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ABSTRACT
Face verification system (FVS), which can automatically verify a
person’s identity, has been increasingly deployed in the real-world
settings. Key to its success is the inclusion of face embedding, a
technique that can detect similar photos of the same person by deep
neural networks.

We found the score displayed together with the verification result
can be utilized by an adversary to “fabricate” a face to pass FVS.
Specifically, embeddings can be reversed at high accuracy with
the scores. The adversary can further learn the appearance of the
victim using a new machine-learning technique developed by us,
which we call embedding-reverse GAN. The attack is quite effective
in embedding and image recovery. With 2 queries to a FVS, the
adversary can bypass the FVS at 40% success rate. When the query
number raises to 20, FVS can be bypassed almost every time. The
reconstructed face image is also similar to victim’s.
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1 INTRODUCTION
Machine learning (ML), especially Deep Learning based on Deep
Neural Networks (DNN), has transformed many important appli-
cation domains, like computer vision, language processing and
speech recognition. In certain tasks, DNN can achieve far better
result comparing to the human expert, thanks to its capability of
modeling the complex relation between input and output domains.
Apart from high accuracy, ML is easy to implement, which also
contributed to its popularity. Usually a deep learning model costs
developers only several hundreds of Python codes but can already
produce satisfied accuracy.

Face verification is such an application scenario supported byML.
State-of-the-art face embedding schemes like Facenet can achieve
over 99% accuracy. Motivated by such result, face verification sys-
tems (FVS) powered by face embedding are widely deployed at
∗Zhe Zhou is the Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’21, December 6–10, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00
https://doi.org/10.1145/3485832.3485840

places like border control [8, 17, 44, 47], company entrance [2, 29]
and mobile device [4, 50]. Its success is mainly attributed to its
convenient workflow: after the user enrolls in FVS with her ID and
face images, next time, the same user can be quickly verified based
on the embedding.

Unfortunately, our study revealed a severe confidentiality issue
of the deployed FVS. By carefully probing a targeted FVS with a
set of faces and observing the responses, not only an attacker can
“create” a face that successfully passes the check of FVS, she can
also recover the face image of a victim enrollee. Our attack does
not exploit any specific bug of FVS system nor require access to
enrollee’s image (in fact, the face image is never stored by FVS). In
particular, our attack is based on three unique insights about FVS
and face embedding: 1) No matter what the verification result is,
information about the victim enrollee leaks to the attacker. 2) Such
information can be accumulated so that the face embedding, the
internal representation created by the embedding model about a
user, can be recovered. 3) The face embedding is highly sensitive,
because an attacker can reconstruct the input image with high
fidelity under its guidance. Below we elaborate the three insights.
1) Information leakage from FVS. For some FVS, every time the
verification result (“pass” or “fail”) is displayed to an attested person,
the score is also displayed for the debugging purposes, reflecting
how far/close the person’s image to the enrollee’s. The score is
directly related to the distance on the embedding space.

Every time the similarity to attested person is displayed, the
system leaks a small portion of information about the claimed user’s
face. The similarity could help attackers to recover the embedding
(a vector representing a face) of the profile photo once enough
information is collected.
2) Embedding recovery from leakage. At the first glance, re-
versing the victim enrollee’s face from FVS score seems infeasible,
as the information contained by it is negligible. However, the in-
formation can be accumulated, when the attacker probes FVS with
different images. One of our key findings is that when the number of
inquiry images equals to the dimensions of the embedding model, the
victim’s embedding can be recovered without error, mainly because
an embedding is a high-dimension vector which still obeys alge-
braic geometry theorems. By formulating the embedding distances
with equations on Euclidean space, the root of equations corre-
sponds to the exact embedding. Furthermore, we found through a
dimension-reduction approach based on PCA (Principal Compo-
nent Analysis), the adversary can issue much less queries to recover
a similar embedding.
3) Image recovery with embedding. With the embedding, the
attacker is supposed to reconstruct the victim’s photo. However,
face embedding is a complex, non-linear and lossy mapping from
an input sample. Reversing such mapping is quite challenging,
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which has not been resolved by prior works. We propose a novel
approach based on generative adversarial network (GAN) for this
task. Classical GAN models reconstruct images from noise input
or a pre-defined label but none of them deal with unseen input.
Therefore, we design a new embedding-reverse GAN (or erGAN)
with the generator and loss function tailored to the embedding
input.
Major results. We evaluate the embedding recovery (named Em-
bRev) and face recovery (named ImgRev) modules. The overall
result proves learning faces enrolled in an FVS just from scores is
feasible and the attack is practical.

For EmbRev, we evaluated over 13,000 images contained by the
LFW dataset on 4 different embedding models. When the query
number equals to the embedding dimensions (e.g., 128 queries when
attacking Facenet-128), the embedding can be recovered nearly
perfectly (the error margin is due to floating-point precision). When
reducing the query number to half, the error distance is still small, at
only 0.1 in average, which is far smaller than the distance threshold
of the targeted models (e.g., 1.28 for Facenet-128). In fact, only
2 queries are sufficient to help the adversary byass FVS at
40% chances under whitebox setting. We also found EmbRev
achieves consistent performance when the image is distorted or
some digits of the FVS score are hidden.

For ImgRev, we evaluated with the images from CelebA dataset.
Our result shows the images reversed from the perfect embed-
dings can pass all 4 evaluated embedding models with over 90%
success rate. Furthermore, based on FID metrics, the quality of
our recovered images are considered quite satisfactory (e.g., 34 for
Clarifai-1024), considering that adding a pair of eye glasses easily
raises FID over 47 [63]. When the recovered embedding contains
errors, e.g., due to the reduced query number, the result maintains
the same level. The consequence of ImgRev is severe. Take a face
verification based door entrance system as an example, an attacker
can claim to be an arbitrary enrollee (victim) and pass the entrance
with the recovered photo. Moreover, ImgRev eventually can help
attackers infer similar photos to all enrollees’ photos stored in the
FVS database, leading to outstanding privacy leakage.

We have reported our discoveries to stake-holders like Clarifai.
The code of this project will be released at a GitHub repo1.

We summarize our contributions as follow:

• We identified that the confidentiality of FVS enrollees is un-
der threat when the adversary probes the FVS with different
images.

• We presented a new attack against face embedding. Our
attack is able to recover a sensitive face embedding with
only a few to dozens of queries.

• We developed a new DNN model based on GAN, which is
able to reconstruct an image close to victim’s from a recov-
ered embedding.

• We evaluated our attack with state-of-the-art embedding
models and real-world face dataset.

(a) A self-service FVS in Chinese Entry & Exit Bu-
reau.

(b) A FVS
app [14].

Figure 1: Two examples of FVS. To notice, the similarity
scores are displayed.

2 BACKGROUND
2.1 Face Verification
A face verification system (FVS) takes a digital image or video
through camera as input and matches it with the database of face
images to verify the claimed identity. It has been widely deployed
by government for surveillance and border control [8, 17, 44, 47],
enterprise for attendance tracking [2, 29] and mobile device for
owner authentication [4, 50]. When the verification process is initi-
ated, the face detection module discovers the face region and sends
it to the face matching module, which computes a score between
the captured face image and the enrolled face images to decide
whether the person can be authenticated.

However, as previous work identified [37], face verification is
vulnerable under media-based facial forgery (MFF) attack, where
the adversary captures the victim’s face (e.g., from social network)
ahead and replays the crafted photo/video. To detect such forged
face, liveness detection system was proposed. It either uses sensors
(e.g., accelerometer and gyroscope) or challenge-response protocol
(e.g., asking the user to smile) to assign a liveness score about
the inputted image/video [34, 36, 55, 57]. Yet, its effectiveness is
questionable when the adversary can wear a mask with the victim’s
face printed [16]. In this work, we focus on bypassing FVS with
static image. To bypass live detection system, the methods proposed
previously [16] can be leveraged.
Face embedding. The accuracy of face verification highly depends
on the face matching module. Specifically, it should give high simi-
larity score to the face images of the same person but low score to
those of different persons. Nowadays, face embedding models like
Clarifai [10] (online service) and Facenet (open-source implementa-
tion) [3, 51] are integrated to build the face matching module. Face
embedding is a Deep Convolutional Neural Network trained with
face images collected from a pool of participants (each participant
can have multiple images). Given an image, the face embedding
model will map it to a vector of N dimensions (e.g., 128 or 512 for
Facenet [51] and 1024 for Clarifai [10]), which is also called embed-
ding. The deployed FVS usually uses pre-trained model (e.g., trained
with public face dataset like CASIA-WEBFACE[68]). In enrollment
stage, FVS stores the embedding and its user ID (e.g., employee)

1https://github.com/BennyTMT/DL_Privacy
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into the biometric database, which is kept as secret. In verification
stage, the embedding of the attested person will be compared to
the embedding of his enrolled profile photo under the provided ID.
The similarity is typically computed using L2 distance or Cosine
distance and the person is authenticated if the similarity is over a
threshold. In addition to face verification, face embedding has also
been leveraged to find similar persons and techniques like Locality
Sensitive Hashing (LSH) [21] can be leveraged.

2.2 Adversary Model
The primary goal of our adversary is to impersonate another person
who has enrolled in a deployed FVS and bypass the check. Specifi-
cally, the adversary intends to forge a face image with minimum
distance to victim on the embedding plane. Such attack can deal
great damage to public safety. For example, an enlisted terrorist
can escape into country’s border which deploys self-service FVS
(shown in Figure. 1a). The secondary goal of the adversary is to
learn the appearance of a victim without her consent, which vio-
lates her privacy. In other words, the forged image should also look
realistic, with minimum distance to the victim on the image plane.
Adversarial examples do not meet this goal as they do not need to
look similar to victims but attackers.

Our attack consists of five steps. (1) We assume victim’s ID has
been obtained, e.g., through searching public ID database. The ad-
versary comes to the FVS, enters the ID of the targeted victim, and
initiates the face verification process. (2) The verification result
(it should be “fail”) and score are displayed, which leaks informa-
tion about the victim. To gain more information, multiple scores
according to different attempts are collected, which can be done by
showing different face images or recruiting a group of people to
approach the FVS. (3) The adversary reconstructs the embedding of
the victim with the tested faces and their scores. (4) Victim’s face
image is recovered through a generative model. (5) The adversary
prints out the generated face image (e.g., as a mask) and wears it to
bypass FVS. Figure 2 illustrates our attack process.
Leakage of FVS score. The calculated distance, from some FVS de-
velopers’ perspective, is not sensitive. An example we encountered
is a self-service machine that was deployed at the Chinese entry and
exit bureau (the counterpart of immigration or boarder inspection
of some countries, and also part of the police system). This machine
authenticates users with their faces before other tasks. The ma-
chine directly displays the similarity on the screen (see Figure 1a).
Another example is an app that directly shows the matching score
on its UI to users, as shown by Figure 1b. No matter if similarity,
score or confidence level displayed, they are eventually variants of
embedding distance, through which attackers can infer the distance.
White-box adversary. In this scenario, the adversary knows the
structure of the face embedding model f used by the targeted FVS,
including layers, hyper-parameters and weights. The adversary can
conduct the attack with the help of f .

While this assumption seems strong, meeting such requirement
is feasible in many cases. For instance, the adversary can purchase
or download the same FVS system and reverse engineer the model
structure. In addition, open-source face recognition library like
Open face [3] has been used by many FVS and attacking such

FVS is even easier as the model can be directly extracted without
reverse-engineering.

To notice, white-box adversary is also covered by prior works
about machine-learning confidentiality [18, 19, 58] and the assump-
tion is similar.
Black-box adversary.When the FVS is close-source or its open-
source implementation is not available, the adversary will not be
able to directly replicate f . We consider one situation that the
adversary is able to access the embedding produced by f without
knowing its structure. Due to the advent of Cloud-based Machine
Learning as a Service (MLaaS), there have been many FVS using
APIs of an online embedding service for face verification. One
famous example is Clarifai [10], which has pre-trained models
with very high accuracy and sells its access (i.e., returning the face
embedding vector given an inquiry image) to customers [11]. When
the adversary identifies the MLaaS model used by the targeted
FVS (e.g., through sniffing its network traffic and identifying the
destination IP address), she can query its API with forged images to
obtain the embeddings outputted by f , in addition to the displayed
score.
No-box adversary. In the worst case, the adversary cannot obtain
the access to the implementation of the targeted FVS or even its
MLaaS API, which we call “no-box” adversary. Learning f or the
embeddings becomes impossible. However, as we will later show,
by attacking another embedding model, the adversary is still able
to recover victm’s embedding.

2.3 GAN
The core step of our attack is to reconstruct the victim’s face im-
age from the recovered embedding, which can be categorized as
a generative task (in contrast to prediction). We leverage Gener-
ative Adversarial Network (GAN) [22] to fulfill this task, which
has shown great successes in synthesizing plausible image [22],
sound [40] and text [72].

GAN consists of two neural networks: a generator and a dis-
criminator. The generator maps randomized input sampled from a
pre-defined latent space (or “noise”) to a data distribution of interest
in the target space. The discriminator determines if a data distribu-
tion is authentic or synthesized by the generator. The training goal
of the generator is to increase the error rate of (or “fool”) the dis-
criminator, while the goal of the discriminator is to maintain high
accuracy in distinguishing the data distributions. The generator
and the discriminator are trained in turn to minimize the outcome
of a loss function, e.g., minimax loss [22] or Wasserstein loss [5].

There are also a bunch of famous GAN variant works, like image
to image translation [30], image to image translation without paired
data [75].

3 EMBEDDING RECOVERY
In this section, we describe EmbRev, the module developed by us
to infer the face embedding of a victim based on the score displayed
by FVS. To summarize, EmbRev can recover the exact embedding
vector (e.g., 128 dimensions under Facenet-128) when a relatively
large set of scores has been obtained (i.e., the same number as the
embedding dimension) through “querying” FVS. When the number
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Figure 2: Overview of our attack. 1) The attacker queries FVS with a set of face images to obtain the FVS scores, which are
converted to embedding distance. 2) The attacker inputs the images to the same embedding model as FVS (f ) or a surrogate
model f ′ to obtain their embeddings. 3) The distances and embeddings are inputted into EmbRev to recover victim’s face
embedding ®es . A and D are generated from the distances and embeddings. 4) The sensitive embedding ®es is inputted to the
generator of ImgRev to recover victim’s face.

of queries is limited, EmbRev is still able to approximate victim’s
embedding.

3.1 EmbRev with Equation-Solving
We denote the sensitive embedding as ®es , which is generated by the
embedding model f of FVS, i.e., ®es = f (xs ), where xs is victim’s
image. n is the dimension of embedding (e.g., 128). We assume the
adversary has issuedm images (x1, x2, ..., xm ) to FVS and obtained
a series of scores s1, s2, ..., sm , which can be converted to distances
d1,d2, ...dm (si +di = 1 for the simplest case). In the meantime, the
adversary also converts the query images to embeddings, denoted
as ®e1, ®e2, ..., ®em , in order to learn ®es .

When the adversary knows the embedding model f of FVS
(white-box adversary), { ®e1, ®e2, ..., ®em } can be easily constructed
with f (x1), f (x2), ..., f (xm ). When the adversary only has access
to the MLaaS API of f (black-box adversary), { ®e1, ®e2, ..., ®em } can
be learnt as well by reading the API response. In section 3.3, we
discuss the no-box adversary.

Our first finding is that ®es can be fully recovered when m = n.
When the n = 2, the proof is straightforward. In this case, ®es , ®e1 and
®e2 can be considered as points in two-dimensional Euclidean space,
and ®es must be on the intersection of the two circles extended from
®e1 and ®e2 (with radius d1 and d2). The intersection can have one or
two points. Finding the intersection is actually the same as solving
the equations of | | ®es − ®e1 | | = d1 and | | ®es − ®e2 | | = d2 where ®es is the
unknown variable. When n > 2, learning the root of es becomes
non-trivial as n equations will be involved, as shown in Equation
Set 1.

| | ®es − ®e1 | | = d1

| | ®es − ®e2 | | = d2

... (1)
| | ®es − ®en | | = dn

Through careful analysis, we found Equation Set 1 is still solv-
able. When L2 distance2 is used, we can convert Equation Set 1 to
Equation 2 below after squaring each equation, assuming ®es , ®e1, ...,
®en are column vectors.

®es
ᵀ
· ®es +A · ®es + D = 0 (2)

where A = −2 · { ®e1, ®e2, ..., ®en }ᵀ and D = { ®e1
ᵀ
· ®e1 −d21, ®e2

ᵀ
· ®e2 −

d22, ..., ®en
ᵀ
· ®en − d2n }

ᵀ .
Euclidean distance. To solve Equation 2, we firstly introduce a
new scalar variable z and assign it with ®es

ᵀ
· ®es , where ®es is a column

vector. With the introduction of z, Equation 2 can be converted into
Equation 3 and Equation 4 in which the right-hand side has no ®es .

z +A · ®es + D = 0 (3)

®es = −A−1 · (D + z) (4)
Now we replace ®es in z = ®es

ᵀ
· ®es with Equation 4, so Equation 6

can be derived.

z = ®es
ᵀ
· ®es (5)

= (D + z)ᵀ(A−1)ᵀ · A−1 · (D + z)

= DᵀBD + z · ®1ᵀBD + z · DᵀB · ®1 + z2 · ®1ᵀB · ®1 (6)

where B = (A−1)ᵀ · A−1 and ®1 = {1, 1, ..., 1}ᵀ with n 1’s.
Because z is a scalar value (it equals to the multiplication of a

row vector and a column vector), Equation 6 is a quadratic function
with z as the unknown variable. Therefore, z has up to two roots,
as shown by Equation 7. For ®es , up to two roots are available as
well because of Equation 4. The roots are shown in Equation 8, by
assigning Equation 7 into z of Equation 4.

z =
−b ±

√
b2 − 4ac
2a

(7)

2d (p, q) =
√∑n

i=1 (pi − qi )2 , where p and q are two vectors of n elements.
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where a = ®1ᵀB · ®1, b = ®1ᵀBD + ·DᵀB · ®1 − 1, c = DᵀBD, and
B = (A−1)ᵀ · A−1.

®es = −A−1 · (D +
−b ±

√
b2 − 4ac
2a

) (8)

where a = ®1ᵀB · ®1, b = ®1ᵀBD + ·DᵀB · ®1 − 1, c = DᵀBD, B =
(A−1)ᵀ · A−1 and ®1 = {1, 1, ..., 1}ᵀ with n 1’s.

When b2 = 4ac , es is very likely to have only one meaningful
root. We used Matlab to test EmbRev, and did not find the case of
two meaningful roots after trying many instances. When there are
two real roots, the incorrect one fall out of the normal distribution
of embeddings, i.e., has large norm. Therefore, es can be uniquely
identified.
Cosine Distance. For embedding schemes choosing Cosine dis-
tance3, ®es can be inferred as well by solving the equation below.

A ·
®es
| ®es |
= D (9)

where A = {
®e1
| ®e1 |
, ®e2
| ®e2 |
, ..., ®en

| ®en |
}ᵀ and D = {1 − d1, 1 − d2, ..., 1 −

dn }
ᵀ .
There is only one root for ®es , which is A−1 · D · | ®es |. Though

| ®es | cannot be derived, different value has no impact to the final
result, as the | ®es | will be normalized by the generator of ImgRev.
Therefore, we set | ®es | = 1.

Overall, our result shows face embedding cannot be secured
when the adversary can query the FVS with a set of images and
record all the returned scores. Essentially, face embedding “com-
presses” an image to a vector in a much smaller latent space (e.g.,
128 or 512 dimensions for Facenet). The mapping is deterministic
and the entropy is significantly reduced, as such the embedding is
much easier to recover than its source image.

3.2 Reducing Query Number
Though effective, running EmbRev can be costly as n queries are
required. Under certain scenarios like self-service FVS at border, ob-
taining hundreds of distances might be impossible for the adversary.
On the other hand, we found reducing the dimension of embedding
does not have big impact on the embedding model. Therefore, the
adversary can reconstruct an embedding with smaller dimensions
but still pass face verification.
Impact of embedding dimension. Firstly, we carefully reviewed
the Facenet embedding scheme [52]. It turns out when increasing
the dimension from 64 to 128, under L2 distance, Facenet only gains
1 percent higher accuracy (86.8% vs 87.9%, shown in Table 5 of
[52]). Interestingly, when the dimension is increased to 256 and
512, the accuracy degrades (87.7% and 85.6%). The result indicates
small dimension volume like 64 can accommodate most of the key
information of a face image. In fact, one possible explanation about
the accuracy plateau or decline is the use of dropout [56] when
training the embedding models. To avoid over-fitting, developers
intentionally shut off some neurons during a training iteration,
which pushes different neurons to generate similar output and
introduces high information redundancy to a layer’s output.

3d (p, q) = 1 −
∑n
i=1 pi qi√∑n

i=1 p
2
i

√∑n
i=1 q

2
i

, where p and q are two vectors of n elements.

To further understand how information is stored in the embed-
ding, we generate Facenet-128 embeddings for 400 randomly se-
lected images from the LFW (Labelled Faces in theWild) dataset [35]
and then use Singular Value Decomposition (SVD) to extract the
key components of each embedding. SVD is a variant of Princi-
pal Component Analysis (PCA) over matrices, which transforms
possibly correlated data into linearly uncorrelated variables. With
SVD, a m-by-n matrix M can be decomposed to the product of
three matrices, i.e.,M = U · Σ ·V ᵀ , in whichU and V ᵀ are unitary
matrices and Σ is a rectangular diagonal matrix. By replacing Σ
with Σ̃ which has r largest singular values, we can approximate M
with another r -rank matrix M̃ = U · Σ̃ ·V ᵀ . In our setting, we first
combine the 400 embeddings into a matrixM by considering them
as rows. Then, we apply SVD and low-rank approximation to ob-
tain M̃ . Finally, we compute the distance between M̃ andM at each
row. The smaller the distance, the more key information is kept
by M̃ . We experimented with different values for rank r . Figure 3
shows the Max and Mean distances betweenM and in M̃ . When the
rank reaches 33 and above, the distance goes below 0.1 in average.
Distance 0.1 suggests the two faces are very alike, as two images
will be linked to the same person once their distance is below 1.1
under Facenet [52]. In other words, we can use a 33-dimensional
embedding to approximate a 128-dimensional embedding without
loosing much accuracy.
Dimension reduction by EmbRev. Though the adversary can
use fewer queries to capture the key information of victim’s face,
how to solve the corresponding Equation 2 (when L2 distance is
used) is unclear. Now the equation has infinite roots, as the number
of equations (m) in Equation Set 1 is less than the number of the
unknown elements (n) in ®es . However, the adversary can choose to
recover the “compressed” embedding directly by adjusting Equa-
tion 2. Below we describe the approach.
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Figure 3: Distances between M and M̃ versus the rank of M̃
on Facenet-128.

We assume ®es can be compressed intom dimensions (m < n).
With SVD, ®es = ®ems · Σm ·V

ᵀ
m + δ , in which Σm ism-by-m, Vm is n-

by-m and δ is the distance (or compression error) to ®es . δ is usually
quite small based our above analysis. By putting ®es = ®ems ·Σm ·V

ᵀ
m+δ

into Equation 2, we obtain Equation 10.

®ems
ᵀ
· Σm ·V

ᵀ
m ·Vm · Σm · ®ems +A ·Vm · Σm · ®ems +D + ∆ = 0 (10)

whereA = −2 · { ®e1, ®e2, ..., ®em }ᵀ and D = { ®e1
ᵀ
· ®e1 −d21, ®e2

ᵀ
· ®e2 −

d22, ..., ®em
ᵀ
· ®em − d2m }ᵀ ; ∆ is the components with {δ1, δ2, ..., δm }

where |∆| ≪ |D |. All vectors are column vectors.
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The issue of infinite roots does not exist in Equation 10 when
we are solving ®ems , as ®ems only hasm unknown elements and the
rank of any matrix in Equation 10 cannot exceedm (V ᵀm ·Vm is the
m-by-m identity matrix andA ·Vm is alsom-by-m). Therefore, there
are at most two roots, represented as Equation 11.

®ems = (Vm · Σm )−1 · −A−1 · (D + ∆ +
−b ±

√
b2 − 4ac
2a

) (11)

where a, b, c are defined the same as Equation 8.
With ®ems learnt, we compute ®es

′ = ®ems · Σm ·V
ᵀ
m (δ and ∆ are ne-

glected). Comparing to computing Equation 8, the only extra effort
the attacker has to make is applying pseudo-inverse operation [62]
on A to get A−1, as A is not square. SVD is only implicitly used
because Vm and Σm are eliminated when computing ®es

′.
For the later stage of face recovery, the slightly imprecise ®es

′

will be used as the input. Fortunately, if the compression error is
negligible, we found the accuracy of the later stage is still high. As
shown in Section 5.1, for the 128-dimensional Facenet model, with
60 queries, an attacker can recover the embedding of a victim with
negligible error, which can further produce a clear face image that
is similar to the version with 128 queries.

When Cosine distance is used, ®es ′ can be generated similarly
under Equation 9. We skip the details.

3.3 EmbRev under No-box Setting
Under this setting, neither f nor its embeddings are known to the
adversary, so Equation 8 and 11 cannot be solved. Yet, such limita-
tion can be addressed through attacking another embedding model
f ′ . Assume f ′, f ∈ F , which is the function space of embedding
models, and the accuracy of f ′ and f are similar. For images x and
y drawn from the data distribution pdata, f ′ and f should derive the
similar distance between any pair with high probability. In other
words, −ϵ < Ex,y∼pdata [| | f (x) − f (y))| | − | | f ′(x) − f ′(y))| |] < ϵ ,
where ϵ is a small positive number. When the adversary uses her
own f ′ to calculate ®e1, ®e2, ..., ®em , the roots for ®es

′ or ®ems will be
similar with f ′(x) instead of f (x). When attacking real-world FVS,
the adversary can fine-tune f ′ with the displayed similarity scores.
To notice, f and f ′ do not need to have the same dimension number
n or even the same distance metric.

4 IMAGE RECOVERY
This module (called ImgRev by us) reconstructs victim’s image
from the inferred victim’s embedding under the design of GAN,
which has been overviewed in Section 2.3. Figure 4 shows the
framework of ImgRev and it mainly consists of a novel embedding-
to-image generator, a discriminator and loss functions.
Overview. ImgRev has a prominent difference comparing to ex-
isting GAN research in that we use the embeddings instead of
randomly generated noises as the generator’s input, and we
call this method embedding-reverse GAN (or erGAN). Before train-
ing, a set of realistic face images (x ∼ pr (x) where pr is the data
distribution over real samples) need to be collected to produce the
embeddings (e = f (x)where f is the embedding model) for erGAN.
As our evaluation shown in Section 5, using a public face dataset,
like CelebA [38], is sufficient. The generator reconstructs images

Generatore xg

Discriminator

x

f/
Query

Lr

f/f eg

Le

Ld

Figure 4: Overview of ImgRev. Training images (x) are firstly
converted by the embedding model (f ) into embeddings e.
The embeddings will be used by the generator to reconstruct
images (xд ). The images will be used to compute losses (Lr ,
Ld and Le ) and update the generator.

(xд = G(e), whereG is the generator) from the input embeddings e .
Three kinds of loss will be used to direct the update of theG , which
are 1) the recovery loss (Lr ) that measures the recovery error at
pixel level on the image plane; 2) the embedding loss that measures
the recovery error on the embedding plane; 3) the discriminator
loss that is inherited from the standard GAN, which measures if
the distribution of xд falls into the distribution of pr .

We follow the regular GAN training process [22], i.e., training
generator and discriminator in turns. The learning rate is decayed
0.02 for every epoch. The batch size is set to be 64. We train the
generator 5 times after every single discriminator training iteration,
which achieves good balance between the generator and the dis-
criminator. After training, the generator of erGANwill be employed
for image recovery and the discriminator will no longer be used.
To notice, in this stage, the adversary does not query the FVS under
any setting (whitebox, blackbox and no-box setting).

4.1 Generator
Ordinary GAN has generalization capability over noise field. It can
generate realistic image but it has no control over image attributes.
However, in our setting, we need the generated images to be tied to
their input embeddings. Conditional GAN (cGAN) [20] has gener-
alization capability over the noise field under the constraint of the
label. If we regard embeddings as labels, cGAN indeed can make
output images corresponding to embeddings. However, cGAN has
no generality on the label, meaning that it can only generate im-
ages with seen labels, which does not satisfy our requirement. In
contrast to the ordinary GAN and cGAN, erGAN has generaliza-
tion capabilities even over unseen embeddings, i.e., the embeddings
recovered by EmbRev. Figure 5 illustrates the differences between
different GAN methods at high level.

The generator of our erGAN has a multi-path phase and a single-
path phase. Figure 6 shows the workflow of our generator for 512-
dimensional embedding input. The first phase, i.e., multi-path phase,
extracts information from the input embedding at different paces.
For the 512-dimensional embedding, the rapid branch directly de-
convolutes the embedding from 512 dimensions to 512 10*10 tiny
images. In contrast, the mild branch firstly deconvolutes it into tiny
images of 2*2 then 10*10. These branches are combined together
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Figure 5: Comparison of Conditional GAN generator, GAN
generator and erGAN.

after they reach the same size, providing a unified input for the later
phase. The second phase, i.e.single-path phase, generates gradually
clearer and larger images by concentrating channels. It repeatedly
passes the deconvolution unit which enlarges the generated images
by fusing multiple channels. During this stage, the size of the im-
ages is doubled while the channels are halved. The deconvolution
unit is followed by a residual convolution unit [25] (see Figure 7)
in order to rectify the images without changing the image size.

4.2 Discriminator
The discriminator tries to distinguish the generated images with the
real face images to help the generator improve image quality. Our
discriminator follows the design of the one used by WGAN-GP [23]
(Wasserstein GAN with Gradient Penalty), which addresses the
issue of training instability of GAN while producing high-quality
images. WGAN-GP needs to maintain a Lipschitz function [48] to
calculate the Wasserstein distance. It penalizes gradient for every
independent sample. The discriminator we use drops all batch nor-
malization layers (BN), and after every convolutional operation, we
add a small Residual Block just like our generator, to avoid that the
generator dominates the process. At last, the output of the discrim-
inator will be a scalar value that is the confidence level that the
discriminator considers xд falling within pr .

4.3 Loss
Our loss function aggregates three types of losses and it can be
represented as

L = wr · Lr +wd · Ld +we · Le (12)

wherewr ,wd andwe are weights. Through empirical analysis,
we found 3:1:1 to 2:1:1 is the best ratio for wr ,wd and we , which
encourages the recovered image to have realistic looking. Below
we elaborate each loss.
Discriminator loss (Ld ). We use the loss of WGAN-GP’s discrim-
inator for Ld [23], represented as

Ld = E
xд∼pд

[D(xд)]− Ex∼pr
[D(x)]+λ E

x̂∼px̂

[ (
∥∇x̂D(x̂)∥2 − 1

)2] (13)

This loss tries to measure the difference between two distribu-
tions pд and pr , i.e., the generated images and the real images in
our case. D is the discriminator. px̂ is the distribution of points
uniformly sampled from the straight line between pд and pr and
x̂ = ϵx + (1 − ϵ)xд .
Recovery loss (Lr ). To encourage the generator to produce realis-
tic images, we add a loss item Lr to force the generated image xд
similar to the original image x . The loss penalizes the generator ac-
cording to the pixel value difference between x and xд . Equation 14
shows Lr .

Lr = E
x∼pr ,xд∼pд

[| |x − xд | |1] (14)

Here we use L1 distance (or Manhattan Distance) to measure the
loss instead of L2 distance because we found L2 is more sensitive to
the background part of images. In fact, two profile images usually
differ more in background part than that in the face part. When
calculating L2 distance, the larger difference, i.e.the background
part takes dominant weight, as it is squared. To encourage the
generator to focus on the face part, we choose L1 distance.
Embedding loss (Le ). We send the generated image (xд ) to a face
embedding model (f ) to get its embedding (eд ) and use the embed-
ding loss (Le ) to penalize the difference between eд and the original
embedding e , as shown by Equation 15.

Le = E
x∼pr ,xд∼pд

[| | f (x) − f (xд)| |] (15)

To be noticed is that f of FVS is unavailable to the black-box
adversary. For white-box adversary, f is identical to the one used
by FVS. For no-box adversary, another embedding model f ′ is used
as an alternative of f of FVS, which is explained in Section 3.3.
However, for black-box adversary, only the result of f is known by
the adversary and we discuss this scenario in the next subsection.

4.4 ImgRev Under Black-box Setting
In this setting, though Le can be calculated, ∇Le (∇ is derivative)
is unknown as we have no access to f , which prevents erGAN to
be guided by a face embedding model. Although erGAN can still
be trained without Le , i.e., setting Le to zero, she would get poorer
results because of the missing guidance from a face embedding
model. To address this issue, she can use another open-source
model f ′ with similar accuracy as f to obtain ∇Le , even when
f ′ and f may have different model structure, distance metrics, etc.
In fact, as open-source models have achieved quite high accuracy,
their embeddings can tell the distinction between profile images
well. They can be used to push the generator to generate more
similar images. In other words, | | f ′(x1) − f ′(x2)| | is expected to
be positively correlated with | | f (x1) − f (x2)| |, where x1, x2 ∈ X.
Therefore, decreasing | | f ′(x1)− f ′(x2)| |will result in the decrease of
| | f (x1) − f (x2)| |. Therefore, f can be replaced by f ′ in Equation 15.
To notice, this setting is different from using open-source models
for white-box adversary or no-box setting as the the goal of f ′ here
is to output ∇Le .
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the generator.

In rare cases when the adversary cannot find an open-source
f ′ with similar accuracy as f , she can train a surrogate model
f ′ through model extraction attack. In fact, previous works have
demonstrated that model extraction by abusing public APIs of
MLaaS models is feasible [13, 32, 32, 46, 58, 60]. Thousands of
queries can produce a good surrogate model [32].

5 EVALUATION
In this section, we firstly evaluate EmbRev, focusing on the accu-
racy of the recovered embeddings. In addition, we also discussed
the impact of query number, no-box setting, the quality of photos
and the precision of displayed score. Then we evaluate ImgRev,
focusing on how accurate the victims’ faces can be recovered. As
a highlight of our evaluation result, under whitebox setting, after
the attacker issues 2 queries to an FVS using Facenet-128, EmbRev
can reconstruct an embedding that bypasses FVS at 40% chances.
20 queries guarantee 100% success rate. With the recovered em-
bedding, ImgRev is able to generate a discernible victim face (see
Figure 10) without querying FVS. Below we elaborate the details.
Targeted embedding models.We examined the security of 4 em-
bedding models with different embedding dimensions (128, 512,
1024, 1792) and distances (Cosine and L2). The widely used models
like Facenet and Clarifai and an embedding model customized by
us are tested. We adjust the distance threshold of each embedding
model to match the accuracy reported by their literature or git
repository using LFW dataset [35], because the threshold is not
always public available. We are able to tune each model with the
same or even better accuracy except Facenet. The reason is that we
apply dlib [33] for alignment, following the design of OpenCV [12].
Table 1 shows the details of each embedding model.

For the customized embedding model, we built it on top of
inception-resnet-v1 of Wide Residual Inception Network [1, 70].
Our customization includes adding cross-entropy loss over the “Ad-
ditive Margin Softmax” layer after densing the embedding, which
turns the model to a classifier for training. Because of this change,
the embedding distance can be measured by Cosine distance. We
trained the model with CASIA-Webface [68]. As shown in Table 1,
moderate accuracy can be achieved.
Experiment settings. For the evaluation on EmbRev, we attack
the two Facenet models. We tested the performance of EmbRev
using LFW dataset and no training is needed. The white-box and
black-box settings are jointly evaluated because they all allow the
adversary to access the same score and embedding for each query.
We evaluate the no-box setting separately by using another embed-
ding model as surrogate model. For the evaluation on ImgRev, all 4

embedding models are attacked. We use celebA dataset to train and
test ImgRev. We focus on white-box and black-box settings as the
embeddings recovered under the no-box setting have large error
margins. The black-box setting has result different from white-box
as another open-source model f ′ is leveraged to generate ∇Le .

For the overhead, the training of ImgRev to attack one embed-
ding model costs us around 6 to 7 hours on a machine equipped
with NVIDIA GeForce RTX 2080 Ti GPU, while recovering 32 face
images as a batch in the testing stage costs 105 milliseconds. For
EmbRev, the overhead is negligible.

Model Emb.
Dim.

Distance
Type

TH Emb.
Acc.

Residual
Inception Network

1792 Cosine 0.78 92.1%

Clarifai Online
Face Embedding [10]

1024 Cosine 0.55 98.1%

Facenet
20180402-114759 [51]

512 Cosine 0.63 97.6%

Facenet
20170512-110547 [51]

128 L2 1.28 97.1%

Table 1: Embedding models evaluated by us. “Emb. Dim.” is
the embedding dimension. “TH” is the distance threshold be-
low which two embeddings are considered to be of the same
person. “Emb. Acc.” is the accuracy of embedding model.

5.1 Effectiveness of EmbRev
We used 300 photos from the LFW dataset to create the victim
dataset. We sent each photo to the tested model and stored its
embedding, which is the secret. Then, to simulate the attack, for
each victim photo, we queried the tested embedding models with
another set of photos (we call them query photos) and recorded all
the embedding vectors and their distances to the victim photo.
The distances and embeddings were inputted into EmbRev to
recover the victim embedding. We implemented EmbRev with
Matlab. When the number of queries equals to the embedding
dimension (128 for Facenet-128), without exception, every victim
embedding can be recovered nearly perfectly. The small error
margins are caused by floating-point calculation, which are within
10−4 and far smaller than the threshold of embedding models.
Reducing query number. The analysis in Section 3.2 shows that
128-dimensional face embedding can be very close (i.e., distance
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less than 0.1) to its 33-dimensional compressed version, indicating
that information inside face embedding is sparse. EmbRev makes
full use of this property to reduce the number of queries issued by
the adversary, so the attack can be even stealthier.
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Figure 8: Error Distances and acceptance rates versus the
query numbers on Facenet-128.

We firstly examined Facenet-128 model, by reducing the query
number from 128 to 0 gradually. For each query number, we com-
pute the error distance, i.e., the distances between the recovered
and victim embeddings, and show the average in Figure 8. It turns
out even when we reduce the query number to half, i.e., 60, the
average error is very small (at 0.022). The error distance goes up
to 0.1 when 53 queries are made which is still negligible as the dis-
tance threshold is 1.28 (shown in Table 1). The average error never
exceeds 1.28, even with only two queries, in which case over 40%
generated images can still be accepted by FVS. If only the attacker
is able to make 20 queries, she has 100% chance to pass FVS. In
Figure 3, we show the distances betweenM (matrix of embeddings)
and M̃ (lower-rank approximation of M) on Facenet-128. Given a
query number r , the error distances introduced by M̃ at rank r can
be considered as its lower-bound. Through experiments, we found
in order to reach such lower-bound, the attacker needs to query
r + 20 times approximately.

Interestingly, when evaluating embedding models of higher di-
mensions, we found that the query number does not have to be
increased. For Facenet-512, EmbRev costs the attacker only 39
queries to drop the mean error distance below 0.063 (10% of the
threshold as shown in Table 1). We speculate it is because embed-
ding models with better accuracy can extract more robust features,
which can be captured by embedding models of lower dimensions.
No-box setting. For this experiment, we assume the targeted FVS
uses Facenet-512, to which the adversary has no white-box or black-
box access. She uses Facenet-128 model as the surrogate model to
obtain embeddings and run EmbRev. To be noticed is that Facenet-
128 and Facenet-512 are very different embedding schemes: L2 and
Cosine distance are used respectively and they are trained on dif-
ferent datasets. The recovered embedding has 128 dimensions and
we compute L2 distance under different query numbers. The result
is presented in Figure 9.

Different from Figure 8, where error distance decreases follow-
ing the increase of query number, Figure 9 shows error distance
decreases first and then increases. The optimal result is observed
when issuing 34 queries, where 1.026 is the average error distance.
While the result is worse than the prior setting as expected, the
adversary still has very good chance to bypass FVS.
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Figure 9: Error distance and the acceptance rate versus the
query numbers under no-box setting.

For the following experiments with ImgRev, we neglect no-
box setting as the error introduced from this step is still large
enough (i.e., over 1) that prevents victim face recovery. However,
we consider EmbRev is effective under the no-box setting as the
recovered embeddings can pass FVS (when issuing 34 queries).
Precision of displayed score. In the prior experiments, we as-
sume the adversary can see the displayed score with high precision.
However, the FVS operator or developer can choose to hide part of
the score. For example, Figure 1a displays 16 digits while Figure 1b
displays only 4 digits. When less digits are displayed, the embed-
dings recovered by EmdRev would be less accurate and we try to
quantify this impact.

In particular, we truncate the distance values returned by the
embedding models to 2 decimal fractions (e.g., 1.23456 is truncated
to 1.23) and re-run the experiment on Facenet-128 with 60 queries.
The average error distance for this setting is 0.066 (in contrast, 0.022
for full precision), such error is well below the distance threshold. As
FVS usually shows scores with at least 2 decimal fractions, EmbRev
is shown to be robust against score truncation.

5.2 Effectiveness of ImgRev
We used the images from LFW dataset to test EmbRev but we
found those images are not suitable for testing ImgRev as many of
themwere captured in unofficial occasions which would never been
encountered by FVS. As such, we used another dataset, celebA [38],
which consists of celebrity images labeled under 40 attributes, to
train and test ImgRev. We remove the images with attributes of
“Blurry”, “Oval_Face” and “Bangs” and “Eyeglasses”, because these
images are taken usually not facing the camera with good angle
or with coverings on faces. For FVS, photos usually have good
angle and people do not wear coverings. The dataset was split
into training and testing set of 20,480 (DStrain ) and 1,800 (DStest )
images. To avoid the same person showing up in both datasets, we
cluster the images based on their Identity ID and assign a cluster
into either DStrain or DStest .

For each photo in DStest we generate its embedding using all 4
models listed in Table 1 and then use ImgRev to reconstruct the
photo. Those embeddings can be considered as “perfect” embed-
dings recovered by the adversary. In the end of this section, we
evaluate how errors produced by EmbRev impact the result of
ImgRev.

We firstly tested the black-box settings without Le in loss func-
tion as the baseline. All four embedding models are tested. Then,
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we tested white-box setting, where ∇Le can be computed using
the same embedding model f as FVS and we use Facenet-128 as f .
Finally, we tested the black-box setting again (Facenet-128 as f ) but
using another surrogate model f ′ (Facenet-512) to generate ∇Le .

Figure 10: First five samples in DStest . The first row shows
original photos. The second to the fifth row show the images
recovered under blackbox baseline setting (without Le ). The
sixth row shows white-box setting on Facenet-128. The last
row shows the black-box setting with Le is generated under
another model Facenet-512 (f ′) when Facenet-128 is the tar-
geted model (f ).

Qualitative results.We employ the trained generator to recover
the first 1,800 images in DStest from their embeddings. Figure 10
shows the recovered versions of the first five images in DStest .
The victims can be easily discerned, suggesting ImgRev is quite
effective. On the other hand, the recovery quality differs. ImgRev
works best on Clarifai-1024, probably because Clarifai-1024 embeds
more facial details, yielding more information to the adversary.

Blackbox Baseline White- Blackbox
Model 128 512 1024 1792 box Le
Acc. 93.07% 97.23% 98.63% 93.87% 94.20% 96.23%
FID 114.11 157.47 33.94 49.39 86.00 61.25

Table 2: The second row show the acceptance rate of the im-
ages recovered by ImgRev. The third shows the FID of the
generated images (smaller is better). The settings are the
same as Figure 10.

Quantitative results. To quantify the attack effectiveness, we
check the ratio of recovered images being accepted by FVS. Ta-
ble 2 shows the acceptance rate, by comparing the original and
recovered faces using the threshold defined in Table 1. As we can
see, the quantitative results follow the general trend of qualitative
results: Clarifai-1024 has the best acceptance rate, at 98.63%. Wide-
Res-1792 has only 93.87% acceptance rate because the embedding
is implemented by us, which has lower embedding accuracy. But
even for the worst result on Facenet-128, ImgRev still achieves
over 93% success rate.

In addition to acceptance ratio, we also compute FID (Frechet
Inception Distance) [71] of each recovered image and report the
average among them. FID records the distance between feature
vectors calculated for real and generated images by GAN. Inter-
estingly, though the acceptance rate is similar across embedding
models, the difference is prominent under FID. Best performance is
still achieved under Clarifai-1024. As FID of GAN generated images
usually falls in the range from 30 to 200 [63], the image quality is
acceptable.

One might argue that FVS operator can adjust the threshold to
thwart our attack. To evaluate the effectiveness of this potential
defense, we compute the embedding distances between images of
1) same person; 2) different persons and 3) original and recovered
versions. Figure 11 shows the Probability Density Function (PDF)
of the distances. It turns out for a victim photo, its distance to the
photo recovered by ImgRev and other photos of the same person
have similar distribution (“Recovered” curve and “Same” curve).
Meanwhile, its distance to photos of other people (“Diff” curve)
has very different distribution. Therefore, if this defense is applied
to reject the photos provided by the adversary, false rejections
will be significantly increased, making FVS unusable. Specifically,
we evaluate the impact of FVS threshold on false-rejection and
acceptance rate and show the result in Table 3. When the threshold
is reduced to 0.4, where 35.84% of victim’s verification requests are
rejected, the attacker still has 48.96% success rate.

TH 0.7 0.6 0.5 0.4 0.3
FR Rate 4.49% 8.79% 18.75% 35.84% 61.72%
Acc. 96.35% 90.63% 72.40% 48.96% 20.83%

Table 3: False-rejection rate and acceptance rate under dif-
ferent FVS thresholds.

Performance gain under whitebox Setting. When the adver-
sary knows the structure of the targeted embedding model, she
can reliably compute ∇Le and derive the embedding loss Le , which
should improve the quality of the recovered image. Here, we assess
this expected performance gain. As listed in Table 2, the white-box
setting brings to the attacker 1.2% gain of acceptance rate (94.20%
compared to 93.07%) and 28.11 gain of image quality. Though such
result shows white-box adversary has advantage over black-box
adversary, the gain is small. Therefore, for our attack to succeed,
white-box access is not required.
Performance gainwith surrogatemodel.We evaluate if a black-
box adversary can improve the baseline ImgRev by using an open-
source surrogate model f ′, which differs from f , to generate Le .
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Figure 11: PDF of distances between 1) embeddings of dif-
ferent photos under the same person (“Same”), 2) photos of
different people (“Diff”) and 3) recovered and original im-
ages (“Recovered”). The vertical line is the threshold for the
Facenet-512 model (judge model).

Surprisingly, the result shows that f ′ brings to the attacker 3.2%
acceptance rate gain and 52.86 gain of image quality, which are
even better than the white-box setting. This somehow contradicts
to our expectation, as white-box access should offer better insight
into the targeted FVS.

After investigating the root cause, we found that such improve-
mentmight be caused by the higher verification accuracy of Facenet-
512 compared to Facenet-128. Le generated by better model results
in better recovery quality. In addition, the diversity brought by the
surrogate model could help. With a different model supervising the
image generation, it is more likely that the generator can generate
images with fewer defects, because an embedding model may ne-
glect certain features of an image which however are captured by
another embedding model.
Image recovery with imprecise embedding. Our prior experi-
ments assume the embedding recovered by the adversary is “per-
fect”. Here we consider the embedding has error and evaluate Im-
gRev again.

In particular, we use EmbRev to recover the embeddings asso-
ciated with DStest with different query numbers and then reverse
those generated embeddingswith ImgRev. The result confirms that
ImgRev works well when the errors are small. When 60 queries
are issued, the recovered images do not show obvious difference
with the images recovered with 128 queries. Figure 12 shows the
samples under different query numbers. The embeddings derived
under photo distortion and score truncation lead to similar result
(i.e., 60 queries are sufficient) as the error margins introduced to
embedding in these cases are even less (e.g., 10−3 for query photo
distortion).

6 DISCUSSION
While our research shows FVS can be bypassed and enrollees’ pri-
vacy can be breached, limitations exist and are described below. In
addition, we discuss the potential defense.
Limitations. 1) Under no-box setting, the embedding recovered
by EmbRev is noisier comparing to other two settings. While the
image recovered from the embedding is still able to bypass FVS, we
found the image is dissimilar to victim’s photo, hence we did not

Figure 12: Images Recovered with different number of
queries.

show it in the paper. But we want to point out that getting white-
box or black-box access is feasible in most cases as FVS usually uses
well-known embedding models. 2) We only evaluate the white-box
attack scenario against Facenet-128, because the black box scenario
already performswell and the improvement ofLe is marginal. 3) The
texture of images generated by ImgRev can be further improved.
Images in Figure 10 show that coarse-gained features of victims’
faces can be well recovered, like the outline, the position of eyes
and nose, etc.. However, finer-grained features like skin textures are
not well depicted, mainly because such information is not stored in
an embedding. 3) We did not test our approach on the real-world
FVS, like self-service FVS, due to ethical concerns. 4) We used a
relatively small dataset to train and test the face embeddings and
our attack. The result could differ when large dataset (e.g., hundreds
of millions of images are included). We acknowledge this limitation
and plan to expand our evaluation with better hardware platform
and more data. 5) We consider a “weaker authentication” scenario
when liveness detection is not used.
Defense.Hiding the score (e.g., only showing “pass/fail”) is likely to
solve this problem but it will make the on-site debuggingmuchmore
difficult as described in Section 2.2. In fact, score is also encouraged
to be shared on social media and many users are doing that [67].
Even when only “pass/fail” is shown, FVS is not bullet-proof as the
adversary can issue more queries till discovering an embedding
similar enough to victim’s. Another approach is to add noises to
the values visible to the attacker (e.g., confidence score vector [31]),
but false positives would rise against legitimate users.

ML library and SDK documentation should clearly tell developers
that distances can only be exposed to authorized managers and
can never be displayed to normal users. Developers should also
learn case studies about embedding leakages so they will not leak
distances inadvertently.

To thwart the image recovery attack after embedding is inferred,
the embedding model can be redesigned to add privacy protec-
tion. Just like a one-way hash function, ML developers may design
models in a way that the reverse mapping of a model cannot be
easily figured out by attackers. Hash functions employ computation
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subroutines that are hard to reverse. However, because basic units
used by DNN today like pooling, convolution, activation, are all
partially or totally reversible, making the embedding model irre-
versible would be unlikely to succeed. Therefore, new DNN units
should be developed to fulfill this goal. In the meantime, auditing
the queries and blocking the follow-up ones when the distribution
is abnormal can be used to deter the model inversion attack [32]
and we will investigate whether it can provide strong protection
on embedding models.

7 RELATEDWORKS
We review those relevant works in machine-learning field first.
Then, we overview other works about face authentication.
Data confidentiality. Fredrikson et al. proposed model inversion
attack (MIA) [19] and showed that the model used for medical
treatment leaks patient’s genetic markers. Following this work,
Fredrikson et al. showed confidence values exposed by the predic-
tion API of MLaaS can be exploited to reconstruct part of training
data[18]. Specifically for their face recognition experiment, they
recovered images of victims in the training set. Recently, Yang et
al. improved the accuracy of image reconstruction of MIA using
public auxiliary dataset [67].

To be noticed is that our work assumes a different scenario
for image reconstruction, i.e., face authentication. In the previous
works, a vector of logits (e.g., confidence value or prediction scores)
can be obtained by the adversary for each prediction. However,
only one score is returned to our adversary, which does not reveal
much information about the model’s characteristics like gradient
or special-featured gradient resulted from over-fitting. Yet, by ex-
ploiting the unique properties of face embedding, we found victims
faces can be recovered.

A related task as ours is image generation, where encoder-decoder
network [6, 41] has been used. As far as we know, the work done
by Zhmoginov et al. [73] is the only one reconstructing image from
embedding. However, as their goal is to transfer an image to another
one such that it has close distance to an embedding (small distance
in embedding plane), the generated image is dissimilar to victim’s
image (large distance in image plane).

In addition to MIA, previous works showed certain properties
of the training data can be revealed. Reza et al. proposed member-
ship inference attack [54]. Later, the same attack is demonstrated
successful in other settings [24, 39, 42, 49].
Model confidentiality. By exploiting the prediction API of
machine-learning models, researchers found the model structure
(e.g., hyper-parameters and weights) [9, 13, 32, 46, 58, 60, 69] and op-
timization procedure can be revealed [45]. In addition to exploiting
the algorithm weakness of machine-learning models, researchers
found the hardware executing them also leaks model structure
through side channels. In particular, the performance counters pro-
vided by GPU [43], shared CPU cache [26, 65], electromagnetic
signals [7], memory access patterns [27, 28], power [61] and execu-
tion time [15] can be exploited to this end. Previous works studied
model confidentiality and data confidentiality in separate directions,
but they might be able to augment each other (e.g., knowing model
structure could increase the accuracy of the data inference attacks).

We will investigate how our attack can be facilitated with the help
of inference attacks on model structure.
Security of face authentication. The major concern is that face
verification can be fooled by replaying an image forged from vic-
tim’s public photos. As such, most recent works involved liveness
detection as the countermeasure [36, 57, 59] but researchers also
discovered new attacks against it [64].

Recently, researchers showed that through generating adversar-
ial physical example (e.g., eyeglass frames), face authentication can
be fooled [53, 74].While our attack can be categorized as adversarial
learning, the adversary model is very different. Their attack assume
victim’s facial image has been possessed by the adversary so the
adversarial example can be built upon it through perturbation, but
our attack assumes zero knowledge about the victim’s appearance.

A recent work proposed to use distance to assist GAN to generate
adversarial examples [66], but they did not recover the enrollee’s
embeddings and images like ours.

8 CONCLUSION
Our study reveals that the small information leakage from face
verification system (FVS), i.e., the score displayed after each verifi-
cation request, can be accumulated to recover victim enrollee’s real
face. By acquiring only a dozen of scores, she can readily recover
the embedding of the victim’s face, with our proposed embedding-
recovery equations. What’s worse is that the embedding is equally
sensitive as the victim’s face. As a proof, we designed a recovery
model based on GAN to convert the recovered embeddings back to
face images, the results show both embedding and face recovery
are effective, as the FVS can be bypassed at high probability and
the recovered face is similar to the victim.
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Figure 13: (a) and (b) are generic male and female images.
(c) is the image with the targeted embedding. (d) and (e) are
transformed from (a) and (b).
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APPENDIX
A PHOTOS GENERATED BY [73]
The photos shown in Figure 13 are taken from the paper of Zh-
moginov et al. [73]. (d) and (e) are the reconstructed images whose
embeddings are close to the embedding of (c), but they are dissimi-
lar to (c) on the image plane. In contrast, ImgRev is able to produce
image similar to the targeted person.
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