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Abstract—Deep Neural Network (DNN) models have been
extensively developed by companies for a wide range of ap-
plications. The development of a customized DNN model with
great performance requires costly investments, and its structure
(layers and hyper-parameters) is considered intellectual property
and holds immense value. However, in this paper, we found the
model secret is vulnerable when a cloud-based FPGA accelerator
executes it. We demonstrate an end-to-end attack based on
remote power side-channel analysis and machine-learning-based
secret inference against different DNN models. The evaluation
result shows that an attacker can reconstruct the layer and hyper-
parameter sequence at over 90% accuracy using our method,
which can significantly reduce her model development workload.
We believe the threat presented by our attack is tangible, and
new defense mechanisms should be developed against this threat.

Index Terms—Deep neural network, cloud FPGA, side-channel
analysis, hardware trojan.

I. INTRODUCTION

Recently machine-learning techniques, especially Deep
Neural Networks (DNN), have attracted substantial atten-
tion due to their prominent performance in solving complex
problems like image recognition, natural language processing,
and hardware application [1]-[3]. The development of a cus-
tomized machine learning model requires companies to invest
ample computation and human resources. Therefore, the de-
veloped model has high values as an intellectual property [4],
which also makes it a target for attackers trying to violate its
confidentiality.

The composition of layers and hyper-parameters distin-
guishes DNN models. When the combination of a layer and
its hyper-parameters result in unique hardware traits, inferring
the model secret could be possible through side-channel
attack. The power side-channel is shown to be effective for
detecting malicious circuit manipulation [5], [6]. It also has
been demonstrated that stealing model secret is feasible when
launching CPU [7]-[9], or GPU [10]-[13] side-channel attacks
on the conventional shared computing platforms. On the other
hand, whether the emerging cloud platform powered by FPGA
is vulnerable to such a model-stealing attack has never been
studied before.

We believe that exploring the attack surface on FPGA
is very important and needs urgent attention. Major cloud
providers began to provide FPGA-based instances, like Ama-
zon AWS F1 [14], Google Compute Engine (GCE) [15], and
Microsoft Azure [16], to accelerate DNN training and testing,
in part of the better energy utilization of FPGA. To allow
flexible resource allocation of the FPGA instances, FPGA

virtualization is proposed to allow multiple users to deploy
their logic on the same FPGA board and run concurrently [17].
Unfortunately, security implications could surface under this
multi-tenant FPGA scenario. Though FPGA virtualization
ensures logic is placed into slots separated physically and
logically, there is no guarantee that one logic’s execution status
is completely opaque to others.

Motivated by previous attacks targeting the multi-tenant
FPGA [18], which aims to steal the encryption keys, in this
paper, we carry out the remote power side-channel analysis
on the shared FPGA instance to evaluate the feasibility of
model-stealing attacks. We developed an attack method that
can steal model secret remotely without any physical access to
the FPGA instance through measuring the power consumption.

Specifically, we found when the attacker deploys a power
sensor like ring oscillators on the same FPGA board where
the victim’s DNN model is executed by leveraging machine-
learning-based inference models (e.g., XGBoost [19]), both
layers and their hyper-parameters can be distinguished. We
implemented our attack based on this observation on a Zed-
Board [20] and evaluated end-to-end attacks on three DNN
models: multiple layer perceptron(MLP) [21], AlexNet [22],
and VGG16 [23]. Our evaluation result shows that the attack
can correctly infer over 90% secret elements (layers and hyper-
parameters) for all three models, and 94.52% accuracy can
be achieved on VGG16, which is still widely used today. To
notice, our attack can succeed even when the models used for
attack training and testing are from two families, suggesting
the generality of our attack method. As such, we conclude that
the threat of an FPGA-based model-stealing attack is practical,
and new defense solutions should be developed. Below we
highlight the research challenges faced in our work and our
technical contributions.

Research challenges. Though there have been attacks pre-
sented which breach the confidentiality of crypto cores or
DNN models, they have shortcomings to address the following
challenges in our attack scenario:

o Lacking physical access to the victim hardware plat-
form makes it impossible to apply local side-channel
attacks [24]-[27].

e The input and output data to the targeted model is
not available to the adversary. Thus, conventional power
analysis methods such as SPA [28] and DPA [18] would
fail.

« The confidentiality of DNN depends on a broad set of
elements (hyper-parameters and layers), which contains
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a huge search space while crypto cores only have only
one secret encryption key.
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Contributions. To the best of our knowledge, this paper
presents the first attack exploiting remote power side-channel
for DNN model stealing and addresses the aforementioned
challenges. The followings are our contributions:

o The first attack to reconstruct the DNN model’s architec-
ture without physical access to the FPGA platform.

o The consideration of the power traces as time series and
trained inference models to infer DNN secret, including
layers and hyper-parameters.

« An end-to-end evaluation of popular DNN models like
MLP, AlexNet, and VGG.

II. BACKGROUND
A. Cloud FPGAs

Field-Programmable Gate Arrays (FPGAs) are pre-
fabricated silicon devices that can be electrically configured
to become nearly any kind of digital circuit or system. In
cloud computing, performance and power consumption are
two of the most notable challenges. To address these two
challenges, FPGAs have been deployed due to their flexi-
ble programmability and power-efficiency. Compared to the
fixed-function Application Specific Integrated Circuit (ASIC),
FPGAs can be programmed in less than a second and cost
much less. Even though nowadays cloud FPGAs providers are
still primarily single-tenant, the expanding demand for higher
hardware resource utilization already led to the growth of
techniques and architectures supporting FPGA multi-tenancy.
The main strategy of FPGA multi-tenancy is based on FPGA
virtualization [17] which supports space-sharing of FPGA
instances among multiple tenants in the cloud.

Some prior works [29]-[32] present methodologies to the
temporary allocation of FPGA instances by successively allo-
cating the entire or part of the FPGA instance to tenants over
time. Some research [33]-[37] demonstrated cloud platforms
enabling spatial FPGA sharing by exposing FPGA regions
labeled “virtual FPGAs” to cloud tenants. For instance, some
architectures divide each physical FPGA instance into several
slots allocated to virtual instances (VI). Regarding the security
issue of FPGA multi-tenancy, logical and physical isolation is
provided to safeguard the inter influence between the virtual
instances (VI) of cloud tenants. However, none of these
methods mitigate the threat from side-channel leaks, e.g.,
under the shared power supply.

Specifically, this paper investigates how remote power side-
channel analysis can reveal DNN model structures’ secrets in
such an FPGA multi-tenancy scenario. Below we describe the
setting and goal of the adversary.

B. Adversary Model

We assume a victim cloud tenant uses the FPGA instance
provided by a public cloud to train or test her DNN model.
We assume FPGA is virtualized and multi-tenancy is allowed
so that FPGA is partitioned into slots (or VI), and two users
can share an FPGA board by programming their own VIs. All
Vs are isolated physically and logically. Also, We assume
an attacker user can co-locate with the targeted victim and
attempt to steal the victim’s DNN model secret covertly by
programming an adversarial FPGA logic (called spy). By
exploiting the side-channel leakage, the spy aims to bypass
the VI isolation. Prior work shows adversarial co-location [38],
[39] is feasible, and Zhao et al. [18] have demonstrated their
attacks against multi-tenant FPGA under the same condition.

To evaluate our attack, we deployed the attack and victim
logic on a Xilinx Zyng-7000 FPGA board, Zedboard [20],
which is also used by the prior FPGA remote attack [18].
Cloud providers utilize the FPGA board to serve FPGA users,
like Xilinx Virtex Ultrascale+ used by Amazon F1 [14], so
our attack is expected to apply to the cloud FPGA. We did
not test our attack on the real FPGA cloud instance because
we have not found a cloud providing multi-tenant FPGA
service now (though it is expected to happen in the near
future [36]), and it is difficult to run controlled attacks on
production cloud without affecting other legitimate users. We
discuss this limitation in Section V. Figure 1 illustrates the
adversary model.

Before our work, Hua et al. carried out the model-stealing

attack on FPGA [25]. Still, they assume the attacker has
complete control of the FPGA board, which can 1) feed
any input and measure its output and 2) sniff the data bus
between FPGA and the off-the-chip memory to learn the fine-
grained data access patterns. In our remote FPGA attack,
the attacker can only measure the victim DNN execution
passively (no control of input) and the leaked information
is coarse-grained (no data access patterns). Inferring the
DNN structure is much more challenging here. Still, through
our novel power-analysis methods, we demonstrate the attack
is completely feasible.
DNN Structural Secret. DNN structure has been considered
intellectual property for an Al company [4], due to the high
human and resource expense involved in developing a DNN
model. Stealing DNN structural secret can be seen as finding
a solution in a search space that yields sufficient accuracy on
the tested data. The search space is vast due to the complicated
structure and hyper-parameter settings of DNN. For instance,
as analyzed by a prior work [9], the search space for VGG16, a
broadly used DNN model, is 5.4 x 10*2, if the attacker guesses
in a brute-force way.

Similar to prior works [9], [11], [12], [24], [25], [27], we
investigate the model-stealing attack on CNN (Convolutional
Neural Network) models and MLP (Multilayer Perceptron)
and consider the structural elements described below as secret.
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o The number of layers.

o The type of each layer.

« The activation function used by each layer.

o The number of neurons of each fully-connected layer.

o The filter size of each convolutional layer and pooling
layer.

o The number of filters of each convolutional layer.

o The stride of each convolutional layer and pooling layer.

« Connection between layers, sequential or non-sequential.

Our attack can infer nearly all model structural secrets,
except non-sequential layer connection, which we leave as
future work. On the other hand, our attack does not infer
the neuron weights because we assume a passive adversary.
Some prior works carried out active analysis [9], [10], [24],
feeding arbitrary input and using the change of output to infer
the weights. Unfortunately, our setting does not allow input
manipulation. We discuss this limitation in Section V.

III. ATTACK METHODOLOGY
A. FPGA Power Sensor

Ring Oscillator (RO) Power Sensor. Since the voltage
fluctuation reflects FPGA logic’s computation patterns, an
adversary can deploy a power sensor in her slot and use
it to infer the secret of the other victim. Zhao et al. [18]
has demonstrated RO sensor, a circuit consisting of the odd
number of inverters in a ring configuration, can be leveraged
for power side-channel attacks. In fact, the voltage fluctuations
have a prominent impact on the frequency of RO, which can be
read through T flip-flops circuit. In Figure 2, we illustrate the
design of our RO sensor. For each power sensor, three inverters
are connected sequentially along with an AND gate, and the
output of the last inverter is combinational fed back to the
input of the AND gate, which constitutes a ring configuration.
An enable signal is connected to the AND gate as another
input. To measure the frequency of the RO, we connect the
output of the last inverter to a 16-bit T flip-flops counter. The
reading from the counter is sent to a workstation for further
analysis through xillybus [40], which is an FPGA IP core for
data transmitted over PCle!.

To improve the robustness of readings and get a satisfying
resolution with a given sampling period of 100 Mhz on
Zedboard (our experiment platform), we implement 20 RO
sensors and connect their output to an adder tree to obtain
their sum as the final power sensor value. The input signal of
the first RO sensor is set to 1 while the other 19 RO sensors
share the same enable signal. With this design, we can also
make our attack stealthy, which profiles the victim DNN only
when it is running. In particular, the first RO power sensor
is activated all the time to monitor the power consumption.
In contrast, the other 19 RO sensors are turned off initially
by setting enable signal to be 0. When the adder tree returns
abnormal readings, which means other users start to execute
heavy workload, like DNN computation on the same board, the
enable signal will be reset to be 1 to turn on all the other RO

10n FPGA cloud instances like Amazon F1, PCle Physical Functions (PFs)
are provided to tenants for accessing and controlling their FPGA logic [14].

sensors. As a result, the adversary can identify the beginning
of DNN execution. For each iteration of DNN execution, we
collect over 20,000 samples from the FPGA board. To notice,
the attacker can use other trojan designs that are alternative to
Figure 2, and we discuss their performance in Section IV-G.
In Section IV, we discuss the impact caused by the number
of RO sensors.
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Fig. 2: Ring oscillator power sensors.

Placement of RO power sensors. How RO sensors are placed
on FPGA impacts the attacker’s readings, further influencing
the attack accuracy. Because FPGA logic of different users
can share the same FPGA board, cloud providers enforce
placement policies for every user. Figure 3(a) and Figure 3(b)
illustrate the floorplan related to different policies when one
user is an attacker: free placement and restricted placement. In
Section IV-G, we evaluate how the placement policy impacts
attack accuracy.

For the first one, the attacker has permission to deploy
FPGA logic wherever she desires on the board. The attacker
would prefer to place the malicious logic close widely and
evenly distributed on the whole board, providing the attacker
with better resolution of power sensor readings. For attack
simulation, we distributed 20 ROs evenly throughout the
FPGA board (see Figure 3(a), utilizing the Pblocks constraints
(one approach for floorplan FPGA design) provided by Xilinx
Vivado.

For the second set, the attacker has no control over the
location of RO power sensors. In this case, the FPGA instance
is separated into several virtual FPGAs, and the cloud provider
decides where each logic is placed. We simulate this case
by constraining all ROs in one Pblock, so they are placed
in one virtual FPGA slot, similar to the constrained placement
requirement in the FPGA multi-tenancy scenario.

B. DNN Layers and Computational Workload

Deep neural networks are a family of methods that transfer
input to output with a variety of repetitious processing units.
Each processing unit is called a layer. The full set of layers,
including their hyper-parameters settings, are named DNN
structure. For a power sensor to discern structural elements
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Fig. 3: The floorplan of FPGA (a) when the attacker has
permission to determine the placement of RO and (b) without
permission to determine the locations of RO.

of a DNN model, each element should incur a different com-
putation workload. Below we analyze the three most popular
layers’ workload, namely fully-connected, convolutional, and
pooling layers. Each layer is also associated with a set of
hyper-parameters, and we list them in Table I. The equations
about the workload analysis are listed in Equation 1 to 4
at the end of this subsection. Equation 5 lists an important
constraint about hyper-parameters, which is leveraged for
result correction, as described in Section III-C.

TABLE I: Hyper-Parameter of Neural network

Hyper- o
Layer Type Parameter Definition
FC layer N; Number of neurons of layer;
Width of output feature map
W;
of layer;
Conv layer F Size of filter
D. Depth of output feature map
¢ (Number of filters)
S Stride
Width of output feature map
W;
Pooling layer of layer;
J F Size of filter
S Stride

e Fully-connected (FC) layer. A fully-connected layer con-
sists of a number of neurons, and each one computes a
weighted sum on all neurons from the previous layer, followed
by a bias offset (8) and activation function (¢) like ReLu. The
output can be represented as ¢(N;_1 x W; + 3), where N;_;
is the vector of neurons of the prior layer, W; is the weight
matrix and X is the vector-matrix multiplication. FPGA can
accelerate the computation through optimized MAC (multiply
and accumulation) operation. The number of MAC operations
FC\qc done by each layer can be derived using Equation 1.
e Convolutional (Conv) layer. A convolutional layer carries
out convolution operation between the input layer and its
kernels, followed by bias offset and activation function. Unlike
the fully-connected layer, each neuron in the convolutional
layer generates an output value using a region of neurons
from the prior layer. The weight matrix applied to the region
is called kernel. The input can have multiple channels (e.g.,
an image can have red, green, and blue channels) and a filter
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Fig. 4: The attack workflow to infer DNN structure.

aggregates kernels’ output across channels. During convolu-
tion, the filter slides over the input data and each step is
measured by stride. When the filter goes over the edge of
input, padding is performed to extend the input region. Like
the fully-connected layer, MAC is also leveraged to accelerate
the convolutional layer and the computational workload of
the convolutional layer depends on how many MAC has been
executed. Equation 2 shows the number of MAC operations,
which is determined by W;, F', D, S and P. They refer to
the size of the output feature map, size of the filter, the depth
of output volume (number of filters), stride, and padding 2.
Except for W;, all other inputs are hyper-parameters set by the
model developer. W; can be computed through Equation 3.

e Pooling layer. The pooling layer is a special type of convo-
lutional layer. Its main function is to reduce the spatial size of
the prior layer’s output, also controlling overfitting. A pooling
layer includes multiple filters, and each filter aggregates an
input region to a scalar value, usually through MAX operation.
The workload of the pooling layer can also be computed using
Equation 2, except that MAC is replaced by MAX and W; is
replaced by Wooiing (see Equation 4).

Fomac = Nifl X Nz (1)
CONVimae = Wi2 x F2 x Di_1 x D; )
WiZWi_l_F+2XP+1 3)
S
Wi_1— F
Wpooling = 1? +1 (4)
s<r<t s)

C. Attack Flow

From the prior analysis, it is clear that different layers
introduce different types of operators (e.g., MAC by fully-
connected layer and MAX by pooling) and workload. There-
fore, we use power traces collected by the spy to infer the
workload of the victim DNN sharing the FPGA board and
further reveal its structural secret.

Before the model-stealing attack, the attacker needs to train
an inference model (M) by profiling a set of DNN models with
different layers and hyper-parameter compositions. During the

2We ignore padding in Equation 2 for simplicity. Padding typically ranges
from 0 to 3, which negatively impacts the overall MAC number.
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attack, the power traces are segmented by M, and the layer and
hyper-parameters of each segment are predicted. To notice, the
targeted model and the profiled models do not have to belong
to the same DNN family (e.g., VGG). The major requirement
is that the layers and hyper-parameters have been “seen” in
the profiled models. The attack flow is shown in Figure 4, and
we elaborate on each stage below.
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Fig. 5: The output signal of RO sensors under convolutional
layer.

Layer segmentation. Before FPGA computes a layer, it would
wait for the CPU to pass the layer configuration and weights
to the on-board DRAM. We name such a short waiting period
as “boundary”, which usually causes less power consumption.
We differentiate the layer and boundary with a binary classifi-
cation model. Figure 5 illustrates the readings of “boundary”
and “layer”. After this step, the number of layers would also
be revealed.

Recognizing layer type. After the attacker finishes the first
step, the sequence of power traces is separated by layers. For
each segment of power traces, the attacker classifies it to a
fully-connected, convolutional, or pooling layer. We consider
each segment as a time-series and extract a number of statisti-
cal features before classification. For a fully-connected layer, it
conducts a matrix multiplication, while for the convolutional
layer, it completes the convolution between multiple filters
and input feature maps. Based on the equation of 1 and 2,
these two types of the layer would generate different power
trace. Finally, for the pooling layer, this layer applies a MAX
function on the previous feature map to get the maximum
value of filter on the feature map, which is a different function
compared to the fully-connected and convolutional layer.

Recognizing hyper-parameters. Different layer type embod-
ies different sets of hyper-parameters. For a fully-connected
layer, the hyper-parameter is the number of neurons. For a
convolutional layer, hyper-parameters include filter size, the
number of filters, and stride. As shown in Equation 1, 2, and
4, the hyper-parameter values have a direct impact on the
computing workload of a layer so that we can infer them from
the power traces. Though theoretically, victims can choose any
value for the hyper-parameters, nowadays, for the best DNN
performance, those values usually fall in a small range (e.g.,
padding usually ranges from O to 3, and the number of neurons
typically is a multiple of 2). Therefore, we can profile their
different combinations ahead and detect their existence later
with a classification model. In addition to the hyper-parameters

with numerical values, each layer’s activation function is also
detected at this stage.

1V. EVALUATION
A. Experiment Setup

We run experiments on a ZedBoard [20], which contains a
dual Corex-A9 Processing System (PS) with 85,000 Series-7
Programmable Logic (PL) cells. It also has 21 DSPs, 177334
FFs, 20607 LUTs, and 235 BRAMSs. Similar to Hua et al. [25],
the layers are executed sequentially. For most of the tasks, we
deploy 20 RO power sensors and follow the floorplan shown
in Figure 3(a). For the RO power sensor’s implementation, we
utilize the typical FPGA design flow provided by Xilinx Vi-
vado, and all components of RO sensors are written in Verilog,
which is a hardware description language. During the synthesis
procedure, the developer can give each design component the
placement constraints by a .xdc file or Pblock. In our case, we
decide to use Pblock to confine the location of each RO sensor.
After synthesis, Xilinx Vivado translates the register-transfer
level (RTL) code into the bitstream file, containing the circuit
implementation information for the FPGA board.

To train our inference model M, we constructed 30 vari-
ants of AlexNet with customized layer and hyper-parameter
settings and collected their power traces. We profile variants
of AlexNet because they contain nearly all elements (except
non-sequential connection) used by other recent DNN models.
For example, the ZFNet [41], which is the champion of Im-
ageNet 2013 Challenge, has the same layer types as AlexNet
but improved it by adopting new hyper-parameters. For the
convolutional layer, the filter size is set to be an odd number
ranging from 1 to 13, the size of stride ranging varying from
1 to 5, and the number of filters ranges from 64 to 8§192. For
the fully-connected layer, the number of neurons is a multiple
of 2, varying from 64 to 4096. For the pooling layer, the filter
size is set to range from 2 to 5, and the size of stride varies
from 2 to 4. For the workload to be executed by the DNN
models, we sample one image from ImageNet [42] (resized to
224x224) and test it repeatedly. Our attack is input-agnostic
as the same amount of operations has to be executed during
inference for any input. For each hyper-parameter value, we
run AlexNet on the FPGA for 50 iterations, collecting over 1
million readings from RO sensors.

To evaluate the effectiveness of M, we test it against
models under the same family (AlexNet) and also models
from other families, including VGG16 and 5-layer MLP
(Multilayer perceptron). The victim DNN model is trained
with the ImageNet dataset on an Nvidia GTX 1080 GPU to
derive the model weights. Then, the victim models run under
the festing mode (only feed-forward) on the FPGA board.
Each model is executed 20 times with the same input, and
we aggregate the accuracy across models. For each trace of
iteration, we collect over 20,000 samples from the FPGA
board. For the final end-to-end analysis, we report the accuracy
for each tested model individually. Though we only simulate
the victim model in the testing model, inferring model secret
when DNN is training is also feasible, as training only adds
a back-propagation process after a batch of input data goes
through all layers.
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B. Layer Segmentation

We use XGBoost [19], a tree boosting model, to classify
power traces into “layer” and “boundary”. We applied the
classification model on each data point initially, but the result
is unsatisfactory, with only 61.83% accuracy on the testing
data. Therefore, we introduce a voting procedure to improve
the accuracy: we group the data points by sliding window
(stride is set to 1) and use the majority decision as to the
classification result.

We have tested different window sizes, ranging from 50 to
400, with our power traces collected during training (AlexNet).
As shown in Figure 6, when window size equals 300, it reaches
the peak accuracy, at 96.57%. As a result, we choose 300 as
the window size. When there are more than 3 consecutive
windows predicted as the boundary, we consider the data
points covered by them as related to the layer boundary and
the remaining ones related to the layers.

C. Feature Selection

After finishing the layer segmentation, we treat all data
points between two “boundaries” related to “layer” and
classify its type. As the data can be treated as time series,
we extract their features leveraging t sfresh [43], a python
library that derives hundreds of features automatically from a
time series. The tsfresh library provides features of time-
domain, frequency-domain, and wavelet-based, but not all of
them are useful: for example, some of them are always zero
and constant. Thus, we rank the features and select the ones
under the Mann—Whitney U test. If the p-value is less than
0.001, this feature is statistically significant and selected. We
choose 28 features and Table II lists the top 5 features.

D. Layer Ildentification

After layer segmentation, the next step is to recognize
the type of each layer, namely convolutional layers, fully-
connected layers, and pooling layers. We examined 8 clas-
sification models for this task on the selected 28 features,
and the result of the testing data shown in Table III (Column
“Layer type”). To learn the impact of feature selection, we
run a comparison experiment: each layer segment is padded
to the same size as the longest layer, and all data points are fed
into classifiers. The accuracy of every classifier is much lower

TABLE II: Selected Feature (top 5).

Features P_value Description
Linear trend | 2.29¢-07 Calculates linear regression for
data versus sequence.
Calculates linear regression for
Agg linear aggregated data versus
7.43e-07 Lo
trend(mean) sequence(aggregate function is
mean).
Calculates linear regression for
Agg linear aggregated data versus
. 1.34e-06 Lo
trend(min) sequence(aggregate function is
min).
ABS energy | 1.42e-05 | Calculates absolute energy of data
Sum values | 450-05 Calculates sum over time series
values

(e.g., less than 40% accuracy) than the accuracy with feature
selection. Thus, the feature extraction step is needed before
classification. After that, we selected Nearest Neighbors, Gra-
dient Boosting, Decision Tree, Random Forest, Multi-layer
Perceptron classifier, Naive Bayes, AdaBoost, XGBoost as
classifier candidates. The settings for each classifier is also
listed in Table III. Among all classifiers, tree-based models like
XGBoost and RandomForest perform best, reaching 100%
accuracy in this task.

E. Hyper-parameter ldentification

After the spy figures out the layer type, it can extract all
hyper-parameters associated with each layer. We tested the
same set of 8 classification models in this task, and the result
is shown in Table III. The number of neurons is the secret for
the fully-connected layer, and we found Gradient Boosting
reaches the optimal performance, with 96.67% accuracy. For
convolutional layer and pooling layer, filter size, the number of
filters, stride and activation function (including ReLu, Sigmoid
and Tanh) are secret, and we found high accuracy (94.28%,
94.85%, 97.47 % and 100%) can be achieved. Overall, a quite
high accuracy (over 93%) can be achieved for the inference of
any secret with the tree-based classifiers. We use the XGBoost
classifier for the end-to-end inference attack on a targeted
model as it achieves the best performance for most inference
steps (4 out of 6).

F. End-to-end Result

Finally, we assemble the inferred layers and their hyper-
parameters together to form a predicted layer sequence and
compare it to the ground-truth. The accuracy here is defined as
the number of correctly predicted elements (layer and hyper-
parameter together) overall elements. The result is summarized
in Table IV. As each model is tested for 20 traces, for the
predicted sequence, we show the optimal one, and the accuracy
is averaged across all 20 traces. For MLP model, we use 5
different neuron numbers (64,128,128,256,512) for the 5 layers
and we can reach 100% accuracy. For the AlexNet model, four
mistakes are observed on hyper-parameters, but the layers are
all correctly predicted, resulting in 91.43% accuracy overall.
For the VGG16 model, we can reach 91.78% accuracy (7
mistakes) for the sequence prediction. The number of filters is
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TABLE III: Accuracy of the classification models using selected features.

. . Accuracy(%)
Classifiers Settings Number : Actva:
Layer Filter Number . .
of . Stride tion
type size of filters .
neurons function
Nearest Neighbors [44] n_neighbors =5 87.5 35 37.14 37.14 86.67 100
Gradient Boosting n_estimators = 1000 975 96.67 | 9142 | 7142 | 9667 | 96.67
Classifier [45]
Decision Tree [46] - 97.5 94.67 68.57 68.57 96.67 100
Random Forest [47] n_estimators = 1000 100 71.67 57.14 31.42 93.33 100
activation_function =
Multi-layer Perceptron relu, hidden_layers =
classifier [48] 1000, solver = 20 15 14.28 20 73.33 20
adam, max_iter = 1000
Naive Bayes [49] - 87.5 23.33 17.14 20 90 90
AdaBoost [50] - 97.5 40 31.42 31.42 97.47 100
. n_estimators =
XGBClassifier [19] 1000, maz._depth = 5 100 93.33 94.28 94.85 96.67 100

mistakenly classified initially, but they can be corrected using
the model constraints described in Section III. Therefore the
final result is improved to 94.52%.

G. Impact of RO Power Sensor Configurations

Number of ROs. We change the number of ROs from 1 to 20
to assess its impact on the attack accuracy. For simplicity, we
only show the result of layer segmentation in Figure 7, as the
trends for other inference tasks are similar. When the number
of ROs rises from 1 to 15, the accuracy grows from 73.17%
to 95.34%. After 15, the improvement of accuracy is small.
Therefore, the adversary can reduce the RO amount to 15 if
the FPGA resource is constrained without sacrificing much of
the inference accuracy. Finally, we choose to implement 20
RO sensors on the board.

Accuracy (%)

1 3 5 7 9 10 11 13 14 15 16 17 20
Number of RO-based sensors

Fig. 7: The accuracy of layer segmentation for different
number of power sensors.

Placement of ROs. We consider the two placement policies
for RO power sensors. As Figure 3(a) shown, in this situ-
ation, the attacker can constrain the placement of each RO
power sensor wherever she wants. The second scenario, like
Figure 3(b) represents that each tenant on this board would be
restricted to her own virtual FPGA slot of the board. So we
implement 20 RO into one Pblock to ensure they are restrained
into the same slot. We experiment with the second scenario by
collecting one million data of boundary and layer and estimate
the accuracy to classify between them. As a cloud provider
might prohibit its user from freely placing FPGA logic, we
examine how this strategy impacts the accuracy. We place and

route 20 ROs as Figure 3(b) shown and run the same attack
for layer segmentation. Surprisingly, we found that our attack
can still differentiate between boundary and layer successfully
only with comparatively minor accuracy decreases(drop from
96.57% to 86.63%). We believe that this is because our attack
relies on the sum of 20 RO power sensors readings, making
variations in individual RO negligible.

H. Alternative RO Power Sensors

The power sensor we use for the attack is based on the
conventional RO sensor, which has also been used by the prior
work for remote FPGA attack [18]. On the other hand, we
found there are cloud providers examining the combinatorial
loops in the logic before it is instantiated on the FPGA
board [51]. The adversary would need to change the design
of the sensor to avoid detection. Specifically, we found there
exist two alternative designs, Latch-based RO sensor [52] and
Flip-Flop based RO sensor [53], that is capable of achieving
a similar sampling resolution as the conventional RO sensor.
The architectures of these two ROs are shown in Figure 8(a)
and Figure 8(b), which replaces an inverting buffer with a
latch and a flip-flop, respectively. We evaluate how the attack
accuracy changes when they are used. We focus on the task of
layer segmentation, which is the first step of the attack flow
in Section III-C. We retrained layer/boundary classifiers using
the RO sensor readings from Latch-based RO and Flip-Flop
based RO separately and evaluated on the testing readings. The
readings are also grouped into windows of 300 data points. In
the end, the accuracy on the layer segmentation task can reach
97.14% by Latch-based RO and 95.84% by Flip-Flop based
RO, which are comparable to the conventional RO (96.57%),
suggesting the adversary has flexibility in switching between
RO designs to make the attack stealthy. In addition to two
alternative RO power sensors, the delay-line monitor [54] can
also be exploited as a power sensor. But as studied by Zhao
et al. [18], compared to the RO sensor, it is less stable and
has lower power resolution. Therefore, we choose RO sensors
as our power trojan for most of the evaluation tasks.
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TABLE IV: Result for end-to-end layer sequence prediction. (C=Conv and the subscripts of C stand for the size of the filter,
number of filters, and stride. F=fully-connected and the number of neurons in F are shown in subscript. P=Pooling,
and its subscripts represent filter size and stride. The activation function is omitted due to space limitations. Accuracy is
computed after model correction. Red characters represent misclassifications while the ground-truth in green.)

Model Original layer Sequence Accuracy

Predicted layer Sequence
MLP Fea — Frog — Frog — Fase — Fr12

Foq — Fiog — Fiag — Fos6 — Fr12 100%

AlexNet Ci1,06,4 — P32 — C5 256,01 — P32 — C3,384,1 — C3,384,1 — C3,384,1 — P3,2 — Fbs6 — Fos6 — Fea
Ci1,1284 — P30 — C3956,1 — P32 — C33840 — C3384.1 — C3,384,1 — P32 — Fase — Fase — Fou 91.43%
C364,1 — C364,1 — Pao — C31281 — Cs1281 — Pao — C3.056.1 — C3,0561 — Cs 256,10 — Pao — C3.512,1 —

VGG16 | C3512,1 — C3512,1 — P22 — C3512,1 — C3.512,1 — C3.512,1 — P22 — Fs12 — Fase — Fias
Cs64,1 — C3,641 — P22 — C3,1281 — C3,1281 — P22 — C3512,1 — C3.512,1 — C3,256,0 — P2 — 94,529
Cs512,2 — C35122 — C35121 — Po2 — C3 5121 — C3.512,1 — C3.512,1 — P22 — F512 — Fase — Fiag )

16 bits
Counter

Clock —

16 bits
Counter

(b)
Fig. 8: Two design of RO sensors a) Latch-based and (b) Flip-
flop based.

L. Effectiveness of the Recovered Models

While we successfully recovered the layer structure and
hyper-parameters for each layer at high accuracy, we have
not discussed how much help it gives to the attacker in
building her own model. It is theoretically possible that
even when the attacker recovered over 90% hyper-parameters
of the target DNN, the recovered model could only reach
50% accuracy due to reasons like the missing of key hyper-
parameters. As a result, we try to measure the value of the
stolen model by comparing its classification accuracy to the
original model. Specifically, we programmed the original and
recovered version of AlexNet using the layer sequences shown
in Table IV) with pytorch-V1.5 and NVidia CUDA-V10.2.
The models are trained and tested on Tiny imageNet-200
dataset [55], which comprises 200 image classes. Each image
class has 500 training images, 50 validation images, and 50 test
images. Using this dataset allows us to assess the classification
accuracy at a much smaller overhead comparing to the original
ImageNet dataset. Some changes are also applied to the model
input. For example, AlexNet is developed for the classification
of RGB images with 224 x 224 pixels. However, the images in
the Tiny imageNet-200 dataset are 64 x 64 pixels. Thus, in the
data prepossessing phase, the dataset images were scaled to
224 x 224 pixels with normalization. We set 256 and 0.01 as
batch size and the learning rate and use Adam optimizer [56]
for training. The number of epochs for training is set to 150.

In the testing stage, we compare the top-1 accuracy and top-5
accuracy (i.e., how likely the top one and top five prediction
matches the label of the tested image). The comparison of
accuracy is shown in Table V, suggesting the adversary’s
workload in model tuning will be significantly reduced when
starting from the stolen model.

TABLE V: Accuracy of original and recovered model.

Model Top-1 | Top-5
Original 31% 57%
AlexNet Recovered | 24% 55%

By exploiting the inferred model structure, the attacker can
also launch an adversarial attack [4] such as evasion more
effectively. Hu et al. [10] showed that the success rate could
be increased by more than 50% even when a few inferred
layers are wrong, compared to the black-box adversary who
has zero knowledge about targeted models. We expect a similar
or better success rate can be gained under our attack method.

J. Signal-to-Noise Ratio (SNR)

Signal-to-noise ratio (SNR), introduced by Mangard et
al. [57], is a common metric to measure the quality of a side-
channel. Here, we compute the SNR of our power-based side-
channel and measure how it varies when the environment is
not ideal for the attacker, e.g., another irrelevant task runs on
the same FPGA board. The equation below computes SNR.

Var(Signal)

SNR =
Var(Noise)

(6)

Where Var(signar) is the variance of the RO power sensor
readings when the DNN model is executed, and Var(yoise)
is the variance of readings when DNN is not executed.

In particular, we run AlexNet for 5 iterations and collect
80,000 samples to compute the average SNR. When DNN
execution is the only active task, the measured SNR is 2.35,
suggesting the quality of our side-channel is satisfactory for
model stealing.

When another irrelevant task is running, e.g., by another
user sharing the board, the SNR is expected to be decreased
since more noises from the other task will be observed by
the RO sensors. To measure the impact, we write another
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program, which runs floating-point matrix multiplication, and
places it together with AlexNet. They are separated logically
and physically under Vivado Pblock constraint. It turns out
the SNR decreases to 1.73 from 2.35. Still, this value is much
larger than 1. Then, we measure how the inference accuracy
is impacted. We rerun the layer/boundary classifiers with the
additional noise generated by the other program. The accuracy
of this task drops to 89.36% from 96.57% when DNN is the
only active task. Though the drop is noticeable, we expect the
attacker still has a good chance of guessing the right model
structure.

K. PFarallel Execution of DNN

Our attacks are shown to be effective when the model
is executed sequentially. Yet, executing DNN in parallel is
possible on FPGA, at four different levels, i.e., Task-level
(multiple prediction tasks are executed simultaneously), Layer-
level (different layers are executed at the same time for
different inputs), Loop-level (multiple kernels of a layer are
executed simultaneously) and Operator-level (multiple MACs
are performed simultaneously) [58]. We examined the Task-
level parallelism and found our attack is still effective. In par-
ticular, we launch 5 image prediction tasks simultaneously on
the same FPGA board and capture the aggregated power traces
with the RO sensors. We retrained layer/boundary classifiers
using the new RO sensor readings, grouped into windows of
300 data points. In the end, the accuracy on layer segmentation
can reach 95.42%, which is slightly lower than the case
of sequential execution (96.57%). Regarding other types of
parallelisms, maintain the same level of accuracy is more
challenging due to the large search space of the combination
between layers/kernels/MACs. We leave the exploration on the
other types as future work.

V. DISCUSSION
A. Limitation

While our attack is shown to be effective under the FPGA
multi-tenancy scenario, main cloud FPGA providers only
support FPGA single-tenancy for now. Yet, we argue that the
attack should be mitigated as multi-tenant FPGA is expected
to be adopted in the near future [59]. Alternatively, we can
explore cross-FPGA side-channels to steal the model. In fact,
very recently, Giechaskiel et al. [60] showed the power supply
unit (PSU) could be exploited to construct FPGA-to-FPGA,
CPU-to-FPGA, and GPU-to-FPGA covert channels between
different boards. On top of these side-channels, model-stealing
might be possible on the current commercial FPGA cloud, and
we leave this exploration as future work.

To avoid impacting legitimate users of the FPGA cloud, our
experiment is executed on a Xilinx Zyng-7000 FPGA board,
Zedboard [20] locally, which is also used by the prior works
launching FPGA remote attack [18]. Our attack is expected
to apply to the cloud, which uses the FPGA board to serve
clients, like Amazon F1 [14].

Our attack focuses on DNN structure, leaving neuron
weights not inferred. Hua et al. [25] showed weights could
be inferred on CNN accelerators, assuming “zero pruning”

is done on the feature map of the CNN model. Multiple
works [24], [61], [62] based on DPA were able to infer
DNN weights on CNN accelerators or FPGA boards. However,
they all assume the adversary can feed input to the device,
which is often requires the adversary to have physical control,
which is not allowed under remote attacks. One might think
weight inference might be easy when a simple DNN model is
examined. However, our preliminary result suggests that is not
the case: we tried to infer the weights of a 3-layer (3-2-2) MLP
that is executed as a Binarized Neural Network (BNN) [63]
with random inputs, but the accuracy is less than 50% with the
XGBoost model. Alternatively, we can relax the restriction on
the attacker and assume part of the input data is public. We
leave this exploration as future work.

B. Countermeasures

Our attack could be thwarted by two countermeasures
potentially: hiding the power consumption patterns unique to
the DNN layers/hyper-parameters or rejecting the deployment
request of suspicious FPGA logic. The first countermeasure
schema requires supplementary hardware [64] to be installed
to mask the power consumption (e.g., through noise injection)
of every operation or embed active fences [65] surrounding the
logic of all users on the cloud FPGA. However, this approach
will incur extra execution overhead unavoidably, which may
eventually offset the benefit brought by the DNN acceleration
from FPGA. The second method requires the cloud provider
to verify each tenant’s RTL (Register Transfer Level) design
or netlist file. This countermeasure requires the provider to
have a ”blacklist” about the logic to be rejected [51]. In recent
years, multiple works proposed electrical-level [66] scanning
methods to prevent malicious logic implementation on Multi-
Tenant FPGAs. Gnad et al. [67] analyze FPGA bitstreams to
detect malicious logic [66]-[69]. Krautter et al. [66] develop
an electrical-level bitstream checking methodology to detect
malicious logic on multi-tenant FPGAs. La et al. [68] demon-
strate malicious FPGA logic can be rejected by scanning a
malicious construct in the netlist. Ahmed et al. [69] present
a bitstream-level proof-carrying hardware approach to detect
the stealthy malicious logic. However, these defense methods
require regular renewal of the “blacklist” that characterizes
malicious logic. As such, using alternative RO designs (e.g.,
latch-based [52] or flip-flop-based [53] RO circuits introduced
in Section IV-H) might help the attacker bypass the checks
and achieve similar attack accuracy. For instance, Ahmed
et al. [70] show that by injecting trojan in a post-synthesis
step and making it unconnected in the bitstream, their attack
can circumvent bitstream-level verification. So far, we have
not found a bullet-proof defense approach against the power
trojans. In other words, a solution that can provably mitigate
our attack without incurring high overhead seems non-trivial.

VI. RELATED WORK
As the machine-learning model becomes intellectual prop-
erty, A number of prior works [7]-[13], [24], [25], [27], [61],
[71]1-[74], [74], [75] have investigated how to steal the model
secret by exploiting the algorithm or hardware weakness. In
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the first direction, prior works showed that by issuing queries
using model’s public API and analyze the response (e.g.,
similarity score), it is possible to learn model parameters (e.g.,
weights of a linear regression model) [72]-[75]. Recently,
a few works examined the API-based model stealing on
DNN models and it turns out when leveraging adversarial
examples [74] or functionally-equivalent extraction [71]. In
the second direction, prior works demonstrated the possibility
to use cache side-channel analysis, EM analysis, and power
analysis on CPU [7]-[9], GPU [10]-[13], microcontroller [24]
and FPGA [25], [27], [61] to infer the model secret. The
research closest to ours was done by Hua et al. [25], and
Yu et al. [27]. They assume the attacker has complete control
of and physical access to the FPGA board, who can 1) feed
any input and measure its output, and 2) sniff the data bus
between FPGA and the off-the-chip memory or EM side-
channel measurements collected by EM probe. However, ours
differ in that we investigate the remote FPGA side-channel
attack, which more practical and general on the cloud FPGA:
the attacker can only measure the victim DNN execution
passively (no control of input) and covertly (no physical
access to FPGA instance).

Our attack can be categorized as a specific type of remote
FPGA attack [18], [52], [54], [76]-[80]. The major security
concern in this setting is that by programming ring oscillators
on FPGA, an adversary can directly access the hardware of
victim vendors without physical access and bypass security
measures like hypervisor isolation. ROs and TDCs (Time-
to-Digital Converters) have been shown to be powerful as
voltage- and temperature-based sensors in attacking the shared
FPGA. Giechaskiel et al. [52], [76] and Provelengios et al. [77]
demonstrated that covert- and side-channel attacks could be
launched on shared FPGAs fabric by utilizing ROs to observe
the adjacent long wires on both Xilinx and Intel SRAM
FPGAs. Zhao et al. [18] performed a SPA (simple power
analysis) attack on an RSA crypto module with an RO-based
power sensor. Similarly, Schellenberg et al. [54] reconstructed
an AES encryption module by TDCs instead of ROs on a
Spartan-6 FPGA. Tian et al. [78] showed that it is feasible
to create thermal covert channels in the real cloud FPGAs by
using ROs. Shayan et al. [79] demonstrated that TDCs (Time-
to-Digital Converters) could be utilized to recover the input
images on share FPGA instances. Moini et al. [80] adopt a
similar threat model as ours while exploiting FPGA power
side-channel information collected by TDCs to recover the
input images. To the best of our knowledge, we are first to
carry out the model stealing attack when the adversary only
has remote access to an FPGA instance. Though most of the
prior works focused on attacking a single FPGA, a few recent
works demonstrated it is feasible to launch “cross-FPGA”
attacks. Schellenberg et al. firstly showed that by leveraging an
FPGA chip as the stepping stone, the adversary could recover
the core key of another chip implementing RSA and AES
cryptographic modules [81]. More recently, Giechaskiel et
al. [60] showed the power supply unit (PSU) can be exploited
to construct covert channels across boards.

VII. CONCLUSION

In this paper, we investigate whether the structural secret
(layers and hyper-parameters) of a victim DNN model can
be inferred by a remote attacker who shares the same FPGA
board. We show by implementing on-chip RO-based power
monitors, the power consumption of the victim DNN can be
sampled at high resolution, which guarantees all layers and
hyper-parameters can be reconstructed at high accuracy. The
result of our attack suggests the intellectual property of a
machine-learning company, or DNN model secret, should be
carefully guarded when using the cloud computing resources,
even when physical and logical isolation is enforced. We call
the attention of the security community to develop new cost-
effective defense solutions against this threat, and we plan to
investigate it as well.
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