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cylindrical contact homology has a lift to integer coef-
ficients which depends only on the contact structure.
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1 | INTRODUCTION AND STATEMENT OF RESULTS

Let Y be a closed odd-dimensional manifold with a nondegenerate contact form A. This paper is
concerned with the foundations of three kinds of contact homology of (Y, 1), each of which, when
defined, depends only on the contact structure £ = Ker(1):

(1) Cylindrical contact homology as defined by Eliashberg-Givental-Hofer [15], which we
denote by CH fGH (Y, A;J). In the absence of certain contractible Reeb orbits, this is the homology
of a chain complex over Q which is generated by ‘good’ Reeb orbits. The differential, which we
denote by 6CH | counts J-holomorphic cylinders in R X Y, where J is a generic ‘A-compatible’
almost complex structure on R X Y.

In general, it is not possible to obtain sufficient transversality for J-holomorphic cylinders to
define this theory, even with generic J, so some abstract perturbations are needed. However, in
our previous paper [28], we showed that in the three-dimensional case, for dynamically con-
vex' contact forms, if J is generic then the differential 3°¢' is in fact well-defined and satisfies
(0FCH)2 = 0. Thus, for dynamically convex contact forms in three dimensions, for generic J we
have a well-defined homology CHECH (Y, 2;7).

Continuing the work in [28], the next step is to show that this homology depends only on &
and not on J, and more generally to define maps on cylindrical contact homology induced by
appropriate symplectic cobordisms. A natural approach would be to define a cobordism map by
counting J-holomorphic cylinders in the cobordism for a generic ‘cobordism-compatible’ almost
complex structure J. However, even for cobordisms between dynamically convex contact forms
on S3, sometimes there does not exist J satisfying sufficient transversality; see [35, Example 1.26]
for an example arising from an inclusion of four-dimensional ellipsoids.

Instead, we will bring in two new ingredients: Morse—Bott theory, and obstruction bundle glu-
ing. The present paper explains the Morse-Bott part, which suffices to prove invariance in the
case when Y is three-dimensional and 4 is hypertight, meaning that 4 has no contractible Reeb
orbits. That is, if A’ is another hypertight contact form on Y with Ker(1) = Ker(1'), and if J' is a
generic A’-compatible almost complex structure, then there is a canonical isomorphism*

EGH .7y — (r7EGH .
CH.?'(Y,2;0) = CH.®M (Y, A5 0"). 1.1)
In fact, the cylindrical contact homology CH*EGH has an integral lift which is also an invari-

ant of &; see Equation (1.3). In the sequel (forthcoming paper by Hutchings and Nelson),
we will use obstruction bundle gluing to extend this result (the existence of an invariant

* A nondegenerate contact form A on a three-manifold Y is called dynamically convex if there are no contractible Reeb
orbits, or the following two conditions hold: (1) ¢;(§) vanishes on 7,(Y), so that each contractible Reeb orbit y has a
well-defined Conley-Zehnder index CZ(y) € Z; and (2) each contractible Reeb orbit y has CZ(y) > 3. In [28], we made
the additional hypothesis that a contractible Reeb orbit y has CZ(y) = 3 only if it is embedded; this assumption can be
dropped by Cristofaro-Gardiner, Hutchings, and Zhang in a forthcoming paper.

*In this paper, we denote canonical isomorphisms by an equals sign.
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integral lift of cylindrical homology) from the hypertight case to the dynamically convex case in
three dimensions.

(2) Nonequivariant contact homology, which we denote by NCH (Y, A; J). This theory, which
is defined over Z, is a stepping stone to proving invariance of the cylindrical contact homol-
ogy CHfGH , and it has interest in its own right. In this paper we define nonequivariant contact
homology NCH,, for closed manifolds Y of arbitrary odd dimension, assuming that 4 is hypertight.

The idea, combining ingredients from [6, 7, 11], is to count J-holomorphic cylinders in R X Y’
between Reeb orbits, where J is an almost complex structure on R X Y which now depends on the
S! coordinate on the domain. Breaking the S!'-symmetry this way eliminates the transversality
problems in defining 3%, and gives us transverse moduli spaces of J-holomorphic cylinders
for generic A-compatible J. However, the gluing theory to prove that (3°°H)? = 0 does not carry
over to this situation to give a chain complex with one generator for each (good) Reeb orbit; see
Remark 5.4. To define a chain complex in this situation, we need two generators for each (good
or bad) Reeb orbit ¢, which we denote by & and @. The differential counts ‘Morse-Bott cascades’
built out of J-holomorphic cylinders, using the algebraic formalism in [29]. We then obtain a
well-defined homology NCH (Y, 4; J), which we call ‘nonequivariant contact homology’. We also
prove that if A’ is another nondegenerate hypertight contact form on Y with Ker(1) = Ker(1'), and
if J/ is a generic S'-family of A’-compatible almost complex structures, then there is a canonical
isomorphism

NCH,(Y,2;J) = NCH, (Y, 1; I).

(3) S'-equivariant contact homology, which we denote by CH fl (Y, 4; 3). This homology is also
defined over Z, and to define it we again assume that Y is a closed manifold of arbitrary odd
dimension and 1 is hypertight. Equivariant contact homology is a ‘family’ version of nonequivari-
ant contact homology, which is defined using a larger family § of A-compatible almost complex
structures on R X Y, following ideas of [12, 39], adapted to the contact setting. Roughly speaking,
S is a BS!-family of S'-families of almost complex structures J. More precisely, $ is a generic
Sl-equivariant family of almost complex structures on R X Y parameterized by S' x ES™.

The S'-equivariant contact homology is the homology of a chain complex whose generators
have the form & ® U and @ ® U, where k is a nonnegative integer, U is a formal variable, and «
is a Reeb orbit. Here U corresponds to the index 2k critical point of a perfect Morse function on
BS!. The differential counts holomorphic cylinders in R X Y which are ‘coupled’ to Morse flow
lines on BS'. We denote the resulting homology by CH fl(Y, ;). We prove that if A’ is another
hypertight contact form on Y with Ker(1) = Ker(1'), and if §’ is a generic family of A’-compatible
almost complex structures, then there is a canonical isomorphism

CHS' (Y, 1;§) = CHS (Y. 1'; §). 1.2)

Returning to the original goal, we show that if 1 is hypertight, if J is a A-compatible almost com-
plex structure on R X Y satisfying sufficient transversality for J-holomorphic cylinders to define
cylindrical contact homology (which can always be achieved in the three-dimensional case), and
if we set § to be the constant family given by J, then there is a canonical isomorphism

CHS'(Y,4; %) ® @ = CHECH (Y, 4;7). 1.3)
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Combining this with the topological invariance of equivariant contact homology (1.2), we obtain
the desired topological invariance of cylindrical contact homology (1.1) in the hypertight case.

Although hypertight contact forms are somewhat special, one application of the present paper
is to give a rigorous definition of the ‘local contact homology’ from [25] of a degenerate Reeb orbit;
see Sections 1.6 and 6.2. One can also obtain many examples of hypertight contact forms from taut
foliations on three-manifolds [13, 42].

The nonequivariant and S!-equivariant contact homology described above will be extended
to the dynamically convex case in three dimensions in the forthcoming paper by Hutchings
and Nelson.

1.1 | Contact preliminaries

To explain the above story in more detail, we first recall some basic definitions. Let Y be a
closed odd-dimensional manifold with a nondegenerate contact form A. Let & = Ker(1) denote
the associated contact structure, and let R denote the Reeb vector field determined by A.

A Reeborbitisamapy : R/TZ — Y,forsomeT > 0,such thaty’(t) = R(y(t)). We consider two
Reeb orbits to be equivalent if they differ by a translation of the domain. We do not assume that y
is an embedding; every Reeb orbit is a d-fold cover of an embedded Reeb orbit for some positive
integer d. For a Reeb orbit as above, the linearized Reeb flow for time T defines a symplectic linear
map

Py, (57(0)"1’1) - (gy(o)’d/l)' (1.4)

The Reeb orbit y is nondegenerate if P, does not have 1 as an eigenvalue. The contact form 4 is
called nondegenerateif all Reeb orbits are nondegenerate; generic contact forms have this property.

Definition 1.1. An almost complex structureJ on R X Y is called A-compatibleif J(3,) = R, where
r denotes the R coordinate; J sends & = Ker(4) to itself, compatibly with the linear symplectic form
dA on &; and J is invariant under translation of the R factoron R X Y.

Fix a A-compatible almost complex structure J, and let y, and y_ be Reeb orbits. We consider
maps u : R X S! - R x Y such that

ou+Jou=0, 15)

limg_, ,  mp(u(s,t)) = o0, and limg_, , 7y (u(s, -)) is a parameterization of y, . Here 7, and 7y
denote the projections from R X Y to R and Y, respectively. We declare two such maps to be equiv-
alent if they differ by translation of the R and S* coordinates on the domain R x S*, and we denote
the set of equivalence classes by M’ @ 7o)-

Given u as above, we define its Fredholm index by

ind(u) = CZ.(y,) — CZ.(y_) + 2¢c,(u*§, 7). (1.6)
Here 7 is a symplectic trivialization of y; § and y*§, while CZ,(y..) € Z is the Conley-Zehnder

index of y, with respect to 7, and c,(u*§, 1) denotes the relative first Chern class of u*£ with
respect to 7, which vanishes if and only if 7 extends to a trivialization of u*£. If J is generic and
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u is somewhere injective, then M (74,7-) is a manifold near u of dimension ind(u). This is a
special case of a more general result for holomorphic curves that are not necessarily cylinders
(where the index formula includes an additional Euler characteristic term) which is proved in
[14] and explained in more detail in [41, Theorems 5.4 and 8.1].

Note that R acts on M’ (y +»7_) by translation of the R factor in the target R X Y. We define

M @70 = M, 70)/R. 1.7)

Let M{i(h, y_) denote the set of u € M’ (y,,y_) with Fredholm index ind(u) = d.

Recall that if y is a Reeb orbit and 7 is a trivialization of y*£, then the parity of the Conley-
Zehnder index CZ_(y) does not depend on 7. Thus, every Reeb orbit y has a well-defined mod 2
Conley-Zehnder index CZ(y) € Z/2. A Reeb orbit y is called bad if it is a (necessarily even degree)
multiple cover of a Reeb orbit ¥’ such that

CZ(y) # CZ(y') € /2.

Otherwise, y is called good.

1.2 | Cylindrical contact homology

We now review what we will need to know about the cylindrical contact homology
CHECH(Y, 2;J). The original definition is due to Eliashberg-Givental-Hofer [15]; we are using
notation’ from [28].

Assume that 1 is nondegenerate and hypertight. Let J be a A-compatible almost complex struc-
ture on R X Y. Assuming that J satisfies certain transversality conditions (to be specified below),
we define a chain complex CCECH (Y, 2;7) over Q as follows.

As a module, CCfGH (Y, A;J) is noncanonically isomorphic to the vector space over Q gener-
ated by good Reeb orbits; an isomorphism is fixed by making certain orientation choices. More
precisely, for each good Reeb orbit y, the theory of coherent orientations as in [9, 16] can be
used to define a Z-module O, which is noncanonically isomorphic to Z; see Proposition 2.3 and
Section A.3. We then define

ccEfy,an= @ 0,®,a
y good

Choosing a generator of (9y for each good Reeb orbit y specifies an isomorphism
CCECH (Y, 2;7) ~ @{good Reeb orbits}.

This chain complex has a canonical Z/2-grading determined by the mod 2 Conley-Zehnder
index*. In some cases, the grading can be refined; see Section 1.6.

A notational difference is that in [28], we denoted cylindrical contact homology by CH2(Y, 4,J).

1t is common in the literature to instead define the grading on cylindrical contact homology to be the Conley-Zehnder
index plus 1 — n, where dim(Y) = 2n — 1.
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To define the differential, we first define an operator

§ 1 cCECH(y, 2,0) — ccECl(y, 4, 0)

as follows: If « is a good Reeb orbit, then

_ cw
50:-2 Z P (1.8)

B ueMl(a,p)

where the sum is over good Reeb orbits 3. Here e(u) € {+1} is a sign’ associated to u; our sign
convention is spelled out in Definition A.26. Also, d(u) € Z>° is the covering multiplicity of u,
which is 1 if and only if u is somewhere injective. The definition (1.8) makes sense provided that
all moduli spaces M‘Ji(oc, ) with Fredholm index d < 1 are cut out transversely*.

Next we define an operator

x : CCECH (Y, 2;0) — CCECH (Y, 2;7)

by
x(a) = d(a)a.

If we further assume suitable transversality for the moduli spaces Mé(oc, B), then counting their
ends leads to the equation

58 = 0. 1.9)

This was proved in the three-dimensional case in [28], and we will recover it in arbitrary odd
dimensions from the Morse-Bott theory below; see Corollary 5.3. Equation (1.9) implies that

AFCH = 5 (1.10)
is a differential on CCECH (Y, ;7).

Definition 1.2. If 1 is hypertight and J is admissible (see Definition 5.1; this is a certain transver-
sality hypothesis on the moduli spaces M(Ji(a, B) for d < 2), we define the cylindrical contact
homology CHECH (Y, 2;7) to be the homology of the chain complex (CCECH (Y, 1;7), 0ECH).

Remark 1.3. 1t is also possible to take the differential to be x6 instead of dx. In fact, both of these
differentials arise naturally in the Morse-Bott story; see equation (1.14). The operator x defines
an isomorphism between these two chain complexes over Q, because (x8)x = x(5x). While both
of these differentials are actually defined over Z, we do not expect the homologies over Z to be
isomorphic to each other or invariant in the sense of (1.1).

" More precisely, e(u) is an element of {+1} after generators of 9, and Op have been chosen. Without making such choices,
€(u) is an isomorphism O, ~ Og.

#In particular, then all moduli spaces M“;(cx, B) with a # 8 and d <0 are empty, which under our hypertightness
assumption guarantees that the moduli spaces M{ (o, B) are compact, so that we obtain finite counts.
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In [28], we showed that in the three-dimensional case, the transversality for J-holomorphic
cylinders needed to define CHfGH (Y, A;J) can be achieved by choosing J generically; see also
Section 5.4. However, this is impossible in most higher dimensional cases. The difficulty is that
there may exist multiply covered J-holomorphic cylinders with negative Fredholm index, even
when J is generic.

1.3 | Nonequivariant contact homology

As suggested in [6], one can fix the transversality problems for holomorphic cylinders using a
domain-dependent almost complex structure. Breaking the S! symmetry naturally leads one to a
‘Morse-Bott’ version of the chain complex. The homology of this chain complex is not the cylin-
drical contact homology described in the previous section, but rather a ‘non-equivariant’ version
of it, which we define in Sections 2 and 3.

To introduce this, let Y be a closed odd-dimensional manifold, and let A be a nondegenerate
hypertight contact form on Y. Let J = {J,} be a family of A-compatible almost complex structures
on R X Y parameterized by ¢t € S'. If y, and y_ are Reeb orbits, we consider mapsu : R x S! —
R X Y such that

ou+J,o0u=0, a.1)

limg_, , o, e (u(s, t)) = oo, and lim,_, , , 7y (u(s,-)) is a parameterization of y, . We declare two
such maps to be equivalent if they differ by translation of the R coordinate on the domain R x S,
and we denote the set of equivalence classes by M (7,4, 7-)- Note that for solutions to (1.11), unlike
(1.5), we can no longer mod out by rotation of the S! coordinate on the domain.

Given u as above, let Mﬂ(y .,7_) denote the component of M”(y,,y_) containing w. If J is
generic, then this is a smooth manifold of dimension

dim (M)(7,.7)) = CZe(r,) = CZr) + 26, (W §,0) + 1.

The right-hand side here is one greater than the right-hand side of (1.6), because we are no longer
modding out by an S! symmetry.

As before, R acts on M (y +»7_) by translation of the R factor in the target R XY, and we
let M?(y,,y_) denote the quotient. Below, if y, # y_, and if d is a nonnegative integer, let
Mi (74, 7_) denote the union of the d-dimensional components of M’(y,,y_).

We now also have well-defined smooth evaluation maps

e, M(yy,yl) — 7.,
ur— lim 7y (u(s,0)).
S—>+00
Here y denotes the image of the Reeb orbit y in Y.

The moduli spaces Mfi](ha 7_), together with the evaluation maps e, (and some orientations
and compactifications), constitute what we call” a ‘Morse-Bott system’ in [29]. As explained in

"To be more precise, one could call this an ‘S'-Morse-Bott system’, as here the analogues of ‘critical submanifolds’
are circles.
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[29], out of these data we can naturally construct a ‘cascade’ chain complex (NCC,(Y, 1), df)
as follows.

We define NCC,(Y, 1) to be the free Z-module with two generators & and & for each Reeb orbit
a. This module has a canonical Z /2-grading, where the grading of & is CZ(«), and the grading of
ais CZ(a) + 1.

To define the differential, we generically choose a point p, € « for each Reeb orbit a. If a #
B, then the differential coefficient <a;]a, ,5) is a signed count of tuples (u,, ..., u;), where there
are distinct Reeb orbits a = y,, 7y, ..., 7, = B such that u; € My(y;_;,7:), and for 1 <i <k, the
points p, ,e_(u;), and e, (u;,) are cyclically ordered on ¥; with respect to the orientation given
by the Reeb vector field. If we replace @ by &, then we add the constraint that e +(u1) = p,, and
we increase the dimension of u;’s moduli space by 1. Likewise, if we replace 6 by ﬁ then we add
the constraint that e_(u) = pg, and we increase the dimension of u;’s moduli space by 1. When
a = B, all differential coefficients are defined to be zero, except that

(ja,q)y = -2 (1.12)

when « is a bad Reeb orbit.

Some motivation for the above definition comes from finite-dimensional Morse-Bott theory. A
Morse-Bott function on a finite-dimensional manifold can be perturbed using a Morse function
fs on each critical submanifold S. Gradient flow lines after perturbation correspond to ‘cas-
cades’, which start and end at critical points of the perturbing Morse functions f, and which
are alternating sequences of downward gradient flow lines of the Morse-Bott function and down-
ward gradient trajectories of the perturbing Morse functions f; see [2, 5, 18]. In the situation of
nonequivariant contact homology, there is no direct analogue of perturbing to a Morse function.
However, the above differential still counts an analogue of cascades, in which the simple Reeb
orbits ¥ play the role of critical submanifolds. One can imagine choosing for each y a perturbing
Morse function f, on ¥y which has two critical points which are very close to p,, such that the
downward gradient flow away from p, moves in the direction of the Reeb vector field. One can
then think of the generators 7 and 7 as representing the maximum and minimum, respectively, of
the perturbing Morse function f,,. The cyclic ordering condition in the previous paragraph corre-
sponds to the fact that the downward gradient trajectories of f, move in the direction of the Reeb
vector field.

Formal arguments in [29] show that (5;1)2 = 0, and that the homology does not depend on the
choice of base points p,. This homology is the nonequivariant contact homology, which we denote
by NCH (Y, 4; J). It is invariant in the following sense:

Theorem 1.4. Let Y be a closed manifold, and let 1 and A’ be nondegenerate hypertight contact
forms on Y with Ker(1) = Ker(1'). Let J be a generic S'-family of A-compatible almost complex
structures, and let I be a generic S'-family of 2'-compatible almost complex structures. Then there
is a canonical isomorphism

NCH,(Y,4;J) = NCH, (Y, 1; 1).

In particular, if £ is a contact structure on Y admitting a nondegenerate’ hypertight contact
form, then we have a well-defined nonequivariant contact homology NCH (Y, &).

In fact one can remove the nondegeneracy assumption here; see Section 1.6.
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Remark 1.5. Our Morse-Bott chain complex (NCC.(Y, 1), aj) is a contact analogue of the Floer
theory for autonomous Hamiltonians studied in [11]. In that paper, the idea was to perturb the
autonomous Hamiltonian to a nondegenerate one, and to understand the Floer chain complex
of the nondegenerate perturbation in Morse-Bott terms. In our situation, by contrast, we need to
define the homology and prove its invariance entirely in the Morse-Bott setting.

1.4 | S'-equivariant contact homology

In Section 4, we carry out a variant of the above construction defined using a larger family
of almost complex structures on R X Y, namely, an S'-equivariant S' x ES' family of almost
complex structures 3.

To define the chain complex, we fix a ‘perfect Morse function’ f on BS'; see Section 4.1 for
details. Let fdenote its pullback to ES', and if x is a critical point of f, let 771(x) denote its
inverse image in ES'. Given critical points x, of f, and given Reeb orbits y_, we consider pairs
(n,u), where  : R — ES! is an upward gradient flow line of f asymptotic to points in 7 (x )
andu : Rx S' - R x Y satisfies the equation

asu + 3,,,7(8)6tu =0,

with the asymptotic conditions that limy_, , , 7wpu(s, -) = +co, and limg_, | , wyu(s, ) is a param-
eterization of a Reeb orbit y, . As before, there is an R action on the set of solutions by translating
the R coordinate in the domains of # and u simultaneously, and another R action by translating
the R coordinate on the target R X Y of u. There is also an S! action which simultaneously trans-
lates the S* factor on the domain of u and acts on ES' in the target of 7. We denote the quotient of
the solution set by these actions by M3 ((x +74), (x_,7_)). As before, there are evaluation maps,
which now have the form

en t MOy, 7, (el y0) — (77 0e) X 72) /S

These moduli spaces and evaluation maps satisfy the axioms of a Morse—Bott system, so we
can again invoke the formalism of [29] to obtain a chain complex (CCfl(Y, A), 651’3). This chain
complex then has two generators for each pair (x, a), where x is a critical point of f and « is a
Reeb orbit. We denote these two generators by & ® Uk and @ ® U, where 2k is the Morse index
of x. More concisely, we have a canonical identification of Z-modules

cCs'(Y,4) = NCC,(Y,1) ® Z[U].

One can think of the formal variable U as having degree 2, although for now this chain complex
is only Z /2-graded, where & ® U* has grading CZ(«) and @ ® U* has grading CZ(«) + 1.

The homology of this chain complex is the S'-equivariant contact homology, which we denote
by CH f ' (Y, 4; 3). It is invariant in the following sense, analogously to Theorem 1.4:

Theorem 1.6. Let Y be a closed manifold, and A and A’ be nondegenerate hypertight contact forms
on Y with Ker(1) = Ker(1'). Let § be a generic S'-equivariant S' x ES'-family of A-compatible
almost complex structures, and let §' be a generic S'-equivariant S* x ES'-family of 1'-compatible
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almost complex structures. Then there is a canonical isomorphism
CHS' (Y, 2 §) = CHS (v, 2'; ).

In particular, if & is a contact structure admitting a hypertight contact form, then we have a
well-defined S'-equivariant contact homology CHS (Y, £).

Remark 1.7. The S'-equivariant contact homology defined above is analogous to the S!-
equivariant symplectic homology introduced in [12]. The difference is that we are using contact
forms instead of Hamiltonians, and we are working in a Morse-Bott setting.

Remark 1.8. The nonequivariant contact homology NCH (Y, 4; J) is the homology of the sub-
complex of CCfl(Y, ;&) in which the exponent of U is zero. Here J is obtained by restricting J§
to the part of S' X ES! corresponding to the index O critical point of f. If § is chosen appropri-
ately, then the differential on CC;?1 will commute with ‘multiplication by U=, namely the map
sending Uk — U1 for k > 0, and sending 1 — 0; see [23, Remark 5.15] for explanation in the
similar situation of S'-equivariant symplectic homology. It follows that, analogously to [12], there
is a long exact sequence

. —» NCH, » CHS — CH® — NCH,_, — -

where the middle map is induced by multiplication by U~ on the chain complex.

1.5 | The autonomous case

We now explain how to recover the cylindrical contact homology in Section 1.2 from the
S!-equivariant contact homology in Section 1.4.

Suppose that J is a A-compatible almost complex structure on R X Y which satisfies the
transversality conditions needed to define cylindrical contact homology, see Definition 1.2. We
can then compute the S'-equivariant contact homology using the ‘autonomous’ family of almost
complex structures § = {J}. (In general, a slight perturbation of the autonomous family might
be needed to obtain the transversality necessary to define the S'-equivariant differential. See
Section 5.2 for details.)

In this case, we find that the equivariant differential is given by

3% =0]®@1+0, U

Here a; denotes the nonequivariant cascade differential for the autonomous family J = {J}. In
addition, the ‘BV operator’ 0, is given by

ala = 0,

« d(a)a, «agood, (1.13)

610( =
0, a bad.
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We will see in Section 5.2 that the above differential is related to the cylindrical contact
homology differential as follows: If &« and § are good Reeb orbits, then

<aj&,[§> = (6xat, B),
(1.14)

<a§a,§> = (—xba, B).

In addition, if « is a bad Reeb orbit, then (6;&, E y = 0 for any Reeb orbit 3; and if § is a bad Reeb
orbit, then (6;’ a, [3\ ) = 0 for any Reeb orbit a. Finally, (6; a, E ) = 0, except when o and (8 are equal
and bad, in which case the differential coefficient is —2; cf. (1.12).

Given the above observations, a calculation in Section 5.3 proves the following:

Theorem 1.9. Let Y be a closed manifold, let 1 be a nondegenerate hypertight contact form on
Y, and write § = Ker(A). Let J be an almost complex structure on R X Y which is admissible (see
Definition 5.1). Then there is a canonical isomorphism

CHS'(Y,£) ® Q = CHESH (v, ;).

Corollary 1.10. CHECH is an invariant of closed contact manifolds (Y, £) for which there exists
a pair (1,J) where 1 is a nondegenerate hypertight contact form with Ker(1) =&, and J is an
admissible A-compatible almost complex structure.

1.6 | Additional structure

The three kinds of contact homology discussed above have some additional structure on them.
These are standard constructions given the material in the rest of the paper, so we will just
briefly describe them here. We will mostly ignore cylindrical contact homology below, since
S'-equivariant contact homology determines it by Theorem 1.9 but is defined more generally.

Splitting by free homotopy classes

The differentials on the chain complexes defining cylindrical, nonequivariant, and S'-equivariant
contact homology all preserve the free homotopy class of Reeb orbits (since they count cylinders
which project to homotopies in Y between Reeb orbits). Furthermore, the chain maps proving
topological invariance of the nonequivariant and S*-equivariant contact homologies also preserve
the free homotopy class of Reeb orbits. Consequently, if & is a contact structure on Y admitting
a hypertight contact form, and if T is a free homotopy class of loops in Y, then we have well-
defined contact homologies NCH (Y, &,T) and CHfl(Y, £€,T), which are the homologies of the
subcomplexes involving Reeb orbits in the class I'.

Refined grading

Let N denote twice the minimum positive pairing of ¢, (§) with a toroidal class in H,(Y), or infinity
if ¢;(§) annihilates all toroidal classes in H,(Y). Each of the above contact homologies has a non-
canonical Z/N-grading, which refines the canonical Z /2-grading. To define this relative grading
on cylindrical contact homology, for each free homotopy class I' that contains good Reeb orbits,
choose a good Reeb orbit y in the class I', and choose an arbitrary value of the grading |y| € Z/N
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which has the same parity as CZ(y). There is then a unique way to extend the Z/N-grading over
all good Reeb orbits in the class I' such that if u is any homotopy class of cylinder with boundary
vy, —v_,then

74| = ly-| = ind(w).

Here ind(u) is defined as in (1.6), which makes sense even if u does not come from a
holomorphic cylinder.

To define the grading on nonequivariant or equivariant contact homology, one likewise
chooses the grading |y| for all Reeb orbits y in the homotopy class I. We then adopt the
conventions

7l =71+1
‘7@ Uk’ = |7] + 2k,
|;7® U"| = 7] +2k + 1.

The topological invariance in Theorems 1.4 and 1.6, and the isomorphism in Theorem 1.9, respect
the relative gradings.

Cobordism maps

Let (Y,,4,) and (Y_,4_) be closed manifolds with nondegenerate hypertight contact forms.
Let (X, 1) be an exact’ symplectic cobordism (see Definition 3.8) from (Y. A)to(Y_,A_), and
assume further that no Reeb orbit in Y is contractible in X. Proposition 3.9 and the subsequent
discussion show that the cobordism (X, 1) induces a map

®(X,1) : NCH,(Y,,A,) — NCH,(Y_,A_)

which is functorial with respect to composition of cobordisms. Likewise, Proposition 4.10 and the
subsequent discussion give a functorial map

®(X,A) : CHS (Y,,A,) — CHS'(Y_,2_).

Filtered versions

Let Y be a closed manifold, let 4 be a contact form on Y, let L be a positive real number, and
assume that 4 is ‘L-nondegenerate’ and ‘L-hypertight’, meaning that all Reeb orbits of action less
than L are nondegenerate and noncontractible. (In particular, 1 does not need to be hypertight.)
We can then repeat the constructions of nonequivariant and equivariant contact homology above,
considering only Reeb orbits with symplectic action less than L, to obtain well-defined ‘filtered
contact homologiess NCH=L(Y, 1) and CH. fl’<L (Y, A). These do not depend on the choice of almost
complex structure, although they do depend on the contact form 4; cf. [31, Theorem 1.3]. When
A is actually nondegenerate and hypertight, the usual contact homologies are recovered from the

" One can also obtain cobordism maps from a strong symplectic cobordism if one uses a suitable Novikov completion of
contact homology; see the forthcoming paper by Hutchings for the analogous story for embedded contact homology.
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filtered contact homologies by taking the direct limit over L, for example,
CHS' (Y, &) = lim CHY<H(Y, 2). (115)

The degenerate case

If A is L-hypertight but possibly degenerate, and if 1 does not have any Reeb orbit of action equal
to L, then one can still define the filtered nonequivariant or S'-equivariant contact homology by
letting A’ be a small L-nondegenerate and L-hypertight perturbation of 1 and defining

cHS"<L(y,2) = CHS"<L(Y, 1),

and likewise for nonequivariant contact homology. This does not depend on the choice of A’ if
the perturbation is sufficiently small. With this definition, if 1 is hypertight but possibly degen-
erate, then we still have the direct limit (1.15). (If £ has hypertight representatives but they are all
degenerate, then the right-hand side of (1.15) is still an invariant of (Y, £) and can be taken as a
definition of the left-hand side.)

Local contact homology

In [25], Hryniewicz and Macarini introduced the local contact homology of the dth iterate of a
simple Reeb orbit y, in a (not necessarily compact) contact manifold (Y, 4,). We assume that
the Reeb orbits y’g for 1 < k < d are isolated in the loop space of Y, but we do not assume that
these are nondegenerate. Local contact homology is defined analogously to the cylindrical contact
homology CHECH but only working in a small tubular neighborhood Nof y,, for a nondegenerate
perturbation A of 4, and only considering Reeb orbits of A that wind d times around N. This
local contact homology is defined in [25], assuming that one can find almost complex structures
satisfying suitable transversality, and it is a key ingredient in various dynamical applications, see,
for example, [19-21].

Using our methods, without any transversality difficulties, we can define local versions of
nonequivariant and S!-equivariant contact homology, which we denote by NCH (Y, 4, ¥, d) and
CH *Sl (Y, 2y, 70, d), and prove that these are invariants which depend only on the contact form 4,
in a neighborhood of the Reeb orbit y,,. As in Theorem 1.9, if there exists a perturbation 4 of 4, in
N and a A-compatible almost complex structure J satisfying sufficient transversality to define the
cylindrical contact homology CH EGH, which is always true in the three-dimensional case, then
this cylindrical contact homology does not depend on the perturbation 4 or on J and agrees with
CH*S1 (Y, 29,70, d) ® Q. See Section 6.2 for details.

1.7 | Relation with other approaches

Bao-Honda [3] give another construction of cylindrical contact homology for hypertight contact
forms in dimension 3, by modifying the contact form so that all Reeb orbits of action less than L
are hyperbolic, using obstruction bundle gluing to prove that the cylindrical contact homology in
action less than L for the modified contact form is independent of the choice of modification, and
then taking the direct limit over L. Action-filtered versions of Theorems 1.6 and 1.9 show that this
definition of cylindrical contact homology is also isomorphic to CH' S' Q Q.
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Bourgeois-Oancea [12, Section 4.1.2(2)] define a version of positive S'-equivariant symplectic
homology (over Z) for a nondegenerate contact form 4 on a closed manifold Y2"~!, assuming that
A is hypertight, or that ¢, (§ )lz,vy = 0 and every contractible Reeb orbit y satisfies CZ(y) > 4 — n.
In particular this includes the dynamically convex case in three dimensions, and also local
contact homology. The theory defined by Bourgeois—Oancea can be used a substitute for cylin-
drical contact homology in some applications. We expect that it is canonically isomorphic to the
S'-equivariant contact homology CHfl(Y, &) defined here (in the hypertight case) and in the
sequel (forthcoming paper by Hutchings and Nelson) (in the dynamically convex case in three
dimensions).

Bao-Honda [4] and Pardon [37] use virtual techniques (variations on the idea of ‘Kuranishi
structure’) to define the contact homology algebra (over Q) of any closed manifold with a nonde-
generate contact form. In the hypertight case, one can obtain cylindrical contact homology and
its invariance from the contact homology algebra.

More generally, work in progress of Fish-Hofer will use the polyfold theory of Hofer-Wysocki-
Zehnder [24] to define symplectic field theory (SFT), which in particular will yield cylindrical
contact homology (over Q) for a dynamically convex contact form. An alternate foundation for
SFT is proposed by Ishikawa [32].

One reason why we are pursuing the more geometric approach in the present paper, in [28],
and in the forthcoming paper by Hutchings and Nelson, even though it is less general than the
more abstract approaches above, is that for computations and applications, it is desirable when
possible to understand cylindrical contact homology directly in terms of Reeb orbits and holo-
morphic cylinders between them. Also, in applications to symplectic embedding problems, it is
important to understand the holomorphic curves in symplectic cobordisms that arise from contact
homology, see, for example, [33].

1.8 | The plan

In Sections 2 and 3, we explain the definition of nonequivariant contact homology and prove its
invariance (Theorem 1.4). In Section 4, we modify this construction to define equivariant contact
homology and prove its invariance (Theorem 1.6). In Section 5, we describe the nonequivariant
and equivariant contact homology for autonomous J (assuming suitable transversality) and prove
the relation with cylindrical contact homology (Theorem 1.9). In Section 6, we work out some
examples, including a definition of local contact homology.

Our constructions use various analytical results on transversality, compactness, and gluing,
and we omit the proofs of these where they follow from standard arguments. However, we do
include a long appendix giving details of the orientations of the moduli spaces that we consider.
The gluing theory is sketched in Section A.4, and more details about gluing will be provided in
the sequel (the forthcoming paper by Hutchings and Nelson), where we need to consider a more
general situation.

In the forthcoming paper by Hutchings and Nelson, we will extend the machinery in the present
paper to construct an invariant integral lift of cylindrical contact homology for dynamically con-
vex context forms in three dimensions. In this case, for a generic 1-compatible almost complex
structure J on R X Y, there may exist certain nontransverse index 2 holomorphic buildings with
one positive end and one negative end. These do not interfere with the proof that (§7¢1)? = 0,
as shown in [28, Proposition 3.1]. However, these buildings do make nontrivial contributions
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to the cascade differentials computing nonequivariant and S'-equivariant contact homology. To
understand these contributions, we will need to use a bit of obstruction bundle gluing as in [30].

Notation conventions

Many moduli spaces below are defined by first defining a larger moduli space and then modding
out by some group action(s). Generally, if M is a moduli space of interest, then M denotes a larger
version of this mogilli space before modding out by an R action, so that M = M /R. Likewise,

where applicable, M denotes a larger version of M before modding out by an R? action, and M
denotes a larger version of M before modding out by an R? x S! action.

In addition, M denotes a compactification of M. Moduli spaces of the form M are cascade
moduli spaces defined in Section 3.

2 | NONEQUIVARIANT MODULI SPACES

In this section, we give the definitions and state the key properties of moduli spaces of holomor-
phic cylinders for S'-dependent almost complex structures. These moduli spaces will be used in
Section 3 to define nonequivariant contact homology.

2.1 | Definitions

Let (Y2"~1,2) be a closed nondegenerate contact manifold with contact structure £ = ker 1
and Reeb vector field R. We assume throughout that 1 is hypertight, that is, all Reeb orbits
are noncontractible.

Let J ={J,},cs1 be an S!'-family of A-compatible almost complex structures on R X Y; see
Definition 1.1.

Definition 2.1. If y, and y_ are Reeb orbits, let Mj(y +»7—) denote the moduli space of maps
u : RxS! — R XY satisfying the equations

ou+J,o0u=0, (2.1)

Slir+n R u(s, -)) = +o0, (2.2)

ligrn y(u(s, -)) is a parameterization of y_, (2.3)
S—+00 -

modulo R translation in the domain. If y, and y_ are distinct, then R acts freely on M Vevo)
by translation of the R coordinate on the target R X Y, and we define

M) = My, v)/R.

If y is a Reeb orbit, let ¥ denote the underlying simple Reeb orbit, so that y is a d-fold cover of
y for some integer d > 0. There are then well-defined evaluation maps

e, Myyyl) — s
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defined by

e, (u) := Sggrnoo 7y (u(s, 0)). 2.4)

2.2 | Transversality
If d is an integer, let M (7., y_) denote the set of u € M'(y,,y_) with
CZ(y4) —CZ(y_) +2c,(w*§, 1) = d. (2.5)

Here the notation is as in equation (1.6). A standard transversality argument based on [41,
Section 8], going back to [14, 17], shows the following.

Proposition 2.2. IfJ is generic, then:

(a) For any distinct Reeb orbits y, and y_, and any integer d, the moduli space Mﬁ(}q, y_) is cut
out transversely and is a smooth manifold of dimension d, and the evaluation maps e, and e_
on it are smooth.

(b) For any distinct Reeb orbits y,, ... , ¥, and any integers d,, ..., d, the k-fold fiber product

Mi (Yo, Y1) X577 Mﬁz(}’p Y2) X5 Xy Mik Y ie-1>70)
is cut out transversely, and in particular is a smooth manifold of dimension 1 — k + Zi.czl d;.
The precise meaning of transversality in part (a) is that each u in the moduli space is ‘regular’

in the sense of Definition A.20; see Section A.2 for explanation. The transversality in (b) means
that if (uy, ..., u; ) is an element of this fiber product, then the map

k k-1
T(ul ,,,,, ) H Mi (7i—1’ yi) - @ Te_(ui)Vi’
i=1 i=1

(V155 V) > (de_(vy) — de(Vy), ..., de_(Vy_1) — de (vy))

is surjective.
Assume below that J is generic in the sense of Proposition 2.2.

2.3 | Orientations

Recall that any manifold M has an ‘orientation sheaf’ ©,,, which is a local system locally isomor-
phic to Z, defined by Oy,(p) = Hgimu)(M, M \ {p}) for p € M; an orientation of M is equivalent
to a section of 9,; which restricts to a generator of each fiber. If @ is another local system on M
which is locally isomorphic to Z, then we define an “orientation of M with values in ©” to be a
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section
o€ H'(M; 0y, ® ),

which restricts to a generator of each fiber.

As we review in the Appendix (see Definition A.25), one can use the theory of coherent orien-
tations to assign to each Reeb orbit y a canonical local system O, over y, locally isomorphic to Z,
such that:

Proposition 2.3 (proved in Section A.3).

(@) The local system O, is trivial, that is, (noncanonically) isomorphic toy X Z, if and only if y is a
good Reeb orbit.
(b) The moduli space M (y,.,y_) has a canonical orientation with values in ei@h ®e*0, .

2.4 | Compactness

Definition 2.4. Let y_ and y_ be distinct Reeb orbits. A (k-level) broken J-holomorphic cylinder
fromy, toy_isak-tuple (uy, ..., u;) where there exist distinct Reeb orbits y . = vy, ¥1, ..., ¥ =7—
such thatu; € M (y;_y, 7)) fori=1,..,kande_(u;) = e, (u;,,) fori =1,....,k — 1.

Definition 2.5.

» If y, and y_ are distinct Reeb orbits, let W(y +»7_) denote the set of broken J-holomorphic
cylinders (uy, ..., u; ) as above, where u; € Mi_ (¥i_1,7;) with Z;‘zl d;=d.
* Define evaluation maps

ei : Mﬁ(Y«Hyf) — E

by e, (uy,...,u,) = e (uy) and e_(uy, ..., uy) = e_(uy).

* We give Mﬁ(}q, y_) the usual topology. In particular, a sequence {u(v)},_;,  in Mi(y V)

converges to (up,...,U;) € Mi(y +.7—) if and only if one can assign to each v a choice

yeee

of k representatives u(v),,...,u(v); € Mj()q,y_) of u(v) such that for each i =1,...,k,
the sequence {u(v);},_;,  of maps RXxS' - RXY converges in C*® on compact sets
to u;.

.

Proposition 2.6. For any J (not necessarily generic), if y, and y_ are distinct Reeb orbits, then

W(h, y_) is compact.

Proof. This follows from standard compactness arguments as in [8, Theorem 10.4]. (This refer-
ence does not consider domain-dependent almost complex structures, but that does not affect
the argument here.) The hypertightness assumption is needed to avoid bubbling of holomorphic

planes. Ol
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2.5 | Constrained moduli spaces and gluing

Let y,,y_ be distinct Reeb orbits, and let p, € y,. We then define moduli spaces with point
constraints

M7y Drsyo) = € (py) C© MGy 7o),
M-, p2) = eZH(p2) © My(r4, 7o),
MY 4s Py Voo p2) = (e X e ) (P p_) C MGy, 72).

If the pair (p,, p_) is generic, then each set on the left-hand side is a smooth manifold of dimen-
sion d — 1 or d — 2, with a canonical orientation with values in ej‘r(D + ®e* O_. Here we orient
the spaces with point constraints using the conventions in [29, Section 2.2]. We also define
“compactified” constrained moduli spaces by

M4 Pe o) = €1 (py) C M4, 70),s

and so forth.
In the proposition below, we orient fiber products using the convention in [29, Section 2.1].

Proposition 2.7. Let y, and y_ be distinct Reeb orbits. Assume that the pair (p,., p_) is generic so
that:

* p, isaregularvalue of all evaluation mapse, : Mi()@, Yo) > vy ford <2
* p_ isaregularvalue of all evaluation mapse_ : Mi()/o, y_)—>y_ford <2
* (p4.p_)isaregular value of all products of evaluation maps

e, Xe t MYy, v-) — ¥y X7-

ford < 3.
Then:

(@) My(yy,y-)is finite;

(b) W(h’ y_) is a compact oriented topological one-manifold with oriented boundary

oMy )= [T D% M Grhre) X My (o7 (2.6)

YoFV 4V —
d,+d_=1

(©) W(y +,Y—, P_) is a compact oriented topological one-manifold with oriented boundary

oMy p )= [ DMy (i v0) xg; My (o 7—.p0). @7

YoFEV 47—
d,+d_=2
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Similarly, W(y + Dy,Y_) is a compact oriented topological one-manifold with oriented
boundary

aMé](Vw Py )= H (‘DdJr_lMi Vs P470) Xy Mi_ Yo, (2.8)

YoFEV 47—
d,+d_=2

(d) m(h, D+, Y_, D_) is a compact oriented topological one-manifold with oriented boundary

oMy Dy p )= [T DB MY 0o pea o) X My oy p). (29)

YoFV 4V —
d,+d_=3

Proof. (a) By Proposition 2.2, the moduli space M(J;(y +,Y_) is a zero-dimensional manifold,
and My(y4,y-) \ My(y4,y-) is empty. Thus, M(y,,7,) is discrete. It then follows from

Proposition 2.6 that M (y,,y_), and in particular My (y,,y_), is finite.
(b)—(d). The compactness follows from Proposition 2.6. The fact that the compactified moduli
spaces are manifolds with boundary as described follows from Proposition A.28. O

2.6 | Morse-Bott systems

It follows from the above results that for generic J, the moduli spaces Mﬁ (74.7-) and the
evaluation maps on them constitute a ‘Morse-Bott system’ in the sense of [29, Definition 2.1].
More precisely, a Morse-Bott system is a tuple (X, | - |, S, O, M,, e, ) where:

* X isaset.

* | -|isafunction X — Z/2 (the mod 2 grading).

+ S is a function which assigns to each x € X a closed connected oriented 1-manifold S(x).

* (9 assigns to each x € X a local system @, over S(x) which is locally isomorphic to Z.

o If x,,x_ €X are distinct and d €{0,1,2,3}, then M,(x,,x_) is a smooth manifold of
dimension d.

* e, @ My(x,,x_)— S(x,) are smooth maps.

* My(x,,x_)is equipped with an orientation with valuesin e O, ®e*0, .

These are required to satisfy the ‘Grading’, ‘Finiteness’, ‘Fiber Product Transversality’, and
‘Compactification’ axioms in [29, Section 2.2].

In the present case, we can take X to be the set of Reeb orbits. For a Reeb orbit y, we define
|y| to be the mod 2 Conley-Zehnder index CZ(y), and S(y) = 7, oriented by the Reeb vector field.
Then O, is the local system in Proposition 2.3, and My(y ., y_) is the moduli space Mi(y V=)
with the evaluation maps defined by (2.4). Here we are discarding the moduli spaces Mi with
d>3.

Proposition 2.8. If J is generic, then the above data constitute a Morse-Bott system in the sense of
[29, Definition 2.1].
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Proof. The Grading axiom in [29, Section 2.2] requires that if Mi(h, y_) is nonempty then
CZ(y,)—CZ(y_)=d mod 2. (2.10)

This follows from equation (2.5) and Proposition 2.2(a).

The Finiteness axiom in [29, Section 2.2] requires that for each Reeb orbit y,, there are only
finitely many tuples (k, ¥, ..., ¥ ) Where k is a positive integer, y,, ..., ) are distinct Reeb orbits,
and there exist d,, ... ,dj, € {0, 1, 2, 3} with Mii (¥i_1,7;) # Wforeachi =1, ..., k. This holds in the

present case because if y, # y_ then Mi(}q, y_) # 0 only if the symplectic action of y, is strictly
greater than the symplectic action of y_; and for each L € R, there are only finitely many Reeb
orbits with action less than L (because Y is compact and the contact form 4 is nondegenerate).

The Fiber Product Transversality axiom in [29, Section 2.2] follows from Proposition 2.2(b).
(The latter is a much stronger statement.)

Parts (a)—-(d) of the Compactness axiom in [29, Section 2.2] follow from the corresponding parts
of Proposition 2.7. The rest of the Compactness axiom holds automatically as explained in [29,
Remark 2.6]. O

3 | NONEQUIVARIANT CONTACT HOMOLOGY

As in Section 2, let Y be a closed manifold, let 1 be a nondegenerate hypertight contact form on
Y, and let J be a generic S'-family of A-compatible almost complex structures on R X Y. In this
section, we define the nonequivariant contact homology NCH (Y, 4; J) and prove that it is an
invariant of Y and £ = Ker(1).

3.1 | Abstract Morse-Bott theory

To define nonequivariant contact homology and prove its invariance, we will invoke the following
result from [29]. The statement of this result includes some terminology defined in [29] which will
be reviewed below.

Theorem 3.1 [29, Theorem 1.1].

(a) Let A be a Morse-Bott system. Then the cascade homology H i (A) is well-defined, independently
of the choice of base points.
(b) Let ® be a morphism of Morse-Bott systems from A, to A,. Then:
(i) There is a well-defined induced map on cascade homology

P, : Hi(Al) — H:(Az)-
(i) IfA, = A, and @ is the identity morphism, then ®,, is the identity map.
(iii) If'¥ is a morphism from A, to A;, and if ® and ¥ are composable, then the composition

Yo satisfies

(Yo d), =¥, 0@, : Hi(A) — Hi(4,).
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(iv) If @ is another morphism from A, to A, which is homotopic to ®, then
P 1 2
D, = (@), : Hi(Al) — H:(Az)-

We define the nonequivariant contact homology NCH, (Y, 4; J) to be the cascade homology of
the Morse-Bott system in Proposition 2.8. We now spell out explicitly what this means.

3.2 | Cascade moduli spaces

To start, we need to generically choose, for each Reeb orbit y, a base point p, € 7. Denote this set
of choices by P.

We need to study ‘cascade’ moduli spaces Mé(a, BA), Mé(b\c, E), Mé(&,,@), and Mfi(bf, ﬁv) for
each pair of (possibly equal) Reeb orbits «, § and each nonnegative integer d. These will be d-
dimensional manifolds with orientations with values in O, (p,) ® Og ( pﬁ).

When o = 8, the definition is simple:

Definition 3.2. If « is a Reeb orbit, define
M@, &) = M@, @) = M3, %) = 0,

M @.5) 2points ifd =0,
a,a) =
a g ifd>o.

The above two points have opposite orientations when « is good; and they both have negative
orientation” when « is bad.

We now define the cascade moduli spaces for o # .

Notation guide

Below, the notation ¥ means that there is a point constraint when y is at the top, but not when it is
at the bottom; and 7 means that there is a point constraint when y is at the bottom, but not when
it is at the top.

Definition 3.3. If « and j3 are distinct Reeb orbits, let & denote either @ or &, and let E denote
either /? or . We define the cascade moduli space MZ(BZ, B) as follows. An element of Mﬁl(&, B8)
is a tuple (uy, ..., u;) for some positive integer k, such that there are distinct Reeb orbits o =
Y0:¥1> - Yk = B and nonnegative integers d, ..., d, such that:

. d, @p)=@p.
Ydi=1d+1 @B =@h @h
= d+2, (@P)=®&p).

"1t makes sense to speak of ‘negative orientation’ here because the orientation of M(’)(&,b’c) has values in O, (p,) ®
Oa<pa) =Z.
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* Ifk =1, then
M. B), @ B) = @ p),
L) Mi@paB) @B =@P),
] M @ Bopp). @)= @A)
M (P Bopg) (@ B) = (&, B).
e If k > 1, then:
Mil(cx, 7)), a=a,
ME\ ML @), E=E

- Ifl<i<kthenu; € Mﬁ.(%—pyi)-

{ M), B B=F.
Up J ~
Mdk(Yk—laﬁ7pﬁ)’ ;8

- Fori=1,..,k —1, the points p, , e_(;), and e, (u;,), are distinct and positively cyclically
ordered with respect to the orientation of ;.
* When u, is not constrained to have e, (u;) = p,, we assume that e, (u;) # p,; likewise when
uy, is not constrained to have e_(u;,) = Pg» We assume that e_(u) # pg-

We topologize M;(a, E) as a subset of the disjoint union of Cartesian products
My (o 11) X o X My (i1 710)-

It follows from Proposition 2.2(a) that if the set of base points P = {p, } is generic, then Mé @ p)
is a smooth manifold of dimension d. Furthermore, M(’i(&, E) has a canonical orientation with
values in O, (p,) ® Og(pg), according to the convention in [29, Section 3.2].

‘We now have the following compactness result for the cascade moduli spaces. Below, following
[29, Section 2.1], a ‘compactification’ of a smooth oriented 1-manifold M means a compact oriented
topological manifold with boundary M such that M is an open oriented submanifold of M and
M \ M is finite (but possibly larger than dM).

Proposition 3.4. Suppose the set of base points P = {p, } is generic. Let a and f3 be Reeb orbits, let

« denote either @ or &, and let gdenote either [/i\or B/ Then:
(@) M@, B) is finite,
~ — ~
(b) Mi(’o‘c, B) has a compactification M, (@, B) with oriented boundary

oM, (2.8) = Hmex%&ﬂ

T Mi@E 7 x M (7.8)-
14
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Proof. This follows by applying [29, Proposition 3.2] to the Morse-Bott system in Proposi-
tion 2.8. ]

Remark 3.5. To briefly review what goes into the proof of Proposition 3.4: Each tuple (u,, ..., u) €
Mf (a, E) has exactly one element u; which lives in a one-dimensional moduli space, while all
u; with j # i are rigid. This moduli space has ends where u; breaks, and also where the cyclic
ordering condition fails. Some of the latter ends glue to the former ends, while others give rise to
the desired boundary points. When i = 1 and & = @, there can be additional ends where the last
condition in Definition 3.3 fails; when « is good these are glued together, while when « is bad
they cannot be glued together (due to incompatible orientations) and give rise to boundary points
involving Mé(&,b?). Boundary points involving Mé(ﬁ, g) arise similarly when i = k, 8 = 8, and
B is bad.

3.3 | Definition of nonequivariant contact homology

Let P = {p,} be a generic choice of base points as in Section 3.2. We now define a Z/2-graded
chain complex (NCC,(Y, 1), 6;]) over Z as follows. (The differential also depends on P, but we
omit this from the notation.)

The Z-module NCC,(Y, 1) is the direct sum of two copies of (Dy(py) for each Reeb orbit y. For
notational convenience, we fix a generator of O, (p,) for each y. We can then regard NCC,(Y, 1)
as the free Z-module with two generators ¥ and 7 for each Reeb orbit y. The mod 2 gradings of
these generators are given by

71 =CZ(y),

71 = CZ(y) + 1.
Definition 3.6. Define the differential

;) 1 NCC,(Y,2) — NCC,_,(Y,2)

as follows. Let o and 8 be Reeb orbits,let @ denote either @ or &, and let [3; denote either ,[? or E
Then the differential coefficient <aja, B) € Z is the signed count of points in the cascade moduli
space Mg(&, E). Here the signs are determined by the fixed orientations of O, (p,) and Og(pg),
together with the orientation of Mé('o“c, E ) with values in O, (p,) ® Op ( pﬁ).

Lemma 3.7. The differential 6;1 is well-defined, decreases the mod 2 grading by 1, and satisfies
(6;’)2 =0.

Proof. The coefficient <aja, E ) is well-defined by Proposition 3.4(a). Since for a given Reeb orbit
there are only finitely many Reeb orbits § with symplectic action less than that of ¢, we conclude
that 9, is well-defined.

Equation (2.10) implies that the differential a;] decreases the mod 2 grading by 1.

It follows from Proposition 3.4(b) that (3;)* = 0. O
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In the terminology of [29], the homology of the chain complex (NCC,(Y,1),3}) is the cascade
homology of the Morse-Bott system in Proposition 2.8. Consequently, Theorem 3.1(a) implies
that this homology does not depend on the choice of base points P, so we can denote it by
NCH, (Y, 4;J), and we call this nonequivariant contact homology. Our next task is to use the
rest of Theorem 3.1 to show that that NCH in fact depends only on (Y, £). (For the computation
of NCH in our main example of interest, see Proposition 5.2.)

3.4 | Cobordism maps

To prove invariance of nonequivariant contact homology, we need to consider maps induced by
certain symplectic cobordisms.

Definition 3.8. Let (Y,,A,) and (Y_,A_) be closed contact manifolds of dimension 2n — 1.
An exact symplectic cobordism from’ (Y 4 Ay) to (Y_,A_) is a pair (X,1) where X is a com-
pact 2n-dimensional oriented manifold with 0X =Y, —Y_, and dA is a symplectic form on X
withdly =2,.

The goal of this subsection is to prove the following:

Proposition 3.9. Let (X, 1) be an exact symplectic cobordism from (Y, ,1,) to (Y_,A_), where
the contact forms A, are nondegenerate and hypertight. Assume further that every Reeb orbit
for 2, is noncontractible in X. Let J, be S'-families of almost complex structures as needed
to define the nonequivariant contact homology of (Y ,1,). Then (X,1) induces a well-defined
map

d(X,2;J,,J_) : NCH,(Y,,A,;J,) — NCH,(Y_,A_;J_).

Proof. The strategy is to construct a ‘morphism of Morse-Bott systems’ and invoke Theorem 3.1(b).

To set up the construction, recall that an exact symplectic cobordism (X, 1) has a canonical
Liouville vector field V characterized by 1;,dA = A. The vector field V' points out of X on Y, and
into X on Y_. For € > 0 small, the flow of V' then determines neighborhoods N, of Y, in X with
identifications

(N, A) = ((—€6,0]xY,,€e"1,),
3.1)
(N_,1) ~([0,e) XY_,e"1_),

where r denotes the (—¢, 0] or [0, €) coordinate. Here V increases the first coordinate at unit speed,
and Y, C N, is identified with {0} X Y, . We now define the completion

X = ((—00,0] X Y_)Uy X Uy, ([0,00)xY,),

glued using the neighborhood identifications (3.1).

T Instead of using the words ‘from’ and ‘to’, one could say that (Y’ +»44) is the convex boundary of (X, 1), and (Y_,1_) is
the concave boundary.
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Definition 3.10. Let (X,1) be an exact symplectic cobordism from (Y,,4,) to (Y_,1_). An
almost complex structure J on X is cobordism-compatible if :

* Jagreeson [0, co) X Y, with the restriction of a A, -compatible almost complex structure J, on
RXY,.

 J agrees on (—o0, 0] X Y_ with the restriction of a 1_-compatible almost complex structure J_
onRXY_.

+ J is compatible with the symplectic form dA on X.

NowletJ, ={J, };cq1 be an S!-family of 1, -compatible almost complex structureson R X Y,
andletJ_ ={J_,},cq1 beanS !_family of A_-compatible almost complex structureson R X Y_. Let
J ={J,},cs1 be an S -family of cobordism-compatible almost complex structures on X, such that
J; agrees with J, ; on [0, 00) X Y, and with J_, on (—c0,0] X Y_. Note that given J, and J_, the
space of J is contractible.

If y, are Reeb orbits for 4, let ®/(y,, y_) denote the moduli spaces of maps u : R X St X
satisfying the conditions

ou+J,ou=0, 3.2)
u(s,t) € [0,00) XY, fors >> 0,

u(s,t) € (—o0,0] X Y_ for s << 0,

lim 7mp(uls,-)) = £,
§—=+00
limg_, o, 7y, (u(s, -)) is a parameterization of y ., (3.3)

modulo R translation in the domain. (Note that unlike with the moduli spaces M in Definition 2.1,
there is now no R action on the target to mod out by.)
As before, we have evaluation maps

ei : (I)J](Y+r 7—) — E

defined by
e (u)= Sligrn 7y (u(s,0)).

Suppose now that the contact forms A, are nondegenerate. If d is an integer, let ‘I’j(h, 7o)
denote the set of u € ®'(y,,y_) with

CZ.(y,)—CZ.(y_) +2c;(w'TX, 1) =d — 1.

Lemma 3.11. Suppose that A, are nondegenerate and that J, and J are generic. Then:

(a) Forany Reeb orbits y, and any integer d, the moduli space d)i(y +»Y—) is a smooth manifold of
dimension d, and the evaluation maps e, on it are smooth.
(b) The moduli space d)i (74,v-) has a canonical orientation with values in ej(?h ®e’0, .
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(c) Letk,l >0, let y(“; y s y; be distinct Reeb orbits for A, let y, ...y, be distinct Reeb orbits for

A_, and let d, d;r, s d:, dl‘, s dl_ be nonnegative integers. Then the fiber product

J J
MGy ) X e X ML 7
k 1 1

T
Tk

3 (ot -
xﬁq)do(yO 70 )Xﬁ (34)
Mg 7D X o X M= (V7))
ay Yo V) s Xy M- Y
is cut out transversely.

Proof. Parts (a) and (c) are standard transversality arguments, similar to Proposition 2.2. The
orientation convention for part (b) is explained at the beginning of Section A.5. O

Definition 3.12. Analogously to Definition 2.5, let gg(y +.,7_) denote the union of all fiber
products (3.4) with y; =74 ¥, =7-, and 25;1 dl.+ +d, + Zi.:l dj_ = d. Define the evaluation
maps

e, 1 Py y) — 7L
and the topology on 43_3(}/ +,Y_) as before.

Under the assumptions of Proposition 3.9, CIJi(y +»7_) is compact, similarly to Proposition 2.6.
Note that the extra hypothesis that every Reeb orbit of 1, is noncontractible in X is needed to
avoid bubbling of holomorphic planes.

We now have the following compactness and gluing result, which is analogous to Proposi-
tion 2.7, except that the signs are slightly different.

Lemma 3.13. Under the assumptions of Proposition 3.9, let y, be Reeb orbits for 1. Then:

(@) @ﬂ(}q, y_) is finite;

(b) af(y +»Y_) is a compact oriented topological one-manifold with oriented boundary

1 J
60,y ) = [ My Gaarxor 030770
Y #r s
d+d=1

L T Cviejoey) o My Glro;
YAy B
d+d_=1

(3.5)

(c) we also have analogues of (3.5) with point constraints as in [29, equations (2.13)-(2.15)].

Proof. Part (a) is similar to Proposition 2.7(a). Parts (b) and (c) follow from Proposition A.30. []



1482 | HUTCHINGS AND NELSON

Lemmas 3.11 and 3.13 imply, as in Proposition 2.8, that the moduli spaces d)i (y,,y_) constitute
a ‘morphism’, in the sense of [29, Definition 2.7], from the Morse-Bott system for (Y, 1,;J, ) to
the Morse-Bott system for (Y_,A_;J_). It then follows from Theorem 3.1(b)(i) that we have an
induced map

(X, 2;0) : NCH,(Y,,4,;J,) — NCH.(Y_,A_;J_).

To complete the proof of Proposition 3.9, we need to show that this map does not depend on
the choice of generic S!-family of cobordism-compatible complex structures J restricting to J,,
and J_. For this purpose, let J° and J' be two such S!-families of cobordism-compatible almost
complex structures, and let {7}, [, 1) be a generic homotopy between them. Given Reeb orbits y,

forA,,letK(y,,y_) denote the set of pairs (r,u) where € (0,1)and u : R X S! - X satisfies the
conditions (3.2) with J, replaced by J{ . Here, as usual, we mod out by R translation in the domain.
And again, we have evaluation maps

e, 1K@y v)—7.
defined by

e (t,u) = SEIPOO Ty, (u(s, 0)).

Continue to assume that the contact forms 4, are nondegenerate. If d is an integer, let K;(y, ,y_)
denote the set of (r,u) € K(y,,y_) with

CZ.(y,) — CZ(y_) + 2c;(uw*TX,7) = d — 2.
We now have the following lemma which is similar to Lemmas 3.11 and 3.13; we omit the proof.

Lemma 3.14. Under the assumptions of Proposition 3.9, suppose that 1°, J', and {J7} are generic,
and let 'y, be Reeb orbits for .. Then:

(a) The moduli space K (y..,y_) is a smooth manifold of dimension d with a canonical orientation
taking valuesin e}, O, ® e*0, , and the evaluation maps e, on it are smooth.

(b) Transversality as in (3.4) holds, with ¢£o ()/(J)r o ) replaced by Ky, (yg Yo ).

(c) Ky(y,,y_) is finite.

(d) K;(y,,y_) has a compactification to a compact oriented topological one-manifold K, (y V)
with oriented boundary

K, (717) == @) (v | | @) (ranv)

LI I %My v 5o Koo v

vi#y
d, =1 (3.6)

Ll I CD'Katra v sor My 0y,

yL#y-
d+d_=1

(e) We also have analogues of (3.6) with point constraints as in [29, equations (2.35)—(2.37)].
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Lemma 3.14 implies that the moduli spaces K;(y .., y_) constitute a ‘homotopy’, in the sense of
[29, Definition 2.15], between the morphisms of Morse-Bott systems induced by J° and J'. It then
follows from Theorem 3.1(b)(iv) that

DX, 4;0°) = (X, ;0" : NCH.(Y,,4,;0,) — NCH,(Y_,A_;J_).

This completes the proof of Proposition 3.9. O

3.5 | Invariance of NCH

The cobordism maps in Proposition 3.9 have two important properties which we will need to prove
invariance of nonequivariant contact homology.

We first consider scaling the contact form. Let 1 be a nondegenerate contact form on Y with
Reeb vector field R. If ¢ > 0, then cA is also a nondegenerate contact form on Y, with Reeb vector
field ¢c1R. Thus, there is a canonical bijection between Reeb orbits of A and Reeb orbits of c4; if y
is a Reeb orbit of 1, we denote the corresponding Reeb orbit of cA by “y.

Let J = {J,} be a generic S'-family of 1-compatible almost complex structures as needed to
define the nonequivariant contact homology NCH, (Y, 4; J). There is then a unique S'-family
€J = {°J,} of cA-compatible almost complex structures which agrees with J on the contact dis-
tribution £ = Ker(4) = Ker(cA). The diffeomorphism ¢ of R X Y sending (r, y) — (cr,y) satisfies
d¢olJ, =°J, od¢. Thus, for each pair y,y_ of distinct Reeb orbits of y, we obtain a canonical
diffeomorphism of moduli spaces

MY r) =2 My, r0) (3.7)

sending [u] — [¢ o u]. This diffeomorphism preserves the orientations (see Lemma A.27) and
evaluation maps. As a result, we have a canonical isomorphism of chain complexes

(NCC.(Y,),6]) = (NCC,(Y,c),6").
We denote the induced map on homology by

s, : NCH,(Y,4;J) — NCH, (Y, cA; ). (3.8)

We also need to consider composition of cobordisms. If (X, 1) is an exact symplectic cobor-
dism from (Y, 4,) to (Y5, 4,), and if (X_,A_) is an exact symplectic cobordism from (Y5, 1,) to
(Y5, A3), then we can form the composite cobordism
X_oX, =X_Uy X,,

glued using the neighborhood identifications (3.1). We define a 1-form 4 on X_ o X, to agree

with 1, on X, and this makes (X_ 0 X, 1) into an exact symplectic cobordism from (Y, 4,) to
(Y5, 45).
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‘We can now state:

Proposition 3.15. The cobordism maps in Proposition 3.9 have the following properties.

(a) (Scaling) Suppose (Y,1,) is nondegenerate and hypertight. Let J be an S'-family of A,-
compatible almost complex structures as needed to define NCH (Y, Ay; J). Consider the trivial
cobordism

(Xa /‘l) = ([a’ b] X Y’ er/lO)' (39)
Then the cobordism map
X, ;%" 0,¢"J) 1 NCH,(Y,ePA;¢" ) — NCH,(Y,e%Ay;%" D)

agrees with the scaling isomorphism S,a-b in (3.8).

(b) (Composition) Let (Y;, ;) be nondegenerate and hypertight, and let J; be an S*-family of ;-
compatible almost complex structures as needed to define NCH (Y, 4;;J;), fori =1,2,3. Let
(X,,4,) be an exact symplectic cobordism from (Y, 1,) to (Y, 4,), and let (X_, A_) be an exact
symplectic cobordism from (Y, 1,) to (Y3, A3). Assume further that every Reeb orbit for A, is
noncontractible in X_ o X, and every Reeb orbit for A, is noncontractible in X_. Then

BX_o0X,, Ay, d1) = (X_,A_;d5,0,) 0 B(X,, A, 3 Js, 7).

Proposition 3.15 will be proved in Sections 3.6 and 3.7. Meanwhile, we now use Proposition 3.15
to deduce the invariance of nonequivariant contact homology by a simple formal argument.

Proof of Theorem 1.4. Let A, and A, be nondegenerate hypertight contact forms on Y with
Ker(4,) = Ker(4,). Let J; and J, be generic S!-families of almost complex structures as needed
to define the nonequivariant contact homology of 1, and 4,. We define a map

¢(/12;J2),(11;j1) . NCHX(Y,/ll, J]l) —_—> NCH*(Y,AZ, ‘J]Z) (310)

as follows. We know that 1, = e/ 1, for some smooth function f : Y — R. Pick a sufficiently large
constant c so that ¢ + f > 0 on all of Y. We then have an exact symplectic cobordism (X, 1) from
(Y,e4;) to (Y, 4,) given by

X={r.y) eRXY|0<r<f(y)+c}
3.11)
A, = erlz.
We define the map (3.10) to be the composition of the scaling isomorphism
St NCH,(Y,A,;0,) — NCH,(Y,eA,;% ;)
with the cobordism map

O(X, 1;0,,%0,) : NCH,(Y,eA,;¢J;)) — NCH, (Y, 1,3 J,).

‘We now prove that:

(i) The map (3.10) does not depend on the choice of constant ¢ used to define it.
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(i) When 4, = 1, and J; = J,, we have

b, = MAner, (v,10) -

(iii) If A5 is another nondegenerate hypertight contact form and J; is a generic S'-family of 4-
compatible almost complex structures, then

P30, (2033) © Pyt (i) = Pz (Ao (3.12)

The above three properties imply that the maps (3.10) canonically identify the nonequivariant
contact homologies for different choices of 1 and J with each other.

(i) To prove that the map (3.10) does not depend on the choice of ¢, suppose that ¢/ > ¢, and let
(X', 2) denote the cobordism (3.11) defined using ¢’ instead of c¢. We then have a commutative
diagram

8 ! , o ox! ,/1;J]2,ecl Jp)
NCH,(Y,A;d;) — NCH,(Y,e A,;¢ J;) ——— NCH,(Y,1,;J,)

sgC—C/ J’ ’ |

Sec c lID(X,A;J]z,"CJ]l)

Here the top row is the map (3.10) defined using ¢’, and the bottom row is the map (3.10)
defined using c. The left square commutes because the composition of two scaling isomor-
phisms is, by definition, a scaling isomorphism. Commutativity of the right square follows
from both parts of Proposition 3.15 and the fact that the cobordism X’ is the composition of
X with the trivial cobordism

({r») eRXY | f) +e<r< fO) +c'hedy) = ([e,c]x Y, e (e°4y)).

(ii) This follows from the Scaling property in Proposition 3.15.

(iii) Write 4, = e/11, and A, = e/24,. By arguments as in the proof of part (i), we can assume
without loss of generality that the contact forms have been scaled so that f; > f, > 0 every-
where. We can then define all of the maps in (3.12) using ¢ = 0. Equation (3.12) now follows
from the Composition property in Proposition 3.15.

d

3.6 | Proof of the scaling property

Proof of Proposition 3.15(a). We can identify the completion X of the trivial cobordism (3.9) with
R X Y, so that (—o0,0] X Y is identified with (—o0, a] X Y by shifting the R coordinate by a, and
[0, 00) X Y is identified with [b, 0c0) X Y by shifting the R coordinate by b. We now define an S'-
family JX = {Jff };es1 of cobordism-compatible almost complex structures on X as follows. Choose
a positive function f : R — R with f(r) = e~%forr < aand f(r) = e~ for r > b. There is then a
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unique cobordism-compatible almost complex structure JtX on X such that
T ) =7,
for v € £ = Ker(1), and
]f‘(é,) = f(r)R.
Now let ¢ : R — R be an antiderivative of f. Then the diffeomorphism ¢ of R X Y sending

(r,y) » (g(r),y)) satisfies d¢ o]f( =J, od¢. Thus, if y, and y_ are Reeb orbits of y, we obtain a
diffeomorphism of moduli spaces

X b a lad
@’ (e Ve J/_> ~ MY (yy,72).

If y, # y_, then after choosing a smooth slice of the R action on the right-hand side, we obtain a
diffeomorphism

X b a
@) (e Yer© J/_> 2 RX M (4, 72). (3.13)

And if y, = y_, then we have a canonical diffeomorphism

b a 77’ d=15
¢f0yfy)={g o (3.14)

Moreover, the diffeomorphisms (3.13) and (3.14) are orientation preserving, as shown in
Lemma A.31. These orientation preserving diffeomorphisms imply that in the terminology of
[29, Example 2.8], the pushforwards under ¢ of the moduli spaces d)ix(eby +,eay_) constitute
the identity morphism on the Morse-Bott system determined by (Y, 4; J). It then follows from
Theorem 3.1(b)(ii) that ®(X, 1; JX) agrees with the scaling isomorphism s,4-5. O

3.7 | Proof of the composition property

Proof of Proposition 3.15(b). If R > 0 is a nonnegative real number (here R does not denote a Reeb
vector field), define a ‘stretched composition’

X_ ORX+ = X_ LIYZ ([—R,R] X Yz) LIY2 X+.
Define a 1-form Ay on X_ o X, by

e ®1_ onX_,
Ag =14 €4, on[-R,R]XY,,

R
e*l, onX,.

This makes (X_ o X, 1) into an exact symplectic cobordism from (Y7, eR1;) to (Y5, e R25).
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Generically choose S'-families J* = {J;},cs1 of cobordism-compatible almost complex struc-
tures on X_i that agree with J, near Y,. Define an S'-family J® = {J8}, ¢ of almost complex
structures on X_ o X, by

J7 on((-0,0] xY3) Uy, X_
JR=47J,, on[-R,RIXY,,
JF onX, Uy, ([0, 00) X Y7).

Note that JF is not quite cobordism-compatible for R # 0, because on (—o0,0] X Y5 and [0, c0) X
Y,,wehave thatJ f(a,) is e*R times what it should be. However, this does not affect our arguments.

If y, is a Reeb orbit for 4; and y_ is a Reeb orbit for y;, define K(y,,y_) to be the set of pairs
(R,u)whereR > 0andu : RXS! - X_ o X, satisfies

o,u + Jfatu =0
u(s, t) € [0,00) X Y, for s >> 0,
u(s, t) € (—o0,0] X Y, for s << 0,
lim

smtoo Ty, (u(s, -)) is a parameterization of y .,

limg_,_ ny3(u(s, -)) is a parameterization of y_,
modulo R translation in the domain. As usual we have evaluation maps

e, 1Ky 7)) — Vs
If d is an integer, let K;(y., y_) denote the set of (R, u) € K(y,,y_) with
CZ(y)—CZ.(y_)+2c,(u'T(X_o0gX,),7)=d—2.

(Here we are continuing to assume that A, are nondegenerate so that this makes sense.) Similarly
to Lemma 3.14, we have:

Lemma 3.16. Under the assumptions of Proposition 3.15, suppose that Jt* and J~ are generic. Given
L > 0, there exists R, > 0 such that after a small perturbation of the family {J® }r>0 Supported where
R < Ry, the following is true. Let y . be a Reeb orbit for A, with action less than L, and let y_ be a Reeb
orbit for 1. Then:

(a) The moduli space K ,(y.,y_) is a smooth manifold of dimension d with a canonical orientation
taking values in e O, . ®e’ 0O, _, and the evaluation maps e, on it are smooth.
(b) Transversality as in (3 4) holds with J, replaced by J,, with J_ replaced by J;, and with
@, (757, ) replaced by Ky (v5,v5)-
(c) Ko(y,,y_) is finite.
(d) Ify,is a Reeb orbit for A,, then the fiber product

+ _
(I);g+ (y-}—: yO) X% (1)37 (J/O’ V_)
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is cut out transversely. The same also holds for more general such fiber products in which some
moduli spaces M1, M2, and/or M3 are inserted.

(e) K;(y4,y_) has a compactification to a compact oriented topological one-manifold K, (y —7-)
with oriented boundary

— 0
0K, (y4,7-) =— @) (r4,7-)

+ _
|_| H(I)g (7+’ YO) X% q)g (}/Oa 7_)
Yo

d J
|| LI DM rD) X Kooy (315)
ViFY
d+++d:1

Ll I G0ty sor My 6Ly,
yL#y-
d+d_=1

(f) We also have analogues of (3.15) with point constraints as in [29, equations (2.35)-(2.37)].

Part (d) implies that if we restrict to Reeb orbits of A, with action less than L, then the mor-
phisms of Morse-Bott systems given by the moduli spaces @' and @’ are composable in the
sense of [29, Definition 2.10]. The rest of Lemma 3.16 then implies that, again restricting to
Reeb orbits of 1, with action less than L, the moduli spaces K; give a homotopy between the
composition and the morphism given by the moduli spaces @Y. It then follows by applying
Theorem 3.1(b)(iii,iv) and taking the direct limit as L — oo that the Composition property in
Proposition 3.15 holds. O

4 | S'-EQUIVARIANT CONTACT HOMOLOGY

Continue to assume that A is a nondegenerate hypertight contact form on a closed manifold Y.
We now define the Sl-equivariant contact homology CHfl(Y,/l; 3), where {§ is a generic Si-
equivariant S' x ES! family of A-compatible almost complex structures, and we prove that the
Sl-equivariant contact homology depends only on Y and ¢ = Ker(1). This construction closely
parallels the definition of nonequivariant contact homology in Sections 2 and 3, with minor
modifications which we will explain.

4.1 | S'-equivariant moduli spaces

We regard ES' = limy_, ., S*M*1. Let r : ES! — BS! = CP* denote the projection.
Let

F={3..Ites", zeES"}

be an S! x ES! family of A-compatible almost complex structures on R X Y. We assume that §
is smooth in the sense that its restriction to S* x S2N+! is smooth for each N. We further assume
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that  is S'-equivariant in the sense that

St,z = 3{+¢,§0~Z (4.1)

foreacht,p € S' and z € ES!
Define a function fy : S*M*! - R by

N

= S
fn(zg,szy) = Elezil .

i=1

Under the projection 7 : S2N*+1 — CPN, the function f,, descends to a Morse function fy :
CPN — R with one critical point of each index 0, 2, ..., 2N. If we write points in CPY in the form
[zy : z; @ -+ & zy], then the critical point of index 2k has z; = 0 for j # k.

Let V7 denote the gradient of f with respect to the standard metric on $?N*1. Our convention
is that a ‘parameterized flow line’ of ¥, is a map 7 : R — S?M*+! such that 7'(s) = VN(U(S)) for
all s. For such a parameterized flow line, if we write (0) = (z, ..., zy) € CN*1, then we have

NsZN)

VIzo|? + €25]z1 |2 + - + e2N5 |z |2

Z0, €527, ., S
(20621 (4.2)

n(s) =

Let f : ES' — R denote the direct limit of the functions f}, and let f : BS® — R denote the
direct limit of the functions f. The vector field ¥/ pushes forward, under the inclusion S?N+! —
S?N+3 | to the vector field V), ,; thus we can regard the vector fields Vy as defining a ‘direct limit
vector field’ V on ES!. In particular, we use the terminology ‘parameterized flow line of V’ to refer
to a parameterized flow line of V' for some N.

Definition 4.1. Let y, and y_ be Reeb orbits, and let x, and x_ be critical points of f. Define
M3 ((x4,74), (x_,y_)) to be the set of pairs (1, u), where:

* 1 : R - ES'is a parameterized flow line of V with lim_, . n(s) € 7~ (x_).
* u: RxS!'— R XY satisfies the equation

asu + Sz’,}(s)atu =0. (43)
* limg_,, o mr(u(s,-)) = +o0, and limg_, , 7y (u(s, -)) is a parameterization of the Reeb orbit y, .

Definition 4.2. Observe that R acts on M3 by translation of the parameter s in z and u
simultaneously. Moreover, it follows from (4.1) that S acts on M3 by

(@ - (m,u)(s,t) = (¢ - n(s), u(s, t — @)). (4.4)
Let Mg((x+, v.), (x_,y_)) denote the quotient of M\S((x+, 7.),(x_,y_)) by this R x S! action.
Finally, if the pairs (x,,y,) and (x_,y_) are distinct, then R acts freely on

M3 ((x +V4),(x_,¥_)) by composing u with translations in the target RxXY, and we let
M3 ((x +7+), (x_,¥_)) denote the quotient by this R action.
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If x € Crit(f) and y is a Reeb orbit, define

(xx,p) = (7' ) x7)/s",

where S! acts on 77!(x) x ¥ as follows: If ¥ has period T, meaning that y : R/TZ — Y, and if
t € R/TZ,then ¢ € S' = R/Z acts by

@ (x, 7)) = (¢ x,y(t —Tep)). (4.5)

We then have well-defined evaluation maps

ei . MS((-X+’ y+)’ (.X'_, }’_)) - (xi’ yi)

defined by

e (nuy = ( lim n(s), lim 7y (u(s, 0)))- 46)

If d is an integer, let M3 ((x,,¥,),(x_,y_)) denote the set of (n,u) in the moduli space
MS((X+, v+), (x_,y_)) such that

CZ,(r,) = CZ.(y_) + 20,(w"€,7) + ind(f, x,) — ind(f, x_) = d.

Here ind(f, x) denotes the Morse index of f at the critical point x, which is a nonnegative
even integer.
Analogously to Proposition 2.2, we have:

Proposition 4.3. If § is generic, then:

(@) If y,,y_ are Reeb orbits and x_,x_ are critical points of f, such that the pairs (x,,y,) and
(x_,y_) are distinct, and if d is an integer, then the moduli space M;S((er, vi), (x_,y_))is cut
out transversely and is a smooth manifold of dimension d, and the evaluation maps e, and e_

on it are smooth.
(b) Each k-fold fiber product

M:isl ((xO’ Vo)a (xl’ 71)) Xm sz((x]a 71), (xZa Yz))

X oo x
(x2,72) (Xp—1Yk—-1)

M:;k ((xk—19 )/k—l)’ (xk7 yk))
is cut out transversely, and in particular is a smooth manifold of dimension Zf.‘zl d—-—k+1

The precise meaning of transversality in part (a) is that each element of the moduli space is
‘regular’ in the sense of Definition A.32.

Assume for the rest of this subsection that g§ is generic in the above sense. Analogously to
Proposition 2.3, we have the following proposition, which is proved in Section A.6:
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Proposition 4.4. For each critical point x of f and each Reeb orbit y, there is a canonical local
system O, .,y over (x, ), locally isomorphic to Z, such that:

(a) the local system O, is trivial if and only if y is a good Reeb orbit;
(b) the moduli space M3((x V+), (x_,¥_)) has a canonical orientation with values in
€100,y ®€0n_y )

Definition 4.5. Let ﬂj((x +74), (x_,y_)) denote the set of k-tuples (u;, ..., u; ) such that:
 there exist distinct pairs (x,,y.) = (Xp 7o) X1, ¥1)s - (X, ¥i) = (x_,y_) such that
u; € M(‘iji((xi_l,yl-_l), (x;, 7)) fori=1,...,k.
ce_(u)=e (U )fori=1,...,k-1.
k
* Zi=1 di = d
Define the topology and evaluation maps on ﬂj ((x4,74), (x_,y_)) as in Definition 2.5.

Analogously to Proposition 2.6, we have:

Proposition 4.6. If the pairs (x,,y,) and (x_,y_) are distinct and d is an integer, then

_3 .
M (x4, 74), (x_,y_)) is compact.

Define constrained moduli spaces Mg((x V) Py (x_,y_))forp, € (x,,y,)andsoonasin
Section 2.5. We now have the following analogue of Proposition 2.7:

Proposition 4.7. Let (x,y,) and (x_,y_) be distinct pairs of a critical point of f and a Reeb orbit.

Letp, € (x,,y,). Assume that the pair (p, , p_) is generic so that:
* p, isaregularvalue of all evaluation maps
e, . Mg((x+s )/+), (XO, 70)) — (.X'+, 7’+)

ford < 2;
* p_ is a regularvalue of all evaluation maps

e_ 1 M3 (g, 70) (x_y7) — (x_70)

ford < 2;
* (py, p_) is a regular value of all products of evaluation maps

ey Xl T MBIy, 74, (e, y2)) — (v ) X (e, 70)

ford <3.
Then:
(a) M3 (xp, vy, (x_,y)) is finite.
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(b) Analogously to (2.6), ﬂf((x - V4), (x_,y_)) is a compact oriented topological one-manifold
with oriented boundary

—5 X
M (G (e y-) = I M G o)
(x0:70)# (474 ) (x_y_)
d,+d_=1
3
x(x()%) My (%0, 70D (X, 7))

(c) Likewise, analogues of (2.7) and (2.8) hold with WO@, D.,Y_) replaced by
ﬂ;((h, V4D Pyr (X_,7-)), and so forth.

(d) Likewise, an analogue of (2.9) holds with Mﬁ(h, D+, Y—, p_) replaced by
M;S((er, Y+)s Pys (Xx_,¥_), p_)), and so forth.

Proof. (a) This is analogous to the proof of Proposition 2.7(a).
(b)—(d). This follows from an analogue of Proposition A.28. O

4.2 | Definition of S'-equivariant contact homology

Continue to assume that {§ is generic. By analogy with Section 2.6, define a Morse—Bott system
X,1-1,S,0,M,,e,) as follows.

* X is the set of pairs (x,y) where x is a critical point of f on BS! and y is a Reeb orbit.

* If (x,7) € X, then |(x, y)| is the mod 2 Conley-Zehnder index CZ(y); S, ;) = (x,7); and O
is the local system in Proposition 4.4.

o If (x,,7.),(x_,y_) € X are distinct and d € {0, 1, 2, 3}, then

MGy 74, (a7 ) = M3 Gy v (e, 7).

The evaluation maps e, on M, are defined by (4.6), and the orientation on M, is given by
Proposition 4.4.

Proposition 4.8. If § is generic, then the above data constitute a Morse-Bott system.

Proof. This parallels the proof of Proposition 2.8. The one new ingredient is that in the proof of the
Finiteness axiom, we need to know that if Mg((x + 74)(x_,y_)) is nonempty, then ind(f, x, ) >
ind(f,x_) and A(y,) > A(y_). The inequality on Morse indices holds because the vector field V
on ES! projects to a Morse-Smale vector field on BS!.

To prove the action inequality, suppose that (1, u) € M3((x V), (x_,y_)). For s € R, define
amapy, : S' > RX Y by y,(t) = u(s,t). Then

lim ; 7id = Ay,

s=to0 Jo
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so it is enough to show that % /51 7;4 > 0. We compute that

d

el 1 = t
s s 7 A /S1 dA(O,u,d0,u)d

- / A= 8, B0
S

The integrand is pointwise nonnegative because the almost complex structure 33, is
A-compatible.

Definition 4.9. We define the S'-equivariant contact homology CH fl (Y, 4; ) to be the cascade
homology H i (defined in [29]) of the above Morse—Bott system.

Concretely, CHf1 (Y, 4; §) is the homology of a chain complex (CCf1 (Y, 2),35"3) over Z. The
module CC? ! (Y, A) has a ‘check’ and a ‘hat’ generator for each pair (x, y) where x is a critical point
of f and y is a Reeb orbit. For convenience, we denote these generators by ¥ ® UX and 7 ® U,
respectively, where 2k is the Morse index of x. Equivalently we can write

cCs'(Y,4) = NCC,(Y,1) ® Z[U].
The mod 2 gradings of the generators are given by

¥ ® U*| = CZ(y),

7 ® UX| = CZ(y) + 1.

The differential 85"3 is defined by counting cascades just as in Sections 3.2 and 3.3, except that
now the cascades are defined using the moduli spaces Mg((x+, 74), (x_,y_)) instead of the mod-
uli spaces Mi (¥4,7-). Here one needs to choose a base point p(, ,) € m for each pair (x, y) to
define the cascades. One also needs to choose a generator of O(x,y)(p(x’y)) for each pair (x,y) to
fix the signs in the differential.

We now proceed to show that CH f ' is an invariant of the contact structure. (For the
computation of CH fl in the main example of interest, see Proposition 5.7)

4.3 | Cobordism maps

Proposition 4.10. Let (X, 1) be an exact symplectic cobordism from (Y ,A,) to (Y_, A_), where the
contact forms A, are nondegenerate and hypertight. Assume further that every Reeb orbit for A, is
noncontractible in X. Let , be S x ES'-families of almost complex structures as needed to define
the S1-equivariant contact homology of (Y ., A,). Then (X, 1) induces a well-defined map

X, A4 F_,3,) 1 CHY (Y,,4,:5,) — CHS (Y_,2_;5_).

Proof. This parallels the proof of Proposition 3.9.
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Let § be an S x ES!-family of cobordism-compatible almost complex structures on X such
that 3, , agrees with J, ; , on [0,00) X Y and {, , agrees with §_, , on (—=00,0] X Y_. Assume
that & is S'-equivariant as in (4.1).

If x, are critical points of f on BS Land ify , are Reeb orbits for 1, let D3((x V) (xX_, 7))
denote the set of pairs (, u) such that:

* 7 : R — ES!is a flow line of V with lim,_,, 7)€ ﬂ_l(xi);
* u: RxS!— X satisfies the equation

OsU + i p(5)0:U = 0;

* u(s,t) € [0,00) XY, fors >> 0and u(s,t) € (—o0,0] X Y_ for s << 0;
o limg_ o mp(u(s, ) = %oo;
© limg 7y (uls, -)) is a parameterization of the Reeb orbit y .

Observe that R acts on &3 ((x +74), (x_,y_)) by translating the s coordinate in the domain of both
n and u; and S* acts on o3 by (4.4). Let @3((x+, ¥4), (x_,7_)) denote the quotient by R x S*. We
have well-defined evaluation maps

e, 1 DI((xy, 7). (7)) — (x,,7,)

defined by (4.6). If d is an integer, let cIDZ:S'(()CJr,}’Jr),(x_,)/_)) denote the set of ue
iy ((x4,74), (x_,y_)) such that

CZ.(y,)—-CZ.(y_)+ 2c1(u*T)_(, 7) +ind(f,x,) —ind(f,x_) =d — 1.

Similarly to Lemmas 3.11 and 3.13, the moduli spaces CDES((x +»74),(x_,y_)) constitute a mor-
phism, in the sense of [29, Definition 2.7], from the Morse-Bott system for (Y ,1,;J,) to the
Morse-Bott system for (Y_,A1_;F_). It then follows from Theorem 3.1(b)(i) that we have an
induced map

X, 4;F) : CHS (Y,,24,;5,) — CHS (Y_,A_; ).

Similarly to Lemma 3.14, this map does not depend on the choice of S'-equivariant S' x

ES!-family of almost complex structures § extending J, and _, so we can denote it by
DX, 4 T4 B)- O
4.4 | Invariance of S'-equivariant contact homology

If § is an S'-equivariant S' x ES'-family of 1-compatible almost complex structures on Y, and
if ¢ > 0, then there is a unique S'-equivariant S' x ES!-family of cA-compatible almost complex
structures “§ which agrees with  on £. As in Section 3.5, we have canonical diffeomorphisms of
moduli spaces

MB ey, 7). (7)) = MO (e ), (x_f 7))
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which preserve the orientations and evaluation maps. As a result, we have a canonical
isomorphism of chain complexes

~

(ccs'(v,2),65) = (cc¥' (v,e),05'°F).
We denote the induced map on homology by
s. 1 CHS' (Y, 4, §) — CHS' (Y, c4;%). (4.7)

Proposition 4.11. The cobordism maps in Proposition 4.10 have the following properties.

(a) (Scaling) Suppose (Y, ,) is nondegenerate and hypertight. Let § be an S'-equivariant S' x ES*-
family of A,-compatible almost complex structures as needed to define CH *SI(Y, o3 3)- Then for
the trivial cobordism (3.9), the cobordism map

DX, ;%" F,¢"F) 1 NCH,(Y,e"10;¢" ) —> NCH,(Y, e ;%" F)

agrees with the scaling isomorphism S,q-» in (4.7).

(b) (Composition) Let (Y;,1;) be nondegenerate and hypertight, and let §; be an S'-equivariant
S' x ES-family of ;-compatible almost complex structures as needed to define CHS (Y, ;; §),
fori=1,2,3. Let (X,,4,) be an exact symplectic cobordism from (Y|,4,) to (Y, 4,), and let
(X_,A_) be an exact symplectic cobordism from (Y,, 1,) to (Y5, 13). Assume further that every
Reeb orbit for A, is noncontractible in X_ o X, and every Reeb orbit for 1, is noncontractible in
X_. Then

PX_0X,, 4,33 31) = X _,2_: 33, F2) 0 PX,, 4,5 T2 31)-
Proof. This follows the proof of Proposition 3.15, modified as in the proof of Proposition 4.10. []
We can now deduce that S'-equivariant contact homology depends only on Y and £.

Proof of Theorem 1.6.. This follows from Proposition 4.11 in the same way that Theorem 1.4 is
deduced from Proposition 3.15 in Section 3.5. [

5 | COMPUTATIONS IN THE AUTONOMOUS CASE

Continue to assume that A is a nondegenerate hypertight contact form on a closed manifold Y.
In this section, we study the nonequivariant and S'-equivariant contact homology in the special
case when the S!-family of almost complex structures J or the S* x ES!-family of almost complex
structures ¥ is constant, given by a single almost complex structure J on R X Y. Here we need
to assume that J satisfies suitable transversality conditions, namely that J is ‘admissible’ in the
sense of Definition 5.1, which also implies that cylindrical contact homology is defined. We use
these calculations to prove Theorem 1.9, asserting that if J is admissible, then cylindrical contact
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homology is canonically isomorphic to S'-equivariant contact homology tensor Q. Finally, we
show that admissibility holds for generic J when dim(Y) = 3.

5.1 | Nonequivariant contact homology in the autonomous case

LetJ be a 1-compatible almost complex structure on R X Y. We now study nonequivariant contact
homology for the constant S*-family of almost complex structures J = {J,};cs1 where J, = J. Note
that in this case, if « and g are distinct Reeb orbits and d is an integer, then S! acts on Mﬁ(oc, B)
by precomposing maps u : R x S' — R X Y with rotations of the S! factor, and we have"

M (a, ) = Mj(a,B)/S". (5.1)

Definition 5.1. LetJ be a A-compatible almost complex structure on R X Y. Let J be the constant
S1-family {J,},cs1 where J, = J. Let P be a choice of base point p, € « for each Reeb orbit . We
say that the pair (J, P) is admissible if the following hold for every pair of distinct Reeb orbits

a, B.

() Ifd <0, then M;)(a, B) = .

(b) Mf(a, B) is cut out transversely, that is, each cylinder in this moduli space is regular in the
sense of Definition A.20.

(©) M{(@, Py, pp) = B

(d) M;(a, po. B, pg) is cut out transversely. That is, for each u € M;(a, py, B, ps), the moduli
space Mg (e, B) is cut out transversely in a neighborhood of u, and (p,, pg) is a regular value
of e, X e_ on this neighborhood.

(e) Ify is a Reeb orbit distinct from « and (3, then

M, Po¥) X5 M (7, B, pg) = 8.
We say that J is admissible if there exists P such that (J, P) is admissible.

Recall from Section 3.3 that NCC, (Y, 1) denotes the free Z-module with two generators ¥ and
7 for each Reeb orbit y. Proposition 5.2(a) asserts that an admissible pair (J, P) determines a well-
defined cascade differential on NCC,(Y, 1). By this we mean that if « is a Reeb orbit, then there
are only finitely many cascades that contribute to the cascade differential of & or @ as defined in
Section 3.3 using J = {J} and P; and each of these cascades, regarded as an element of a (product
of) moduli space(s) of holomorphic cylinders, is cut out transversely. We denote this cascade dif-
ferential by 5; . With respect to the decomposition into check and hat generators, we can write 6?

in block matrix form as
J o
8 = ), 5.2
; <a_ a) (5.2)

where each entry in the block matrix sends the free Z-module generated by the set of Reeb orbits
to itself; (5;&,6) = (d_a, ), and so forth.

* See Sections 1.1 and 2.2 for the notation in equation (5.1).
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Proposition 5.2. Suppose the pair (J, P) is admissible. Fix a generator of O, (p,) for each Reeb orbit
y. Then:

(a) For the constant family J = {J}, the moduli spaces Mi(a, B), with or without point constraints
at p, and/or pg, determine a well-defined cascade differential a; on NCC,.(Y,A) that counts
elements of cascade moduli spaces Mé as in Definition 3.6.

(b) (@) =0.

(c) The homology of the chain complex (NCC,(Y,A),d8]) is canonically isomorphic to the
nonequivariant contact homology NCH (Y, &).

(d) In the block matrix (5.2), we have:

5o = { 0, ?”a l.S good (5.3)
—2a, ifaisbad.

(ii) If o and B are distinct Reeb orbits with 8 good, then'

- (6xa, B), agood
oa, = 5.4
< '8> { 0, a bad. 54)
(iii) Ifa and B are distinct Reeb orbits with a good, then
~ —xda, B), ood
<aa,/3> _ ( B), Bg 5.5)
0, B bad.

Proof. (a) Note that we cannot apply Proposition 3.4(a) directly, because we are not assuming all
the transversality conditions (for example, regarding three-dimensional moduli spaces) for this
proposition to be applicable. Instead we argue more explicitly.

By part (a) of Definition 5.1, if (u,, ..., u;) is a cascade, then each u; is in a moduli space Mﬁ
with d > 1. It follows that the cascade moduli spaces M{)('o“c, E) for o # f are described simply as
follows:

Mj(a.8) =0,
M5 (5, F) =M@ pg. ), (5.6)
M;(@,B) =M (e B, py), (57)
Mg(&, E) =M (, .. B, Pg) (5.8)
LI 1T M@ peer) O M{(7.8. pp).
y#a,pB 14

The notation in the last line indicates the set of pairs

(u1,u,) € M(@, Pos ¥) X M (¥, B, Pg)

See Section 1.2 for the notation & and «.
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such that the points p,, e_(u;), and e, (u,) are distinct and positively cyclically ordered with
respect to the orientation of ¥ given by the Reeb vector field.

We claim next that all of the cascade moduli spaces Mé are cut out transversely. To see this,
recall that Mf(oc, B) is cut out transversely by part (b) of Definition 5.1. Then Mf(oc, Dy B) and
Mf(oc, B, pg) are also cut out transversely, because the evaluation maps e, on Mf(oc, B) are sub-
mersions as in (5.1). It follows from this and part (d) of Definition 5.1 that the remaining cascade
moduli space Mé(b?, /? ) is cut out transversely.

To complete the proof of assertion (a), we need to show that each cascade moduli space Mé
is finite.

To show that the cascade moduli spaces (5.6) and (5.7) are finite, we first note that by Proposi-
tion 2.6 and part (a) of Definition 5.1, the moduli spaces Mf (a, B) are compact. Finiteness of (5.6)
and (5.7) then follows from the above transversality. This finiteness also implies finiteness of the
second term on the right-hand side of (5.8).

Finiteness of the first term on the right-hand side of (5.8) follows similarly, with the help of part
(e) of Definition 5.1.

(b) As in part (a), we cannot apply Proposition 3.4(b) directly. However, we can perturb the
constant S'-family J = {J} to a nonconstant S'-family J’ which is generic so that Proposition 3.4(b)
applies to show that (6;]’)2 = 0. To deduce (3;)* = 0 from this, it is enough to show that for every
real number L, if the perturbation is sufficiently small with respect to L, then 6;1/ agrees with 6;’
when applied to generators & or @ for which the Reeb orbit « has action A(a) < L.

To prove the above claim, suppose to get a contradiction that there exist a real number L, and a
sequence of generic S'-families {J*},_,  converging to the constant S'-family J = {J}, such that

for each k, the cascade differential 6j]k disagrees with a; on some generator @ (equal to & or &)
with A(a) < L. Since there are only finitely many Reeb orbits with action less than L, by passing
to a subsequence we may assume that there are fixed generators & and § with A(a), A(8) <L
such that

(aﬁ"a,ﬁ) + <aj&,ﬁ> (5.9)

for all k.

Since each cascade in Mé(&, [3; ) for J = {J}is cut out transversely, the implicit function theorem
gives an injective, orientation-preserving map from the set of such cascades for J = {J} to the set
of such cascades for J* when k is sufficiently large. We claim that this map is also surjective for k
sufficiently large, which will then give a contradiction to (5.9).

Suppose to get a contradiction that this surjectivity does not hold for all sufficiently large k.
Then after passing to a subsequence, for each k there is a cascade which is counted by <aj"a, E}
but which is not a perturbation (coming from the implicit function theorem as above) of a cascade
counted by <a§a, ,67). We claim that we can pass to a subsequence so that these cascades for each
k converge to a cascade counted by (6; a, E ), which will give the desired contradiction.

We will just explain the trickiest case of this, which is when @ = & and g = E Then the
cascade counted by (6;]k&,,6) has the form (u’l‘, ...,u’fnk), where there are distinct Reeb orbits

O =Y0sVi15 -+ Yiom, = B, and integers d; ; for i = 1,..., my with Z:i"l dy; = 2, such that ug‘ €
Mji]i (Yk.i—1,Vk) fori =1,...,m;. By passing to a subsequence we may assume that m; = m does
not depend on k, and the Reeb orbit Yk = 7; and the integer d; ; = d; do not depend on k either.
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As in Proposition 2.6, we may pass to a further subsequence such that for each i =1,...,m,
the sequence {ug‘}k:h“ converges to an element of ﬂjj (¥i_1,7:)- Since Y\ | d; = 2, by part (a) of
Definition 5.1, we must have eitherm =1andd; =2,orm =2andd;, =d, = 1.

Ifm = 1and d, = 2,then by parts(a) and (e) of Definition 5.1, the limit of the sequence {u’l‘ Ye=1...
is an element of Mg(a, Po» B, Pg), and thus a cascade in the first term on the right-hand side of
(5.8).

Ifm = 2and d; = d, = 1, then the sequence {u’l‘ }k=1... converges to an element u® € M (a, y),
and the sequence {u’z‘ tr=1,. converges to an element us® € Mf (¥, B), where we are writingy = y;.
By parts (c) and (e) of Definition 5.1, the three points p,, e_(u{°), and e, (u5°) in y are distinct.
Since the three points p,, e_ (u’l‘ ),and e, (u’z‘) are positively cyclically ordered for each k, it follows
that the three points p,, e_(u°), and e, (u5°) are also positively cyclically ordered. Thus, the pair
(uf®,us) is a cascade in the second term on the right-hand side of (5.8).

(c) As shown in the proof of part (b), for any real number L we can choose a generic S!-family
J' close to J = {J} such that 6;1/ = 6; on all generators & with .A(a) < L. It follows that there is a
canonical isomorphism

NCHE(Y,2) = H,(NCCL(Y, 2),8}). (5.10)

Here NCCL(Y, 1) denotes the free Z-module generated by ¥ and 7 for Reeb orbits y with action
A(y) < L. On the left-hand side, NCH i(Y, A) denotes the ‘filtered nonequivariant contact homol-
ogy’, which is the homology of (NCCL(Y, 1), a;]’) for any generic J'. The proof of Theorem 1.4
shows that this depends only on (Y, A1); see [31, Theorem 1.3] for a similar argument. More-
over, if L < L', then inclusion of chain complexes induces a well-defined map NCHi(Y,/l) -
NCH *L,(Y, A), and the canonical isomorphisms (5.10) fit into a commutative diagram

NCH(Y,2) —— H,(NCCL(Y,2),6])

| |

NeHY (v, 1) —— H,(NCCr (v, 1,8} ).

Taking the direct limit over L in (5.10) then proves (c).

(d) (i) We have seen that Mé(&, B/) = @) when «a # f3, so equation (5.3) follows from Defini-
tion 3.2.

(ii) Let o and S be distinct Reeb orbits, and assume that £ is good. Recall from the proof of part
(a) that

M(&, E) = MY(a, py. B). (5.11)

The coefficient

(55) = (32

that we need to understand is a signed count of points in the moduli space (5.11).

To review how the signs work, recall from Section 3.3 that we are fixing generators of O,(p,)
and Op(pp). Since B is good, the local system O is trivial by Proposition 2.3(a), and our choice
of generator of Og(pp) trivializes it. By Proposition 2.3(b), the moduli space Mf(oc, B) has a
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canonical orientation with valuesin e} O, ® e Op. Using the above trivialization of O, we obtain
an orientation of Mf (ar, B) with values in e} O,,.. Using the chosen generator of O, (p,), each point
in the right-hand side of (5.11) then has a sign associated to it by the convention in [29, Con-
vention 2.2]. This convention says here that the sign is positive if and only if the derivative of
e, : Mf(oc, B) — « is orientation preserving with respect to the orientation of o determined by
the Reeb vector field. By the sign convention in [29, Section 3.2], the corresponding point on the
left-hand side of (5.11) is counted with the same sign.

By (5.1), the moduli space Mf(oc, B) consists of a circle for each u € M{(oc, B). Fix such a u
and let M,, denote the corresponding circle. The map e, : M, — «a is a submersion of degree
d(a)/d(u) (see Section 1.2 for this notation). Thus, the subset of the moduli space (5.11) coming
from M,, consists of d(«)/d(u) points.

If o is bad, then the local system O, is nontrivial, which means that when one travels d(u)/d(«)
rotations around the circle M,,, the orientation of M,, with values in ej‘r(Da, because it is continuous,
must switch sign. Thus, consecutive points in the subset of (5.11) coming from M,, have opposite
signs. It follows that the signed count of these points is zero. Since the same is true for every
u € MJ(a, §), we conclude that (3,&, gy =o.

If « is good, then the local system O, is trivial, so all of the points in (5.11) coming from M,,
count with the same sign. Moreover, by the convention in Definition A.26, this sign agrees with
the sign e(u) in (1.8). We conclude that

<a~;&,ﬁ>: 3 %:(5%0@5).
ueM{(a,ﬁ)

(iii) This is proved by a symmetric argument to (ii). Note that there is an extra minus sign in
[29, Convention 2.2] in this case, which is why there is a minus sign in (5.5) which is not present

in (5.4). O

Corollary 5.3. Ifthe pair (J, P) is admissible, and if 3" denotes the cylindrical contact homology
differential determined by J as in Section 1.2, then (3F°H)? = 0.

Proof. By Proposition 5.2(a), we can use the pair (J, P) to define a cascade differential 6; . By

Proposition 5.2(d), the part of 6;’ going from good Reeb orbits to good Reeb orbits, again written
as a block matrix with respect to check and hat generators, has the form

good dx 0
= (% )

Here the biohazard symbol # indicates an unknown matrix. Likewise, the parts of 6? going from
bad to good orbits and from good to bad orbits have the form

bad 0 O good ® 0
(ai)good = <,Q~ ,Q,)’ (a;)bad = (@\ 0) :

It follows that the part of (6; )? going from good to good orbits has the form

2\&0d (k)2 0
(W) )good _( 2 (;<5)2>‘
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It then follows from Proposition 5.2(b) that (5x)* = 0. Since 85" = §x (after tensoring with Q),
the result follows. O

Remark 5.4. The above calculations show that if (J, P) is admissible, then the part of ] mapping
between good Reeb orbits is a differential, which after tensoring with Q agrees with d¥¢H. By
contrast, if J is a generic S'-family of A-compatible almost complex structures, if P is a generic

choice of base points, and if we write the associated cascade differential in check-hat block form
as

then J does not always give a differential. We know from (6;’)2 = 0 that

(5)2 +0,0_=0,

but in general 0, J_ can be nonzero, even between good Reeb orbits.

5.2 | S'-equivariant contact homology in the autonomous case
Let J be a A-compatible almost complex structure on R X Y, let P be a choice of base points, and
assume that the pair (J, P) is admissible. Use these to define a differential 6; on NCC,(Y,A) by
Proposition 5.2(a).
Definition 5.5. Define a ‘BV operator’

d; : NCC,(Y, 1) — NCC.(Y,A)

by equation (1.13). Define a differential 85"~ on

ccs(v,2) = NCC,(Y,1) ® Z[U]
by
5 =8/ @1+0,@U . (5.12)
Here U~ denotes the operator sending U = U*~! when k > 0 and sending 1 ~ 0.
Lemma 5.6. Suppose that the pair (J, P) is admissible. Then (35'7)? = 0.
Proof. This can be shown indirectly using the proof of Proposition 5.7, similarly to the proof of

Proposition 5.2(b), but we will give a direct proof here for clarity.
By (5.12), we have

2
(657) = (@) @1+ (0]8,+0,8)) @ U + (0.} @ U2,
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We know from Proposition 5.2 that (6; )? = 0, and it follows immediately from (1.13) that (3;)*> = 0.
So, we just need to check that

As a block matrix with respect to check and hat generators, we have

where we define x of a bad Reeb orbit to be zero. By (5.2), we then have

0.x 0
378, 40,8/ = « & )
110G (Ka+d1c x6+>

It follows from (5.3) that 0, x = xd, = 0. It follows from (5.4) that %0 = x8x, and it follows from
(5.5) that 0x = —xdx. Hence, the above matrix is 0. O

Proposition 5.7. Suppose that the pair (J, P) is admissible. Then the homology of the chain complex
(CCf1 (Y, 1),85') is canonically isomorphic to the equivariant contact homology CH: fl (Y, &).

Proof. We proceed in five steps.

Step 1: Let  be the constant S' x ES'-family of A-compatible almost complex structures on
R XY given by , , = J. The family J is automatically S'-equivariant as in (4.1) since 3¢z does
not depend on t € S! or z € ES!. Given distinct pairs (x,,y,) and (x_,y_), we now describe the
moduli space M3((x,,7,), (x_,7_)).

Let J denote the constant S'-family {J} as before. It follows from Definition 4.1 that
M3 ((x +V4), (x_,y_)) is the set of pairs (1, u) where 7 is a parameterized flow line of V from

=] —_
alift of x_ to alift of x,,and u € M (y,,y_); here the latter space is defined like M’(y,,y_) but
without modding out by R translation in the domain, cf. Section A.2. We can write this as

o~ ~J
KOGy, Gy ) = R (e, (e ) x M (7). (513)

where MMO™¢ denotes the set of parameterized flow lines of 7 as above. In particular, if i . denotes

the Morse index of x,, then

~C% ~J
M (e 70, (o y)) = MY (e ), m o) X My (raovo). (514)
Taking the quotient of (5.14) by the R x S! action in Definition 4.2, we obtain a fiber bundle

M ot Gy — ME ey ). (r)
(5.15)

MII\//Iorse(x+ , x_)‘

Here worse(x +»X_) denotes the moduli space of parameterized flow lines of V' from x_ to x,..
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An important special case of (5.15) is when x, = x_ = x, so that the base of (5.15) is a sin-
gle point. In this case, after choosing a lift X € ES! of x, the constant flow line from X to itself
determines a diffeomorphism

MB((x, 7). G 7)) = Miry.70).

We can further mod out by the R action in the target to obtain a diffeomorphism

M3y, (6, 72) = My 7). (5.16)

This last diffeomorphism is orientation preserving, by Lemma A.33.

Another important special case of (5.15) is when y, = y_ = y. In this case, every curve u €
M (y,7) maps to the ‘trivial cylinder’ R x 7. Thus, modding out by the R action on M3 by
translation of the targets is equivalent to modding out by the reparameterization action on
Worse(x +»X_), so we can replace the bundle (5.15) by

M ) — MJ( ), (7))

(5.17)

M%\//Iorse (x+ , x_)_

Here MII\,’Iorse(x +»X_) denotes the space of flow lines of V from x_ to x, modulo reparameteriza-
tion. The fiber

M gaa{S dshm (5.18)
d—ip+i V)= @, otherwise. '

When d =i, —i_, the S above is just the set of parameterizations of y.

Step 2. Recall that we are given a set P, consisting of a choice of base point p, € y for each
Reeb orbit y, for the purpose of defining nonequivariant cascades. To make an analogous choice
to define equivariant cascades, for each critical point x of f on BS', fix a lift X € ES'. For each
pair (x,y) where x is a critical point of f and y is a Reeb orbit, fix the base point

Piey) = [ p)] € (x,7).

Let B denote the set of these choices.
We claim that the pair ({, *B) satisfies an analogue of the admissibility in Definition 5.1. That
is, for all distinct pairs (x,,y,) and (x_,y_), we have the following.

(a) Ifd <0, then M ((x,,7,), (x_,y_)) = .
(b) M?((x+, 7.),(x_,y_)) is cut out transversely.
(C) Mllj((x+’ Y+)’ p(x+,y+)s (x—’ J/—)y p(x_,y_)) = ﬂ

(d) Mg((x V) Px, .y, (x_,7-), P(x_y_)) is cut out transversely.
(e) If (xy,y,) is distinct from (x,,y,) and (x_,y_), then

ME (OB, 0 G 70D ) Xy ME (G700, 7). by ) =
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To prove (a), observe by (5.15) that if Mg((x +»7+), (x_,7_)) is nonempty, then Mi,(y . Y_)is
nonempty for some d’ < d. Since (J, P) is admissible, we have d’ > 0,so d > 0.
Next, observe that by (5.15) and (5.16), we have

M\lﬂ(y+”}/—)a ifx+ = x—’

5.19
@, ifx, #x_. (5.19)

My, (el y) = {

Given (5.19), assertions (b), (c), and (e) follow from the hypothesis that the pair (J, P) is admissible.

To prove assertion (d), if x, = x_ then we are done by (5.16) and the admissibility of (J, P). If
X, # x_, then by (5.15), the moduli space Mgs((er, v.),(x_,y_)) is empty unless y, = y_. (Oth-
erwise the fiber in (5.15) would have the form Mi,()@r, y_)withd’ < 0andy, # y_, contradicting
the hypothesis that (J, P) is admissible.) When y, = y_ we must have ind(x,) —ind(x_) =2
by (5.18). In this case, assertion (d) follows from (5.21) below, together with the transversality
calculation in Example A.21.

Step 3. We now show that if ind(x, ) — ind(x_) = 2 and y is any Reeb orbit, then

e, xe_ : MS((xy. ). (x_,7) — (xp.7) X (x_.7) (5.20)

is a covering space of degree d(y).
We can identify (x, ,y) with ¥ by sending the equivalence class of (X, y) to y.
If 7 is a flow line of V' from 7~ (x_) to 7~ (x,)), that is lim_, , . n(s) € 7~1(x,.), define

e.(n) = lim 75(s) € 7~ (x).

Ifne Mg[orse(x +»X_), then since the vector field V is S!-invariant, there is a unique 7 €
Ml‘\/forse(ﬂ_l(x ) (x_)) lifting 7 with e_(») = X_. We can then identify

ME((xp, ), (X, 7)) = MY (x,, x ) X My, 7) (5.21)
by sending (77, u) on the right-hand side to the equivalence class of the pair (n,u) on the left-
hand side.

Now define a map
A MY (x,,x_) — S (5.22)
by
AG) = e,(n) - %,
It then follows from (4.4) that under the identification (5.21), the map (5.20) is given by

ey X e )T, u) = (e, (w) + (A, e_(w)) €7 X7. (523)

It follows from equation (4.2) that the map (5.22) is a diffeomorphism. Moreover, because of the
sign conventions for the S! action in (4.4), this diffeomorphism is orientation preserving.
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In addition, we know from (5.18) that the map
e, i M)(r.y) —7 (5.24)

is a diffeomorphism. Moreover, this diffeomorphism is orientation preserving, by the argument
in the proof of Lemma A.31.
Under the identifications (5.22) and (5.24), we can rewrite (5.23) as

e, xe_:S'xy —yx7,
(5.25)
t,y) — @A)t +y,y).

This is an orientation preserving covering of degree d(y).
Step 4. We claim now that the moduli spaces Mg((x +74), (x_,¥_)), with or without point

constraints at p.,, , ) and/or p( , ), determine a well-defined cascade differential 6? on
NCC,(Y,A) ® Z[U]. The proof closely follows the proof of Proposition 5.2(a), with the following
three modifications. First, in place of conditions (a)—(e) in Definition 5.1, one uses the corre-
sponding conditions (a)-(e) in Step 2 above. Second, in place of equation (5.1) when d =1 or
d = 2, one uses equations (5.19) and (5.21), respectively. Third, in place of Proposition 2.6 one uses
Proposition 4.6.

We now show that

3 _ aSlJ
9, =0°".
More precisely, let (x,,y, ) and (x_, y_) be distinct. Write ind(x, ) = 2k, . We need to show that
(337 ®U).7_0U") = (5 (7, @ U™ ). 70U ). (5.26)

Here 7, denotes ¥, or 7., and 7_ denotes y_ or ¥_. The left-hand side of (5.26) counts cascades
from (x,y,) to (x_,y_), and the right-hand side of (5.26) is defined by equation (5.12).

If x, = x_, then equation (5.26) follows from the orientation preserving diffeomorphism (5.16).
If x, # x_, then by (5.12) and (5.15), both sides of (5.26) are zero except when ind(x, ) — ind(x_) =
2 and there is a Reeb orbit y such that ¥, = ¥ and y_ = 7. So, by (1.13), to complete the proof of
(5.26), we need to check that if k > 1 and y is any Reeb orbit, then

5 ~ _ d(y), v good,
UK, 7 U1 = 5.27
<f(”® )7® > { 0, ybad. 527

By Step 3, the left-hand side of (5.27) is a signed count of d(y) points. These points are the
d(y) inverse images of (p(er,y), P(x_y)) under the map (5.20). In the notation of (5.25), these
inverse images all have the same y coordinate, while their ¢ coordinates are evenly spaced
around S*.

If y is a bad orbit, then if we rotate ¢ from one such point to the next, the signs alternate as in the
proof of (5.3), because e, rotates once around (p,,y) =~ ¥, while e_ stays fixed. Thus, the signed
count is zero.
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If y is a good orbit, then the signs are all the same. Moreover, these signs are all positive, because
the diffeomorphism (5.21) is orientation preserving'. This last statement follows from the fact that
the diffeomorphism (5.24) is orientation preserving, together with the exact sequence (A.40) used
to orient the left-hand side of (5.21).

Step 5. We now conclude the proof, similarly to Proposition 5.2(c).

As in the proof of Proposition 5.2(b), for any real number L and any integer K, we can choose
a generic S'-equivariant S' X ES!-family of almost complex structures § which is close on S x
S2K+1 to § = {J}, such that 6? = 8’5" on all generators & ® U with A(a) < L and k < K. It
follows that

cHSLK(y, 1) = H, (Nccﬁ(y,/l) ® z[U] UK+, 85" ) (5.28)

Here CH*Sl’L’K(Y,/l) denotes the homology of (NCCL(Y,1) ® z[U]/UXH, 6?1) for generic §';
the proof of Theorem 1.6 shows that this depends only on (Y, 1). Taking the direct limit over L
and K in (5.28) completes the proof of the proposition. O

5.3 | Comparison with cylindrical contact homology

We now prove Theorem 1.9, asserting that equivariant contact homology tensor Q agrees with
cylindrical contact homology, when the latter is defined.

Proof of Theorem 1.9.. Assume that the pair (J,P) is admissible. The pair (J, P) determines
operators 5? and 8’5" as in Sections 5.1 and 5.2. By Proposition 5.7, we have a canonical
isomorphism

cHS'(v,8) = H,(ccs' (v,2),657 ).
So, to complete the proof of Theorem 1.9, we need to show that there is a canonical isomorphism
H,(ccs'(v,2),65) @ @ = CHE(Y, 2;).

We proceed in three steps.
Step 1. Recall that CC;?1 (Y, 4) is the free Z-module generated by symbols & ® Uk and @ ® U*
where « is a Reeb orbit and k is a nonnegative integer. Let C, denote the submodule generated by

all of the above generators except generators of the form £ ® 1 where 8 isa good Reeb orbit. We
claim that C is a subcomplex of CCS ' (Y, A).

To prove this, let § be a good Reeb orbit. We need to show that £ ® 1 does not appear in 35"
of any generator that does not have the form & ® 1 where « is a good Reeb orbit. That is, we need
to show the following.

(i) If a is a bad Reeb orbit, then

<asl’1(& Q1,L® 1> =0.

" Note that this statement only makes sense when y is good, because the local system in which the orientation of the
left-hand side of (5.21) takes values is trivial if and only if y is good.
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(ii) If a is any Reeb orbit and k is a positive integer, then
<551J(& ®UY),E® 1> =0.

(iii) If o is any Reeb orbit and k is a nonnegative integer, then
<aSlJ @®U"),f® 1> =o0.

Assertion (i) follows from equation (5.4). Assertion (ii) follows from the definition of 3% 2
Assertion (iii) follows from the definition of 35'~ when k > 0, and from equation (5.3) when k = 0.

Step 2. We now show that the homology of the subcomplex C’, vanishes after tensoring with Q,
that is

H*(C’ ®0,057 ® 1) =0. (5.29)

To see this, note that 35 does not increase symplectic action, where the ‘symplectic action’ of
~ . . . . 1
a generator @ ® U* is understood to be the symplectic action of the Reeb orbit ct. Let 65 ¥ denote

the part of 85" that fixes symplectic action. By a spectral sequence argument’, it is enough to
show that

H*<C; ®0,7 ® 1) =0. (5.30)

The chain complex (C/, 5™ ) splits into a direct sum over subcomplexes indexed by the set
of Reeb orbits. For a Reeb orbit a, the corresponding subcomplex is the span of the generators
& ® UK for k > 0 (and also k = 0 if « is bad) and @ ® U* for k > 0. We need to show that the
homology of this subcomplex vanishes after tensoring with Q. When « is good, the subcomplex is
the sum over nonnegative integers k of two-term complexes

d(a)
—

QUM — a® Uk

Thus, the homology of the subcomplex is an infinite direct sum of copies of Z/d(«)Z, which
vanishes after tensoring with Q. If « is bad, then the subcomplex is the sum over nonnegative
integers k of two-term complexes

2
a®UF —aeUk
Thus, the homology of the subcomplex is an infinite direct sum of copies of Z/27, which again

vanishes after tensoring with Q. (Similar calculations appeared previously in [12, Section 3.2] and
[22, Section 3.2].)

T Concretely, let 0 < A; < A, < --- denote the (discrete) values of the symplectic action. We then define an integer-valued
filtration on the complex in (5.29), where the ith filtration level is spanned by generators @ ® U* with A(a) < A;. If (5.30)
holds, then the homology of the associated graded complex vanishes, so by induction on i, the homology of the ith filtered
subcomplex also vanishes.
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Step 3. We now complete the proof. It follows from Step 2 that after tensoring with Q, the homol-
ogy of the chain complex (CCfl(Y, 2),85'7) is canonically isomorphic to the homology of the
quotient complex by C!. That is,

cHS'(Y,6)®Q = H*<<CC;?1(Y,/1)/C;> 20,8 ® 1). (5.31)

A basis for the quotient complex by C’ is given by the generators & ® 1 where « is good. By the
definition of 35", the differential on the quotient complex is induced by 0. By equation (5.4), this
differential agrees with °CH after tensoring with Q. Thus, we have a canonical isomorphism of
chain complexes

((ccs'r.a/cl) @a,68 @1) = (CCEo¥ (v, 43), 6501, (5.32)

Theorem 1.9 now follows from (5.31) and (5.32). O

5.4 | Existence of admissible J in dimension 3

Proposition 5.8. Suppose that dim(Y) = 3. Then a generic A-compatible almost complex structure
Jon R XY is admissible.

To prove Proposition 5.8, we will use the following facts from [28]:

Lemma 5.9. Let (Y, 1) be a nondegenerate’ contact three-manifold, and let J be a generic A-
compatible almost complex structure on R X Y. Then for distinct Reeb orbits a, 3, we have the
following.

(@) Ifu € M/(a, B) with a # B, and if u is the somewhere injective curve underlying u, then
1 < ind(u) < ind(uw).

(b) M{(oc,ﬁ) is cut out transversely. More precisely, each u € M‘{(oc, B) is an immersion, whose
normal deformation operator (see Remark A.22) is surjective.

(c) Foreachu € Mé(a,ﬁ), if u is not a double cover of an index 1 cylinder u, then MJZ'(oz, B)isa
smooth manifold near u cut out transversely.

Proof of Lemma 5.9.

(a) Thisis [28, Lemma 2.5(a)].
(b) This is [28, Lemma 4.2(a)].
(c) This follows from the proof of [28, Lemma 4.2(b)]. O

Remark 5.10. In part (c), ifu € Mé(oc, B) is a double cover of an index 1 cylinder u, then u may be
an orbifold point of Mg(a, B). We expect that Mi(oc, B) is still a manifold near u.

 Lemma 5.9 does not require A to be hypertight.
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Proof of Proposition 5.8. Choose generic J as in Lemma 5.9. We claim that J is admissible.

Note that if u € Mi(oc,ﬁ), then M(J;(a, B) is cut out transversely near u, that is, u is regu-
lar in the sense of Definition A.20, if M{i(oc, B) is cut out transversely near u (more precisely
the equivalence class of u in equation (5.1)) in the sense of Lemma 5.9. This is explained in
Remark A.22.

Admissibility conditions (a) and (b) in Definition 5.1 now follow from parts (a) and (b) of
Lemma 5.9. By Sard’s theorem, we can then choose P generically so that admissibility conditions
(c) and (e) hold.

Next observe that Mg(a, B) is a smooth manifold cut out transversely near each u €
Mi(a,pa,ﬁ,pﬁ). Otherwise, by Lemma 5.9, u would be a cover of an index 1 curve u €
Mf (at, pys B, D), but the latter cannot exist by admissibility condition (c).

By Sard’s theorem again, we can then choose P generically so that admissibility condition (d)
holds also. O

6 | EXAMPLES

The nonequivariant and S'-equivariant contact homology that we have defined have integer coef-
ficients and contain some interesting torsion. We now compute some examples of this, and we
also explain more about how to define local versions of these contact homologies, as sketched in
Section 1.6.

6.1 | Prequantization spaces

Let = be a Riemann surface of genus g > 0, let p : Y — X be an S'-bundle over £ with Euler
class —e where e > 0, and let A, be a connection 1-form on Y with positive curvature. Then A is
a contact form; let £ denote the contact structure Ker(4,). The simple Reeb orbits of 4, consist of
the fibers of p, which all have action 27, so that A, is hypertight, although degenerate. Let I" be
the free homotopy class of loops in Y given by d times a fiber where d > 0. We now sketch how to
compute the nonequivariant and equivariant contact homologies of (Y, &) in the class I'. A related
calculation was given in [36, Theorem 1.19].

By the discussion in Section 1.6, we have

NCH,(Y,£,T) = NCHX(Y,4,T),

where L > 27d, and A is a nondegenerate perturbation of A, which is small with respect to L. An
analogous equation holds for equivariant contact homology.
The usual approach for perturbing 4, is to take

A=+ p*H)A,

where H : £ — R is a C2-small Morse function. The Reeb orbits of 4 in the class I" of action less
than L then consist of the d-fold covers of the fibers over the critical points of H. These Reeb orbits
are all good.

As explained in Section 1.6, since ¢, (§) vanishes on toroidal classes in H,(Y) ~ H,(Z), we can
noncanonically refine the canonical Z/2 grading on NCC,, to a Z grading. We can choose this Z
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grading such that if p is a critical point of H, and if y , denotes the d-fold cover of the fiber over p,
then

|)7;| =ind(H, p) — 1,
|)7;| = ind(H, p),

where ind(H, p) denotes the Morse index of H at p.

Next, by Proposition 5.8, we can choose an admissible A-compatible almost complex structure J
on R X Y, which is close to an S!-invariant A,-compatible almost complex structure coming from
a Riemannian metric on X. For suitable orientation choices, if p and g are critical points of H,
then there is an orientation-preserving bijection

M (7, 74) = MM™(p, q), 6.1)

where the left-hand side is the moduli space of J-holomorphic cylinders (1.7), while the right-
hand side denotes the moduli space of downward gradient flow lines of H from p to g, modulo
reparameterization. Furthermore, each of the holomorphic cylinders on the left-hand side is a
d-fold cover which is cut out transversely. The above is proved by Moreno [34, Sections 3.5.1 and
6.1], modifying the classic arguments of Salamon-Zehnder [38] computing Hamiltonian Floer
homology of C?-small autonomous Hamiltonians.

By Proposition 5.2, we can now compute most of the nonequivariant differential (5.2) as follows:

d, =0,
3 = Byjorses (6.2)
a\ = _aMorse’

where 0y, denotes the differential on the Morse complex for H.

For simplicity, we can choose H to be a perfect Morse function with one index 2 critical point p,
with 2g index 1 critical points q;, ..., g, ,, and with one index O critical point r. Then by (6.2), the
only possibly nonzero block in the cascade differential (5.2) is 0_. Moreover, for grading reasons,
the only possible nonzero coefficient of 4_ is the coefficient from p to 7. A calculation similar to
the proof of equation (5.27) shows that this coefficient is given by

(3_P,F) = +de. (6.3)

We conclude that the nonequivariant contact homology is generated by p, §;, §;, 7, which are
free, and 7, which is de-torsion. Thus,

H,(%), %= 2,
H,(2), x=1,
NCH,(Y,ET)~<sH,(Z)® Z/de, *=0,
Hy(Z), *= —1,
0, else.



S'-EQUIVARIANT CONTACT HOMOLOGY FOR HYPERTIGHT CONTACT FORMS | 1511

Next we can compute the equivariant contact homology. By Proposition 5.7, this is the homology
of the differential 35"~ in equation (5.12). By (6.2) and (6.3), this differential is given by

(PO =2deF @1,
3 (FQ®UX) = +deF @ U +dp @ UL, k>0,
5 ®UN =dg ® U, k>0,

FYFRUY) =dFr@ U, k>o,

and 85 sends all other generators, namely § ® 1, ® 1and p ® UX,§ @ U¥,7® Uk withk > 0,
to zero. It follows that the homology is generated by p® 1 FeF ® U, §; ® 1, and ¥ ® 1, each of
which is free, together with p ® Uk, G ® Uk, 7® U for k > 0, each of which is d-torsion. We
conclude the following:

Proposition 6.1. Let X be a Riemann surface of genus g > 0, let p : Y — Z be an S'-bundle over
> with negative Euler class, let £ be the corresponding prequantization contact structure on'Y, and
let T be the free homotopy class of loops in Y given by d times a fiber where d > 0. Then as Z-graded
Z-modules we have

CHS (Y, £,1) = H (D)[-1] @ (H.(%;2/d) ® Z[U)), (64)
where the formal variable U has degree 2.

Remark 6.2. Strictly speaking, we have not defined the cylindrical contact homology
CHECH(Y, £,T); we have only defined cylindrical contact homology for pairs (4,J) satisfying the
hypotheses of Corollary 1.10. But if we define CHESH(Y, £,T) to be the S!'-equivariant contact
homology tensor @ as in Theorem 1.9, then it follows from (6.4), as one might expect from (6.1),
that

CHESN(Y,£,T) ~ H,(Z; Q)[-1]. (6.5)

6.2 | Local contact homology

Let 1, be a contact form on a manifold Y (not necessarily compact), let y, be a simple Reeb
orbit of 4,, and let d be a positive integer. Assume that the Reeb orbits y’g are isolated in the
loop space for 1 < k < d (but not necessarily nondegenerate). We now explain how to define the
local nonequivariant contact homology NCH, (Y, 4,,7,,d) and the local S'-equivariant contact
homology CHS' (Y, 1y, 7o, d).

Isolating neighborhood
As in [25, Section 3], let N C Y be a compact tubular neighborhood of (the image of) y,,. Choose
N sufficiently small so that:

* there exists a closed 1-form 6 on N which pairs positively with the Reeb vector field;
* the only Reeb orbits in N in the homotopy class k[y,] for 1 < k < d are the iterates y’g .
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Let A be a nondegenerate perturbation of 1, on N. Assume that the perturbation is small enough
so that 6 pairs positively with the Reeb vector field of . (We may need to choose the perturbation
smaller below.) Then 4 is hypertight on N.

Local nonequivariant contact homology

Let J be a generic S!-family of 2-compatible almost complex structures on R X N. If y, and y_ are
Reeb orbits of A, let MY (y,, y_) denote the moduli space of holomorphic cylinders as in Section 2,
where now

u:RxS'>RXN.

A compactness argument as in [25, Lemma 3.4] shows that if A is sufficiently close to A, and if y,
and y_ are Reeb orbits of 1 in the class d[y,], then for any generic J as above, every holomorphic
cylinder in MY(y,,y_) avoids R x dN. We then have compactness as in Proposition 2.6, that is,
the moduli spaces have no additional boundary points arising from holomorphic curves hitting
R X ON. We then obtain a well-defined local nonequivariant contact homology as in Section 3.3,
using only Reeb orbits in the class d[y,], which we denote by NCH (N, 4, d; J). Similarly, if 1,
and A_ are two sufficiently small perturbations of A as above, and if J, is a generic S'-family of
A, -compatible almost complex structures on R X N, then as in Sections 3.4 and 3.5, we obtain a
canonical isomorphism

NCH,(N,A,,d;J,) ~ NCH,(N,A_,d;J_). (6.6)

Consequently, the local nonequivariant contact homology does not depend on the choice of
sufficiently small perturbation A or J, and we can denote this homology by NCH (Y, 4y, 7o, d).

Local S*-equivariant contact homology

The local S'-equivariant contact homology CH f,l (Y, Ay, 70, d) is defined likewise, by repeating the
construction in Section 4, where A is a sufficiently small nondegenerate perturbation of 1, in N as
above, 5 is a generic S'-equivariant S' x ES' family of A-compatible almost complex structures
on R X N, and we consider Reeb orbits in the class d[y,] and moduli spaces of pairs (#, u) where
u:RxS'>RXN.

Local cylindrical contact homology

Finally, suppose that 4 is a sufficiently small nondegenerate perturbation of 1, on N as above,
and suppose that there exists an admissible A-compatible almost complex structure J on R X N
as in Definition 5.1. (As in Proposition 5.8, we can always find such a J when dim(Y’) = 3.) Then
the cylindrical contact homology CHECH(N, 4, d;J) is defined, where we just consider good Reeb
orbits in the class d[y,]. The proof of Theorem 1.9 carries over to show that there is a canonical
isomorphism

CHESH(N, A,d;J) = CHS' (Y, A9, 70, d) ® Q.

Grading

Each of the above versions of local contact homology has a noncanonical Z-grading, as in Sec-
tion 1.6. In fact, a symplectic trivialization 7, of y;§ determines a choice of this Z-grading, in
which the grading of a Reeb orbit y in cylindrical contact homology, or the corresponding gen-
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erator 7 or 7 ® 1 of nonequivariant or S'-equivariant contact homology, is the Conley-Zehnder
index CZ,(y), where 7 is a trivialization of y*£ in a homotopy class determined by 7,,.

Remark 6.3. There is an alternate and very simple definition of local contact homology over
Z, introduced in [27], which avoids transversality difficulties without using S'-equivariant the-
ory. Here one replaces the neighborhood N by a d-fold cyclic cover, considers the cylindrical
contact homology of this cover in degree 1 (for which no multiply covered holomorphic cylin-
ders can arise), and takes the Z/d-invariant part of this cylindrical contact homology. Let us
denote the resulting local contact homology by CHZ(Y, 4,7, d). Simple examples show that
CHZ does not agree with CH fl (the former has less torsion), but we expect that there is a canonical
isomorphism

CH(Y,20,70,d) ® Q@ = CHS' (Y, 49,70, d) ® Q.

6.3 | The period doubling bifurcation

On a three-manifold Y, a one-parameter family of contact forms {4,};cg can undergo a period-
doubling bifurcation in which the following happens."

* The contact form A, has an simple Reeb orbit y,, for which the linearized return map (1.4) has
—1 as asingle eigenvalue. In particular, the double cover of y, is degenerate. However, y,, and its
double cover are isolated Reeb orbits in the loop space of Y. Let N be a small tubular neighbor-
hood of y as in the definition of local contact homology for d = 2. We can choose a trivialization
7 of y;§ with respect to which the linearized Reeb flow along y,, has rotation number 1/2.

* For t < 0 small, the only Reeb orbit in N in the homotopy class [y,] is an elliptic Reeb orbit e,
for which the rotation number with respect to 7, is slightly less than 1/2. The only Reeb orbit
in N in the homotopy class 2[y,] is the double cover of e;, which we denote by E;.

* For t > 0 small, the only Reeb orbit in N in the homotopy class [y,] is a negative hyperbolic
Reeb orbit h; (this means that the linearized return map has distinct negative eigenvalues)
with rotation number 1/2 with respect to 7,,; and the only Reeb orbits in the homotopy class
2[y,] are the double cover of h;, which we denote by H,, together with a simple elliptic orbit e,
whose rotation number with respect to 7, is slightly less than 1.

For explicit formulae for this bifurcation, see [1, Section 8.3.2]. The above bullet points are all
that we need to know here, but the following picture might be helpful. Let D be a disk transverse
to y,. Then the Reeb flow of A, induces a partially defined return map ¢, : D — D. One can model
the period-doubling bifurcation with

-1 0 X
¢t=<0 _1>°(Pet’

where € > 0issmall, and goft is the time € flow of a vector field X, which is invariant under rotation
by 7 and illustrated in Figures 1-3.

T There is another version of period-doubling, in which e; has rotation number slightly greater than 1/2, and e, has rotation
number slightly greater than 1. This other version behaves similarly and we will not consider it here.
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FIGURE 1 Flowof X_,; before the bifurcation

FIGURE 2 Flow of X;; at the bifurcation

FIGURE 3 Flow of X;; after the bifurcation

The critical point of X_; in Figure 1 is a fixed point of ¢_,, which corresponds to the elliptic orbit
e,. The critical point of X, in Figure 2 is a fixed point of ¢, which corresponds to the nondegenerate
Reeb orbit y,,. The central critical point of X, in Figure 3 is a fixed point of ¢; which corresponds
to the negative hyperbolic orbit k,. In addition, the left and right critical points of X; in Figure 3
are exchanged by ¢,, and so they constitute a period 2 orbit of the map ¢,, which corresponds to
the elliptic orbit e,.

It follows from [28, equation (2.3)] that the Conley—Zehnder indices of the above Reeb orbits
with respect to 7, are given by CZ(e,) = CZ(h,) = 1, CZ(E;) = CZ(e,) = 1, and CZ(H,) = 2.

Let A, = A4, for some small ¢ > 0, and let A_ = A, for some small ¢ < 0. It is instructive to com-
pute the different versions of local contact homology of (Y, 4, ¥, d = 2) using A_ and 4, . For this
purpose, we can use admissible 4, -compatible almost complex structures J, on R X N.

Local cylindrical contact homology
For A_, the local cylindrical chain complex just has the one generator E; (this is a good Reeb orbit).
Thus, the cylindrical contact homology is given by

Q, x=1,
CHESH(N,A_,d =2 ) ~ . (6.7)
0, otherwise.
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For 4, the local cylindrical chain complex has just the one generator e,, because H, is a bad
Reeb orbit. Thus, we get the same answer’.

Local nonequivariant contact homology

For A_, the local nonequivariant chain complex has the two generators E; and E, of gradings 1
and 2, respectively. Since E; is a good Reeb orbit, the differential (5.2) is zero by equation (5.3).
Thus, we obtain

Z, *x=1,2,

NCH, (Y, 4y, ¥p,d = 2) = ) (6.8)
0, otherwise.

For 1., the local nonequivariant chain complex now has four generators: &, which has grad-
ing 1; &, and H, which have grading 2; and H, which has grading 3. By Proposition 5.2(c), the
differential (5.2) satisfies

VAP oo~
d0,"H, = —2H, + c&,,

and the differential of all other generators is zero. Here ¢ € Z is determined by a count of holo-
morphic cylinders in the moduli space M’ (Hj, e,). We will not compute ¢ here, but we do know
that c is odd, by equation (6.8) and the invariance (6.6) of local nonequivariant contact homology.

Local S*-equivariant contact homology
For 1_, the S'-equivariant chain complex has the generators E; ® U* of grading 2k + 1,and E, ®
U* of grading 2k + 2, for each k > 0. By equation (5.12), the differential is given by

oS- (B, @ UX) =2(E, @ U*), k>0,

and the differentials of all other generators are zero. It follows that the homology is generated by
the cycle E’I , which is free, and the cycles E‘; ® Uk for k > 0, which are 2-torsion. Thus,

Z, x=1,
CHS' (Y, 40,70, d =2) = {2/2, #=2,4,.., (6.9)

0, otherwise.

Note that tensoring this with Q correctly recovers (6.7).

For 1,, the S'-equivariant chain complex has generators ¢; ® U of grading 2k + 1, generators
& ® U¥ and H, ® U* of grading 2k + 2, and generators H, ® U* of grading 2k + 3, for each k >
0. By equation (5.12), the differential is given by

aSl,]+(e\5®Uk)=’5®Uk—l’ k>0’

3 @ U) =2, UY) +e(6 ®UY), k>0,

This is one of the reasons why bad orbits have to be discarded in the definition of cylindrical contact homology; otherwise
one would not have invariance under this bifurcation.
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and the differentials of all other generators are zero. It follows that the homology is generated by
the cycle & ® 1, which is free, and the cycles H, ® U* for k > 0, which are 2-torsion since

asl"]_'_ (C(e\’z ® Uk+1) _IfI\l ® Uk) — 2(1\_1/1 ® Uk)
Thus, we again obtain (6.9).

APPENDIX A: ORIENTATIONS

In this section, we define the orientations on the moduli spaces that we consider, and we justify
the claims that we make about signs. (We omit a few cases which do not involve additional ideas.)
The main references that we will use are [16], which first introduced coherent orientations in
the context of Hamiltonian Floer theory; [9], which extended [16] to the case of symplectic field
theory; and [30], which worked out more details in connection with obstruction bundle gluing.

Al | Orienting the operators

We first review how to orient the various Fredholm operators that we need to consider, spelling
out the conventions that we will be using. We will consider a very general class of Fredholm
operators, and not just the specific operators that arise from holomorphic curves in R X Y. The
conclusion that we need is stated in Proposition A.16 . This discussion follows [30, Section 9] with
minor modifications.

Preliminaries. If V is a finite-dimensional real vector space, define O(V) to be the (two-element)
set of orientations of V. If o € O(V), denote the opposite orientation by —o. If W is another
finite-dimensional real vector space, define O(V) ® O(W) to be the set of pairs (o, oy,) € O(V) X
O(W), modulo the relation (oy, 0y,) ~ (—0y,, —0y,). We denote the equivalence class of (o, 0y)
by o, ® oy;,. There is a canonical bijection

OV ®&W) =0WV)® O(W).

Note that switching the order of V and W multiplies this bijection by (—1)dm()dim(W) More
generally, a finite exact sequence of finite-dimensional real vector spaces

oqvlﬁvzf_i... N V, =0 (A1)
induces a canonical element
o(f1 > frm1) €O(V1) @ - @ O(V)), (A.2)

which is invariant under homotopy of exact sequences. If orientations o; € O(V;) have already
been chosen for i = 1, ..., k, we say that the exact sequence (A.1) is orientation preserving if the
canonical element (A.2) agrees with 0; ® - ® oy.

If D is a real linear Fredholm operator, define

O(D) = O(Ker(D)) ® O(Coker(D)).
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We define an orientation of the Fredholm operator D to be an element of the two-element set

@{D). A homotopy of Fredholm operators from D to D' induces a bijection (D) hrt D', see
the review in |30, Section 9.1).

Introducing the operators. We now introduce the kinds of Fredholm operators that we will need
to orient.

Definition A.1. An orientation loop is a pair £ = (E, V) where:

* Eisarank n Hermitian vector bundle over 51;
* Vis a Hermitian connection on E.

Associated to the orientation loop L is a differential operator
Ay =iV, : C2(S',E) — C*(5',E),

where V, denotes the covariant derivative along S'. We say that £ is nondegenerate if Ker(A.) =
{0} Also, we define § (L) > 0 to be the smallest positive eigenvalue of the operator A, and
&d_(L) < 0to be the largest negative eigenvalue.

Definition A.2. An orientation surface is a quadruple C = (C, E, &+, ¥~ ) where:

* ( is a (possibly disconnected) punctured compact Riemann surface with k + [ = 0 ordered
punctures (which we will regard as ends), of which the first k are designated ‘positive’ and
the last [ are designated ‘negative’. Each positive end is conformally identified with [0, co) x 51,
and each negative end is conformally identified with (—co, 0] x §'. On each end, denote the
[0, oo} or (—eco, 0] coordinate by s and the 5! coordinate by t;

* %7 isa list of k orientation loops E}‘ = {E}‘, T-";], and %~ is a list of [ orientation loops I.ZJT =
(B}, V5

* E is a rank n Hermitian vector bundle over C. An identification is fixed between the restric-
tion of E to the jth positive end of C and the pullback of the bundle ET over 5'. Likewise, the
restriction of E to the jth negative end of C is identified with the pullback of E;.

In this paper, we will only need to consider the cases where C is the plane, cylinder, or sphere,
but one can also consider more general Riemann surfaces as in [9, 30].

Definition A.3. For an orientation surface ¢ = (C, E, %, %) as above, define T{ ) to be the
set of differential operators

D: C®E)— C®(T"'C®E)

such that:

* in a complex local coordinate on C and a local trivialization of E, the operator D equals 3 plus
a 0th order term;
* on the jth positive end of C, write

D= %[ﬂ's — idt) ® (8, + 1V, + M(s, 1)),
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where M f (5, t) is an endomorphism of the real vector space {E}‘ );- Then
lim M;(s,-) =0
I—oD

in the sense of [16, Section 2]. Likewise for the negative ends with § —+ —co.

Given an orientation surface C = (C,E, %, .%7), let &§ = (&7 ,..., 5:,51‘, ...,87) be a tuple of
real numbers such that 5}' is not an eigenvalue of Ap+ forany j =1, ..., k, and a'j- is not an eigen-
I

value of —A - for any j = 1,..., . Then it a standard fact that any operator D € D) extends to a
I
Fredholm operator

D : LY(E) — 1*(1%'C @ E). (A3)

Here L2® denotes the exponentially weighted Sobolev space consisting of sections ¢ such that

By e L?, where § : € — R is a positive smooth function such that on the jth positive end we
have 8 = az'sJfr * for s large, and on the jth negative end we have 8 = ¢’ Plfor |5] large.

Assume further that 0 < a'; < 5+[£}'}foreanhj =1,...k,and0 < §; < —d\'_{ﬁ}] foreach j =
1,..., 1. (Note here that & = 0is allowed only if the orientation loop I.ZT is nondegenerate.) We will
call such a choice of exponential weights admissible. Then the set of orientations of the Fredholm
operator (A.3) does not depend’ on &, and in fact depends only on the orientation surface C; see
the review in [30, Section 9.2]. Denote this set of orientations by ().

Remark A 4. 1t is sometimes useful to eliminate the exponential weights as follows. If § : C = R
is a function as in the definition of Lf‘é, then the operator (A.3) is conjugate to the operator

DB~ : LUE) — LY(T"'C ® E).
This conjugate operator is itself the extension of a differential operator
BDB~ € D(Cp),
where C; is an orientation surface obtained by shifting the orientation loops by §. Namely,
_ + o+ + o T

The orientation surface C; has all orientation loops at its ends nondegenerate, and the above
conjugation operation induces a canonical bijection &{Cz) = &(C).

Gluing orientations. The key operation is now to ‘glue’ orientations. Let (' =
(C'E', ("), (%)) be another orientation surface. Suppose that Ej.‘ = {ﬁ’];‘ for j=1,...L
We can then glue the first | negative ends of C to the first [ positive ends of C’ to obtain a new
orientation surface, which we denote by C#,C’. This glued orientation surface also depends on a

! One could also use Sobolev spaces Lf“j; the choice of pand k is immaterial for orientations as it does not affect the kernel
of (up to canonical isomorphism) the cokernel of the operator.
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parameter % > 0, which determines where to cut off the ends of C and €' before gluing; we omit
this parameter from the notation.

Given operators D € D) and D' € D(C"), we can use cutoff functions with derivatives of order
-1 to patch them to a *glued’ operator

D#D' € D(C#,C").

Lemma A.5. Fix operators D, D' as above. Suppose that for each j = 1,...,1, the orientation loop
I.ZJT = [1‘11'];_t is nondegenerate. Choose admissible exponential weights § and &' such that for each
Jj=1,..,wehave 51.‘ = [.:31"]1;.t = (. Then if the gluing parameter & is sufficiently large, there is up
to homotopy a canonical’ exact sequence

0 — Ker(D#D") i Ker(D) & Ker(D") LA Coker{D) ¢ Coker(D") i Coker(D#D") — 0.

Proaf. By Remark A.4, we can assume without loss of generality that all the orientation loops are
nondegenerate and there are no exponential weights. The lemma in this case now follows from
[20, Proposition 9.3]. O

Remark A.6. The exact sequence in Lemma A.5 describes a linear version of obstruction bundle
gluing, in which one attempts to glue elements of Ker{D) and Ker{D'") to obtain an element of
Ker{D#D"). The obstruction to this gluing is an element of Coker{D) @ Coker(D"), specified by
the map g in the exact sequence.

Asin (A.2), the above exact sequence determines a bijection
o(f.g.h) : O(D) ® OD") — O(D#D"). (A.4)
Lemma A.7. Under the assumptions of Lemma A_5, the bijection

[_l}d[m[I{H{D'Ddim[Cuiz‘rfD]]p{f’ g.h) : OD)® E}[D’} i @[D#D’] (A.5)

is invariant under homotopy of D and D' and deformation of the gluing parameter, and thus
determines a canonical bijection

0(C) ® O(C") — O(C#,C"). (A.6)
Proof. This follows the proof’ of [30, Lemma 9.6). O
Remark A.8. The gluing of orientations in (A.6) depends on our choice of convention for writing

D first and D' second in the direct sums in Lemma A.5. Our convention here agrees with [9] and
disagrees with [30]. Switching this convention would multiply the map (A.6) by (—1)ind(D)ind(D")

¥ The exact sequence just depends on the choice of pluing parameter and cutoff functions; different choices will give
homotopic exact sequences.
* The statement of [30, Lemma 9.6] needs to be corrected by including a sipn as in {A.5). The last sentence of Step 1 of the

proof also needs to be corrected accordingly. Fortunately, the missing sign in [30, Lemma 9.6] has no effect on the use of
this lemma in the rest of [20].
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Lemma A.9. The gluing of orientations in (A.6) is associative. That is, if C" is another orientation
surface, for which the orientation loops of the first I' positive ends are nondegenerate and agree with
those of the first I' negative ends of C', then we have a well-defined bijection

O(C) ® O(C") @ OC") — OCH,LC'#,C").

Proaf. This follows the proof of [30, Lemma 9.7] (with sign corrections as for the proof of [30,
Lemma 9.6]). O

In Lemma A.7, we can weaken (but not completely drop) the assumption that the orientation
loops Ej.‘ = [E’];‘ are nondegenerate. Namely:

Definition A.10. An orientation loop £ = (E, V) is weakly nondegenerate if Ker{A;) is a com-
plex vector space, with respect to multiplication by i on C*(S?, E). (This includes the case when
Ker(Ap) = {0} and L is nondegenerate.)

Lemma A.1l. Let C = (C,E, ", ¥ )and C' =(C'",E',(&")*,(%")") be orientation surfaces
such that I.ZJT = [1‘1!'];.t Jfor j=1,.., 1 Assume that EJT is weakly nondegenerate for each j =1, ..., L
Then there is still a canonical bijection as in (A.6) which is associative in the sense of Lemma A.9.

To prove Lemma A .11 we will need the following:

Lemma A.12. Suppose L = (E, V) is weakly nondegenerate. Let §, €(0,—&_(L)) and let §_ €
(0,8, (L)). Let

C=(mxSE(EV-i§),(E,V+i5_)).
Then there is a canonical orientation in O(C).
Proof. There is a distinguished class of operators D € INC). Namely, write A = iV,. Choose a
smooth function ¢ : R — R such that ¢(5) = §, 5 fors >> 0 and @(s) = —&_s for s << 0. We can
then take
D= %(a, + A+ (s)).
(We omit ds — idf from the notation here and below.) Of course D depends on the choice of
function ¢, but different choices will be canonically homotopic and thus will have canonically
isomorphic sets of orientations.
The operator
D : Lj(E) — LT (RxS")® E)

is conjugate to the operator

E&{R}DE—E}{E]

I
b | =

(8; +A)
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acting on Sobolev spaces with exponential weights —&, on the positive end and —&_ on the neg-
ative end. Any element of the kernel of this operator is a linear combination of functions of the
form

P(s, 1) = e HP(0),

where ¢ is an eigenfunction of A with eigenvalue 1. Because of our choice of exponential weights,
¥ is in the domain of the operator only when 1 = 0. Thus, Ker(D) is canonically identified with
Ker(A). A similar argument shows that Coker(D) = {0}. By hypothesis, Ker(A) is a complex vector
space, so it has a canonical orientation. We conclude that D has a canonical orientation, and thus
there is a canonical orientation in O(C). O

Proof of Lemma A.1l. By Remark A.4, we can assume without loss of generality that each E;.L
is nondegenerate, each (£’ )]T is nondegenerate, and £;r is nondegenerate when j > [. Choose
admissible exponential weights § and &’ such that all weights are zero except possibly for 850
and (8"),..., (8 )1+' (The weights 5}.‘ and (&' )JT must be positive when Ly = (c’ ); is degenerate.)
To reduce to Lemma A.7, we would like to replace C and C’ by Cs and C (’5, as in Remark A.4.
However, this does not work directly because the first I negative ends of Cs do not agree with the
first I negative ends of C é, (as the orientation loops are shifted in opposite directions), so these two
orientation surfaces cannot be glued. The trick is to glue in a third orientation surface and write

C#ZC/ = C5#1C”#[C'5/.

Here C" consists of I cylinders. On the jth cylinder, the bundle E is the pullback of the bundle
E]_ = (E’)*. The notation ‘~’ means that the orientation surfaces are homotopic so that there is a
canonical bijection between the orientations. Now by Lemmas A.7 and A.9, we have a canonical
bijection

O(CH#,C") —0O(C5) ® OC") ® O(C)
(A7)

=0(0)®O(C") ® O(C).

By Lemma A.12, there is a canonical orientation in @(C""). Putting this canonical orientation into
(A.7) gives the desired canonical bijection (A.6). This is associative by Lemma A.9. O

Choosing orientations. We now explain what choices are needed to orient the operators of interest.

Lemma A.13. Let C be an orientation surface with no ends. Then there is a canonical orientation
in O(C).

Proof. 1f D € D(C), then D is homotopic to a complex linear operator D', which has a canonical
orientation. This induces an orientation of D, which does not depend on the choice of homotopy or
on the choice of complex linear operator D’, because the spaces of real-linear and complex-linear
operators in D(C) are both contractible. O
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Definition A.14. Let £ = (E, V) be a weakly nondegenerate orientation loop.

* Let C, =(C,,E,,®,(L)) be an orientation surface such that C, is a plane with one negative
end, on which E_ is pulled back from E. Define O_ (L) = O(C,.).

* Let C_ =(C_,E_,(L),®) be an orientation surface such that C_ is a plane with one positive
end, on which E_ is pulled back from E. Define O_(L£) = O(C_).

Lemma A.15. Let L be a weakly nondegenerate orientation loop. Then:

(a) the sets O (L) and O_(L) do not depend on the choices of orientation surfaces C, and C_ in
Definition A.14;
(b) there is a canonical bijection O (L) = O_(L).

Proof. Let C, and C_ be orientation surfaces as in Definition A.14. By Lemmas A.11 and A.13, there
is a canonical bijection

O(C,) ~ OCL). (A.8)

It follows that if we fix a choice of C_, then the sets of orientations O(C, ) for different choices of C,,
are identified with each other. To prove that this identification does not depend on the choice of
C_, one can use the argument in [37, Lemma 2.46] and [40, Proposition 2.8]. Thus, O (L) is well-
defined, and likewise @_(L) is defined. Moreover, the bijection (A.8) descends to a well-defined
bijection O, (L) = O_(L). O

In light of Lemma A.15, if £ is a weakly nondegenerate orientation loop, we define O(L) =
O, (L£). We can now prove the conclusion of this subsection:

Proposition A.16. Let L, L, and L_ be weakly nondegenerate orientation loops.

(@) IfC = (C,E, (L,),(L_)) is an orientation surface in which C is a cylinder with one positive and
one negative end, then there is a canonical bijection

OC)~0(L)®O(L).

(b) LetC, =(C,,E,, (L), (Ly))and C_ = (C_,E_,(Ly), (L_)) be cylindrical orientation surfaces
as above, so that by part (a) we have canonical bijections

O(C,) = O(Ly) ® O(Ly),

O(C_) = O(Ly) @ O(L).
Then the identification
O(C) ~ O(C,) ® O(C_)
given by the above three equations agrees with the canonical identification given by Lemma A.11.

Proof. (a) Let C, be as in the definition of O, (L), and let C_ be as in the definition of O_(L,).
Then C, #,C#,C_ is an orientation surface in which the underlying surface is a sphere, and it has
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a canonical orientation by Lemma A.13. Then by Lemma A 11 there is a canonical bijection
O(C) ~ O(C,) ® O(CL).
By Lemma A.15, this implies part (a). Part (b) then follows from the definitions. O

A2 | The tangent space to the moduli space

Let (Y2771, 1) be a closed nondegenerate contact manifold. (For this discussion we do not need
to assume that A is hypertight.) Let J = {J,},cs1 be a generic S!-family of A-compatible almost
complex structures on R X Y as in Section 2. To prepare to orient the moduli space M’ 74s7-)s

we now discuss its tangent space.
3

If y, and y_ are distinct Reeb orbits, let M (y,,y_) denote the space of maps u : R X S' —
R X Y satisfying equations (2.1)—(2.3). Here we do not mod out by R translation in the domain, so
that

— —J
My r)=M (. 7)/R

—
If ue M (y,,y_), then the derivative of the Cauchy-Riemann equation (2.1) defines a
linearized operator

D, : L’(W'TR X Y)) — LW TR X Y)). (A.9)

Here § > 0 is a small exponential weight, smaller than the smallest positive eigenvalue of the
asymptotic operator associated to ¥, and J, or minus the largest negative eigenvalue of the asymp-
totic operator associated to y_ and J, see below. Thus, the kernel of D,, consists of infinitesimal
deformations of u which suitably decay on the ends of u.

Definition A.17. We define R-linear maps
7,,7_ : C — Coker(D,) (A.10)

as follows. Recall that r denotes the R coordinate on R X Y, while R denotes the Reeb vector field
on Y. Let 3 be a smooth section of u*T(R X Y) with ;" = 9, for s >> 0 and 3, = 0 for s << 0.
Let 9 be a smooth section of u*T(R X Y) with 1" = R for s >> 0 and 3, = 0 for s << 0. Choose
%, and ¥, analogously with the sign of s switched. If a, b € R, we define

7.(a+bi) = nCOker(Du)‘Du(a¢1+ + bz,b;)’.

There are quotation marks on the right-hand side because az,pfr + b¢2+ isnot in the domain of D,,
as in (A.9). To interpret the right-hand side, if we regard D,, as a differential operator on smooth
sections, then Du(az,bIr + bz,b; )is a well-defined smooth section 7 € L>°(u*T(R X Y)), by standard
asymptotics of holomorphic curves. We define 7 (z) to be the projection of 7 to Coker(D,,). Note
that this does not depend on the choice of z,l)Ir and gb; , because different choices will differ by a
compactly supported section which is in the domain of D,, as in (A.9). We likewise define

7_(a+bi) = ﬂcoker(Du)‘Du(al,bl_ + by ).
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—~J
Proposition A.18. If J is generic, then M (y,,y_) is naturally a smooth manifold, and there is a

canonical exact sequence

o_)

=J (o4, (T4,72)
0 — Ker(D,) — T M (y,,y.) — C@®C — Coker(D,) — 0. (A11)

Remark A.19. The proof of Proposition A.18 will show that the maps o, are described

~J
as follows: If {u },cg is a smooth family in M (y,,y_), with u, =u, and if we write
= L] _u €uT(RXY), then

o, = lim (dr(w) +iA@)).

Proof of Proposition A.18. Fix p > 2. Note that the kernel and cokernel of D,, are unchanged if one
replaces L%’a and L% in (A.9) by Lf 9 and LP4, and we will do this below.

Let B(y,,y_) denote the set of continuous maps u : R X S! — R X Y satisfying the asymptotic
conditions (2.2) and (2.3) such that for |s| large, u is the exponential of an Lf © section of the
normal bundle to R X y. We define a map

PP (TR X Y)) & C D C — By,,y.) (A12)
by
($,a, +byi,a_+b_i)— exp,(¥ +a, P + b, +a_ ] +b_9)),

—~J
where z,bI—L and z,b;—' are chosen as in the definition of 7. Any element of M (y,,y_) near u is in

~J
the image of the map (A.12). Thus, a neighborhood of u in M (y,,y_) can be described as the
zero set of a section of a Banach space bundle over the left side of (A.12), whose fiber over u is
LPA(u*T(R X Y)). The derivative of this section at u is the map

@ LMW (TR XY))®COC— LPOW TR X Y)), a
Al3
(¥, a, +byi,a_+b_i) — ‘D, +a, P + b} +a P +b ;).

Here, as in Definition A.17, although sz—L and 1/);—’ are not in the domain of D,,, the map (A.13) is
still well-defined by regarding D,, as a differential operator.
A standard transversality argument, which proves Proposition 2.2(a), shows that if J is generic,

~J
then for each u the operator ® in (A.13) is surjective, which in turn implies that M (y,,y_) is
naturally a smooth manifold near u whose tangent space at u is Ker(®).
To complete the proof of the proposition, we now define a sequence

04.0_) (ty,7_

( )
0 — Ker(D,) — Ker(®) — C&®C — Coker(D,) — 0 (A.14)

and show that it is exact if ® is surjective. We define the first arrow to be the inclusion ¢ — (3,0, 0),
and we define the second arrow by

Ui(¢7 Z, Z_) =2z,.
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By the definitions of 7, and ®, we have

(nCOker(Du) ° (I))(l,b,z_'_’ z_ )= T+(Z+) +7_(z_).

It follows that the sequence (A.14) is exact, except possibly for surjectivity of the last arrow. If @ is
surjective, then the last arrow is also surjective. O

For reference elsewhere, we now clarify the criteria for transversality.

—~J
Definition A.20. An element u of M (y,,y_), or its equivalence class in M’(y,,y_), is regular

if the operator (A.13) above is surjective. Note that while the operator (A.13) itself depends on the
choices of p, gbli, and z,b;—', its surjectivity does not.

Example A.21. While we usually assume thaty, # y_, itis instructive to consider the case where
v, =y_ = yanduisa ‘trivial cylinder’; thatis, 7 o u is a linear function of s and does not depend
on t, while 77y o u does not depend on s and as a function of ¢ is a parameterization of y.

In this case, the operator D,, has the form 9, + J,V; where V is the connection on y*T(R X Y)
defined in Definition A.23 . Direct calculation shows that D, is injective with two-dimensional
cokernel. The cokernel is spanned by the images of 1,b;r and gb; under D,, (regarded as a differential
operator). One can choose 1,0{—' and 1,1)2i so that z/);r +3y; =0, and l,b;' + %, = R. Then the operator
(A.13) is surjective with a two-dimensional kernel consisting of triples (0, z, z) for z € C.

~J
In particular, the moduli space M (y,y) is a two-dimensional manifold cut out transversely,
consisting of compositions of u with automorphlsms of R x S. However, M”(y,7) is not cut out

transversely, because the R action on M (y,y) by translations of the target is not free. In particular
M (@y,y) = Mg(y, y) is one-dimensional, although its expected dimension is zero. (We usually
assume that y, # y_ in order to ensure that this R action is free.)

Remark A.22. In the special case when J does not depend on S, that is J = {J,} where J, = J,
and when u is an immersion, there is an alternate notion of regularity used in [28, Section 4].
In this case, let N denote the normal bundle to u in R X Y. Then deformations of u, regarded
as an immersed submanifold of R X Y, are equivalent to sections of N, and there is a ‘normal
deformation operator’

Dy : LP°(N) — LPO(N),
which measures the failure of these deformations to be J-holomorphic. We claim now that u is
regular as in Definition A.20 if Dy is surjective.
To see this, note that with respect to the direct sum decomposition

WTRXY)=TRXSHDN,

and the corresponding direct sum decompositions of spaces of sections, the linearized operator
D, in (A.9) can be written as a triangular block matrix

D )
D, =("T )
! <0 DN>
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Here Dy is the restriction of D, to Lf S(T(R x S1)), which maps to LP9(T(R x S1)). Similarly to
Example A.21, the operator Dy is injective with a two-dimensional cokernel. Thus, surjectivity of
Dy implies that D, has a two-dimensional cokernel, and this cokernel is covered by the images
of gbf and 1,0%F under D,, (regarded as a differential operator), so that (A.13) is surjective.

A3 | Orienting the moduli space
Let J = {J,},cs1 be a generic S'-family of A-compatible almost complex structures. We are now

ready to orient the moduli space MY (y,y_).

Definition A.23. Let J = {J,},cq1 be any S'-family of A1-compatible almost complex structures
(not necessarily generic). Lety : R/TZ — Y be a Reeb orbit, and let p € ¥ = im(y). We define an
orientation loop Lyps= (E, V) as follows.

First fix t, € R/TZ with y(t,) = p, and defineamap7 : S! = R/Z — Y by

y(@) = y(ty + T0).

* Define E = 7*T(R X Y). We have a direct sum decomposition
E=y¢®C, (A.15)

where we identify a + bi € C with ad, + bR € T(R X Y). Then E is a Hermitian vector bundle
over S! with the almost complex structure and metric on 5?@ determined by J; and dA.

* The linearized Reeb flow determines a connection VX on 7*£. With respect to the direct sum
decomposition (A.15), define V = VR @ V°, where V° denotes the trivial connection on S' x C.

Lemma A.24.

(a) The orientation loop L, , .y is weakly nondegenerate.
(b) If J and V' are two S'-families of A-compatible almost complex structures, then there is a
canonical bijection

O(Ey,p,j) =~ O(Ey,p,j/L
so we can denote this set of orientations by O, .

Proof.

(a) Sincewe are assuming that the Reeb orbit y is nondegenerate, the kernel of the operator A Lyps
is canonically identified with the C summand in (A.15).

(b) This holds because the set of S*-families J of A-compatible almost complex structures is con-
tractible, and a homotopy of such J defines a homotopy of the Fredholm operators used to
define the orientation set Oﬁym. O

Definition A.25. If y is a Reeb orbit and p € ¥, define

Oy(p) =0,,Q®Z
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Here, the right-hand side denotes the set of pairs (0,k) € O, , X Z modulo the equivalence
relation (—o, k) ~ (0, —k).

Observe that the assignment to p of O, (p) defines a local system over y, since a homotopy of
Fredholm operators induces a bijection on orientations.

Proof of Proposition 2.3. Assertion (a) is proved in [9, Section 5]. The conventions in [9] are slightly
different, but the argument given there is still valid here.

~J
To prove assertion (b), letu € M (y,,y_), and consider its equivalence class [u] € M (y,,y_).
From Definition A.23, we have orientation loops
L. =L

+ Ve (U),J*

We need to show that there is a canonical bijection between orientations of the tangent space
T[M]MJ()@, y_) and the orientation set O(L,) ® O(L_), and we need to check that this bijection
depends continuously on [u].

Define an orientation surface

C=RxSLUTRXY),(L,),(L)).

The operator D,, in (A.9), regarded as a differential operator, is an element of the set D(C). Note
here that we are implicitly trivializing T%'(R x S') using %(ds — idt), so that the T%! factor in
Definition A.3 is not needed in (A.9).

By Proposition A.16, there is a canonical bijection

O(L,) ® O(L_) =~ O(D,).

=J
By Proposition A.18, an orientation of D,, canonically determines an orientation of T,M (y,,7_).
(Here we use the canonical orientation of C @ C in the exact sequence (A.11).) The latter deter-

mines an orientation of T[u]ﬂj (¥4,7_) by the ‘R-direction first’ convention, where R acts on M
by

(r-u)s,t) =u(r+s,t). (A.16)

This in turn determines an orientation of T [M]Mj(y +7_), by the R-direction first conven-
tion again.

Finally, we need to prove that the orientation of T' [M]MJ]()/ +»7_) determined by an element
of O(L,) ® O(L_) depends continuously on [u]. As one varies [u], if the dimension of Ker(D,,)
does not jump, then the exact sequences used to define the orientation vary continuously, so the
orientation does not change. In the general case one uses a stabilization argument to arrange that
the dimensions of the kernels of the operators in question do not jump; cf. [30, Section 9.1]. [

We can now define the orientation convention in equation (1.8) in the definition of cylindrical
contact homology.
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Definition A.26. LetJ be a A-compatible almost complex structure on R X Y. Let o and 3 be
good Reeb orbits, so that the local systems O, and Op are trivial (and thus can be regarded as
Z-modules which are noncanonically isomorphic to Z). Assume that the moduli space M{(oc, 5]
is cut out transversely (and in particular is a discrete set). For each u € M{ (a, B), we define an
isomorphism of Z-modules

W : 0, — O (A17)

as follows.
Let J be the constant family of almost complex structures J, = J. By definition,

M (a,B) = Mj(a, B)/S,
where S' acts on M) by reparameterization. Our convention is that ¢ € S' = R/Z acts by

(o -u)(s, t) = u(s, t + @).

Transversality of Mfl is equivalent to transversality of MY, see Section 5.4. By Proposition 2.3,
when this transversality holds, the moduli space Mj(oc, B) has an orientation with values in
0, (9[3. The orientation of Mﬂ then induces an orientation of M{i by the ‘S'-direction first’
convention. When d = 1, the latter orientation simply assigns to each u € M{ a generator of
O, ® O, which is equivalent to an isomorphism (A.17).

A.4 | Properties of the moduli space orientations

Scaling. We now prove the following lemma which is needed in Section 3.5.

Lemma A.27. Letc > 0.

(a) Ify is a Reeb orbit of A, and if “y denotes the corresponding Reeb orbit of cA, then there is a
canonical isomorphism of local systems O, = O,,.
(b) With respect to the isomorphism in (a), the scaling diffeomorphism (3.7) is orientation preserving.

Proof.

(a) Let‘J be the family of cA-compatible almost complex structures in (3.7). It follows from Defi-
nition A.23 thatif p € ¥ = ¢y, then there is a canonical isomorphism L, py=Le, pecs-Thenby
Definition A.25, we obtain a canonical isomorphism O, (p) = O, (p), which by the reasoning
after Definition A.25 depends continuously on p.

(b) Let ¢ be the diffeomorphism of R X Y defined above (3.7). The diffeomorphism (3.7) lifts to a
diffeomorphism

~J ~ =
M 7)) — M Cryr) (A.18)

sending u — ¢ o u. We have a commutative diagram

u

IPWTRXY)  —  LS@T®RXY))

L29(($ 0 u) TR X V) = L28((¢ 0 1) T(R x Y).
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This induces isomorphisms Ker(D, ) ~ Ker(Dy,,,) and Coker(D, ) = Coker(Dy, ), and thus
a bijection O(D,) =~ O(Dy,,,). It follows from the definitions that this bijection respects
the canonical isomorphism in (a). On the other hand, these isomorphisms of kernels
and cokernels and the exact sequences from Proposition A.18 fit into a commutative
diagram

—~J (04,0-) (T4,T2)
0 —— Ker(D,) — T M (y;,y.) —— CHC—— Coker(D,) —— 0

L

°J 0,.0.) (t4.72)

= (
0 ——Ker(Dy,p)) —— Ty M (¥4, v2) — S cec —— Coker(Dy,,) — 0.

Here the second vertical arrow is the derivative of the diffeomorphism (A.18), and the third
vertical arrow is multiplication by c. It follows from this isomorphism of exact sequences
that the second vertical arrow is orientation preserving. Thus, the diffeomorphism (A.18)
is orientation preserving. After modding out by the two R actions, we conclude that the
diffeomorphism (3.7) is orientation preserving. O

Gluing and boundary signs. We now justify the signs that appear in Proposition 2.7. Continue to
make the assumptions from the beginning of Section A.3.

Proposition A.28. Lety_, ¥, and y_ be distinct Reeb orbits. Let d, and d_ be nonnegative integers
andletd =d, +d_. Let

[y ] [u_D) € My (74 70) X5 My (o, 7).
Then there is a neighborhood
UcM)7r-)
of ([u,.], [u_J), which has the structure of a smooth manifold with boundary, and a neighborhood
V C (=D M (74, 70) X5 M (o, 72) (A19)
of ([u,.], [u_]), with a canonical orientation preserving diffeomorphism
oU ~V.

Proof. Aside from the signs in (A.19), this follows from standard gluing arguments. So, we will

sketch one approach to the gluing and justify the signs.
J

—_—

To set the notation, regard u, as an element of M (y,,y,), and regard u_ as an element

~.J
of M (¥y,7_). To simplify notation, we will just consider the case where Ker(Du+) =0 and
Ker(D, ) = 0; the general case can be handled similarly. By Proposition A.18, we have short exact
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sequences
(@toh) @)
0—T, .A/l (y+,y0) — C,®C, = Coker(D,, ) — 0, (A.20)
o7) (t5.00)
0—T, M o, v— ) 2 Co®C_ — Coker(D, )— 0. (A.21)

Here C,, C,, and C_ are copies of C, which one should think of as being associated with y,,
Yo, and y_, respectively. Here and below, in the notation for the maps o, and so on, we use the
convention that where we previously indicated a Reeb orbit with + or —, now we indicate it +, 0,
or —.
—J

Step 1. We now consider how to glue u, and u_ to obtain elements of M (y,,y_). To start,
translate u, in the target up by R >> 0 in the R direction, and translate u_ in the target down by
R in the R direction. On u_, choose sections z,b1+ + 2+ + 1+ ’O, and gb; ¥ asin Section A.2 whose first
derivatives have order O(R~1). Likewise choose sections ¢1"°, ¥, 0 P, ,and ¥, onu_.Given
small complex numbers z, = a, +ib,, z, = ay + iby, and z_ = a_ + ib_, we can ‘preglue’ u,
and u_ as follows: We replace u, by the exponential of a, 7" + b, 3" + agp}* + byp;*, we
replace u_ by the exponential of a,i; O boy, O a_y,;"" +b_1p,, and then we patch using
appropriate cutoff functions. As in [30, Section 5], one can perturb the preglued curve to a curve
which solves the Cauchy-Riemann equation (2.1), up to an error in Coker(Du+) @ Coker(D,, ),
which we denote by 8(z,, z,, z_). We can package these errors for different choices of z_, z,, and
z_ into an ‘obstruction section’

8:N,®N,®N_ — Coker(Du+) @ Coker(D,, ).

Here, N, Ny, and N_ are small neighborhoods of the origin in C. As in [30, Lemma 6.3], the
obstruction section s is smooth; and as in [30, Section 10.5], its zero set is cut out transversely. The
gluing construction then defines a ‘gluing map’

—~J
G:87'0)— M (yy,7).

As in [30, Theorem 7.3], the gluing map is a local diffeomorphism. In particular, if u is in the
image of the gluing map, then we obtain a short exact sequence

= dG! %
0 — T My,.7y-) —C,BC,HC_ — Coker(Du+) @ Coker(D, ) — 0. (A.22)

Moreover, an analogue of [30, Lemma 10.5] shows that if we choose o, € O(y,) and o, €

O(y,), and use these to orient Coker(Du+) and Tuﬂj(y +»7_), then the exact sequence (A.22) is
orientation preserving in the sense of (A.2).

Step 2. The obstruction section can be approximated, in a sense to be specified below, by a
‘linearized section’

0! Ny @®N,®N_ — Coker(D,, )& Coker(D, )
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defined by
80(24,20,2_) = (T(24) + 77 (20), Ty (2) + T_(2)).

The zero set of 8 is also cut out transversely. More precisely, define

~J =
V= {(m,n_) €T, M (V4,70 ® Ty M (yo,7-) |05 (ny) = ag(n_)}-
Here the right-hand side is oriented as a level set of the linear map

AT Tu+ﬁ(7+’70)®Tu_ﬁj(70J’_) — Cy. (A.23)
This makes sense because we are assuming that J is generic so that the fiber product
M (y4,70) X%y My, 72)
is cut out transversely, which means that the linear map (A.23) is surjective. It also follows

from this surjectivity and the short exact sequences (A.20) and (A.21) that we have a short exact
sequence

(6f.08=05,00) Vs,
0—V — C,®C,®dC_ — Coker(D,) @ Coker(D_) — 0. (A.24)

Here of course, V3, is defined by the same formula as &, since §,, is linear. Moreover, the exact
sequence (A.24) is orientation preserving in the sense of (A.2).
One can argue as in [30, Corollary 8.6] that if R is sufficiently large, then 871(0) is C* close to

351(0). In particular, ifu € M (y,,y_) is in the image of the gluing map, then by comparing the
exact sequences (A.22) and (A.24), we obtain, up to homotopy, a canonical orientation-preserving
isomorphism

—~J
T,M (7 )= V. (A.25)

Step 3. We now use (A.25) to justify the signs in (A.19).

First note that in the exact sequence (A.20), the tangent vector to Mﬂ (7,4,7) corresponding to
the derivative of the R action (by translation of the domain) has o = A(y,) and o; = A(y,),
where A denotes the symplectic action (period) of a Reeb orbit. Thus, projection defines an
orientation preserving isomorphism

—~ —
T M (1, 70) = Reaf)™(0) C T, M (14, 70)- (A.26)

Likewise, we have an orientation preserving isomorphism

—~ ~J
T M (o 7) = Reay)H0) C T, M (7,7) (A27)
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Combining the above two isomorphisms, we obtain an orientation preserving isomorphism
Ty, M ® Tpy (M = (1) *(Rea} xReay)71(0,0) C T, MST, M. (A.28)
On the other hand, we can rewrite (A.25) as

Tu;ﬁ ~ ((Reoj —Reo;)x (Imo; —Im ag))—l(o, 0)cC Tu+3\:/i ®T, ;ﬁ. (A.29)

In this isomorphism, the tangent vector to Tuﬂ corresponding to the derivative of the R action
(by translation of the domain) has ag and o, close to A(y,). It follows that we have an orientation
preserving isomorphism

TjyM = (Reof X Reg; X (Img} —Ima;))'(0,0,0)C T, M®T, M. (A.30)
Comparing (A.28) with (A.30), we obtain an orientation preserving isomorphism

T M = (=) (Imof —Ima)7'(0) € T}, J M & T}, | M. (A.31)

In the isomorphism (A.31), the derivative of the R action (by translation of the target) on the

left-hand side corresponds to the direct sum of the derivative of the R action on both summands

on the right-hand side. On the other hand, when R > 0 is large, the direction pointing ‘out of the

boundary’ of the left-hand side corresponds to the derivative of the R action on the first summand
on the right-hand side, minus the derivative of the R action on the second summand. It follows

that there is a neighborhood U of ([u, ], [u_]) in ﬂj(y +»7—) and a neighborhood
V C—(ef —e;) 7 (0) € M (y4,70) X M (v, 7-) (A.32)

of ([u, ], [u_]) with a canonical orientation preserving diffeomorphism 6U ~ V. Here

o

P MU 70) — Yoo

ey M (Yo, 7-) — 7o
denote the evaluation maps. According to the convention from [29, Section 2.1] which we are using
to orient fiber products, the middle of (A.32) agrees with the right-hand side of (A.19). O
A.5 | Cobordism orientations

We now explain the orientations of the cobordism moduli spaces in Section 3.4.

Using the notation of Section 3.4, let ®'(y +»7_) denote the moduli space of mapsu : Rx S' —
X satisfying the conditions (3.2)-(3.3), but without modding out by R translation in the domain.
Thus,

Dy, )= (.7 )/R,

where R acts by translating the domain as in (A.16).
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Given u € ®(y +»7_), we have maps 7, : C — Coker(D,) as in (A.10). This definition still
make sense, where now sz—L and z/);—' are sections of u*TX, since u maps to R X Y 4 for s >> 0and
to R X Y_ for s << 0. In this situation, we have the following analogue of Proposition A.18, with
the same proof:

Proposition A.29. If | is generic, then ®'(y,,y_) is naturally a smooth manifold, and there is a
canonical exact sequence

(t4,7_

~ (04.00) )
0 — Ker(D,) — T,®’(y,,y.) — C&C -  Coker(D,) — 0. (A.33)
Given Proposition A.29, the argument at the end of Section A.3 shows that 5J(y —7-)
has a canonical orientation with values in e:"r@},+ ® e*O_. This then determines an ori-
entation of ®J(y,,y_), with values in the same local system, by the ‘R direction first’
convention.

‘We now have the following analogue of Proposition A.28.

Proposition A.30. With the notation and hypotheses of Lemma 3.13:
(a) let

(s [o]) € My (74 70) X @) (For 7).
then there is a neighborhood
UCS, 40y
of ([u,.], [ug]), which is naturally a smooth manifold with boundary, and a neighborhood
V C M (4 Y0) X5 ®5 (r0,7-) (A34)

of ([u, ], [ug]), with a canonical orientation preserving diffeomorphism 0U ~ V;
(b) let

([uol, [u_D) € @, (¥4, 70) %57 Mﬁ:(yo,y_),
then there is a neighborhood

—J
Uc (I)d0+d_(7+ay_)

of ([up], [u_]), which is naturally a smooth manifold with boundary, and a neighborhood
V C (=D (71, 70) Xgg My~ (0, 72) (A35)

of ([ug], [u_1), with a canonical orientation preserving diffeomorphism 0U ~ V.



1534 | HUTCHINGS AND NELSON

Proof. This follows the proof of Proposition A.28, with minor modifications. There are some sign
changes at the very end due to the fact that the cobordism moduli spaces ®' do not have R actions
by translation in the target. These sign changes work as follows.

—
(a) Up to (A.31), the proof follows the proof of Proposition A.28, with M (y..,¥,) replaced by

~J =J ~

M’ (74,70, and with M (y,,y_) replaced by ®’(y,, y_). The analogue of (A.31) here is

T @ (74, 7-) = ()" (Im oy —Im )7 (0) C Ty, | M (74, 70) © Ty, @ (7, 7-).  (A36)

In the isomorphism (A.36), the direction pointing ‘out of the boundary’ on the left-hand side
corresponds to the derivative of the R action on the first summand on the right-hand side. It

follows that there is a neighborhood U of ([u, ], [u,]) in Ei + do(y +»¥_) and a neighborhood

v c (D)% e —ed)H0) C Mj: 4 70) X (¥0,7-) (A.37)
of ([u,], [uy]) with a canonical orientation preserving diffeomorphism U ~ V. Here
e T My W re) — To
¢ @y (ov-) — 7o
denote the evaluation maps. According to the fiber product orientation convention from [29,

Section 2.1], this means that the middle of (A.37) agrees with the right-hand side of (A.34).
(b) In this case the analogue of (A.31) is

T ® 0y 7)) = (D% (Imo) — Imoy) ™ (0) € T, @ (7. 70) ® T (M- (0. 7-).  (A38)

In the isomorphism (A.38), the direction pointing ‘out of the boundary’ on the left-hand side cor-
responds to minus the derivative of the R action on the second summand on the right-hand side.
Because of this minus sign, and because the first summand on the right-hand side has dimension
d,, this results in an extra factor of (—1)% in (A.35) as compared with (A.34). O

We can now prove the following lemma which is needed in Section 3.6.

Lemma A.31. Under the identifications in Lemma A.27(a):

(a) the diffeomorphism (3.13) is orientation preserving;
(b) the diffeomorphism (3.14) is orientation preserving with respect to the orientation of y given by
the Reeb vector field.

Proof.

(a) The proof of Lemma A.27(b) shows that the diffeomorphism ¢ in Section 3.6 induces an
orientation preserving isomorphism

E)J]X eb e = ﬁj
Yl Vo) — M (7o)
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sending u — ¢ou. By our convention at the end of Section A.3, it follows that the
diffeomorphism (3.13) is orientation preserving.

(b) For a single Reeb orbit y of 1, composition with ¢ likewise gives an orientation preserving
diffeomorphism

By symplectic action considerations, the elements of the right-hand side consist of holomor-
phic maps

u:RxS' s Rxy

of degree d(y). We then obtain an orientation preserving diffeomorphism

=J ~ _
M (y,7) — RXY

sending u — u(0,0). By our convention at the end of Section A.3, it follows that the
diffeomorphism (3.14) is orientation preserving. O

A.6 | Family orientations

We now explain the orientations of the S'-equivariant moduli spaces defined in Section 4.1, and
we use the notation from that section.

Proof of Proposition 4.4.. Let x be a critical point of f : BS' — R and let y be a Reeb orbit. We
first define the local system O, ).

Recall from Proposition 2.3 that there is a canonical local system O, over y. Let @ denote the
pullback of this local system to 7~ 1(x) X ¥ via the projection

7l X)) X7 — 7.

We claim that the restriction of the local system O to each fiber of the S! action (4.4) on 71 (x) X
y is trivial. If the Reeb orbit y is good, then by Proposition 2.3(a), the local system O is trivial
over all of 771(x) x 7. If the Reeb orbit y is bad, then the local system O is nontrivial over each
circle {z} X 7, and trivial over each circle 7~!(x) x {p}. But for a bad Reeb orbit y, the covering
multiplicity d(y) € Z is even, so each orbit of the S' action (4.4) wraps an even number of times
around the ¥ direction, and the restriction of 0 to the orbit is still trivial.

It follows from the previous paragraph that O descends to a well-defined local system over
m, which we denote by O, ).

Assertion (a) in Proposition 4.4 now follows from the above discussion.

=3
To prove assertion (b), let M ((x,,y,),(x_,y_)) denote the quotient of the moduli space
M3 (x4, 7,), (x_,7_)) by the ! action (4.4). Thus,

My )Gy ) = M (a7 (7 /R,

where R acts by translation of the parameter s.
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~‘~
—

Let (n,u) € MS. We can then describe the tangent space T[(U’u)]MJ as follows. Let
MMorse(er, x_) denote the moduli space of parameterized flow lines of V' asymptotic to x, and
x_. Let MMose(z=1(x,), 7! (x_)) denote the moduli space of parameterized flow lines of V/
asymptotic to points in 7~ !(x, ) and 7~ !(x_). Thus,

MMorse(x+’ x_)= M’Morse(ﬂ—l(x_'_)’ ﬂ_l(x_))/sl'

It follows from equation (4.2) that MMorse(x +»X_) is identified with a complex linear subspace
of a projective space (minus the points x, and x_ when these are distinct) via the map sending
7 — 1(0). Thus, MMorse +»>X_) has a canonical complex orientation.

Let

W C T, MM (x,), w1 (x_))

be a lift of T m,;MMorse(x +»X_). The derivative of the parameterized Cauchy-Riemann equa-

tion (4.3) at (5, u) is described by an operator
weL SWTRXY))®CPHC — LPYW T(R X Y)). (A.39)

This operator is defined analogously to (A.13), with the domain extended by W to allow for 7 to
move in its moduli space of Morse flow lines. As in Proposition A.18, if {§ is generic, then for each

=3
(n, u) the operator (A.39) is surjective, which implies that the moduli space M ((x,,7,), (x_,7_))
is naturally a smooth manifold whose tangent space is the kernel of (A.39). There is then a
canonical exact sequence

(3

~3
0 — Ker(D,) — Ty M (x4, 74), (x_,y_)—W & C & C— Coker(D,) — 0. (A.40)

Here D, as in (A.9) is now the derivative of the parameterized Cauchy-Riemann equation (4.3)
with respect to deformations of u alone.
Since W has a canonical orientation as noted above, it follows that the exact sequence (A.40)

~

=)
determines an orientation of M with valuesin e 106,y ®eZ0:_y by the same argument

(o3

—_— =3 )
as used in Section A.3 to prove Proposition 2.3(b). We then orient MY = M /R using the ‘R-
direction first’ convention, and finally orient M3 = M3 using the ‘R-direction first’ convention

again. I

Analogously to Definition A.20, we formulate:

=3
Definition A.32. A pair (n,u) e M ((x,,y,),(x_,y_)), or its equivalence class in
M3 ((x + V4), (Xx_,¥_)), is regular if the operator (A.39) is surjective.

We can now prove the following lemma which is needed in Section 5.2. To prepare to state the
lemma, let x € Crit(f) and let z be a lift of x to ES'. Given a Reeb orbit y, define a diffeomorphism

Py 17— (x,7)
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by sending p — [(z, p)]. By the definitions of the local systems O, and O, ), the diffeomorphism
p, has a canonical lift" to an isomorphism

Py 1 O, — Oy (A.41)

Lemma A.33. Let 7 be the constant flow line of V from z to itself. Given , define J = {J,} by J, =
B¢ z- Suppose that J is generic in the sense of Proposition 2.2. Let y ..,y _ be distinct Reeb orbits. Then
the diffeomorphism

M7 — MB(Gey), (eyo) (A42)
sending [u] — [(n,u)] is orientation preserving with respect to (A.41).

Proof. We have a diffeomorphism

A ~ =3
M 0r) — M (). (y) (A.43)

sending u — [(n,u)]. Under the diffeomorphism (A.43), the exact sequences (A.11) and (A.40)
used to orient its two sides agree, since W here is a 0-dimensional vector space oriented positively.
Finally, the same convention is used to pass from the orientations of the two sides of (A.43) to the
orientations of the two sides of (A.42). O
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