,3 that is more efficient
than OLS but still not fully efficient because it accounts for correlations due to only one of the
two crossed random effects. While inefficient, it is not naive because its estimate of var(ﬁ)
properly accounts for variance due to a;, b; and ¢;;.
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In this paper, we get a GLS estimate ,3 that takes account of all three variance components,
making it efficient. We also provide an estimate of var(,[% ) that accounts for all three compo-
nents, so our estimate is not naive. Our algorithm requires consistent estimates of the variance
components of\, alzg and og in computing ,3 and \TETr(,é ). We use the method of moments esti-
mators from Gao and Owen (2017) that can be computed in O (N) work. By Gao and Owen
((2017), Theorem 4.2), these estimates of cr/%, 0123 and 0125 are asymptotically uncorrelated and
each of them has the same asymptotic variance it would have had were the other two variance
components equal to zero. It is not known whether they are optimally estimated, much less
optimal subject to an O (N) cost constraint. The variance component estimates are known to
be asymptotically normal (Gao (2017)).

The rest of this paper is organized as follows. Section 2 introduces our notation and as-
sumptions for missing data. Section 3 presents the backfitting algorithm from Buja, Hastie
and Tibshirani (1989). That algorithm was defined for smoothers, but we are able to cast the
estimation of random effect parameters as a special kind of smoother. Section 4 proves our
result about backfitting being convergent with a probability tending to one as the problem size
increases. Section 5 shows numerical measures of the matrix norm of the backfitting operator.
It remains bounded below and away from one under more conditions than our theory shows.
We find that even one iteration of the Imer function in Ime4 package Bates et al. (2015) has a
cost that grows like N3/2 in one setting and like N%! in another, sparser one. The backfitting
algorithm has cost O(N) in both of these cases. Section 6 illustrates our GLS algorithm on
some data provided to us by Stitch Fix. These are customer ratings of items of clothing on
a ten-point scale. Section 7 has a discussion of these results. An Appendix contains some
regression output for the Stitch Fix data.

2. Missingness. We adopt the notation from Gao and Owen (2020). We let Z;; € {0, 1}
take the value 1 if (x;;, ¥;;) is observed and O otherwise, fori =1,...,Rand j=1,...,C.
In many of the contexts, we consider, the missingness is not at random and is potentially
informative. Handling such problems is outside the scope of this paper, apart from a brief
discussion in Section 7. It is already a sufficient challenge to work without informative miss-
ingness.

The matrix Z € {0, 1}¥ *C with elements Z; j has N;, = chzl Z;j observations in ‘row
i’and N,; = Z,-R:1 Z;; observations in “column j.” We often drop the limits of summation
so that i is always summed over 1,..., R and j over 1,...,C. When we need additional
symbols for row and column indices, we use r for rows and s for columns. The total sample
size is N :Zi Zj Z,'j = Zi Ni., =Zj N,j.

There are two coobservation matrices, Z'Z and ZZ". Here, (ZTZ)js =) ZijZ;s gives
the number of rows in which data from both columns j and s were observed, while (ZZT);, =
> j ZijZy; gives the number of columns in which data from both rows i and r were observed.

In our regression models, we treat Z;; as nonrandom. We are conditioning on the actual
pattern of observations in our data. When we study the rate at which our backfitting algorithm
converges, we consider Z;; drawn at random. That is, the analyst is solving a GLS condition-
ally on the pattern of observations and missingness, while we study the convergence rates
that analyst will see for data drawn from a missingness mechanism defined in Section 4.2.

If we place all of the Y;; into a vector ) € RY and x;j compatibly into a matrix X € RN*P,
then the naive and inefficient OLS estimator is

(2) foLs = (XTx)'xTy.
This can be computed in O (Np?) work. We prefer to use the GLS estimator

3) Bors = (XTV1a) Ty Y,
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where ¥V € RV*N contains all of the cov(Y; j» Yrs) in an ordering compatible with X and ). A

naive algorithm costs O (N?) to solve for /§GLS. It can actually be solved through a Cholesky
decomposition of an (R + C) x (R + C) matrix (Searle, Casella and McCulloch (1992)).
That has cost O(R? + C?). Now N < RC, with equality only for completely observed data.
Therefore, max(R, C) > VN, and so R?® + C3 > N3/2. When the data are sparsely enough
observed it is possible that min(R, C) grows more rapidly than N'!/2. In a numerical example,
in Section 5 we have min(R, C) growing like N 0'79. In a hierarchical model, with @; but no
bj we would find V to be block diagonal and then BgLs could be computed in O (N) work.
A reviewer reminds us that it has been known since Strassen (1969) that systems of equa-
tions can be solved more quickly than cubic time. Despite that, current software is still domi-
nated by cubic time algorithms. Also none of the known solutions are quadratic and so in our
setting the cost would be at least a multiple of (R + C)?*7 for some y > 0, and hence not

O(N).
We can write our crossed effects model as
4 V=XB+Zra+Zpb+e

for matrices Z4 € {0, 1}V*R and Zp € {0, 1}V *C. The i’th column of Z, has ones for all
of the N observations that come from row i and zeroes elsewhere. The definition of Zp is
analogous. The observation matrix can be written Z = Z} Zp. The vector e has all N values
of e;; in compatible order. Vectors a and b contain the row and column random effects a; and
b . In this notation,

(5) V=24Z}0}+ ZpZLog + INoF,
where I is the N x N identity matrix.
Our main computational problem is to get a value for i/ = V~'X € RVN*?_ To do that, we

iterate toward a solution # € RV of Vu = x, where x € RV is one of the p columns of X.
After that, finding

A -1
(6) Bars = (XTu) " (VTU)"
is not expensive, because XU/ € RP*P and we suppose that p is not large.
If the data ordering in ) and elsewhere sorts by index i, breaking ties by index j, then
ZAZX € {0, 1}¥*N is a block matrix with R blocks of ones of size N;. x N;. along the
diagonal and zeroes elsewhere. The matrix Zp Zg will not be block diagonal in that ordering.

Instead PZgZ} PT will be block diagonal with N,; x N.; blocks of ones on the diagonal,
for a suitable N x N permutation matrix P.

3. Backfitting algorithms. Our first goal is to develop computationally efficient ways to
solve the GLS problem (6) for the linear mixed model (4). We use the backfitting algorithm
that Hastie and Tibshirani (1990) and Buja, Hastie and Tibshirani (1989) use to fit additive
models. We write Vin (5) as 02(Z4Z} /Aa + ZpZ}/Ap + Iy) with kg =02 /05 and Ap =
‘71% / 012;, and define W = O’%V_l. Then the GLS estimate of § is

(7 PoLs = arg min(y — X)W - Xp) = @Twx)T aTwy

and cov(,éGLs) = a]% xTwa)-L.
It is well known (e.g., Robinson (1991)) that we can obtain ,3GLS by solving the following
penalized least-squares problem:

(8) ggr;,ny—Xﬁ—ZAa—szHZHAnanZ+>»B||b||2.

Then B = BGLS and @ and b are the best linear unbiased prediction (BLUP) estimates of the
random effects. This derivation works for any number of factors, but it is instructive to carry
it through initially for one.
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3.1. One factor. For a single factor, we simply drop the Zpb term from (4) to get
y = XIB + ZAa +e.

Then V = cov(Za + e) = aiZAZI‘ + a}%IN, and W = aéV‘l as before. The penalized
least squares problem is to solve

©) min ||y — X — Zaall® + Aallall”

We show the details as we need them for a later derivation.
The normal equations from (9) yield

(10) 0=XxT(Y—XB—Z4a) and

(11) 0=Z1 (Y — XB — Z48) — raa.

Solving (11) for @ and multiplying the solution by Z4 yields
Zpa=Z4(ZNZa+aalg) 2LV - XB) =S4V — XP).

for an N x N ridge regression “smoother matrix” S4. As we explain below, this smoother
matrix implements shrunken within-group means. Then substituting Z4a into equation (10)
yields

(12) B=(XT(Un—S)X) ' XTUy — Sa).

Using the Sherman—Morrison—Woodbury (SMW) identity, one can show that W = Iy — Sy
and hence ,3 above equals ﬁGLs from (7). This is not in itself a new discovery; see, for
example, Robinson (1991) or Hastie and Tibshirani (1990), Section 5.3.3.

To compute the solution in (12), we need to compute S4) and S4X. The heart of the
computation in SpY is (£} Z4 + ralg) "' Z] Y. But Z} Z4 = diag(N1., Na., ..., Ng.) and
we see that all we are doing is computing an R-vector of shrunken means of the elements
of ) at each level of the factor A; the ith element is ) _ j ZijYij/(Ni. + Aa). This involves a
single pass through the N elements of Y, accumulating the sums into R registers, followed
by an elementwise scaling of the R components. Then premultiplication by Z4 simply puts
these R shrunken means back into an N-vector in the appropriate positions. The total cost
is O(N). Likewise S4 X does the same separately for each of the columns of X'. Hence the
entire computational cost for (12) is O (N pz), the same order as regression on X.

What is also clear is that the indicator matrix Z4 is not actually needed here; instead all
we need to carry out these computations is the factor vector f4 that records the level of factor
A for each of the N observations. In the R language (R Core Team (2015)), the following
pair of operations does the computation:

hat_a = tapply(y,fA,sum)/(table(fA)+lambdaa)

hat_y = hat_al[fA]
where £A is a categorical variable (factor) f4 of length N containing the row indices i in an
order compatible with ) € RN (represented as y) and lambdaA is g = af‘ / aé.

3.2. Two factors. With two factors, we face the problem of incompatible block diag-
onal matrices discussed in Section 2. Define Z5 = (Z£4 : Z) (R + C columns), D, =
diag(Aalg, Aplc), and gT =(a’', bT). Then solving (8) is equivalent to

(13) min |V — XB — Z6g|* + g Dig-
A derivation similar to that used in the one-factor case gives

(14) B=HgsY for Hors = (XT(Iy —Sc)X) ' ATy — S6).
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where the hat matrix Hgrs is written in terms of a smoother matrix
(15) Se=Z26(2L26+ D)) ' 2L,

We can again use SMW to show that /Iy — Sg = WV and hence the solution /§ = ﬁGLs in (7).
But in applying S¢ we do not enjoy the computational simplifications that occurred in the
one factor case, because

To  (ZAZa ZiZB\ _ (diag(N:) z
2626 = -\ 7 ’

ZLZs ZLEZp diag(N. ;)

where Z € {0, 1}8%C is the observation matrix which has no special structure. Therefore, we
need to invert an (R + C) x (R + C) matrix to apply Sg, and hence to solve (14), at a cost
of at least O (N3/?) (see Section 2).

Rather than group Z4 and Zp, we keep them separate, and develop an algorithm to apply
the operator S efficiently. Consider a generic response vector R (such as ) or a column of
X) and the optimization problem

(16) min||R — Zaa - Zpb||* + rallal® + 156>

Using S¢ defined at (15) in terms Qf the indicator variables Zg € {0, 1}V *(B+0O) it is
clear that the fitted values are given by R = SgR. Solving (16) would result in two blocks of
estimating equations similar to equations (10) and (11). These can be written

Z48=84(R— Zpb) and
(17) .
Zpb=Sp(R — Z44),

where S4 = Z4 (ZX Za+ial R)_IZX is again the ridge regression smoothing matrix for row
effects and similarly Sp = Zp (ZIEZB + A Ic)*IZlT; the smoothing matrix for column ef-
fects. We solve these equations iteratively by block coordinate descent, also known as back-
fitting. The iterations converge to the solution of (16) (Buja, Hastie and Tibshirani (1989),
Hastie and Tibshirani (1990)).

It is evident that S4, Sg € RV*N are both symmetric matrices. It follows that the limit-
ing smoother Sg formed by combining them is also symmetric. See Hastie and Tibshirani
((1990), page 120). We will need this result later for an important computational shortcut.

Here, the simplifications we enjoyed in the one-factor case once again apply. Each step
applies its operator to a vector (the terms in parentheses on the right-hand side in (17)).
For both S4 and Sp, these are simply the shrunken-mean operations described for the one-
factor case, separately for factor A and B each time. As before, we do not need to actually
construct Zp, but simply use a factor fp that records the level of factor B for each of the N
observations.

The above description holds for a generic response R; we apply that algorithm (in parallel)
to ) and each column of X to obtain the quantities S X and Sg) that we need to compute
HgrsY in (14). Now solving (14) is O(Np?) plus a negligible O (p3) cost. These computa-
tions deliver /§GLS§ if the BLUP estimates @ and b are also required, the same algorithm can
be applied to the response ) — X ,3GLS, retaining the a and b at the final iteration. We can
also write

(18) cov(BoLs) = o (X (Iy — Se)X) ™.

It is also clear that we can trivially extend this approach to accommodate any number of
factors.



566 S. GHOSH, T. HASTIE AND A. B. OWEN

3.3. Centered operators. The matrices Z4 and Zp both have row sums all ones, since
they are factor indicator matrices (“one-hot encoders”). This creates a nontrivial intersec-
tion between their column spaces, and that of X’ since we always include an intercept that
can cause backfitting to converge more slowly. In this section, we show how to counter this
intersection of column spaces to speed convergence. We work with this two-factor model,

(19) min || = X5 — Z4a - Zpb|* + Aallall* + A 1b]%.

LEMMA 3.1. If X in model (19) includes a column of ones (intercept), and ,4 > 0 and
Ap > 0, then the solutions for a and b satisfy ZiRzl a; =0and ZJC:1 bj=0.

PROOF. It suffices to show this for one factor and with X = 1. The objective is now

(20) min |V — 16 — Zaall® + 24 lal >

Notice that for any candidate solution (3, {a,-}f ), the alternative solution (8 + ¢, {a; — c}f)
leaves the loss part of (20) unchanged, since the row sums of Z4 are all one. Hence, if A4 > 0,
we would always improve a by picking ¢ to minimize the penalty term ZiR:l(a,- —¢)?, or
c=(1/RMYR q. O

It is natural then to solve for @ and b with these constraints enforced, instead of waiting
for them to simply emerge in the process of iteration.

THEOREM 3.2. Consider the generic optimization problem

R
1) min |R — Zaal® +rallal®  subjectto ) a; =0.

i=1
Define the partial sum vector R+ = Z}R with components R;“ =2 ZijRij, and let

(N0
(N )

i

Then the solution a is given by

R — RS
(22) G X W Ry e
Nio+Xa
Moreover, the fit is given by
Zpa =S8R,

where S A IS a symmetric operator.
The computations are a simple modification of the noncentered case.

PROOF. Lgt M be~an R x R orthogonal matrix with first column 1/ «/E Then Z4a =
ZAMM"a = Gy for G = Z,M and y = M'a. Reparametrizing in this way leads to the
equivalent problem

(23) min |R — GpII* + 1all 7[> subject to 7 =0.
Yy
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To solve (23), we simply drop the first column of G. Let G = Z4 Q where Q is the matrix M
omitting the first column, and y the corresponding subvector of ¥ having R — 1 components.
We now solve

(24) min R — Gy I+ rall7l?
with no constraints, and the solution is p = (~ng + Aalg_ 1)*191—7{. The fit is given by

GP =G(GTG +ralg_1)"'GTR =SAR, and Sy is clearly a symmetric operator.
To obtain the simplified expression for a, we write

Gy =Z40(QTZ 240+ *alr_1) 'QTZIR
(25) =Z40(Q"DQ +dalg_1) Q"R
= Za,

with D = diag(N;.). We write H = Q(QTDO + Aalz_1)~' 0T and O = (D + »alg)2 Q,
and let

~ 1 1 ~ o~ o~ 1~
(26) H=(D+xalg)? H(D +2al)? = 0(070) ' 0.
Now (26) is a projection matrix of R® onto a R — 1 dimensional subspace. Let § = (D +
AAIR)_%I. Then (jTQ =0, and so

Unraveling this expression, we get
117
IT(D + XAIR)_II

With a = HR™ in (25), this gives the expressions for each a; in (22). Finally, Sa=ZsH ZI\
is symmetric. [J

H=(D+rslg)" ' —(D+aalp)™! (D +ralg)™!

3.4. Covariance matrix for BGLS with centered operators. In Section 3.2, we saw in (18)
that we get a simple expression for cov(ﬁGLs). This simplicity relies on the fact that Iy —
Sg=W= GEV7 and the usual cancellation occurs when we use the sandwich formula to
compute this covariance. When we backfit with our centered smoothers, we get a modified
residual operator Iy — SG such that the analog of (14) still gives us the required coefficient
estimate:

@7 Povs = (X (Iy = 86)X) " XTIy — 86).
However, Iy — Sg # ozV~!, and so now we need to resort to the sandwich formula

cov(,@GLs) = HGLSVHgLS with Hgrs from (14). Expanding this, we find that cov(ﬁGLs)
equals

(XTUn = 86)X) " ATy = 86) - V- (In = Se) X (XT(Iy = 8p)x) ™!

While this expression might appear daunting, the computations are simple. Note first that
while ﬁGLs can be computed via Sg X’ and Sg) this expression for cov(,BGLs) also involves
X786, When we use the centered operator from Theorem 3.2 we get a symmetric matrix
Sc;. Let X = Iy — Sc;)X , the residual matrix after backfitting each column of X" using these
centered operators. Then because Sg is symmetric, we have

BGLS = (XTX'N)_I.)?T)) and
(28) . 1~ -
cov(Bars) = (XTX) AT V. X(ATH) !
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Since V = o*%(Z A NZX /Aa+ 2 BZE /A + In) (two low-rank matrices plus the identity), we
can compute V - X very efficiently, and hence also the covariance matrix in (28). The entire
algorithm is summarized in Section 6.3.

4. Convergence of the matrix norm. In this section, we prove a bound on the norm
of the matrix that implements backfitting for our random effects @ and b and show how this
controls the number of iterations required. In our algorithm, backfitting is applied to ) as well
as to each nonintercept column of X so we do not need to consider the updates for X B.Itis
useful to take account of intercept adjustments in backfitting, by the centerings described in
Section 3 because the space spanned by ay, ..., ag intersects the space spanned by by, ..., bc
since both include an intercept column of ones.

In backfitting, we alternate between adjusting a given b and b given a. At any iteration,
the new a is an affine function of the previous b and then the new b is an affine function
of the new a. This makes the new b an affine function of the previous b. We will study that
affine function to find conditions where the updates converge. If the b updates converge, then
so must the a updates.

Because the updates are affine they can be written in the form

b < Mb+n

for M € R€*C and 5 € R¢. We iterate this update and it is convenient to start with b = 0.
We already know from Buja, Hastie and Tibshirani (1989) that this backfitting will converge.
However, we want more. We want to avoid having the number of iterations required grow
with N. We can write the solution b as

(0,0
b=n+> My,
k=1

and in computations we truncate this sum after K steps producing an error 3", x M*n. We
want sup, . || YksK M*n|l/lInll < € to hold with probability tending to one as the sample
size increases for any €, given sufficiently large K. For this, it suffices to have the spectral
radius Amax (M) < 1 — 6 hold with probability tending to one for some & > 0.

Now for any 1 < p < 0o, we have

[Mx]|

Amax(M) < |M||, = sup .
xer\(oy I1xllp

The explicit formula

C
IMxlly

xerO\o) Xl 1=s=C

IM]ly =

makes the matrix L matrix norm very tractable theoretically and so that is the one we study.
We look at this and some other measures numerically in Section 5.

4.1. Updates. Recall that Z € {0, 1}R*C describes the pattern of observations. In a model
with no intercept, centering the responses and then taking shrunken means as in (17) would
yield these updates

Zs Zis(Yis - bs)
i <

4 Y. Zij(Yij —ai)
l Ni.+Aia '

and bj <
N.j+Ap
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The update from the old b to the new a and then to the new b takes the form b < Mb + n
for M = M© where

o__ 1 ZisZij

IS No_] +)\'B Nlo+)\'A

This update M© alternates shrinkage estimates for a and b but does no centering. We do not
exhibit n because it does not affect the convergence speed.

In the presence of an intercept, we know that ) ; a; = 0 should hold at the solution and we
can impose this simply and very directly by centering the a;, taking

Zs Zis(Yis - bv) 1 R Zs er(Yrs - bv)
. )
Nlo+)\'A N}"c +)\'A
- i Zij(Yij —ai).
N.j + Ap

and

bj

The intercept estimate will then be ,éo = (1/C) 22 bj, which we can subtract from b; upon
convergence. This iteration has the update matrix M with

1 Z,s(Zvi — N.;/R)

(1) rs\£rj J

29) IS T N+ g Nyt 2a
o] r Fe

after replacing a sum over i by an equivalent one over r.

In practice, we prefer to use the weighted centering from Section 3.3 to center the a; be-
cause it provides a symmetric smoother Sg that supports computation of cov(,BGLs) While it
is more complicated to analyze it is easily computable and it satisfies the optimality condition
in Theorem 3.2. The algorithm is for a generic response R € RY such as ) or a column of
X Let us illustrate it for the case R = ). We begm with vector of N values Y;; — b; and so

=Y Z”(YH by). Then w; = (N;, +24) "'/ >, (Ny. + 14)~! and the updated ay is

- Zi wj Y,'+ _ Zs Zys(Yrs — bs) — Zi Wi Zs Zis(Yis — by)
Nyo+2Aa Nr.+Aa '
Using shrunken averages of Y;; — a;, the new b; are
1 Zs er(Yrs - bs) - Zi wi Zs Zis(Yis - bs)
— ) Zj| Y — .
N.j+iB 5 Nro+2a
Now b < Mb +n for M = M@, where

Z4
1 Zyj i Nk
2 2 : rj Nio+2
o +AB r re T AA Zi Novton

bj=

Our preferred algorithm applies the optimal update from Theorem 3.2 to both a and b
updates. With that choice we do not need to decide beforehand which random effects to center
and which to leave uncentered to contain the intercept. We call the corresponding matrix
M3, Our theory below analyzes |M My and M@ ||, which have simpler expressions
than |[M®||;.

Update M© uses symmetric smoothers for both A and B: they are both shrunken averages.
The naive centering update M) uses a nonsymmetric smoother Z4(Ig — 1r1%) (2} 24 +
ral R)_IZZ on the a; with a symmetric smoother on b;, and hence it does not generally

produce a symmetric smoother needed for efficient computation of cov(BaLs). The update
M® uses two symmetric smoothers, one optimal and one a simple shrunken mean. The
update M® takes the optimal smoother for both A and B. Thus both M @ and M support
efficient computation of cov(,BGLs)
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4.2. Model for Z;;. We will state conditions on Z;; under which both [|M M and
|M@||; are bounded below 1 with probability tending to one, as the problem size grows.
We need the following exponential inequalities.

LEMMA 4.1. If X ~ Bin(n, p), then for any t > 0,
Pr(X > np +1) <exp(—2t*/n) and
Pr(X <np — 1) < exp(—2t>/n).

PROOF. This follows from Hoeffding’s theorem. [J

LEMMA 4.2. Let X; ~ Bin(n, p) fori =1, ..., m, not necessarily independent. Then,
foranyt >0,

Pr( max X; >np + t) <mexp(—2t*/n) and

1<i<m

Pr( min X; <np — t) <mexp(—2t2/n).

1<i<m
PROOF. This is from the union bound applied to Lemma 4.1. [J

Here is our sampling model. We index the size of our problem by S — oco. The sample
size N will satisfy [E(N) > §. The number of rows and columns in the data set are

R=S° and C=S5*

respectively, for positive numbers p and x. Because our application domain has N < RC,
we assume that p + k > 1. We ignore that R and C above are not necessarily integers.
In our model, Z;; ~ Bern(p;;) independently with

S S
(31) ﬁfpijf'fﬁ forl1 <Y < o0.

Thatis 1 < p;;SPT* —1 < 7. Letting p; ; depend on i and j allows the probability model to
capture stylistic preferences affecting the missingness pattern in the ratings data.

4.3. Bounds for row and column size. Letting X < Y mean that X is stochastically
smaller than Y, we know that

Bin(R, S'"7*) < N,; <
Bin(C, §'7"7%) < N;. < Bin(C, YS'7°7%).
By Lemma 4.1, if r > 0, then
Pr(N;, > S'7P(Y + 1)) < Pr(Bin(C, YS'777%) > S1=°(Y +1))
< exp(—2(8'1)*/C)
= exp(—287772P12).
Therefore, if 2p 4+ k < 2, we find using using Lemma 4.2 that

Pr(maxNi, R g e)) < S° exp(—ZSz_"_Zpez) -0
1
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for any € > 0. Combining this with an analogous lower bound,
(32) lim Pr((l —€)S'™” < min N;, <max N, < (Y + e)Sl_p> —1.
S— 00 i i
Likewise, if p 4+ 2x < 2, then for any € > 0,

(33) lim Pr((l — e)Sl_" <minN,; <maxN,; < (T + e)Sl_"> =1.
S—o0 Jj j

4.4. Interval arithmetic. We will replace N;, and other quantities by intervals that
asymptotically contain them with probability one and then use interval arithmetic in order
to streamline some of the steps in our proofs. For instance,

s
Nie[1=as"™7. (T +s' ™ =[l—e. T +elx 5P =[1-eThelx

holds simultaneously for all 1 <i < R with probability tending to one as S — co. In interval
arithmetic,

[A,B]+[a,b]=[a+A,b+B] and [A,B]—[a,b]=[A—b,B —a].
If0<a<b<ooand 0 < A < B < 00, then
[A, B] x [a,b] =[Aa, Bb] and [A, B]/la,b]=[A/b, B/al.

Similarly,ifa <0 < b and X € [a, b], then | X| € [0, max(|a|, |b])]. Our arithmetic operations
on intervals yield new intervals guaranteed to contain the results obtained using any members
of the original intervals. We do not necessarily use the smallest such interval.

4.5. Coobservation. Recall that the coobservation matrices are Z'Z € {0, 1}¢*¢ and
ZZ" € {0, 1}R*R If 5 £ j, then

s? T 1252
Bln(R, Rz—(jz) < (Z Z)S_/ < Bln(R, RZ—C'Z)

That is, Bin(S?, §>72°=%) < (Z7Z),; < Bin(S”, T25272/=2) For t > 0,

C2
Pr(maxmax(ZTZ)v. > (T2 4+ t)SZ*P*ZK) < —exp(— (tSzfpfz")z/R)
S j#s 5 2

C2
== exp(—1254-304),

If 3p + 4k < 4, then

T 2 2-p-2
Pr(msaxr;lizc(z Z),; = (T +e)s—7 ")—)0 and

Pr(minmin(ZTZ)sj <(1-— E)SZ—p—2K> -0,

s J#s

for any € > 0.

4.6. Asymptotic bounds for |M|;. Here, we prove upper bounds for |M®||; for k =
1, 2 of equations (29) and (30), respectively. The bounds depend on Y and there are values
of Y > 1 for which these norms are bounded strictly below one, with probability tending to
one.



572 S. GHOSH, T. HASTIE AND A. B. OWEN

THEOREM 4.3.  Let Z;; follow the model from Section 4.2 with p, k € (0, 1), that satisfy
p+Kx>1,2p+k <2and3p+ 4k < 4. Then, for any € > 0,

(34) Pr(|MP], <Y*-Y?+€) > 1 and
(35) Pr([M@], <Y? -T2 +¢)—> 1
as S — oo.

PROOF. Without loss of generality, we assume that € < 1. We begin with (35). Let M =
M@ When j #s,

1 Z,i
M, = 3 J — 7.
Js N.j+)\B - Nr,—f-)» ( rs v)
for Z., = E
s Nl.+kA / N,,+AA

Although |Z,s — Z.| < 1, replacing Zr s — Z.s by one does not prove to be sharp enough for
our purposes.
Every N,, + Aa € S!7P[1 — €, Y + €] with probability tending to one and so
Z.s er Z.v Z er
N +35 = Neot s Noj+rp =T —€, T +elsT7

r

Cll—e,Y+el 'z s

Similarly,
_ Y Zi[l —e, T+e] 1 .
l—¢,Y
“S T RN—e. YT tel' = R =€ el
CS' Pl —e, Y +eP[l—e, YT +€]7!
and so

G6) Z. 3 Zyp gl —e,T—l—e]z c l[( 1 _6)2’ (T+e)2]
N.j+)LB — Ny +2a [1—¢€, YT +¢€] CL\YT +e€ 1—¢€
Next, using bounds on the coobservation counts,

1 Zyi Zys . SPHe=2(ZTZ),; clli—e Y2 + €]
Nj+ip 5 Ne+2ra [1—€, Y +el> ~ Cll—e, YT +el?
Combining (36) and (37),

1 1—c¢ YT+e\2 Y2+e€ 1 —€e\2
M e - , - ) .
CL(Y+¢) 1—¢€ 1—e€ T +e€
For any €’ > 0, we can choose € small enough that
MizeCT Y2 =12 —€, T2 -T2 +¢]
and then [Mj,| < (Y2 -T2 +¢€)/C.

Next, arguments like the preceding give |M ;| < (1 — €)72(Y +€)§P~!1 — 0. Then with
probability tending to one,

(37)

Y IMj| =T =172 +2¢
J
This bound holds for all s € {1, 2, ..., C}, establishing (35).
The proof of (34) is similar. The quantity Z,s is replaced by (1/R) >"; Zis/(Ni.+X14). O

It is interesting to find the largest Y with Y2 oY 2<1.Ttis ((1+ 51/2)/2)1/2 =1.27.
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FIG. 1. The large shaded triangle is the domain of interest D for Theorem 4.3. The smaller shaded triangle
shows a region where the analogous update to a would have acceptable norm. The points marked are the ones we
look at numerically, including (0.88, 0.57), which corresponds to the Stitch Fix data in Section 6.

5. Convergence and computation. In this section, we make some computations on syn-
thetic data following the probability model from Section 4. First, we study the norms of our
update matrix M@, which affects the number of iterations to convergence. In addition to
I - II1 covered in Theorem 4.3, we also consider || - ||2, || - ||co and Amax(-). Then we compare
the cost to compute BGLS by our backfitting method with that of Imer (Bates et al. (2015)).

The problem size is indexed by S. Indices i go from 1 to R = [§?] and indices j go from
1 to C = [S¥]. Reasonable parameter values have p, x € (0, 1) with p + « > 1. Theorem 4.3
applies when 2p + xk <2 and 3p + 4k < 4. Figure 1 depicts this triangular domain of in-
terest D. There is another triangle D" where a corresponding update for @ would satisfy the
conditions of Theorem 4.3. Then D U D’ is a nonconvex polygon of five sides. Figure 1 also
shows D’ \ D as a second triangular region. For points (p, k) near the line p + k = 1, the
matrix Z will be mostly ones unless S is very large. For points (p, k) near the upper corner
(1, 1), the matrix Z will be extremely sparse with each N;, and N,; having nearly a Pois-
son distribution with mean between 1 and Y. The fraction of potential values that have been
observed is O(S!—P~¥),

Given p;;, we generate our observation matrix via Z;; nd Bern(p;;). These probabilities
are first generated via p;; = UijSl_p_" where Uj; i U[1, Y] and Y is the largest value for
which Y2 — Y2 < 1. For small S and p + « near 1, we can get some values pij > 1andin
that case we take p;; = 1.

The following (p, k) combinations are of interest. First, (4/5, 2/5) is the closest vertex of
the domain of interest to the point (1, 1). Second, (2/5, 4/5) is outside the domain of interest
for the b but within the domain for the analogous a update. Third, among points with p = «,
the value (4/7,4/7) is the farthest one from the origin that is in the domain of interest. We
also look at some points on the 45 degree line that are outside the domain of interest because
the sufficient conditions in Theorem 4.3 might not be necessary.

In our matrix norm computations, we took A4 = Ap = 0. This completely removes shrink-
age and will make it harder for the algorithm to converge than would be the case for the
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L4—Norm vs S for different values of p and k
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FIG.2. Norm |M® Il1 of centered update matrix versus problem size S for different (p, k).

positive A4 and Ap that hold in real data. The values of 4 and Ap appear in expressions
Ni. + X4 and N,; + Ap where their contribution is asymptotically negligible, so conserva-
tively setting them to zero will nonetheless be realistic for large data sets.

We sampled from the model 10 times at various values of S and have plotted | M O,
versus S on a logarithmic scale. Figure 2 shows the results. We observe that ||M @y is
below 1 and decreasing with § for all the examples (o, ) € D. This holds also for (p, x) =
(0.60, 0.60) ¢ D. We chose that point because it is on the convex hull of DU D’.

The point (p, ) = (0.40, 0.80) ¢ D. Figure 2 shows large values of | M@ ||; for this case.
Those values increase with S, but remain below 1 in the range considered. This is a case
where the update from a to a would have norm well below 1 and decreasing with S, so
backfitting would converge. We do not know whether || M @1 > 1 will occur for larger S.

The point (p, k) = (0.70, 0.70) is not in the domain D covered by Theorem 4.3 and we
see that ||[M®|; > 1 and generally increasing with S as shown in Figure 3, which uses
10 replicates. This does not mean that backfitting must fail to converge. Here, we find that
M@ |, < 1 and generally decreases as S increases. This is a strong indication that the num-
ber of backfitting iterations required will not grow with S for this (p, x) combination. We
cannot tell whether || M@ ||, will decrease to zero but that is what appears to happen.

We consistently find in our computations that Apax(M @) < M@ |, < |[MP|;. The
first of these inequalities must necessarily hold. For a symmetric matrix M, we know that
Amax(M) = ||M||2 which is then necessarily no larger than ||M||;. Our update matrices are
nearly symmetric but not perfectly so. We believe that explains why their L, norms are close
to their spectral radius and also smaller than their L; norms. While the L, norms are empiri-
cally more favorable than the L norms, they are not amenable to our theoretical treatment.

We believe that backfitting will have a spectral radius well below 1 for more cases than
we can as yet prove. In addition to the previous figures showing matrix norms as S increases
for certain special values of (p, x), we have computed contour maps of those norms over
(p, k) € [0, 1] for S =10,000. See Figure 4. Each point in our contour plots was based on an
average of 10 independent replicates.
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FI1G. 3. The left panel shows ||M(2) Il1 versus S. The right panel shows ||M(2) ll2 versus S with a logarithmic
vertical scale. Both have (p, k) = (0.7,0.7).
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FI1G. 4. Numerically computed matrix norms for M using S = 10,000. The color code varies with the subfig-
ures.
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FI1G. 5. Time for one iteration versus the number of observations, N at two points (p, k). The cost for Imer is
roughly O(N3/2) in the left panel and O(N%1Yy in the right panel. The costs for OLS and backfitting are O (N).

To compare the computation times for algorithms we generated Z;; as above and also took
Xij ad N(0, I7). That gives 7 fixed effect parameters and then the intercept makes it p = 8.
Although backfitting can run with A4 = A = 0, Imer cannot do so for numerical reasons. So
we took 0[2‘ = oé =1and 0%: =1 corresponding to A4 = Ap = 1. The cost per iteration does
not depend on Y;;, and hence not on B either. We used 8 =0.

Figure 5 shows computation times for one single iteration when (p, k) = (0.52, 0.52) and
when (p, k) = (0.70, 0.70). The time to do one iteration in Imer grows roughly like N 3/2 in
the first case. For the second case, it appears to grow at the even faster rate of N>!. Solv-
ing a system of S¥ x S¥ equations would cost S = §>! = O(N?1), which explains the
observed rate. This analysis would predict O (N'®) for p = x = 0.52 but that is only mini-
mally different from O (N3/2). These experiments were carried out in R on a computer with
the macOS operating system, 16 GB of memory and an Intel i7 processor. Each backfitting
iteration entails solving (17) along with the fixed effects.

The cost per iteration for backfitting follows closely to the O(N) rate predicted by the
theory. OLS only takes one iteration and it is also of O(N) cost. In both of these cases,
|M®@||, is bounded away from one so the number of backfitting iterations does not grow
with S. For p =k = 0.52, backfitting took 4 iterations to converge for the smaller values
of § and 3 iterations for the larger ones. For p = xk = (.70, backfitting took 6 iterations for
smaller S and 4 or 5 iterations for larger S. In each case, our convergence criterion was a
relative change of 10™8 as described in Section 6.3. Further backfitting to compute BLUPs
a and b given ﬁGLS took at most 5 iterations for p = ¥ = (0.52 and at most 10 iterations for
p =k =0.7. In the second example, Ime4 did not reach convergence in our time window so
we ran it for just 4 iterations to measure its cost per iteration.

6. Example: Ratings from Stitch Fix. We illustrate backfitting for GLS on some data
from Stitch Fix. Stitch Fix sells clothing. They mail their customers a sample of items. The
customers may keep and purchase any of those items that they want, while returning the
others. It is valuable to predict the extent to which a customer will like an item, not just
whether they will purchase it. Stitch Fix has provided us with some of their client ratings
data. It was anonymized, void of personally identifying information, and as a sample it does



BACKFITTING FOR LARGE SCALE CROSSED RANDOM EFFECTS REGRESSIONS 577

not reflect their total numbers of clients or items at the time they provided it. It is also from
2015. While it does not describe their current business, it is a valuable data set for illustrative
purposes.

The sample sizes for this data are as follows. We received N = 5,000,000 ratings by
R =762,752 customers on C = 6318 items. These values of R and C correspond to the point
(0.88,0.57) in Figure 1. Thus C/N =0.00126 and R/N = 0.153. The data are not dominated
by a single row or column because max; N;,/N =9 x 107% and max; N,;j/N =0.0143. The
data are sparse because N/(RC) = 0.001.

6.1. An illustrative linear model. The response Y;; is a rating on a ten-point scale of
the satisfaction of customer i with item j. The data come with features about the clients and
items. In a business setting, one would fit and compare possibly dozens of different regression
models to understand the data. Our purpose here is to study large scale GLS and compare it
to ordinary least squares (OLS) and so we use just one model, not necessarily one that we
would have settled on. For that purpose, we use the same model that was used in Gao and
Owen (2020). It is not chosen to make OLS look as bad as possible. Instead it is potentially
the first model one might look at in a data analysis. For client i and item j,

Y;j = Bo + Bimatch;; + Brl{client edgy}; + Bsl{item edgy} ;
+ Ball{client edgy}; * [{item edgy}; + Bsl{client boho};
+ Bell{item boho} ; + B7l{client boho}; * [{item boho} ;
+ Bg material; +a; +b; + e;;.

Here, material; is a categorical variable that is implemented via indicator variables for
each type of material other than the baseline. Following Gao and Owen (2020), we chose
‘Polyester’, the most common material, as the baseline. Some customers and some items
were given the adjective “edgy” in the data set. Another adjective was “boho,” short for “Bo-
hemian.” The variable match;; € [0, 1] is an estimate of the probability that the customer
keeps the item, made before the item was sent. The match score is a prediction from a base-
line model and is not representative of all algorithms used at Stitch Fix. All told, the model
has p = 30 parameters.

6.2. Estimating the variance parameters. We use the method of moments method from
Gao and Owen (2020) to estimate 6 = (oﬁ, cré, oé) in O(N) computation. That is in turn
based on the method that Gao and Owen (2017) use in the intercept only model where Y;; =
w + a; + bj + e;;. For that model, they set

1 2
i ] le j/
1 2
UB:ZZZij<Y,~j—FZZ,-/jYi/j> and
i i
1 2
Ur = NZZU(YU - ZZi/j/Yi/j/> :
l'/j/

ij
These are, respectively, sums of within row sums of squares, sums of within column sums of
squares and a scaled overall sum of squares. Straightforward calculations show that
E(Ua) = (0§ +02)(N — R),

E(Up) = (03 +02)(N —C) and



578 S. GHOSH, T. HASTIE AND A. B. OWEN
E(Ug) =03 (N2 -y Nﬁ) +o3 <N2 -y N?j) +02(N*—N).
i j

By matching moments, we can estimate 6 by solving the 3 x 3 linear system

0 N—-R N-—R)\ (o4 Ui
N-C 0 N—-C ||o} Us

N?>—%N? N’ —%N? N?’—-N 2 U
i j Of E

for 6.

Following Gao and Owen (2017), we note that n;; = Y;; — xl]ﬁ =a; + bj + e;; has the
same parameter ¢ as Y;; have. We then take a consistent estimate of §, in thls case ﬂOLs
that Gao and Owen (2017) show is consistent for 8, and define 7;; = Y;; — x; f /30Ls- We then
estimate 6 by the above method after replacing Y;; by #; ;. For the Stitch Fix data, we obtained
65 = 1.14 (customers), 6*12; =0.11 (items) and 8,% =447,

6.3. Computing ,éGLS. The estimated coefficients BGLS and their standard errors are pre-
sented in a table in the Appendix. Open-source R code at https://github.com/G28Sw/backfit_
code does these computations. Here is a concise description of the algorithm we used:

(1) Compute Bors via (2).

(2) Get residuals fij = Yij — x]: PoLs.

(3) Compute 6 62 7t 63 and o "E by the method of moments on ;.

(4) Compute /'AY =y — Sc;)X using doubly centered backfitting M A,
(5) Compute SgLs by (28).

(6) If we want BLUPs a and b backfit y—-Xx ,éGLS to get them.

(7) Compute cov(BgLs) by plugging 63,63 and 6% into V at (28).

Stage k of backfitting provides (S X)® . We iterate until

1S X)* D — (Sgx) B2 B
1(SgX)®)%

where || - || F is the Frobenius norm (root mean square of all elements). Our numerical results
use e = 1078

When we want cov(ﬂGLs) then we need to use a backfitting strategy with a symmetrlc
smoother SG This holds for M@, M® and M@ but not MWD After computing ﬁGLs, one
can return to step 2, form new re&duals nij =Yij — x; i /SGLS and continue through steps 3-7.
We have seen small differences from doing this.

6.4. Quantifying inefficiency and naivete of OLS. In the Introduction, we mentioned two
serious problems with the use of OLS on crossed random effects data. The first is that OLS is
naive about correlations in the data and this can lead it to severely underestimate the variance
of ,3 The second is that OLS is inefficient compared to GLS by the Gauss—Markov theo-
rem. Let /§0Ls and ﬁGLS be the OLS and GLS estimates of 8, respectively. We can compute
their corresponding variance estimates Covors (30Ls) and CovgLs (BGLS). We can also find
COVGLS (ﬁOLs), the variance under our GLS model of the linear combination of Y;; values
that OLS uses. This section explore them graphically.

We can quantify the naivete of OLS via the ratios CovgLs (,BAOLs, j)/covVoLs (,BAOLs, j) for j =
1,..., p. Figure 6 plots these values. They range from 1.75 to 345.28 and can be interpreted
as factors by which OLS naively overestimates its sample size. The largest and second largest
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Naivete of OLS by coefficient
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FIG. 6. OLS naivete CovgLs (,éOLS,J')/C/O\VOLS (ﬁOLS’j)for coefficients B in the Stitch Fix data.

ratios are for material indicators corresponding to “Modal” and “Tencel,” respectively. These
appear to be two names for the same product with Tencel being a trademarked name for
Modal fibers (made from wood). We can also identify the linear combination of 30Ls for
which OLS is most naive. We maximize the ratio xcovgys (ﬁOLS)x /xTcovoLs (ﬁOLs)x over
x # 0. The resulting maximal ratio is the largest eigenvalue of

— 5 i A
covoLs(BoLs)™ covgLs(BoLs)

and it is about 361 for the Stitch Fix data.

We can quantify the inefficiency of OLS, coefficient by coefficient, via the ratio
COVGLS (/30LS j)/COVGLS (ﬁGLS j)- Figure 7 plots these values. They range from just over 1 to
50.6 and can be interpreted as factors by which using OLS reduces the effective sample size.
There is a clear outlier: the coefficient of the match variable is very inefficiently estimated
by OLS. The second largest inefficiency factor is for the intercept term. The most inefficient
linear combination of B reaches a variance ratio of 52.6, only slightly more inefficient than
the match coefficient alone.

The variables for which OLS is more naive tend to also be the variables for which it is
most inefficient. Figure 8 plots these quantities against each other for the 30 coefficients in
our model.

6.5. Convergence speed of backfitting. 'The Stitch Fix data have row and column sample
sizes that are much more uneven than our sampling model for Z allows. Accordingly, we
cannot rely on Theorem 4.3 to show that backfitting must converge rapidly for it.

The sufficient conditions in that theorem may not be necessary and we can compute our
norms and the spectral radius on the update matrices for the Stitch Fix data using some sparse

Inefficiency of OLS by coefficient

10 12
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FI1G. 7. OLS inefficiency CovgLs (,301‘5,]-)/0/0\\/01‘5 (ﬁGLs,j)for coefficients fj in the Stitch Fix data.
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Flaws of OLS by coefficient
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FIG. 8. Inefficiency vs. naivete for OLS coefficients in the Stitch Fix data.

matrix computations. Here, Z € {0, 1}762’752X6318, so MK) g RO3IEXO3I8 £ {0,1, 2, 3}.
The results are

M), MO, |rmax (M) 31.9525 1.4051 0.64027
MDY, MDA (MDY | [ 112191 04512 0.33386
IMP], [MP], | (M@)] 8.9178 0.4541 0.33407
||M(3)H1 HM(3)||2 | Amax(MP)] 9.2143  0.4546 0.33377

All the updates have spectral radius comfortably below one. The centered updates have L,
norm below one but the uncentered update does not. Their L, norms are somewhat larger than
their spectral radii because those matrices are not quite symmetric. The two largest eigenvalue
moduli for M@ are 0.6403 and 0.3337 and the centered updates have spectral radii close to
the second largest eigenvalue of M%), This is consistent with an intuitive explanation that the
space spanned by a column of N ones that is common to the columns spaces of Z4 and Zp
is the biggest impediment to M) and that all three centering strategies essentially remove
it. The best spectral radius is for M, which employs two principled centerings, although in
this data set it made little difference. Our backfitting algorithm took 8 iterations when applied
to X and 12 more to compute the BLUPs. We used a convergence threshold of 1073,

7. Discussion. We have shown that the cost of our backfitting algorithm is O (N) under
strict conditions that are nonetheless much more general than having N;, = N/R for all
i=1,...,Rand N,; = N/Cforall j =1, ..., C asinPapaspiliopoulos, Roberts and Zanella
(2020). As in their setting, the backfitting algorithm scales empirically to much more general
problems than those for which rapid convergence can be proved. Our contour map of the
spectral radius of the update matrix M shows that this norm is well below 1 over many more
(p, k) pairs that our theorem covers. The difficulty in extending our approach to those settings
is that the spectral radius is a much more complicated function of the observation matrix Z
than the L norm is.

Theorem 4 of Papaspiliopoulos, Roberts and Zanella (2020) has the rate of convergence
for their collapsed Gibbs sampler for balanced data. It involves an auxiliary convergence rate
paux defined as follows. Consider the Gibbs sampler on (i, j) pairs where given i a random
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J 1is chosen with probability Z;;/N;, and given j a random i is chosen with probability
Zij/N.,j. That Markov chain has invariant distribution Z;; /N on (i, j) pairs and paux i8 the
rate at which the chain converges. In our notation,

Naf\ NG%
2 2 X2 2
Noj+ Ro;p Nog+Cop

PPRZ = X Paux-

In sparse data, pprz = paux and under our asymptotic setting | paux — pprz| — 0. Papaspilio-
poulos, Roberts and Zanella (2020) remark that p,,x tends to decrease as the amount of data
increases. When it does, then their algorithm takes O(1) iterations and costs O(N). They
explain that p,yx should decrease as the data set grows because the auxiliary process then
gets greater connectivity. That connectivity increases for bounded R and C with increasing
N and from their notation, allowing multiple observations per (i, j) pair it seems like they
have this sort of infill asymptote in mind. For sparse data from electronic commerce, we think
that an asymptote like the one we study where R, C and N all grow is a better description. It
would be interesting to see how p,ux develops under such a model.

In Section 5.3, Papaspiliopoulos, Roberts and Zanella (2020) state that the convergence
rate of the collapsed Gibbs sampler is O (1) regardless of the asymptotic regime. That section
is about a more stringent “balanced cells” condition where every (i, j) combination is ob-
served the same number of times, so it does not describe the “balanced levels” setting where
Ni.=N/R and N,; = N/C. Indeed they provide a counterexample in which there are two
disjoint communities of users and two disjoint sets of items and each user in the first com-
munity has rated every item in the first item set (and no others) while each user in the second
community has rated every item in the second item set (and no others). That configuration
leads to an unbounded mixing time for collapsed Gibbs. It is also one where backfitting takes
an increasing number of iterations as the sample size grows.

There are interesting parallels between methods to sample a high-dimensional Gaussian
distribution with covariance matrix ¥ and iterative solvers for the system Xx = b. See
Goodman and Sokal (1989) and Roberts and Sahu (1997) for more on how the convergence
rates for these two problems coincide. We found that backfitting with one or both updates cen-
tered worked much better than uncentered backfitting. Papaspiliopoulos, Roberts and Zanella
(2020) used a collapsed sampler that analytically integrated out the global mean of their
model in each update of a block of random effects.

Our approach treats ai, al% and cf,% as nuisance parameters. We plug in a consistent
method of moments based estimator of them in order to focus on the backfitting iterations.
In Bayesian computations, maximum a posteriori estimators of variance components under
noninformative priors can be problematic for hierarchical models Gelman (2006), and so
perhaps maximum likelihood estimation of these variance components would also have been
challenging.

Whether one prefers a GLS estimate or a Bayesian one depends on context and goals. We
believe that there is a strong computational advantage to GLS for large data sets. The cost of
one backfitting iteration is comparable to the cost to generate one more sample in the MCMC.
We may well find that only a dozen or so iterations are required for convergence of the GLS.
A Bayesian analysis requires a much larger number of draws from the posterior distribution
than that. For instance, Gelman and Shirley (2011) recommend an effective sample size of
about 100 posterior draws, with autocorrelations requiring a larger actual sample size. Vats,
Flegal and Jones (2019) advocate even greater effective sample sizes.

It is usually reasonable to assume that there is a selection bias underlying which data points
are observed. Accounting for any such selection bias must necessarily involve using infor-
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mation or assumptions from outside the data set at hand. We expect that any approach to take
proper account of informative missingness must also make use of solutions to GLS perhaps
after reweighting the observations. Before one develops any such methods, it is necessary to
first be able to solve GLS without regard to missingness.

Many of the problems in electronic commerce involve categorical outcomes, especially
binary ones, such as whether an item was purchased or not. Generalized linear mixed models
are then appropriate ways to handle crossed random effects, and we expect that the progress
made here will be useful for those problems.

APPENDIX

Table 1 shows results of OLS and GLS regression for the Stitch Fix data in Section 6.
OLS is estimated to be naive when §]\EOLS(,§0LS) < §]\EGLS(/§OLS) and inefficient when
§]\EGLS (BOLS) > §]\EGL5 (BGLS). Estimates that are more than double their corresponding stan-
dard error get an asterisk.

TABLE 1
Stitch Fix regression results

BoLs SEoLs(BoLs) SEgLs(BoLs) BaLs SEgLs (BGLS)
Intercept 4.635* 0.005397 0.05148 5.103* 0.01092
Match 5.048* 0.01174 0.1297 3.442* 0.01823
[{client edgy} 0.001020 0.002443 0.004444 0.003041 0.003550
[{item edgy} —0.3358* 0.004253 0.03307 —0.3515%* 0.01375
[{client edgy}
«[{item edgy} 0.3925* 0.006229 0.01233 0.3793* 0.005916
I{client boho} 0.1386* 0.002264 0.004211 0.1296* 0.003356
[{item boho} —0.5499* 0.005981 0.02713 —0.6266* 0.01485
[{client boho}
*[[{item boho} 0.3822* 0.007566 0.01001 0.3763* 0.007123
Acrylic —0.06482* 0.003778 0.03371 —0.005360 0.01909
Angora —0.01262 0.007848 0.08530 0.07486 0.05177
Bamboo —0.04593 0.06215 0.2096 0.03251 0.1535
Cashmere —0.1955* 0.02484 0.1414 0.008930 0.1048
Cotton 0.1752* 0.003172 0.04220 0.1033* 0.01612
Cupro 0.5979* 0.3016 0.4519 0.2089 0.4363
Faux Fur 0.2759* 0.02008 0.07694 0.2749* 0.06691
Fur —0.2021* 0.03121 0.1388 —0.07924 0.1182
Leather 0.2677* 0.02482 0.07759 0.1674* 0.06545
Linen —0.3844* 0.05632 0.2429 —0.08658 0.1499
Modal 0.002587 0.009775 0.1816 0.1388* 0.05804
Nylon 0.03349* 0.01552 0.08878 0.08174 0.05751
Patent Leather —0.2359 0.1800 0.3838 —0.3764 0.3771
Pleather 0.4163* 0.008916 0.08774 0.3292* 0.04468
PU 0.4160* 0.008225 0.07989 0.4579* 0.03737
PVC 0.6574* 0.06545 0.3462 0.9688* 0.3441
Rayon —0.01109* 0.002951 0.04074 0.05155* 0.01329
Silk —0.1422* 0.01317 0.08907 —0.1828* 0.04871
Spandex —-0.3916* 0.00931 0.1373 0.4140* 0.1141
Tencel 0.4966* 0.01729 0.1712 0.1234* 0.05982
Viscose 0.04066* 0.006953 0.08519 —0.02259 0.03145

Wool —0.06021* 0.006611 0.07211 —0.05883 0.03319
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