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Abstract
In a previous paper, we showed that the original def-
inition of cylindrical contact homology, with rational
coefficients, is valid on a closed three-manifold with
a dynamically convex contact form. However, we did
not show that this cylindrical contact homology is
an invariant of the contact structure. In the present
paper, we define ‘nonequivariant contact homology’ and
‘𝑆1-equivariant contact homology’, both with integer
coefficients, for a contact form on a closed manifold
in any dimension with no contractible Reeb orbits. We
prove that these contact homologies depend only on
the contact structure. Our construction uses Morse–
Bott theory and is related to the positive 𝑆1-equivariant
symplectic homology of Bourgeois-Oancea. However,
instead of working with Hamiltonian Floer homology,
we work directly in contact geometry, using families
of almost complex structures. When cylindrical con-
tact homology can also be defined, it agrees with the
tensor product of the 𝑆1-equivariant contact homology
with ℚ. We also present examples showing that the
𝑆1-equivariant contact homology contains interesting
torsion information. In a subsequent paper, we will use
obstruction bundle gluing to extend the above story to
closed three-manifolds with dynamically convex con-
tact forms, which in particular will prove that their
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cylindrical contact homology has a lift to integer coef-
ficients which depends only on the contact structure.
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1 INTRODUCTION AND STATEMENT OF RESULTS

Let 𝑌 be a closed odd-dimensional manifold with a nondegenerate contact form 𝜆. This paper is
concernedwith the foundations of three kinds of contact homology of (𝑌, 𝜆), each of which, when
defined, depends only on the contact structure 𝜉 = Ker(𝜆):

(1) Cylindrical contact homology as defined by Eliashberg–Givental–Hofer [15], which we
denote by 𝐶𝐻𝐸𝐺𝐻∗ (𝑌, 𝜆; 𝐽). In the absence of certain contractible Reeb orbits, this is the homology
of a chain complex over ℚ which is generated by ‘good’ Reeb orbits. The differential, which we
denote by 𝜕𝐸𝐺𝐻 , counts 𝐽-holomorphic cylinders in ℝ × 𝑌, where 𝐽 is a generic ‘𝜆-compatible’
almost complex structure on ℝ × 𝑌.
In general, it is not possible to obtain sufficient transversality for 𝐽-holomorphic cylinders to

define this theory, even with generic 𝐽, so some abstract perturbations are needed. However, in
our previous paper [28], we showed that in the three-dimensional case, for dynamically con-
vex† contact forms, if 𝐽 is generic then the differential 𝜕𝐸𝐺𝐻 is in fact well-defined and satisfies
(𝜕𝐸𝐺𝐻)2 = 0. Thus, for dynamically convex contact forms in three dimensions, for generic 𝐽 we
have a well-defined homology 𝐶𝐻𝐸𝐺𝐻∗ (𝑌, 𝜆; 𝐽).
Continuing the work in [28], the next step is to show that this homology depends only on 𝜉

and not on 𝐽, and more generally to define maps on cylindrical contact homology induced by
appropriate symplectic cobordisms. A natural approach would be to define a cobordism map by
counting 𝐽-holomorphic cylinders in the cobordism for a generic ‘cobordism-compatible’ almost
complex structure 𝐽. However, even for cobordisms between dynamically convex contact forms
on 𝑆3, sometimes there does not exist 𝐽 satisfying sufficient transversality; see [35, Example 1.26]
for an example arising from an inclusion of four-dimensional ellipsoids.
Instead, we will bring in two new ingredients: Morse–Bott theory, and obstruction bundle glu-

ing. The present paper explains the Morse–Bott part, which suffices to prove invariance in the
case when 𝑌 is three-dimensional and 𝜆 is hypertight, meaning that 𝜆 has no contractible Reeb
orbits. That is, if 𝜆′ is another hypertight contact form on 𝑌 with Ker(𝜆) = Ker(𝜆′), and if 𝐽′ is a
generic 𝜆′-compatible almost complex structure, then there is a canonical isomorphism‡

𝐶𝐻𝐸𝐺𝐻∗ (𝑌, 𝜆; 𝐽) = 𝐶𝐻𝐸𝐺𝐻∗ (𝑌, 𝜆′; 𝐽′). (1.1)

In fact, the cylindrical contact homology 𝐶𝐻𝐸𝐺𝐻∗ has an integral lift which is also an invari-
ant of 𝜉; see Equation (1.3). In the sequel (forthcoming paper by Hutchings and Nelson),
we will use obstruction bundle gluing to extend this result (the existence of an invariant

†A nondegenerate contact form 𝜆 on a three-manifold 𝑌 is called dynamically convex if there are no contractible Reeb
orbits, or the following two conditions hold: (1) 𝑐1(𝜉) vanishes on 𝜋2(𝑌), so that each contractible Reeb orbit 𝛾 has a
well-defined Conley–Zehnder index CZ(𝛾) ∈ ℤ; and (2) each contractible Reeb orbit 𝛾 has CZ(𝛾) ⩾ 3. In [28], we made
the additional hypothesis that a contractible Reeb orbit 𝛾 has CZ(𝛾) = 3 only if it is embedded; this assumption can be
dropped by Cristofaro-Gardiner, Hutchings, and Zhang in a forthcoming paper.
‡ In this paper, we denote canonical isomorphisms by an equals sign.
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integral lift of cylindrical homology) from the hypertight case to the dynamically convex case in
three dimensions.
(2) Nonequivariant contact homology, which we denote by 𝑁𝐶𝐻∗(𝑌, 𝜆; 𝕁). This theory, which

is defined over ℤ, is a stepping stone to proving invariance of the cylindrical contact homol-
ogy 𝐶𝐻𝐸𝐺𝐻∗ , and it has interest in its own right. In this paper we define nonequivariant contact
homology𝑁𝐶𝐻∗ for closedmanifolds𝑌 of arbitrary odd dimension, assuming that 𝜆 is hypertight.
The idea, combining ingredients from [6, 7, 11], is to count 𝕁-holomorphic cylinders in ℝ × 𝑌

between Reeb orbits, where 𝕁 is an almost complex structure onℝ × 𝑌 which now depends on the
𝑆1 coordinate on the domain. Breaking the 𝑆1-symmetry this way eliminates the transversality
problems in defining 𝜕𝐸𝐺𝐻 , and gives us transverse moduli spaces of 𝕁-holomorphic cylinders
for generic 𝜆-compatible 𝕁. However, the gluing theory to prove that (𝜕𝐸𝐺𝐻)2 = 0 does not carry
over to this situation to give a chain complex with one generator for each (good) Reeb orbit; see
Remark 5.4. To define a chain complex in this situation, we need two generators for each (good
or bad) Reeb orbit 𝛼, which we denote by �𝛼 and 𝛼̂. The differential counts ‘Morse–Bott cascades’
built out of 𝕁-holomorphic cylinders, using the algebraic formalism in [29]. We then obtain a
well-defined homology𝑁𝐶𝐻∗(𝑌, 𝜆; 𝕁), whichwe call ‘nonequivariant contact homology’. We also
prove that if 𝜆′ is another nondegenerate hypertight contact form on𝑌withKer(𝜆) = Ker(𝜆′), and
if 𝕁′ is a generic 𝑆1-family of 𝜆′-compatible almost complex structures, then there is a canonical
isomorphism

𝑁𝐶𝐻∗(𝑌, 𝜆; 𝕁) = 𝑁𝐶𝐻∗(𝑌, 𝜆
′; 𝕁′).

(3) 𝑆1-equivariant contact homology, which we denote by 𝐶𝐻𝑆1∗ (𝑌, 𝜆;𝔍). This homology is also
defined over ℤ, and to define it we again assume that 𝑌 is a closed manifold of arbitrary odd
dimension and 𝜆 is hypertight. Equivariant contact homology is a ‘family’ version of nonequivari-
ant contact homology, which is defined using a larger family 𝔍 of 𝜆-compatible almost complex
structures on ℝ × 𝑌, following ideas of [12, 39], adapted to the contact setting. Roughly speaking,
𝔍 is a 𝐵𝑆1-family of 𝑆1-families of almost complex structures 𝕁. More precisely, 𝔍 is a generic
𝑆1-equivariant family of almost complex structures on ℝ × 𝑌 parameterized by 𝑆1 × 𝐸𝑆1.
The 𝑆1-equivariant contact homology is the homology of a chain complex whose generators

have the form �𝛼 ⊗𝑈𝑘 and 𝛼̂ ⊗ 𝑈𝑘, where 𝑘 is a nonnegative integer,𝑈 is a formal variable, and 𝛼
is a Reeb orbit. Here 𝑈𝑘 corresponds to the index 2𝑘 critical point of a perfect Morse function on
𝐵𝑆1. The differential counts holomorphic cylinders in ℝ × 𝑌 which are ‘coupled’ to Morse flow
lines on 𝐵𝑆1. We denote the resulting homology by 𝐶𝐻𝑆1∗ (𝑌, 𝜆;𝔍). We prove that if 𝜆

′ is another
hypertight contact form on𝑌 withKer(𝜆) = Ker(𝜆′), and if𝔍′ is a generic family of 𝜆′-compatible
almost complex structures, then there is a canonical isomorphism

𝐶𝐻𝑆
1

∗ (𝑌, 𝜆;𝔍) = 𝐶𝐻
𝑆1

∗ (𝑌, 𝜆
′; 𝔍′). (1.2)

Returning to the original goal, we show that if 𝜆 is hypertight, if 𝐽 is a 𝜆-compatible almost com-
plex structure on ℝ × 𝑌 satisfying sufficient transversality for 𝐽-holomorphic cylinders to define
cylindrical contact homology (which can always be achieved in the three-dimensional case), and
if we set𝔍 to be the constant family given by 𝐽, then there is a canonical isomorphism

𝐶𝐻𝑆
1

∗ (𝑌, 𝜆;𝔍) ⊗ ℚ = 𝐶𝐻𝐸𝐺𝐻∗ (𝑌, 𝜆; 𝐽). (1.3)
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Combining this with the topological invariance of equivariant contact homology (1.2), we obtain
the desired topological invariance of cylindrical contact homology (1.1) in the hypertight case.
Although hypertight contact forms are somewhat special, one application of the present paper

is to give a rigorous definition of the ‘local contact homology’ from [25] of a degenerate Reeb orbit;
see Sections 1.6 and 6.2. One can also obtainmany examples of hypertight contact forms from taut
foliations on three-manifolds [13, 42].
The nonequivariant and 𝑆1-equivariant contact homology described above will be extended

to the dynamically convex case in three dimensions in the forthcoming paper by Hutchings
and Nelson.

1.1 Contact preliminaries

To explain the above story in more detail, we first recall some basic definitions. Let 𝑌 be a
closed odd-dimensional manifold with a nondegenerate contact form 𝜆. Let 𝜉 = Ker(𝜆) denote
the associated contact structure, and let 𝑅 denote the Reeb vector field determined by 𝜆.
AReeb orbit is amap 𝛾 ∶ ℝ∕𝑇ℤ → 𝑌, for some𝑇 > 0, such that 𝛾′(𝑡) = 𝑅(𝛾(𝑡)).We consider two

Reeb orbits to be equivalent if they differ by a translation of the domain. We do not assume that 𝛾
is an embedding; every Reeb orbit is a 𝑑-fold cover of an embedded Reeb orbit for some positive
integer 𝑑. For a Reeb orbit as above, the linearized Reeb flow for time 𝑇 defines a symplectic linear
map

𝑃𝛾 ∶
(
𝜉𝛾(0), 𝑑𝜆

)
→
(
𝜉𝛾(0), 𝑑𝜆

)
. (1.4)

The Reeb orbit 𝛾 is nondegenerate if 𝑃𝛾 does not have 1 as an eigenvalue. The contact form 𝜆 is
callednondegenerate if all Reeb orbits are nondegenerate; generic contact formshave this property.

Definition 1.1. Analmost complex structure 𝐽 onℝ × 𝑌 is called 𝜆-compatible if 𝐽(𝜕𝑟) = 𝑅, where
𝑟 denotes theℝ coordinate; 𝐽 sends 𝜉 = Ker(𝜆) to itself, compatiblywith the linear symplectic form
𝑑𝜆 on 𝜉; and 𝐽 is invariant under translation of the ℝ factor on ℝ × 𝑌.

Fix a 𝜆-compatible almost complex structure 𝐽, and let 𝛾+ and 𝛾− be Reeb orbits. We consider
maps 𝑢 ∶ ℝ × 𝑆1 → ℝ × 𝑌 such that

𝜕𝑠𝑢 + 𝐽𝜕𝑡𝑢 = 0, (1.5)

lim𝑠→±∞ 𝜋ℝ(𝑢(𝑠, 𝑡)) = ±∞, and lim𝑠→±∞ 𝜋𝑌(𝑢(𝑠, ⋅)) is a parameterization of 𝛾±. Here 𝜋ℝ and 𝜋𝑌
denote the projections fromℝ × 𝑌 toℝ and𝑌, respectively.We declare two suchmaps to be equiv-
alent if they differ by translation of theℝ and 𝑆1 coordinates on the domainℝ × 𝑆1, andwe denote
the set of equivalence classes by ̃𝐽(𝛾+, 𝛾−).
Given 𝑢 as above, we define its Fredholm index by

ind(𝑢) = CZ𝜏(𝛾+) − CZ𝜏(𝛾−) + 2𝑐1(𝑢
∗𝜉, 𝜏). (1.6)

Here 𝜏 is a symplectic trivialization of 𝛾∗+𝜉 and 𝛾
∗
−𝜉, while CZ𝜏(𝛾±) ∈ ℤ is the Conley–Zehnder

index of 𝛾± with respect to 𝜏, and 𝑐1(𝑢∗𝜉, 𝜏) denotes the relative first Chern class of 𝑢∗𝜉 with
respect to 𝜏, which vanishes if and only if 𝜏 extends to a trivialization of 𝑢∗𝜉. If 𝐽 is generic and
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𝑢 is somewhere injective, then ̃𝐽(𝛾+, 𝛾−) is a manifold near 𝑢 of dimension ind(𝑢). This is a
special case of a more general result for holomorphic curves that are not necessarily cylinders
(where the index formula includes an additional Euler characteristic term) which is proved in
[14] and explained in more detail in [41, Theorems 5.4 and 8.1].
Note that ℝ acts on ̃𝐽(𝛾+, 𝛾−) by translation of the ℝ factor in the target ℝ × 𝑌. We define

𝐽(𝛾+, 𝛾−) = ̃𝐽(𝛾+, 𝛾−)∕ℝ. (1.7)

Let𝐽
𝑑
(𝛾+, 𝛾−) denote the set of 𝑢 ∈𝐽(𝛾+, 𝛾−) with Fredholm index ind(𝑢) = 𝑑.

Recall that if 𝛾 is a Reeb orbit and 𝜏 is a trivialization of 𝛾∗𝜉, then the parity of the Conley–
Zehnder index CZ𝜏(𝛾) does not depend on 𝜏. Thus, every Reeb orbit 𝛾 has a well-defined mod 2
Conley–Zehnder indexCZ(𝛾) ∈ ℤ∕2. A Reeb orbit 𝛾 is called bad if it is a (necessarily even degree)
multiple cover of a Reeb orbit 𝛾′ such that

CZ(𝛾) ≠ CZ(𝛾′) ∈ ℤ∕2.
Otherwise, 𝛾 is called good.

1.2 Cylindrical contact homology

We now review what we will need to know about the cylindrical contact homology
𝐶𝐻𝐸𝐺𝐻∗ (𝑌, 𝜆; 𝐽). The original definition is due to Eliashberg–Givental–Hofer [15]; we are using
notation† from [28].
Assume that 𝜆 is nondegenerate and hypertight. Let 𝐽 be a 𝜆-compatible almost complex struc-

ture on ℝ × 𝑌. Assuming that 𝐽 satisfies certain transversality conditions (to be specified below),
we define a chain complex 𝐶𝐶𝐸𝐺𝐻∗ (𝑌, 𝜆; 𝐽) over ℚ as follows.
As a module, 𝐶𝐶𝐸𝐺𝐻∗ (𝑌, 𝜆; 𝐽) is noncanonically isomorphic to the vector space over ℚ gener-

ated by good Reeb orbits; an isomorphism is fixed by making certain orientation choices. More
precisely, for each good Reeb orbit 𝛾, the theory of coherent orientations as in [9, 16] can be
used to define a ℤ-module 𝛾 which is noncanonically isomorphic to ℤ; see Proposition 2.3 and
Section A.3. We then define

𝐶𝐶𝐸𝐺𝐻∗ (𝑌, 𝜆; 𝐽) =
⨁
𝛾 good

𝛾 ⊗ℤ ℚ.

Choosing a generator of 𝛾 for each good Reeb orbit 𝛾 specifies an isomorphism
𝐶𝐶𝐸𝐺𝐻∗ (𝑌, 𝜆; 𝐽) ≃ ℚ{good Reeb orbits}.

This chain complex has a canonical ℤ∕2-grading determined by the mod 2 Conley–Zehnder
index‡. In some cases, the grading can be refined; see Section 1.6.

†A notational difference is that in [28], we denoted cylindrical contact homology by 𝐶𝐻ℚ(𝑌, 𝜆, 𝐽).
‡ It is common in the literature to instead define the grading on cylindrical contact homology to be the Conley–Zehnder
index plus 1 − 𝑛, where dim(𝑌) = 2𝑛 − 1.
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To define the differential, we first define an operator

𝛿 ∶ 𝐶𝐶𝐸𝐺𝐻∗ (𝑌, 𝜆; 𝐽)⟶ 𝐶𝐶𝐸𝐺𝐻∗−1 (𝑌, 𝜆; 𝐽)

as follows: If 𝛼 is a good Reeb orbit, then

𝛿𝛼 =
∑
𝛽

∑
𝑢∈𝐽

1
(𝛼,𝛽)

𝜖(𝑢)

𝑑(𝑢)
𝛽, (1.8)

where the sum is over good Reeb orbits 𝛽. Here 𝜖(𝑢) ∈ {±1} is a sign† associated to 𝑢; our sign
convention is spelled out in Definition A.26. Also, 𝑑(𝑢) ∈ ℤ>0 is the covering multiplicity of 𝑢,
which is 1 if and only if 𝑢 is somewhere injective. The definition (1.8) makes sense provided that
all moduli spaces𝐽

𝑑
(𝛼, 𝛽) with Fredholm index 𝑑 ⩽ 1 are cut out transversely‡.

Next we define an operator

𝜅 ∶ 𝐶𝐶𝐸𝐺𝐻∗ (𝑌, 𝜆; 𝐽)⟶ 𝐶𝐶𝐸𝐺𝐻∗ (𝑌, 𝜆; 𝐽)

by

𝜅(𝛼) = 𝑑(𝛼)𝛼.

If we further assume suitable transversality for the moduli spaces𝐽
2
(𝛼, 𝛽), then counting their

ends leads to the equation

𝛿𝜅𝛿 = 0. (1.9)

This was proved in the three-dimensional case in [28], and we will recover it in arbitrary odd
dimensions from the Morse–Bott theory below; see Corollary 5.3. Equation (1.9) implies that

𝜕𝐸𝐺𝐻 ∶= 𝛿𝜅 (1.10)

is a differential on 𝐶𝐶𝐸𝐺𝐻∗ (𝑌, 𝜆; 𝐽).

Definition 1.2. If 𝜆 is hypertight and 𝐽 is admissible (see Definition 5.1; this is a certain transver-
sality hypothesis on the moduli spaces 𝐽

𝑑
(𝛼, 𝛽) for 𝑑 ⩽ 2), we define the cylindrical contact

homology 𝐶𝐻𝐸𝐺𝐻∗ (𝑌, 𝜆; 𝐽) to be the homology of the chain complex (𝐶𝐶𝐸𝐺𝐻∗ (𝑌, 𝜆; 𝐽), 𝜕𝐸𝐺𝐻).

Remark 1.3. It is also possible to take the differential to be 𝜅𝛿 instead of 𝛿𝜅. In fact, both of these
differentials arise naturally in the Morse–Bott story; see equation (1.14). The operator 𝜅 defines
an isomorphism between these two chain complexes over ℚ, because (𝜅𝛿)𝜅 = 𝜅(𝛿𝜅). While both
of these differentials are actually defined over ℤ, we do not expect the homologies over ℤ to be
isomorphic to each other or invariant in the sense of (1.1).

†More precisely, 𝜖(𝑢) is an element of {±1} after generators of𝛼 and𝛽 have been chosen.Withoutmaking such choices,
𝜖(𝑢) is an isomorphism 𝛼 ≃ 𝛽 .
‡ In particular, then all moduli spaces 𝐽

𝑑
(𝛼, 𝛽) with 𝛼 ≠ 𝛽 and 𝑑 ⩽ 0 are empty, which under our hypertightness

assumption guarantees that the moduli spaces𝐽
1
(𝛼, 𝛽) are compact, so that we obtain finite counts.
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In [28], we showed that in the three-dimensional case, the transversality for 𝐽-holomorphic
cylinders needed to define 𝐶𝐻𝐸𝐺𝐻∗ (𝑌, 𝜆; 𝐽) can be achieved by choosing 𝐽 generically; see also
Section 5.4. However, this is impossible in most higher dimensional cases. The difficulty is that
there may exist multiply covered 𝐽-holomorphic cylinders with negative Fredholm index, even
when 𝐽 is generic.

1.3 Nonequivariant contact homology

As suggested in [6], one can fix the transversality problems for holomorphic cylinders using a
domain-dependent almost complex structure. Breaking the 𝑆1 symmetry naturally leads one to a
‘Morse–Bott’ version of the chain complex. The homology of this chain complex is not the cylin-
drical contact homology described in the previous section, but rather a ‘non-equivariant’ version
of it, which we define in Sections 2 and 3.
To introduce this, let 𝑌 be a closed odd-dimensional manifold, and let 𝜆 be a nondegenerate

hypertight contact form on 𝑌. Let 𝕁 = {𝐽𝑡} be a family of 𝜆-compatible almost complex structures
on ℝ × 𝑌 parameterized by 𝑡 ∈ 𝑆1. If 𝛾+ and 𝛾− are Reeb orbits, we consider maps 𝑢 ∶ ℝ × 𝑆1 →
ℝ × 𝑌 such that

𝜕𝑠𝑢 + 𝐽𝑡𝜕𝑡𝑢 = 0, (1.11)

lim𝑠→±∞ 𝜋ℝ(𝑢(𝑠, 𝑡)) = ±∞, and lim𝑠→±∞ 𝜋𝑌(𝑢(𝑠, ⋅)) is a parameterization of 𝛾±. We declare two
such maps to be equivalent if they differ by translation of the ℝ coordinate on the domain ℝ × 𝑆1,
andwe denote the set of equivalence classes by ̃𝕁(𝛾+, 𝛾−). Note that for solutions to (1.11), unlike
(1.5), we can no longer mod out by rotation of the 𝑆1 coordinate on the domain.
Given 𝑢 as above, let ̃𝕁

𝑢(𝛾+, 𝛾−) denote the component of ̃𝕁(𝛾+, 𝛾−) containing 𝑢. If 𝕁 is
generic, then this is a smooth manifold of dimension

dim
(̃𝕁

𝑢(𝛾+, 𝛾−)
)
= CZ𝜏(𝛾+) − CZ𝜏(𝛾−) + 2𝑐1(𝑢

∗𝜉, 𝜏) + 1.

The right-hand side here is one greater than the right-hand side of (1.6), because we are no longer
modding out by an 𝑆1 symmetry.
As before, ℝ acts on ̃𝕁(𝛾+, 𝛾−) by translation of the ℝ factor in the target ℝ × 𝑌, and we

let 𝕁(𝛾+, 𝛾−) denote the quotient. Below, if 𝛾+ ≠ 𝛾−, and if 𝑑 is a nonnegative integer, let
𝕁

𝑑
(𝛾+, 𝛾−) denote the union of the 𝑑-dimensional components of𝕁(𝛾+, 𝛾−).
We now also have well-defined smooth evaluation maps

𝑒± ∶𝕁(𝛾+, 𝛾−)⟶ 𝛾±,

𝑢⟼ lim
𝑠→±∞

𝜋𝑌(𝑢(𝑠, 0)).

Here 𝛾 denotes the image of the Reeb orbit 𝛾 in 𝑌.
The moduli spaces𝕁

𝑑
(𝛾+, 𝛾−), together with the evaluation maps 𝑒± (and some orientations

and compactifications), constitute what we call† a ‘Morse–Bott system’ in [29]. As explained in

† To be more precise, one could call this an ‘𝑆1-Morse–Bott system’, as here the analogues of ‘critical submanifolds’
are circles.
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[29], out of these data we can naturally construct a ‘cascade’ chain complex (𝑁𝐶𝐶∗(𝑌, 𝜆), 𝜕𝕁� )
as follows.
We define𝑁𝐶𝐶∗(𝑌, 𝜆) to be the freeℤ-module with two generators �𝛼 and 𝛼̂ for each Reeb orbit

𝛼. This module has a canonical ℤ∕2-grading, where the grading of �𝛼 is CZ(𝛼), and the grading of
𝛼̂ is CZ(𝛼) + 1.
To define the differential, we generically choose a point 𝑝𝛼 ∈ 𝛼 for each Reeb orbit 𝛼. If 𝛼 ≠

𝛽, then the differential coefficient ⟨𝜕𝕁
�
𝛼̂, �𝛽⟩ is a signed count of tuples (𝑢1, … , 𝑢𝑘), where there

are distinct Reeb orbits 𝛼 = 𝛾0, 𝛾1, … , 𝛾𝑘 = 𝛽 such that 𝑢𝑖 ∈𝕁
0
(𝛾𝑖−1, 𝛾𝑖), and for 1 < 𝑖 < 𝑘, the

points 𝑝𝛾𝑖 , 𝑒−(𝑢𝑖), and 𝑒+(𝑢𝑖+1) are cyclically ordered on 𝛾𝑖 with respect to the orientation given
by the Reeb vector field. If we replace 𝛼̂ by �𝛼, then we add the constraint that 𝑒+(𝑢1) = 𝑝𝛼, and
we increase the dimension of 𝑢1’s moduli space by 1. Likewise, if we replace �𝛽 by 𝛽, then we add
the constraint that 𝑒−(𝑢𝑘) = 𝑝𝛽 , and we increase the dimension of 𝑢𝑘 ’s moduli space by 1. When
𝛼 = 𝛽, all differential coefficients are defined to be zero, except that

⟨𝜕𝕁
�
𝛼̂, �𝛼⟩ = −2 (1.12)

when 𝛼 is a bad Reeb orbit.
Somemotivation for the above definition comes from finite-dimensional Morse–Bott theory. A

Morse–Bott function on a finite-dimensional manifold can be perturbed using a Morse function
𝑓𝑆 on each critical submanifold 𝑆. Gradient flow lines after perturbation correspond to ‘cas-
cades’, which start and end at critical points of the perturbing Morse functions 𝑓𝑆 , and which
are alternating sequences of downward gradient flow lines of the Morse–Bott function and down-
ward gradient trajectories of the perturbing Morse functions 𝑓𝑆; see [2, 5, 18]. In the situation of
nonequivariant contact homology, there is no direct analogue of perturbing to a Morse function.
However, the above differential still counts an analogue of cascades, in which the simple Reeb
orbits 𝛾 play the role of critical submanifolds. One can imagine choosing for each 𝛾 a perturbing
Morse function 𝑓𝛾 on 𝛾 which has two critical points which are very close to 𝑝𝛾, such that the
downward gradient flow away from 𝑝𝛾 moves in the direction of the Reeb vector field. One can
then think of the generators 𝛾 and �𝛾 as representing the maximum andminimum, respectively, of
the perturbing Morse function 𝑓𝛾. The cyclic ordering condition in the previous paragraph corre-
sponds to the fact that the downward gradient trajectories of 𝑓𝛾 move in the direction of the Reeb
vector field.
Formal arguments in [29] show that (𝜕𝕁

�
)2 = 0, and that the homology does not depend on the

choice of base points𝑝𝛼. This homology is the nonequivariant contact homology,whichwe denote
by 𝑁𝐶𝐻∗(𝑌, 𝜆; 𝕁). It is invariant in the following sense:

Theorem 1.4. Let 𝑌 be a closed manifold, and let 𝜆 and 𝜆′ be nondegenerate hypertight contact
forms on 𝑌 with Ker(𝜆) = Ker(𝜆′). Let 𝕁 be a generic 𝑆1-family of 𝜆-compatible almost complex
structures, and let 𝕁′ be a generic 𝑆1-family of 𝜆′-compatible almost complex structures. Then there
is a canonical isomorphism

𝑁𝐶𝐻∗(𝑌, 𝜆; 𝕁) = 𝑁𝐶𝐻∗(𝑌, 𝜆
′; 𝕁′).

In particular, if 𝜉 is a contact structure on 𝑌 admitting a nondegenerate† hypertight contact
form, then we have a well-defined nonequivariant contact homology 𝑁𝐶𝐻∗(𝑌, 𝜉).

† In fact one can remove the nondegeneracy assumption here; see Section 1.6.
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Remark 1.5. Our Morse–Bott chain complex (𝑁𝐶𝐶∗(𝑌, 𝜆), 𝜕𝕁� ) is a contact analogue of the Floer
theory for autonomous Hamiltonians studied in [11]. In that paper, the idea was to perturb the
autonomous Hamiltonian to a nondegenerate one, and to understand the Floer chain complex
of the nondegenerate perturbation in Morse–Bott terms. In our situation, by contrast, we need to
define the homology and prove its invariance entirely in the Morse–Bott setting.

1.4 𝑺𝟏-equivariant contact homology

In Section 4, we carry out a variant of the above construction defined using a larger family
of almost complex structures on ℝ × 𝑌, namely, an 𝑆1-equivariant 𝑆1 × 𝐸𝑆1 family of almost
complex structures𝔍.
To define the chain complex, we fix a ‘perfect Morse function’ 𝑓 on 𝐵𝑆1; see Section 4.1 for

details. Let 𝑓 denote its pullback to 𝐸𝑆1, and if 𝑥 is a critical point of 𝑓, let 𝜋−1(𝑥) denote its
inverse image in 𝐸𝑆1. Given critical points 𝑥± of 𝑓, and given Reeb orbits 𝛾±, we consider pairs
(𝜂, 𝑢), where 𝜂 ∶ ℝ → 𝐸𝑆1 is an upward gradient flow line of 𝑓 asymptotic to points in 𝜋−1(𝑥±),
and 𝑢 ∶ ℝ × 𝑆1 → ℝ × 𝑌 satisfies the equation

𝜕𝑠𝑢 + 𝔍𝑡,𝜂(𝑠)𝜕𝑡𝑢 = 0,

with the asymptotic conditions that lim𝑠→±∞ 𝜋ℝ𝑢(𝑠, ⋅) = ±∞, and lim𝑠→±∞ 𝜋𝑌𝑢(𝑠, ⋅) is a param-
eterization of a Reeb orbit 𝛾±. As before, there is an ℝ action on the set of solutions by translating
the ℝ coordinate in the domains of 𝜂 and 𝑢 simultaneously, and another ℝ action by translating
the ℝ coordinate on the target ℝ × 𝑌 of 𝑢. There is also an 𝑆1 action which simultaneously trans-
lates the 𝑆1 factor on the domain of 𝑢 and acts on 𝐸𝑆1 in the target of 𝜂. We denote the quotient of
the solution set by these actions by𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−)). As before, there are evaluation maps,
which now have the form

𝑒± ∶𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−))⟶
(
𝜋−1(𝑥±) × 𝛾±

)
∕𝑆1.

These moduli spaces and evaluation maps satisfy the axioms of a Morse–Bott system, so we
can again invoke the formalism of [29] to obtain a chain complex (𝐶𝐶𝑆1∗ (𝑌, 𝜆), 𝜕

𝑆1,𝔍). This chain
complex then has two generators for each pair (𝑥, 𝛼), where 𝑥 is a critical point of 𝑓 and 𝛼 is a
Reeb orbit. We denote these two generators by �𝛼 ⊗𝑈𝑘 and 𝛼̂ ⊗ 𝑈𝑘, where 2𝑘 is the Morse index
of 𝑥. More concisely, we have a canonical identification of ℤ-modules

𝐶𝐶𝑆
1

∗ (𝑌, 𝜆) = 𝑁𝐶𝐶∗(𝑌, 𝜆) ⊗ ℤ[𝑈].

One can think of the formal variable 𝑈 as having degree 2, although for now this chain complex
is only ℤ∕2-graded, where �𝛼 ⊗𝑈𝑘 has grading CZ(𝛼) and 𝛼̂ ⊗ 𝑈𝑘 has grading CZ(𝛼) + 1.
The homology of this chain complex is the 𝑆1-equivariant contact homology, which we denote

by 𝐶𝐻𝑆1∗ (𝑌, 𝜆;𝔍). It is invariant in the following sense, analogously to Theorem 1.4:

Theorem 1.6. Let 𝑌 be a closed manifold, and 𝜆 and 𝜆′ be nondegenerate hypertight contact forms
on 𝑌 with Ker(𝜆) = Ker(𝜆′). Let 𝔍 be a generic 𝑆1-equivariant 𝑆1 × 𝐸𝑆1-family of 𝜆-compatible
almost complex structures, and let𝔍′ be a generic 𝑆1-equivariant 𝑆1 × 𝐸𝑆1-family of 𝜆′-compatible
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almost complex structures. Then there is a canonical isomorphism

𝐶𝐻𝑆
1

∗ (𝑌, 𝜆;𝔍) = 𝐶𝐻
𝑆1

∗ (𝑌, 𝜆
′; 𝔍′).

In particular, if 𝜉 is a contact structure admitting a hypertight contact form, then we have a
well-defined 𝑆1-equivariant contact homology 𝐶𝐻𝑆1∗ (𝑌, 𝜉).

Remark 1.7. The 𝑆1-equivariant contact homology defined above is analogous to the 𝑆1-
equivariant symplectic homology introduced in [12]. The difference is that we are using contact
forms instead of Hamiltonians, and we are working in a Morse–Bott setting.

Remark 1.8. The nonequivariant contact homology 𝑁𝐶𝐻∗(𝑌, 𝜆; 𝕁) is the homology of the sub-
complex of 𝐶𝐶𝑆1∗ (𝑌, 𝜆;𝔍) in which the exponent of 𝑈 is zero. Here 𝕁 is obtained by restricting 𝔍
to the part of 𝑆1 × 𝐸𝑆1 corresponding to the index 0 critical point of 𝑓. If 𝔍 is chosen appropri-
ately, then the differential on 𝐶𝐶𝑆1∗ will commute with ‘multiplication by 𝑈−1’, namely the map
sending 𝑈𝑘 ↦ 𝑈𝑘−1 for 𝑘 > 0, and sending 1 ↦ 0; see [23, Remark 5.15] for explanation in the
similar situation of 𝑆1-equivariant symplectic homology. It follows that, analogously to [12], there
is a long exact sequence

⋯→ 𝑁𝐶𝐻∗ → 𝐶𝐻𝑆
1

∗ → 𝐶𝐻𝑆
1

∗ → 𝑁𝐶𝐻∗−1 → ⋯

where the middle map is induced by multiplication by 𝑈−1 on the chain complex.

1.5 The autonomous case

We now explain how to recover the cylindrical contact homology in Section 1.2 from the
𝑆1-equivariant contact homology in Section 1.4.
Suppose that 𝐽 is a 𝜆-compatible almost complex structure on ℝ × 𝑌 which satisfies the

transversality conditions needed to define cylindrical contact homology, see Definition 1.2. We
can then compute the 𝑆1-equivariant contact homology using the ‘autonomous’ family of almost
complex structures 𝔍 = {𝐽}. (In general, a slight perturbation of the autonomous family might
be needed to obtain the transversality necessary to define the 𝑆1-equivariant differential. See
Section 5.2 for details.)
In this case, we find that the equivariant differential is given by

𝜕𝑆
1
= 𝜕𝐽

�
⊗ 1 + 𝜕1 ⊗ 𝑈

−1.

Here 𝜕𝐽
�
denotes the nonequivariant cascade differential for the autonomous family 𝕁 = {𝐽}. In

addition, the ‘BV operator’ 𝜕1 is given by

𝜕1𝛼̂ = 0,

𝜕1�𝛼 =

{
𝑑(𝛼)𝛼̂, 𝛼 good,
0, 𝛼 bad.

(1.13)
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We will see in Section 5.2 that the above differential is related to the cylindrical contact
homology differential as follows: If 𝛼 and 𝛽 are good Reeb orbits, then⟨

𝜕𝐽
�
�𝛼, �𝛽
⟩
= ⟨𝛿𝜅𝛼, 𝛽⟩,⟨

𝜕𝐽
�
𝛼̂, 𝛽
⟩
= ⟨−𝜅𝛿𝛼, 𝛽⟩. (1.14)

In addition, if 𝛼 is a bad Reeb orbit, then ⟨𝜕𝐽
�
�𝛼, �𝛽⟩ = 0 for any Reeb orbit 𝛽; and if 𝛽 is a bad Reeb

orbit, then ⟨𝜕𝐽
�
𝛼̂, 𝛽⟩ = 0 for any Reeb orbit 𝛼. Finally, ⟨𝜕𝐽

�
𝛼̂, �𝛽⟩ = 0, except when 𝛼 and 𝛽 are equal

and bad, in which case the differential coefficient is −2; cf. (1.12).
Given the above observations, a calculation in Section 5.3 proves the following:

Theorem 1.9. Let 𝑌 be a closed manifold, let 𝜆 be a nondegenerate hypertight contact form on
𝑌, and write 𝜉 = Ker(𝜆). Let 𝐽 be an almost complex structure on ℝ × 𝑌 which is admissible (see
Definition 5.1). Then there is a canonical isomorphism

𝐶𝐻𝑆
1

∗ (𝑌, 𝜉) ⊗ ℚ = 𝐶𝐻𝐸𝐺𝐻∗ (𝑌, 𝜆; 𝐽).

Corollary 1.10. 𝐶𝐻𝐸𝐺𝐻∗ is an invariant of closed contact manifolds (𝑌, 𝜉) for which there exists
a pair (𝜆, 𝐽) where 𝜆 is a nondegenerate hypertight contact form with Ker(𝜆) = 𝜉, and 𝐽 is an
admissible 𝜆-compatible almost complex structure.

1.6 Additional structure

The three kinds of contact homology discussed above have some additional structure on them.
These are standard constructions given the material in the rest of the paper, so we will just
briefly describe them here. We will mostly ignore cylindrical contact homology below, since
𝑆1-equivariant contact homology determines it by Theorem 1.9 but is defined more generally.

Splitting by free homotopy classes
The differentials on the chain complexes defining cylindrical, nonequivariant, and 𝑆1-equivariant
contact homology all preserve the free homotopy class of Reeb orbits (since they count cylinders
which project to homotopies in 𝑌 between Reeb orbits). Furthermore, the chain maps proving
topological invariance of the nonequivariant and 𝑆1-equivariant contact homologies also preserve
the free homotopy class of Reeb orbits. Consequently, if 𝜉 is a contact structure on 𝑌 admitting
a hypertight contact form, and if Γ is a free homotopy class of loops in 𝑌, then we have well-
defined contact homologies 𝑁𝐶𝐻∗(𝑌, 𝜉, Γ) and 𝐶𝐻𝑆

1

∗ (𝑌, 𝜉, Γ), which are the homologies of the
subcomplexes involving Reeb orbits in the class Γ.

Refined grading
Let𝑁 denote twice theminimumpositive pairing of 𝑐1(𝜉)with a toroidal class in𝐻2(𝑌), or infinity
if 𝑐1(𝜉) annihilates all toroidal classes in𝐻2(𝑌). Each of the above contact homologies has a non-
canonical ℤ∕𝑁-grading, which refines the canonical ℤ∕2-grading. To define this relative grading
on cylindrical contact homology, for each free homotopy class Γ that contains good Reeb orbits,
choose a good Reeb orbit 𝛾 in the class Γ, and choose an arbitrary value of the grading |𝛾| ∈ ℤ∕𝑁
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which has the same parity as CZ(𝛾). There is then a unique way to extend the ℤ∕𝑁-grading over
all good Reeb orbits in the class Γ such that if 𝑢 is any homotopy class of cylinder with boundary
𝛾+ − 𝛾−, then

|𝛾+| − |𝛾−| = ind(𝑢).
Here ind(𝑢) is defined as in (1.6), which makes sense even if 𝑢 does not come from a
holomorphic cylinder.
To define the grading on nonequivariant or equivariant contact homology, one likewise

chooses the grading |�𝛾| for all Reeb orbits 𝛾 in the homotopy class Γ. We then adopt the
conventions

||𝛾|| = ||�𝛾|| + 1,|||�𝛾 ⊗ 𝑈𝑘||| = ||�𝛾|| + 2𝑘,|||𝛾 ⊗ 𝑈𝑘||| = ||�𝛾|| + 2𝑘 + 1.
The topological invariance in Theorems 1.4 and 1.6, and the isomorphism in Theorem 1.9, respect
the relative gradings.

Cobordism maps
Let (𝑌+, 𝜆+) and (𝑌−, 𝜆−) be closed manifolds with nondegenerate hypertight contact forms.
Let (𝑋, 𝜆) be an exact† symplectic cobordism (see Definition 3.8) from (𝑌+, 𝜆+) to (𝑌−, 𝜆−), and
assume further that no Reeb orbit in 𝑌+ is contractible in 𝑋. Proposition 3.9 and the subsequent
discussion show that the cobordism (𝑋, 𝜆) induces a map

Φ(𝑋, 𝜆) ∶ 𝑁𝐶𝐻∗(𝑌+, 𝜆+)⟶ 𝑁𝐶𝐻∗(𝑌−, 𝜆−)

which is functorial with respect to composition of cobordisms. Likewise, Proposition 4.10 and the
subsequent discussion give a functorial map

Φ(𝑋, 𝜆) ∶ 𝐶𝐻𝑆
1

∗ (𝑌+, 𝜆+)⟶ 𝐶𝐻𝑆
1

∗ (𝑌−, 𝜆−).

Filtered versions
Let 𝑌 be a closed manifold, let 𝜆 be a contact form on 𝑌, let 𝐿 be a positive real number, and
assume that 𝜆 is ‘𝐿-nondegenerate’ and ‘𝐿-hypertight’, meaning that all Reeb orbits of action less
than 𝐿 are nondegenerate and noncontractible. (In particular, 𝜆 does not need to be hypertight.)
We can then repeat the constructions of nonequivariant and equivariant contact homology above,
considering only Reeb orbits with symplectic action less than 𝐿, to obtain well-defined ‘filtered
contact homologies’𝑁𝐶𝐻<𝐿∗ (𝑌, 𝜆) and𝐶𝐻

𝑆1,<𝐿
∗ (𝑌, 𝜆). These donot depend on the choice of almost

complex structure, although they do depend on the contact form 𝜆; cf. [31, Theorem 1.3]. When
𝜆 is actually nondegenerate and hypertight, the usual contact homologies are recovered from the

†One can also obtain cobordism maps from a strong symplectic cobordism if one uses a suitable Novikov completion of
contact homology; see the forthcoming paper by Hutchings for the analogous story for embedded contact homology.



1468 HUTCHINGS and NELSON

filtered contact homologies by taking the direct limit over 𝐿, for example,

𝐶𝐻𝑆
1

∗ (𝑌, 𝜉) = lim
𝐿→∞

𝐶𝐻𝑆
1,<𝐿
∗ (𝑌, 𝜆). (1.15)

The degenerate case
If 𝜆 is 𝐿-hypertight but possibly degenerate, and if 𝜆 does not have any Reeb orbit of action equal
to 𝐿, then one can still define the filtered nonequivariant or 𝑆1-equivariant contact homology by
letting 𝜆′ be a small 𝐿-nondegenerate and 𝐿-hypertight perturbation of 𝜆 and defining

𝐶𝐻𝑆
1,<𝐿
∗ (𝑌, 𝜆) = 𝐶𝐻𝑆

1,<𝐿
∗ (𝑌, 𝜆′),

and likewise for nonequivariant contact homology. This does not depend on the choice of 𝜆′ if
the perturbation is sufficiently small. With this definition, if 𝜆 is hypertight but possibly degen-
erate, then we still have the direct limit (1.15). (If 𝜉 has hypertight representatives but they are all
degenerate, then the right-hand side of (1.15) is still an invariant of (𝑌, 𝜉) and can be taken as a
definition of the left-hand side.)

Local contact homology
In [25], Hryniewicz and Macarini introduced the local contact homology of the 𝑑th iterate of a
simple Reeb orbit 𝛾0 in a (not necessarily compact) contact manifold (𝑌, 𝜆0). We assume that
the Reeb orbits 𝛾𝑘

0
for 1 ⩽ 𝑘 ⩽ 𝑑 are isolated in the loop space of 𝑌, but we do not assume that

these are nondegenerate. Local contact homology is defined analogously to the cylindrical contact
homology𝐶𝐻EGH∗ , but only working in a small tubular neighborhood𝑁of 𝛾0, for a nondegenerate
perturbation 𝜆 of 𝜆0, and only considering Reeb orbits of 𝜆 that wind 𝑑 times around 𝑁. This
local contact homology is defined in [25], assuming that one can find almost complex structures
satisfying suitable transversality, and it is a key ingredient in various dynamical applications, see,
for example, [19–21].
Using our methods, without any transversality difficulties, we can define local versions of

nonequivariant and 𝑆1-equivariant contact homology,whichwedenote by𝑁𝐶𝐻∗(𝑌, 𝜆0, 𝛾0, 𝑑) and
𝐶𝐻𝑆

1

∗ (𝑌, 𝜆0, 𝛾0, 𝑑), and prove that these are invariants which depend only on the contact form 𝜆0
in a neighborhood of the Reeb orbit 𝛾0. As in Theorem 1.9, if there exists a perturbation 𝜆 of 𝜆0 in
𝑁 and a 𝜆-compatible almost complex structure 𝐽 satisfying sufficient transversality to define the
cylindrical contact homology 𝐶𝐻EGH∗ , which is always true in the three-dimensional case, then
this cylindrical contact homology does not depend on the perturbation 𝜆 or on 𝐽 and agrees with
𝐶𝐻𝑆

1

∗ (𝑌, 𝜆0, 𝛾0, 𝑑) ⊗ ℚ. See Section 6.2 for details.

1.7 Relation with other approaches

Bao–Honda [3] give another construction of cylindrical contact homology for hypertight contact
forms in dimension 3, by modifying the contact form so that all Reeb orbits of action less than 𝐿
are hyperbolic, using obstruction bundle gluing to prove that the cylindrical contact homology in
action less than 𝐿 for the modified contact form is independent of the choice of modification, and
then taking the direct limit over 𝐿. Action-filtered versions of Theorems 1.6 and 1.9 show that this
definition of cylindrical contact homology is also isomorphic to 𝐶𝐻𝑆1 ⊗ ℚ.
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Bourgeois–Oancea [12, Section 4.1.2(2)] define a version of positive 𝑆1-equivariant symplectic
homology (overℤ) for a nondegenerate contact form 𝜆 on a closedmanifold𝑌2𝑛−1, assuming that
𝜆 is hypertight, or that 𝑐1(𝜉)|𝜋2(𝑌) = 0 and every contractible Reeb orbit 𝛾 satisfies 𝐶𝑍(𝛾) > 4 − 𝑛.
In particular this includes the dynamically convex case in three dimensions, and also local
contact homology. The theory defined by Bourgeois–Oancea can be used a substitute for cylin-
drical contact homology in some applications. We expect that it is canonically isomorphic to the
𝑆1-equivariant contact homology 𝐶𝐻𝑆1∗ (𝑌, 𝜉) defined here (in the hypertight case) and in the
sequel (forthcoming paper by Hutchings and Nelson) (in the dynamically convex case in three
dimensions).
Bao–Honda [4] and Pardon [37] use virtual techniques (variations on the idea of ‘Kuranishi

structure’) to define the contact homology algebra (over ℚ) of any closed manifold with a nonde-
generate contact form. In the hypertight case, one can obtain cylindrical contact homology and
its invariance from the contact homology algebra.
More generally, work in progress of Fish-Hofer will use the polyfold theory of Hofer–Wysocki–

Zehnder [24] to define symplectic field theory (SFT), which in particular will yield cylindrical
contact homology (over ℚ) for a dynamically convex contact form. An alternate foundation for
SFT is proposed by Ishikawa [32].
One reason why we are pursuing the more geometric approach in the present paper, in [28],

and in the forthcoming paper by Hutchings and Nelson, even though it is less general than the
more abstract approaches above, is that for computations and applications, it is desirable when
possible to understand cylindrical contact homology directly in terms of Reeb orbits and holo-
morphic cylinders between them. Also, in applications to symplectic embedding problems, it is
important to understand the holomorphic curves in symplectic cobordisms that arise from contact
homology, see, for example, [33].

1.8 The plan

In Sections 2 and 3, we explain the definition of nonequivariant contact homology and prove its
invariance (Theorem 1.4). In Section 4, we modify this construction to define equivariant contact
homology and prove its invariance (Theorem 1.6). In Section 5, we describe the nonequivariant
and equivariant contact homology for autonomous 𝐽 (assuming suitable transversality) and prove
the relation with cylindrical contact homology (Theorem 1.9). In Section 6, we work out some
examples, including a definition of local contact homology.
Our constructions use various analytical results on transversality, compactness, and gluing,

and we omit the proofs of these where they follow from standard arguments. However, we do
include a long appendix giving details of the orientations of the moduli spaces that we consider.
The gluing theory is sketched in Section A.4, and more details about gluing will be provided in
the sequel (the forthcoming paper by Hutchings and Nelson), where we need to consider a more
general situation.
In the forthcoming paper byHutchings andNelson,wewill extend themachinery in the present

paper to construct an invariant integral lift of cylindrical contact homology for dynamically con-
vex context forms in three dimensions. In this case, for a generic 𝜆-compatible almost complex
structure 𝐽 on ℝ × 𝑌, there may exist certain nontransverse index 2 holomorphic buildings with
one positive end and one negative end. These do not interfere with the proof that (𝜕𝐸𝐺𝐻)2 = 0,
as shown in [28, Proposition 3.1]. However, these buildings do make nontrivial contributions
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to the cascade differentials computing nonequivariant and 𝑆1-equivariant contact homology. To
understand these contributions, we will need to use a bit of obstruction bundle gluing as in [30].

Notation conventions
Many moduli spaces below are defined by first defining a larger moduli space and then modding
out by some group action(s). Generally, if is amoduli space of interest, then ̃ denotes a larger
version of this moduli space before modding out by an ℝ action, so that  = ̃∕ℝ. Likewise,
where applicable, ˜̃ denotes a larger version of before modding out by an ℝ2 action, and ̂
denotes a larger version of before modding out by an ℝ2 × 𝑆1 action.
In addition,  denotes a compactification of . Moduli spaces of the form � are cascade

moduli spaces defined in Section 3.

2 NONEQUIVARIANTMODULI SPACES

In this section, we give the definitions and state the key properties of moduli spaces of holomor-
phic cylinders for 𝑆1-dependent almost complex structures. These moduli spaces will be used in
Section 3 to define nonequivariant contact homology.

2.1 Definitions

Let (𝑌2𝑛−1, 𝜆) be a closed nondegenerate contact manifold with contact structure 𝜉 = ker 𝜆
and Reeb vector field 𝑅. We assume throughout that 𝜆 is hypertight, that is, all Reeb orbits
are noncontractible.
Let 𝕁 = {𝐽𝑡}𝑡∈𝑆1 be an 𝑆1-family of 𝜆-compatible almost complex structures on ℝ × 𝑌; see

Definition 1.1.

Definition 2.1. If 𝛾+ and 𝛾− are Reeb orbits, let ̃𝕁(𝛾+, 𝛾−) denote the moduli space of maps
𝑢 ∶ ℝ × 𝑆1 → ℝ × 𝑌 satisfying the equations

𝜕𝑠𝑢 + 𝐽𝑡𝜕𝑡𝑢 = 0, (2.1)

lim
𝑠→±∞

𝜋ℝ(𝑢(𝑠, ⋅)) = ±∞, (2.2)

lim
𝑠→±∞

𝜋𝑌(𝑢(𝑠, ⋅)) is a parameterization of 𝛾±, (2.3)

modulo ℝ translation in the domain. If 𝛾+ and 𝛾− are distinct, then ℝ acts freely on ̃𝕁(𝛾+, 𝛾−)

by translation of the ℝ coordinate on the target ℝ × 𝑌, and we define

𝕁(𝛾+, 𝛾−) = ̃𝕁(𝛾+, 𝛾−)∕ℝ.

If 𝛾 is a Reeb orbit, let 𝛾 denote the underlying simple Reeb orbit, so that 𝛾 is a 𝑑-fold cover of
𝛾 for some integer 𝑑 > 0. There are then well-defined evaluation maps

𝑒± ∶𝕁(𝛾+, 𝛾−)⟶ 𝛾±
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defined by

𝑒±(𝑢) ∶= lim
𝑠→±∞

𝜋𝑌(𝑢(𝑠, 0)). (2.4)

2.2 Transversality

If 𝑑 is an integer, let𝕁
𝑑
(𝛾+, 𝛾−) denote the set of 𝑢 ∈𝕁(𝛾+, 𝛾−) with

CZ𝜏(𝛾+) − CZ𝜏(𝛾−) + 2𝑐1(𝑢
∗𝜉, 𝜏) = 𝑑. (2.5)

Here the notation is as in equation (1.6). A standard transversality argument based on [41,
Section 8], going back to [14, 17], shows the following.

Proposition 2.2. If 𝕁 is generic, then:

(a) For any distinct Reeb orbits 𝛾+ and 𝛾−, and any integer 𝑑, the moduli space𝕁
𝑑
(𝛾+, 𝛾−) is cut

out transversely and is a smooth manifold of dimension 𝑑, and the evaluation maps 𝑒+ and 𝑒−
on it are smooth.

(b) For any distinct Reeb orbits 𝛾0, … , 𝛾𝑘 and any integers 𝑑1, … , 𝑑𝑘 the 𝑘-fold fiber product

𝕁
𝑑1
(𝛾0, 𝛾1) ×𝛾1 𝕁

𝑑2
(𝛾1, 𝛾2) ×𝛾2 ⋯ ×𝛾𝑘−1 𝕁

𝑑𝑘
(𝛾𝑘−1, 𝛾𝑘)

is cut out transversely, and in particular is a smooth manifold of dimension 1 − 𝑘 +
∑𝑘
𝑖=1 𝑑𝑖 .

The precise meaning of transversality in part (a) is that each 𝑢 in the moduli space is ‘regular’
in the sense of Definition A.20; see Section A.2 for explanation. The transversality in (b) means
that if (𝑢1, … , 𝑢𝑘) is an element of this fiber product, then the map

𝑇(𝑢1,…,𝑢𝑘)

𝑘∏
𝑖=1

𝕁
𝑑𝑖
(𝛾𝑖−1, 𝛾𝑖)⟶

𝑘−1⨁
𝑖=1

𝑇𝑒−(𝑢𝑖)𝛾𝑖,

(𝑣1, … , 𝑣𝑘)⟼ (𝑑𝑒−(𝑣1) − 𝑑𝑒+(𝑣2), … , 𝑑𝑒−(𝑣𝑘−1) − 𝑑𝑒+(𝑣𝑘))

is surjective.
Assume below that 𝕁 is generic in the sense of Proposition 2.2.

2.3 Orientations

Recall that any manifold𝑀 has an ‘orientation sheaf’ 𝑀 , which is a local system locally isomor-
phic to ℤ, defined by 𝑀(𝑝) = 𝐻dim(𝑀)(𝑀,𝑀 ⧵ {𝑝}) for 𝑝 ∈ 𝑀; an orientation of𝑀 is equivalent
to a section of 𝑀 which restricts to a generator of each fiber. If  is another local system on𝑀
which is locally isomorphic to ℤ, then we define an “orientation of 𝑀 with values in ” to be a
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section

𝔬 ∈ 𝐻0(𝑀;𝑀 ⊗ ),
which restricts to a generator of each fiber.
As we review in the Appendix (see Definition A.25), one can use the theory of coherent orien-

tations to assign to each Reeb orbit 𝛾 a canonical local system 𝛾 over 𝛾, locally isomorphic to ℤ,
such that:

Proposition 2.3 (proved in Section A.3).

(a) The local system 𝛾 is trivial, that is, (noncanonically) isomorphic to 𝛾 × ℤ, if and only if 𝛾 is a
good Reeb orbit.

(b) The moduli space𝕁(𝛾+, 𝛾−) has a canonical orientation with values in 𝑒∗+𝛾+ ⊗ 𝑒∗−𝛾− .

2.4 Compactness

Definition 2.4. Let 𝛾+ and 𝛾− be distinct Reeb orbits. A (𝑘-level) broken 𝕁-holomorphic cylinder
from 𝛾+ to 𝛾− is a 𝑘-tuple (𝑢1, … , 𝑢𝑘)where there exist distinct Reeb orbits 𝛾+ = 𝛾0, 𝛾1, … , 𝛾𝑘 = 𝛾−
such that 𝑢𝑖 ∈𝕁(𝛾𝑖−1, 𝛾𝑖) for 𝑖 = 1, … , 𝑘 and 𝑒−(𝑢𝑖) = 𝑒+(𝑢𝑖+1) for 𝑖 = 1, … , 𝑘 − 1.

Definition 2.5.

∙ If 𝛾+ and 𝛾− are distinct Reeb orbits, let 𝕁
𝑑
(𝛾+, 𝛾−) denote the set of broken 𝕁-holomorphic

cylinders (𝑢1, … , 𝑢𝑘) as above, where 𝑢𝑖 ∈𝕁
𝑑𝑖
(𝛾𝑖−1, 𝛾𝑖) with

∑𝑘
𝑖=1 𝑑𝑖 = 𝑑.

∙ Define evaluation maps

𝑒± ∶𝕁
𝑑
(𝛾+, 𝛾−)⟶ 𝛾±

by 𝑒+(𝑢1, … , 𝑢𝑘) = 𝑒+(𝑢1) and 𝑒−(𝑢1, … , 𝑢𝑘) = 𝑒−(𝑢𝑘).
∙ We give 𝕁

𝑑
(𝛾+, 𝛾−) the usual topology. In particular, a sequence {𝑢(𝜈)}𝜈=1,2,… in 𝕁

𝑑
(𝛾+, 𝛾−)

converges to (𝑢1, … , 𝑢𝑘) ∈𝕁
𝑑
(𝛾+, 𝛾−) if and only if one can assign to each 𝜈 a choice

of 𝑘 representatives 𝑢(𝜈)1, … , 𝑢(𝜈)𝑘 ∈ ̃𝕁
𝑑
(𝛾+, 𝛾−) of 𝑢(𝜈) such that for each 𝑖 = 1, … , 𝑘,

the sequence {𝑢(𝜈)𝑖}𝜈=1,2,… of maps ℝ × 𝑆1 → ℝ × 𝑌 converges in 𝐶∞ on compact sets
to 𝑢𝑖 .

Proposition 2.6. For any 𝕁 (not necessarily generic), if 𝛾+ and 𝛾− are distinct Reeb orbits, then
𝕁

𝑑
(𝛾+, 𝛾−) is compact.

Proof. This follows from standard compactness arguments as in [8, Theorem 10.4]. (This refer-
ence does not consider domain-dependent almost complex structures, but that does not affect
the argument here.) The hypertightness assumption is needed to avoid bubbling of holomorphic
planes. □
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2.5 Constrained moduli spaces and gluing

Let 𝛾+, 𝛾− be distinct Reeb orbits, and let 𝑝± ∈ 𝛾±. We then define moduli spaces with point
constraints

𝕁
𝑑
(𝛾+, 𝑝+, 𝛾−) = 𝑒

−1
+ (𝑝+) ⊂𝕁

𝑑
(𝛾+, 𝛾−),

𝕁
𝑑
(𝛾+, 𝛾−, 𝑝−) = 𝑒

−1
− (𝑝−) ⊂𝕁

𝑑
(𝛾+, 𝛾−),

𝕁
𝑑
(𝛾+, 𝑝+, 𝛾−, 𝑝−) = (𝑒+ × 𝑒−)

−1(𝑝+, 𝑝−) ⊂𝕁
𝑑
(𝛾+, 𝛾−).

If the pair (𝑝+, 𝑝−) is generic, then each set on the left-hand side is a smooth manifold of dimen-
sion 𝑑 − 1 or 𝑑 − 2, with a canonical orientation with values in 𝑒∗++ ⊗ 𝑒∗−−. Here we orient
the spaces with point constraints using the conventions in [29, Section 2.2]. We also define
“compactified” constrained moduli spaces by

𝕁
𝑑
(𝛾+, 𝑝+, 𝛾−) = 𝑒

−1
+ (𝑝+) ⊂𝕁

𝑑
(𝛾+, 𝛾−),

and so forth.
In the proposition below, we orient fiber products using the convention in [29, Section 2.1].

Proposition 2.7. Let 𝛾+ and 𝛾− be distinct Reeb orbits. Assume that the pair (𝑝+, 𝑝−) is generic so
that:

∙ 𝑝+ is a regular value of all evaluation maps 𝑒+ ∶𝕁
𝑑
(𝛾+, 𝛾0) → 𝛾+ for 𝑑 ⩽ 2.

∙ 𝑝− is a regular value of all evaluation maps 𝑒− ∶𝕁
𝑑
(𝛾0, 𝛾−) → 𝛾− for 𝑑 ⩽ 2.

∙ (𝑝+, 𝑝−) is a regular value of all products of evaluation maps

𝑒+ × 𝑒− ∶𝕁
𝑑
(𝛾+, 𝛾−)⟶ 𝛾+ × 𝛾−

for 𝑑 ⩽ 3.

Then:

(a) 𝕁
0
(𝛾+, 𝛾−) is finite;

(b) 𝕁
1
(𝛾+, 𝛾−) is a compact oriented topological one-manifold with oriented boundary

𝜕𝕁
1
(𝛾+, 𝛾−) =

∐
𝛾0≠𝛾+,𝛾−
𝑑++𝑑−=1

(−1)𝑑+𝕁
𝑑+
(𝛾+, 𝛾0) ×𝛾0 𝕁

𝑑−
(𝛾0, 𝛾−); (2.6)

(c) 𝕁
2
(𝛾+, 𝛾−, 𝑝−) is a compact oriented topological one-manifold with oriented boundary

𝜕𝕁
2
(𝛾+, 𝛾−, 𝑝−) =

∐
𝛾0≠𝛾+,𝛾−
𝑑++𝑑−=2

(−1)𝑑+𝕁
𝑑+
(𝛾+, 𝛾0) ×𝛾0 𝕁

𝑑−
(𝛾0, 𝛾−, 𝑝−). (2.7)
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Similarly, 𝕁
2
(𝛾+, 𝑝+, 𝛾−) is a compact oriented topological one-manifold with oriented

boundary

𝜕𝕁
2
(𝛾+, 𝑝+, 𝛾−) =

∐
𝛾0≠𝛾+,𝛾−
𝑑++𝑑−=2

(−1)𝑑+−1𝕁
𝑑+
(𝛾+, 𝑝+, 𝛾0) ×𝛾0 𝕁

𝑑−
(𝛾0, 𝛾−); (2.8)

(d) 𝕁
3
(𝛾+, 𝑝+, 𝛾−, 𝑝−) is a compact oriented topological one-manifold with oriented boundary

𝜕𝕁
3
(𝛾+, 𝑝+, 𝛾−, 𝑝−) =

∐
𝛾0≠𝛾+,𝛾−
𝑑++𝑑−=3

(−1)𝑑+−1𝕁
𝑑+
(𝛾+, 𝑝+, 𝛾0) ×𝛾0 𝕁

𝑑−
(𝛾0, 𝛾−, 𝑝−). (2.9)

Proof. (a) By Proposition 2.2, the moduli space 𝕁
0
(𝛾+, 𝛾−) is a zero-dimensional manifold,

and 𝕁
0
(𝛾+, 𝛾−) ⧵𝕁

0
(𝛾+, 𝛾−) is empty. Thus, 𝕁

0
(𝛾+, 𝛾0) is discrete. It then follows from

Proposition 2.6 that𝕁
0
(𝛾+, 𝛾−), and in particular𝕁

0
(𝛾+, 𝛾−), is finite.

(b)–(d). The compactness follows from Proposition 2.6. The fact that the compactified moduli
spaces are manifolds with boundary as described follows from Proposition A.28. □

2.6 Morse–Bott systems

It follows from the above results that for generic 𝕁, the moduli spaces 𝕁
𝑑
(𝛾+, 𝛾−) and the

evaluation maps on them constitute a ‘Morse–Bott system’ in the sense of [29, Definition 2.1].
More precisely, a Morse–Bott system is a tuple (𝑋, | ⋅ |, 𝑆,,𝑀∗, 𝑒±) where:

∙ 𝑋 is a set.
∙ | ⋅ | is a function 𝑋 → ℤ∕2 (the mod 2 grading).
∙ 𝑆 is a function which assigns to each 𝑥 ∈ 𝑋 a closed connected oriented 1-manifold 𝑆(𝑥).
∙  assigns to each 𝑥 ∈ 𝑋 a local system 𝑥 over 𝑆(𝑥) which is locally isomorphic to ℤ.
∙ If 𝑥+, 𝑥− ∈ 𝑋 are distinct and 𝑑 ∈ {0, 1, 2, 3}, then 𝑀𝑑(𝑥+, 𝑥−) is a smooth manifold of
dimension 𝑑.

∙ 𝑒± ∶ 𝑀𝑑(𝑥+, 𝑥−) → 𝑆(𝑥±) are smooth maps.
∙ 𝑀𝑑(𝑥+, 𝑥−) is equipped with an orientation with values in 𝑒∗+𝑥+ ⊗ 𝑒∗−𝑥− .
These are required to satisfy the ‘Grading’, ‘Finiteness’, ‘Fiber Product Transversality’, and
‘Compactification’ axioms in [29, Section 2.2].
In the present case, we can take 𝑋 to be the set of Reeb orbits. For a Reeb orbit 𝛾, we define|𝛾| to be the mod 2 Conley–Zehnder index CZ(𝛾), and 𝑆(𝛾) = 𝛾, oriented by the Reeb vector field.

Then 𝛾 is the local system in Proposition 2.3, and 𝑀𝑑(𝛾+, 𝛾−) is the moduli space𝕁
𝑑
(𝛾+, 𝛾−),

with the evaluation maps defined by (2.4). Here we are discarding the moduli spaces 𝕁
𝑑
with

𝑑 > 3.

Proposition 2.8. If 𝕁 is generic, then the above data constitute a Morse–Bott system in the sense of
[29, Definition 2.1].
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Proof. The Grading axiom in [29, Section 2.2] requires that if𝕁
𝑑
(𝛾+, 𝛾−) is nonempty then

CZ(𝛾+) − CZ(𝛾−) ≡ 𝑑 mod 2. (2.10)

This follows from equation (2.5) and Proposition 2.2(a).
The Finiteness axiom in [29, Section 2.2] requires that for each Reeb orbit 𝛾0, there are only

finitely many tuples (𝑘, 𝛾1, … , 𝛾𝑘) where 𝑘 is a positive integer, 𝛾1, … , 𝛾𝑘 are distinct Reeb orbits,
and there exist 𝑑1, … , 𝑑𝑘 ∈ {0, 1, 2, 3}with𝕁

𝑑𝑖
(𝛾𝑖−1, 𝛾𝑖) ≠ ∅ for each 𝑖 = 1, … , 𝑘. This holds in the

present case because if 𝛾+ ≠ 𝛾− then𝕁
𝑑
(𝛾+, 𝛾−) ≠ ∅ only if the symplectic action of 𝛾+ is strictly

greater than the symplectic action of 𝛾−; and for each 𝐿 ∈ ℝ, there are only finitely many Reeb
orbits with action less than 𝐿 (because 𝑌 is compact and the contact form 𝜆 is nondegenerate).
The Fiber Product Transversality axiom in [29, Section 2.2] follows from Proposition 2.2(b).

(The latter is a much stronger statement.)
Parts (a)–(d) of the Compactness axiom in [29, Section 2.2] follow from the corresponding parts

of Proposition 2.7. The rest of the Compactness axiom holds automatically as explained in [29,
Remark 2.6]. □

3 NONEQUIVARIANT CONTACT HOMOLOGY

As in Section 2, let 𝑌 be a closed manifold, let 𝜆 be a nondegenerate hypertight contact form on
𝑌, and let 𝕁 be a generic 𝑆1-family of 𝜆-compatible almost complex structures on ℝ × 𝑌. In this
section, we define the nonequivariant contact homology 𝑁𝐶𝐻∗(𝑌, 𝜆; 𝕁) and prove that it is an
invariant of 𝑌 and 𝜉 = Ker(𝜆).

3.1 Abstract Morse–Bott theory

To define nonequivariant contact homology and prove its invariance, wewill invoke the following
result from [29]. The statement of this result includes some terminology defined in [29] whichwill
be reviewed below.

Theorem 3.1 [29, Theorem 1.1].

(a) Let𝐴 be aMorse–Bott system. Then the cascade homology𝐻�

∗(𝐴) is well-defined, independently
of the choice of base points.

(b) Let Φ be a morphism of Morse–Bott systems from 𝐴1 to 𝐴2. Then:
(i) There is a well-defined induced map on cascade homology

Φ∗ ∶ 𝐻
�

∗(𝐴1)⟶ 𝐻�

∗(𝐴2).

(ii) If 𝐴1 = 𝐴2 and Φ is the identity morphism, then Φ∗ is the identity map.
(iii) If Ψ is a morphism from 𝐴2 to 𝐴3, and if Φ and Ψ are composable, then the composition

Ψ◦Φ satisfies

(Ψ ◦Φ)∗ = Ψ∗ ◦Φ∗ ∶ 𝐻
�

∗(𝐴1)⟶ 𝐻�

∗(𝐴3).
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(iv) If Φ′ is another morphism from 𝐴1 to 𝐴2 which is homotopic to Φ, then

Φ∗ = (Φ
′)∗ ∶ 𝐻

�

∗(𝐴1)⟶ 𝐻�

∗(𝐴2).

We define the nonequivariant contact homology 𝑁𝐶𝐻∗(𝑌, 𝜆; 𝕁) to be the cascade homology of
the Morse–Bott system in Proposition 2.8. We now spell out explicitly what this means.

3.2 Cascade moduli spaces

To start, we need to generically choose, for each Reeb orbit 𝛾, a base point 𝑝𝛾 ∈ 𝛾. Denote this set
of choices by  .
We need to study ‘cascade’ moduli spaces �

𝑑
(𝛼̂, 𝛽), �

𝑑
(𝛼̂, �𝛽), �

𝑑
(�𝛼, 𝛽), and �

𝑑
(�𝛼, �𝛽) for

each pair of (possibly equal) Reeb orbits 𝛼, 𝛽 and each nonnegative integer 𝑑. These will be 𝑑-
dimensional manifolds with orientations with values in 𝛼(𝑝𝛼) ⊗ 𝛽(𝑝𝛽).
When 𝛼 = 𝛽, the definition is simple:

Definition 3.2. If 𝛼 is a Reeb orbit, define

�

𝑑(𝛼̂, 𝛼̂) =�

𝑑(�𝛼, 𝛼̂) = 𝑀
�

𝑑(�𝛼, �𝛼) = ∅,

�

𝑑(𝛼̂, �𝛼) =

{
2 points if 𝑑 = 0,
∅ if 𝑑 > 0.

The above two points have opposite orientations when 𝛼 is good; and they both have negative
orientation† when 𝛼 is bad.

We now define the cascade moduli spaces for 𝛼 ≠ 𝛽.
Notation guide
Below, the notation �𝛾means that there is a point constraint when 𝛾 is at the top, but not when it is
at the bottom; and 𝛾means that there is a point constraint when 𝛾 is at the bottom, but not when
it is at the top.

Definition 3.3. If 𝛼 and 𝛽 are distinct Reeb orbits, let 𝛼̃ denote either 𝛼̂ or �𝛼, and let 𝛽 denote
either 𝛽 or �𝛽. We define the cascade moduli space�

𝑑
(𝛼̃, 𝛽) as follows. An element of�

𝑑
(𝛼̃, 𝛽)

is a tuple (𝑢1, … , 𝑢𝑘) for some positive integer 𝑘, such that there are distinct Reeb orbits 𝛼 =
𝛾0, 𝛾1, … , 𝛾𝑘 = 𝛽 and nonnegative integers 𝑑1, … , 𝑑𝑘, such that:

∙

𝑘∑
𝑖=1

𝑑𝑖 =

⎧⎪⎨⎪⎩
𝑑, (𝛼̃, 𝛽) = (𝛼̂, �𝛽),

𝑑 + 1, (𝛼̃, 𝛽) = (𝛼̂, 𝛽), (�𝛼, �𝛽),

𝑑 + 2, (𝛼̃, 𝛽) = (�𝛼, 𝛽).

† It makes sense to speak of ‘negative orientation’ here because the orientation of �

0
(𝛼̂, �𝛼) has values in 𝛼(𝑝𝛼) ⊗𝛼(𝑝𝛼) = ℤ.
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∙ If 𝑘 = 1, then

𝑢1 ∈

⎧⎪⎪⎨⎪⎪⎩

𝕁
𝑑
(𝛼, 𝛽), (𝛼̃, 𝛽) = (𝛼̂, �𝛽),

𝕁
𝑑+1
(𝛼, 𝑝𝛼, 𝛽), (𝛼̃, 𝛽) = (�𝛼, �𝛽),

𝕁
𝑑+1
(𝛼, 𝛽, 𝑝𝛽), (𝛼̃, 𝛽) = (𝛼̂, 𝛽),

𝕁
𝑑+2
(𝛼, 𝑝𝛼, 𝛽, 𝑝𝛽) (𝛼̃, 𝛽) = (�𝛼, 𝛽).

∙ If 𝑘 > 1, then:
–

𝑢1 ∈

{ 𝕁
𝑑1
(𝛼, 𝛾1), 𝛼̃ = 𝛼̂,

𝕁
𝑑1
(𝛼, 𝑝𝛼, 𝛾1), 𝛼̃ = �𝛼.

– If 1 < 𝑖 < 𝑘 then 𝑢𝑖 ∈𝕁
𝑑𝑖
(𝛾𝑖−1, 𝛾𝑖).–

𝑢𝑘 ∈

{ 𝕁
𝑑𝑘
(𝛾𝑘−1, 𝛽), 𝛽 = �𝛽,

𝕁
𝑑𝑘
(𝛾𝑘−1, 𝛽, 𝑝𝛽), 𝛽 = 𝛽.

– For 𝑖 = 1, … , 𝑘 − 1, the points 𝑝𝛾𝑖 , 𝑒−(𝑢𝑖), and 𝑒+(𝑢𝑖+1), are distinct and positively cyclically
ordered with respect to the orientation of 𝛾𝑖 .

∙ When 𝑢1 is not constrained to have 𝑒+(𝑢1) = 𝑝𝛼, we assume that 𝑒+(𝑢1) ≠ 𝑝𝛼; likewise when
𝑢𝑘 is not constrained to have 𝑒−(𝑢𝑘) = 𝑝𝛽 , we assume that 𝑒−(𝑢𝑘) ≠ 𝑝𝛽 .
We topologize�

𝑑
(𝛼̃, 𝛽) as a subset of the disjoint union of Cartesian products

𝕁
𝑑1
(𝛾0, 𝛾1) ×⋯ ×𝕁

𝑑𝑘
(𝛾𝑘−1, 𝛾𝑘).

It follows fromProposition 2.2(a) that if the set of base points = {𝑝𝛾} is generic, then�

𝑑
(𝛼̃, 𝛽)

is a smooth manifold of dimension 𝑑. Furthermore, �

𝑑
(𝛼̃, 𝛽) has a canonical orientation with

values in 𝛼(𝑝𝛼) ⊗ 𝛽(𝑝𝛽), according to the convention in [29, Section 3.2].
We now have the following compactness result for the cascademoduli spaces. Below, following

[29, Section 2.1], a ‘compactification’ of a smooth oriented 1-manifold𝑀means a compact oriented
topological manifold with boundary 𝑀 such that 𝑀 is an open oriented submanifold of 𝑀 and
𝑀 ⧵𝑀 is finite (but possibly larger than 𝜕𝑀).

Proposition 3.4. Suppose the set of base points  = {𝑝𝛾} is generic. Let 𝛼 and 𝛽 be Reeb orbits, let
𝛼̃ denote either 𝛼̂ or �𝛼, and let 𝛽 denote either 𝛽 or �𝛽. Then:

(a) �

0
(𝛼̃, 𝛽) is finite,

(b) �

1
(𝛼̃, 𝛽) has a compactification�

1(𝛼̃, 𝛽) with oriented boundary

𝜕�

1

(
𝛼̃, 𝛽
)
=
∐
𝛾

�

0(𝛼̃, 𝛾) ×�

0

(
𝛾, 𝛽
)

⊔
∐
𝛾

�

0(𝛼̃, �𝛾) ×�

0

(
�𝛾, 𝛽
)
.
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Proof. This follows by applying [29, Proposition 3.2] to the Morse–Bott system in Proposi-
tion 2.8. □

Remark 3.5. To briefly reviewwhat goes into the proof of Proposition 3.4: Each tuple (𝑢1, … , 𝑢𝑘) ∈�

1
(𝛼̃, 𝛽) has exactly one element 𝑢𝑖 which lives in a one-dimensional moduli space, while all

𝑢𝑗 with 𝑗 ≠ 𝑖 are rigid. This moduli space has ends where 𝑢𝑖 breaks, and also where the cyclic
ordering condition fails. Some of the latter ends glue to the former ends, while others give rise to
the desired boundary points. When 𝑖 = 1 and 𝛼̃ = 𝛼̂, there can be additional ends where the last
condition in Definition 3.3 fails; when 𝛼 is good these are glued together, while when 𝛼 is bad
they cannot be glued together (due to incompatible orientations) and give rise to boundary points
involving�

𝑑
(𝛼̂, �𝛼). Boundary points involving�

𝑑
(𝛽, �𝛽) arise similarly when 𝑖 = 𝑘, 𝛽 = �𝛽, and

𝛽 is bad.

3.3 Definition of nonequivariant contact homology

Let  = {𝑝𝛾} be a generic choice of base points as in Section 3.2. We now define a ℤ∕2-graded
chain complex (𝑁𝐶𝐶∗(𝑌, 𝜆), 𝜕𝕁� ) over ℤ as follows. (The differential also depends on  , but we
omit this from the notation.)
The ℤ-module 𝑁𝐶𝐶∗(𝑌, 𝜆) is the direct sum of two copies of 𝛾(𝑝𝛾) for each Reeb orbit 𝛾. For

notational convenience, we fix a generator of 𝛾(𝑝𝛾) for each 𝛾. We can then regard 𝑁𝐶𝐶∗(𝑌, 𝜆)
as the free ℤ-module with two generators 𝛾 and �𝛾 for each Reeb orbit 𝛾. The mod 2 gradings of
these generators are given by

|�𝛾| = 𝐶𝑍(𝛾),
|𝛾| = 𝐶𝑍(𝛾) + 1.

Definition 3.6. Define the differential

𝜕𝕁
�
∶ 𝑁𝐶𝐶∗(𝑌, 𝜆)⟶ 𝑁𝐶𝐶∗−1(𝑌, 𝜆)

as follows. Let 𝛼 and 𝛽 be Reeb orbits, let 𝛼̃ denote either 𝛼̂ or �𝛼, and let 𝛽 denote either 𝛽 or �𝛽.
Then the differential coefficient ⟨𝜕𝕁

�
𝛼̃, 𝛽⟩ ∈ ℤ is the signed count of points in the cascade moduli

space �

0
(𝛼̃, 𝛽). Here the signs are determined by the fixed orientations of 𝛼(𝑝𝛼) and 𝛽(𝑝𝛽),

together with the orientation of�

0
(𝛼̃, 𝛽) with values in 𝛼(𝑝𝛼) ⊗ 𝛽(𝑝𝛽).

Lemma 3.7. The differential 𝜕𝕁
�
is well-defined, decreases the mod 2 grading by 1, and satisfies

(𝜕𝕁
�
)2 = 0.

Proof. The coefficient ⟨𝜕𝕁
�
𝛼̃, 𝛽⟩ is well-defined by Proposition 3.4(a). Since for a given Reeb orbit 𝛼

there are only finitely many Reeb orbits 𝛽 with symplectic action less than that of 𝛼, we conclude
that 𝜕𝕁

�
𝛼̃ is well-defined.

Equation (2.10) implies that the differential 𝜕𝕁
�
decreases the mod 2 grading by 1.

It follows from Proposition 3.4(b) that (𝜕𝕁
�
)2 = 0. □
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In the terminology of [29], the homology of the chain complex (𝑁𝐶𝐶∗(𝑌, 𝜆), 𝜕𝕁� ) is the cascade
homology of the Morse–Bott system in Proposition 2.8. Consequently, Theorem 3.1(a) implies
that this homology does not depend on the choice of base points  , so we can denote it by
𝑁𝐶𝐻∗(𝑌, 𝜆; 𝕁), and we call this nonequivariant contact homology. Our next task is to use the
rest of Theorem 3.1 to show that that NCH in fact depends only on (𝑌, 𝜉). (For the computation
of NCH in our main example of interest, see Proposition 5.2.)

3.4 Cobordismmaps

To prove invariance of nonequivariant contact homology, we need to consider maps induced by
certain symplectic cobordisms.

Definition 3.8. Let (𝑌+, 𝜆+) and (𝑌−, 𝜆−) be closed contact manifolds of dimension 2𝑛 − 1.
An exact symplectic cobordism from† (𝑌+, 𝜆+) to (𝑌−, 𝜆−) is a pair (𝑋, 𝜆) where 𝑋 is a com-
pact 2𝑛-dimensional oriented manifold with 𝜕𝑋 = 𝑌+ − 𝑌−, and 𝑑𝜆 is a symplectic form on 𝑋
with 𝜆|𝑌± = 𝜆±.
The goal of this subsection is to prove the following:

Proposition 3.9. Let (𝑋, 𝜆) be an exact symplectic cobordism from (𝑌+, 𝜆+) to (𝑌−, 𝜆−), where
the contact forms 𝜆± are nondegenerate and hypertight. Assume further that every Reeb orbit
for 𝜆+ is noncontractible in 𝑋. Let 𝕁± be 𝑆1-families of almost complex structures as needed
to define the nonequivariant contact homology of (𝑌±, 𝜆±). Then (𝑋, 𝜆) induces a well-defined
map

Φ(𝑋, 𝜆; 𝕁+, 𝕁−) ∶ 𝑁𝐶𝐻∗(𝑌+, 𝜆+; 𝕁+)⟶ 𝑁𝐶𝐻∗(𝑌−, 𝜆−; 𝕁−).

Proof. The strategy is to construct a ‘morphismofMorse–Bott systems’ and invoke Theorem3.1(b).
To set up the construction, recall that an exact symplectic cobordism (𝑋, 𝜆) has a canonical

Liouville vector field 𝑉 characterized by 𝚤𝑉𝑑𝜆 = 𝜆. The vector field 𝑉 points out of 𝑋 on 𝑌+ and
into 𝑋 on 𝑌−. For 𝜖 > 0 small, the flow of 𝑉 then determines neighborhoods 𝑁± of 𝑌± in 𝑋 with
identifications

(𝑁+, 𝜆) ≃
(
(−𝜖, 0] × 𝑌+, 𝑒

𝑟𝜆+
)
,

(𝑁−, 𝜆) ≃ ([0, 𝜖) × 𝑌−, 𝑒
𝑟𝜆−),

(3.1)

where 𝑟 denotes the (−𝜖, 0] or [0, 𝜖) coordinate. Here𝑉 increases the first coordinate at unit speed,
and 𝑌± ⊂ 𝑁± is identified with {0} × 𝑌±. We now define the completion

𝑋 = ((−∞, 0] × 𝑌−) ∪𝑌− 𝑋 ∪𝑌+
(
[0,∞) × 𝑌+

)
,

glued using the neighborhood identifications (3.1).

† Instead of using the words ‘from’ and ‘to’, one could say that (𝑌+, 𝜆+) is the convex boundary of (𝑋, 𝜆), and (𝑌−, 𝜆−) is
the concave boundary.
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Definition 3.10. Let (𝑋, 𝜆) be an exact symplectic cobordism from (𝑌+, 𝜆+) to (𝑌−, 𝜆−). An
almost complex structure 𝐽 on 𝑋 is cobordism-compatible if :

∙ 𝐽 agrees on [0,∞) × 𝑌+ with the restriction of a 𝜆+-compatible almost complex structure 𝐽+ on
ℝ × 𝑌+.

∙ 𝐽 agrees on (−∞, 0] × 𝑌− with the restriction of a 𝜆−-compatible almost complex structure 𝐽−
on ℝ × 𝑌−.

∙ 𝐽 is compatible with the symplectic form 𝑑𝜆 on 𝑋.

Now let 𝕁+ = {𝐽+,𝑡}𝑡∈𝑆1 be an 𝑆1-family of 𝜆+-compatible almost complex structures onℝ × 𝑌+,
and let 𝕁− = {𝐽−,𝑡}𝑡∈𝑆1 be an 𝑆1-family of 𝜆−-compatible almost complex structures onℝ × 𝑌−. Let
𝕁 = {𝐽𝑡}𝑡∈𝑆1 be an 𝑆1-family of cobordism-compatible almost complex structures on 𝑋, such that
𝐽𝑡 agrees with 𝐽+,𝑡 on [0,∞) × 𝑌+ and with 𝐽−,𝑡 on (−∞, 0] × 𝑌−. Note that given 𝕁+ and 𝕁−, the
space of 𝕁 is contractible.
If 𝛾± are Reeb orbits for 𝜆±, let Φ𝕁(𝛾+, 𝛾−) denote the moduli spaces of maps 𝑢 ∶ ℝ × 𝑆1 → 𝑋

satisfying the conditions

𝜕𝑠𝑢 + 𝐽𝑡𝜕𝑡𝑢 = 0, (3.2)

𝑢(𝑠, 𝑡) ∈ [0,∞) × 𝑌+ for 𝑠 >> 0,

𝑢(𝑠, 𝑡) ∈ (−∞, 0] × 𝑌− for 𝑠 << 0,

lim
𝑠→±∞

𝜋ℝ(𝑢(𝑠, ⋅)) = ±∞,

lim𝑠→±∞ 𝜋𝑌±(𝑢(𝑠, ⋅)) is a parameterization of 𝛾±, (3.3)

moduloℝ translation in the domain. (Note that unlikewith themoduli spaces̃ inDefinition 2.1,
there is now no ℝ action on the target to mod out by.)
As before, we have evaluation maps

𝑒± ∶ Φ
𝕁(𝛾+, 𝛾−)⟶ 𝛾±

defined by

𝑒±(𝑢) = lim
𝑠→±∞

𝜋𝑌±(𝑢(𝑠, 0)).

Suppose now that the contact forms 𝜆± are nondegenerate. If 𝑑 is an integer, let Φ𝕁
𝑑
(𝛾+, 𝛾−)

denote the set of 𝑢 ∈ Φ𝕁(𝛾+, 𝛾−) with

CZ𝜏(𝛾+) − CZ𝜏(𝛾−) + 2𝑐1(𝑢
∗𝑇𝑋, 𝜏) = 𝑑 − 1.

Lemma 3.11. Suppose that 𝜆± are nondegenerate and that 𝕁± and 𝕁 are generic. Then:

(a) For any Reeb orbits 𝛾± and any integer 𝑑, the moduli space Φ𝕁𝑑(𝛾+, 𝛾−) is a smooth manifold of
dimension 𝑑, and the evaluation maps 𝑒± on it are smooth.

(b) The moduli space Φ𝕁
𝑑
(𝛾+, 𝛾−) has a canonical orientation with values in 𝑒∗+𝛾+ ⊗ 𝑒∗−𝛾− .
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(c) Let 𝑘, 𝑙 ⩾ 0, let 𝛾+
0
, … , 𝛾+

𝑘
be distinct Reeb orbits for 𝜆+, let 𝛾−0 , … , 𝛾

−
𝑙
be distinct Reeb orbits for

𝜆−, and let 𝑑0, 𝑑+1 , … , 𝑑
+
𝑘
, 𝑑−
1
, … , 𝑑−

𝑙
be nonnegative integers. Then the fiber product

𝕁+

𝑑+
𝑘

(𝛾+
𝑘
, 𝛾+
𝑘−1
) ×

𝛾+
𝑘−1

⋯ ×
𝛾+
1

𝕁+

𝑑+
1

(𝛾+
1
, 𝛾+
0
)

×
𝛾+
0

Φ𝕁
𝑑0
(𝛾+
0
, 𝛾−0 )×𝛾−

0
(3.4)

𝕁−
𝑑−
1

(𝛾−0 , 𝛾
−
1 ) ×𝛾−

1
⋯ ×𝛾−

𝑙−1
𝕁−

𝑑−
𝑙

(𝛾−
𝑙−1
, 𝛾−
𝑙
)

is cut out transversely.

Proof. Parts (a) and (c) are standard transversality arguments, similar to Proposition 2.2. The
orientation convention for part (b) is explained at the beginning of Section A.5. □

Definition 3.12. Analogously to Definition 2.5, let Φ𝕁
𝑑
(𝛾+, 𝛾−) denote the union of all fiber

products (3.4) with 𝛾+
𝑘
= 𝛾+, 𝛾−𝑙 = 𝛾−, and

∑𝑘
𝑖=1 𝑑

+
𝑖
+ 𝑑0 +

∑𝑙
𝑗=1 𝑑

−
𝑗
= 𝑑. Define the evaluation

maps

𝑒± ∶ Φ
𝕁
𝑑
(𝛾+, 𝛾−)⟶ 𝛾±

and the topology on Φ𝕁
𝑑
(𝛾+, 𝛾−) as before.

Under the assumptions of Proposition 3.9, Φ𝕁
𝑑
(𝛾+, 𝛾−) is compact, similarly to Proposition 2.6.

Note that the extra hypothesis that every Reeb orbit of 𝜆+ is noncontractible in 𝑋 is needed to
avoid bubbling of holomorphic planes.
We now have the following compactness and gluing result, which is analogous to Proposi-

tion 2.7, except that the signs are slightly different.

Lemma 3.13. Under the assumptions of Proposition 3.9, let 𝛾± be Reeb orbits for 𝜆±. Then:

(a) Φ𝕁
0
(𝛾+, 𝛾−) is finite;

(b) Φ𝕁
1
(𝛾+, 𝛾−) is a compact oriented topological one-manifold with oriented boundary

𝜕Φ𝕁
1
(𝛾+, 𝛾−) =

∐
𝛾′+≠𝛾+
𝑑++𝑑=1

𝕁+
𝑑+
(𝛾+, 𝛾

′
+) ×𝛾′+

Φ𝕁
𝑑
(𝛾′+, 𝛾−)

⨆ ∐
𝛾′−≠𝛾−
𝑑+𝑑−=1

(−1)𝑑Φ𝕁
𝑑
(𝛾+, 𝛾

′
−) ×𝛾′−

𝕁−
𝑑−
(𝛾′−, 𝛾−);

(3.5)

(c) we also have analogues of (3.5) with point constraints as in [29, equations (2.13)–(2.15)].

Proof. Part (a) is similar to Proposition 2.7(a). Parts (b) and (c) follow from Proposition A.30. □
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Lemmas 3.11 and 3.13 imply, as in Proposition 2.8, that the moduli spaces Φ𝕁
𝑑
(𝛾+, 𝛾−) constitute

a ‘morphism’, in the sense of [29, Definition 2.7], from the Morse–Bott system for (𝑌+, 𝜆+; 𝕁+) to
the Morse–Bott system for (𝑌−, 𝜆−; 𝕁−). It then follows from Theorem 3.1(b)(i) that we have an
induced map

Φ(𝑋, 𝜆; 𝕁) ∶ 𝑁𝐶𝐻∗(𝑌+, 𝜆+; 𝕁+)⟶ 𝑁𝐶𝐻∗(𝑌−, 𝜆−; 𝕁−).

To complete the proof of Proposition 3.9, we need to show that this map does not depend on
the choice of generic 𝑆1-family of cobordism-compatible complex structures 𝕁 restricting to 𝕁+
and 𝕁−. For this purpose, let 𝕁0 and 𝕁1 be two such 𝑆1-families of cobordism-compatible almost
complex structures, and let {𝕁𝜏}𝜏∈[0,1] be a generic homotopy between them. Given Reeb orbits 𝛾±
for 𝜆±, let𝐾(𝛾+, 𝛾−) denote the set of pairs (𝜏, 𝑢)where 𝜏 ∈ (0, 1) and 𝑢 ∶ ℝ × 𝑆1 → 𝑋 satisfies the
conditions (3.2) with 𝐽𝑡 replaced by 𝐽𝜏𝑡 . Here, as usual, wemod out byℝ translation in the domain.
And again, we have evaluation maps

𝑒± ∶ 𝐾(𝛾+, 𝛾−)⟶ 𝛾±

defined by

𝑒±(𝜏, 𝑢) = lim
𝑠→±∞

𝜋𝑌±(𝑢(𝑠, 0)).

Continue to assume that the contact forms 𝜆± are nondegenerate. If 𝑑 is an integer, let 𝐾𝑑(𝛾+, 𝛾−)
denote the set of (𝜏, 𝑢) ∈ 𝐾(𝛾+, 𝛾−) with

CZ𝜏(𝛾+) − CZ𝜏(𝛾−) + 2𝑐1(𝑢
∗𝑇𝑋, 𝜏) = 𝑑 − 2.

We now have the following lemmawhich is similar to Lemmas 3.11 and 3.13; we omit the proof.

Lemma 3.14. Under the assumptions of Proposition 3.9, suppose that 𝕁0, 𝕁1, and {𝕁𝜏} are generic,
and let 𝛾± be Reeb orbits for 𝜆±. Then:

(a) The moduli space𝐾𝑑(𝛾+, 𝛾−) is a smooth manifold of dimension 𝑑 with a canonical orientation
taking values in 𝑒∗+𝛾+ ⊗ 𝑒∗−𝛾− , and the evaluation maps 𝑒± on it are smooth.

(b) Transversality as in (3.4) holds, with Φ𝕁
𝑑0
(𝛾+
0
, 𝛾−
0
) replaced by 𝐾𝑑0(𝛾

+
0
, 𝛾−
0
).

(c) 𝐾0(𝛾+, 𝛾−) is finite.
(d) 𝐾1(𝛾+, 𝛾−) has a compactification to a compact oriented topological one-manifold 𝐾1(𝛾+, 𝛾−)

with oriented boundary

𝜕𝐾1(𝛾+, 𝛾−) = − Φ
𝕁0

0 (𝛾+, 𝛾−)
⨆
Φ𝕁

1

0 (𝛾+, 𝛾−)⨆ ∐
𝛾′+≠𝛾+
𝑑++𝑑=1

(−1)𝑑+𝕁+
𝑑+
(𝛾+, 𝛾

′
+) ×𝛾′+

𝐾𝑑(𝛾
′
+, 𝛾−)

⨆ ∐
𝛾′−≠𝛾−
𝑑+𝑑−=1

(−1)𝑑𝐾𝑑(𝛾+, 𝛾
′
−) ×𝛾′−

𝕁−
𝑑−
(𝛾′−, 𝛾−).

(3.6)

(e) We also have analogues of (3.6) with point constraints as in [29, equations (2.35)–(2.37)].
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Lemma 3.14 implies that the moduli spaces 𝐾𝑑(𝛾+, 𝛾−) constitute a ‘homotopy’, in the sense of
[29, Definition 2.15], between the morphisms of Morse–Bott systems induced by 𝕁0 and 𝕁1. It then
follows from Theorem 3.1(b)(iv) that

Φ(𝑋, 𝜆; 𝕁0) = Φ(𝑋, 𝜆; 𝕁1) ∶ 𝑁𝐶𝐻∗(𝑌+, 𝜆+; 𝕁+)⟶ 𝑁𝐶𝐻∗(𝑌−, 𝜆−; 𝕁−).

This completes the proof of Proposition 3.9. □

3.5 Invariance of NCH

The cobordismmaps in Proposition 3.9 have two important propertieswhichwewill need to prove
invariance of nonequivariant contact homology.
We first consider scaling the contact form. Let 𝜆 be a nondegenerate contact form on 𝑌 with

Reeb vector field 𝑅. If 𝑐 > 0, then 𝑐𝜆 is also a nondegenerate contact form on 𝑌, with Reeb vector
field 𝑐−1𝑅. Thus, there is a canonical bijection between Reeb orbits of 𝜆 and Reeb orbits of 𝑐𝜆; if 𝛾
is a Reeb orbit of 𝜆, we denote the corresponding Reeb orbit of 𝑐𝜆 by 𝑐𝛾.
Let 𝕁 = {𝐽𝑡} be a generic 𝑆1-family of 𝜆-compatible almost complex structures as needed to

define the nonequivariant contact homology 𝑁𝐶𝐻∗(𝑌, 𝜆; 𝕁). There is then a unique 𝑆1-family
𝑐𝕁 = {𝑐𝐽𝑡} of 𝑐𝜆-compatible almost complex structures which agrees with 𝕁 on the contact dis-
tribution 𝜉 = Ker(𝜆) = Ker(𝑐𝜆). The diffeomorphism 𝜙 of ℝ × 𝑌 sending (𝑟, 𝑦) ↦ (𝑐𝑟, 𝑦) satisfies
𝑑𝜙 ◦ 𝐽𝑡 =

𝑐𝐽𝑡 ◦𝑑𝜙. Thus, for each pair 𝛾+, 𝛾− of distinct Reeb orbits of 𝛾, we obtain a canonical
diffeomorphism of moduli spaces

𝕁
𝑑
(𝛾+, 𝛾−) ≃𝑐𝕁(𝑐𝛾+,

𝑐𝛾−) (3.7)

sending [𝑢] ↦ [𝜙 ◦𝑢]. This diffeomorphism preserves the orientations (see Lemma A.27) and
evaluation maps. As a result, we have a canonical isomorphism of chain complexes

(
𝑁𝐶𝐶∗(𝑌, 𝜆), 𝜕

𝕁
�

)
=
(
𝑁𝐶𝐶∗(𝑌, 𝑐𝜆), 𝜕

𝑐𝕁
�

)
.

We denote the induced map on homology by

𝑠𝑐 ∶ 𝑁𝐶𝐻∗(𝑌, 𝜆; 𝕁)
≃
⟶ 𝑁𝐶𝐻∗(𝑌, 𝑐𝜆;

𝑐𝕁). (3.8)

We also need to consider composition of cobordisms. If (𝑋+, 𝜆+) is an exact symplectic cobor-
dism from (𝑌1, 𝜆1) to (𝑌2, 𝜆2), and if (𝑋−, 𝜆−) is an exact symplectic cobordism from (𝑌2, 𝜆2) to
(𝑌3, 𝜆3), then we can form the composite cobordism

𝑋− ◦𝑋+ = 𝑋− ⊔𝑌2 𝑋+,

glued using the neighborhood identifications (3.1). We define a 1-form 𝜆 on 𝑋− ◦𝑋+ to agree
with 𝜆± on 𝑋±, and this makes (𝑋− ◦𝑋+, 𝜆) into an exact symplectic cobordism from (𝑌1, 𝜆1) to
(𝑌3, 𝜆3).
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We can now state:

Proposition 3.15. The cobordism maps in Proposition 3.9 have the following properties.

(a) (Scaling) Suppose (𝑌, 𝜆0) is nondegenerate and hypertight. Let 𝕁 be an 𝑆1-family of 𝜆0-
compatible almost complex structures as needed to define 𝑁𝐶𝐻∗(𝑌, 𝜆0; 𝕁). Consider the trivial
cobordism

(𝑋, 𝜆) = ([𝑎, 𝑏] × 𝑌, 𝑒𝑟𝜆0). (3.9)

Then the cobordism map

Φ(𝑋, 𝜆; 𝑒
𝑎
𝕁, 𝑒

𝑏
𝕁) ∶ 𝑁𝐶𝐻∗(𝑌, 𝑒

𝑏𝜆0;
𝑒𝑏𝕁)⟶ 𝑁𝐶𝐻∗(𝑌, 𝑒

𝑎𝜆0;
𝑒𝑎𝕁)

agrees with the scaling isomorphism 𝑠𝑒𝑎−𝑏 in (3.8).
(b) (Composition) Let (𝑌𝑖, 𝜆𝑖) be nondegenerate and hypertight, and let 𝕁𝑖 be an 𝑆1-family of 𝜆𝑖-

compatible almost complex structures as needed to define 𝑁𝐶𝐻∗(𝑌, 𝜆𝑖; 𝕁𝑖), for 𝑖 = 1, 2, 3. Let
(𝑋+, 𝜆+) be an exact symplectic cobordism from (𝑌1, 𝜆1) to (𝑌2, 𝜆2), and let (𝑋−, 𝜆−) be an exact
symplectic cobordism from (𝑌2, 𝜆2) to (𝑌3, 𝜆3). Assume further that every Reeb orbit for 𝜆1 is
noncontractible in 𝑋− ◦𝑋+, and every Reeb orbit for 𝜆2 is noncontractible in 𝑋−. Then

Φ(𝑋− ◦𝑋+, 𝜆; 𝕁3, 𝕁1) = Φ(𝑋−, 𝜆−; 𝕁3, 𝕁2) ◦Φ(𝑋+, 𝜆+; 𝕁2, 𝕁1).

Proposition 3.15 will be proved in Sections 3.6 and 3.7. Meanwhile, we now use Proposition 3.15
to deduce the invariance of nonequivariant contact homology by a simple formal argument.

Proof of Theorem 1.4. Let 𝜆1 and 𝜆2 be nondegenerate hypertight contact forms on 𝑌 with
Ker(𝜆1) = Ker(𝜆2). Let 𝕁1 and 𝕁2 be generic 𝑆1-families of almost complex structures as needed
to define the nonequivariant contact homology of 𝜆1 and 𝜆2. We define a map

𝜙(𝜆2;𝕁2),(𝜆1;𝕁1) ∶ 𝑁𝐶𝐻∗(𝑌, 𝜆1; 𝕁1)⟶ 𝑁𝐶𝐻∗(𝑌, 𝜆2; 𝕁2) (3.10)

as follows.We know that 𝜆1 = 𝑒𝑓𝜆2 for some smooth function 𝑓 ∶ 𝑌 → ℝ. Pick a sufficiently large
constant 𝑐 so that 𝑐 + 𝑓 > 0 on all of 𝑌. We then have an exact symplectic cobordism (𝑋, 𝜆) from
(𝑌, 𝑒𝑐𝜆1) to (𝑌, 𝜆2) given by

𝑋 = {(𝑟, 𝑦) ∈ ℝ × 𝑌 ∣ 0 ⩽ 𝑟 ⩽ 𝑓(𝑦) + 𝑐},

𝜆 = 𝑒𝑟𝜆2.
(3.11)

We define the map (3.10) to be the composition of the scaling isomorphism

𝑠𝑒𝑐 ∶ 𝑁𝐶𝐻∗(𝑌, 𝜆1; 𝕁1)
≃
⟶ 𝑁𝐶𝐻∗(𝑌, 𝑒

𝑐𝜆1;
𝑒𝑐𝕁1)

with the cobordism map

Φ(𝑋, 𝜆; 𝕁2,
𝑒𝑐𝕁1) ∶ 𝑁𝐶𝐻∗(𝑌, 𝑒

𝑐𝜆1;
𝑒𝑐𝕁1)⟶ 𝑁𝐶𝐻∗(𝑌, 𝜆2; 𝕁2).

We now prove that:
(i) The map (3.10) does not depend on the choice of constant 𝑐 used to define it.
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(ii) When 𝜆1 = 𝜆2 and 𝕁1 = 𝕁2, we have

𝜙(𝜆;𝕁),(𝜆;𝕁) = id𝑁𝐶𝐻∗(𝑌,𝜆;𝕁) .

(iii) If 𝜆3 is another nondegenerate hypertight contact form and 𝕁3 is a generic 𝑆1-family of 𝜆3-
compatible almost complex structures, then

𝜙(𝜆3;𝕁3),(𝜆2;𝕁2) ◦𝜙(𝜆2;𝕁2),(𝜆1;𝕁1) = 𝜙(𝜆3;𝕁3),(𝜆1;𝕁1). (3.12)

The above three properties imply that the maps (3.10) canonically identify the nonequivariant
contact homologies for different choices of 𝜆 and 𝕁 with each other.

(i) To prove that the map (3.10) does not depend on the choice of 𝑐, suppose that 𝑐′ > 𝑐, and let
(𝑋′, 𝜆) denote the cobordism (3.11) defined using 𝑐′ instead of 𝑐. We then have a commutative
diagram

𝑁𝐶𝐻∗(𝑌, 𝜆1; 𝕁1)
𝑠
𝑒𝑐
′

���→ 𝑁𝐶𝐻∗(𝑌, 𝑒
𝑐′𝜆1;

𝑒𝑐
′

𝕁1)
Φ(𝑋′,𝜆;𝕁2,

𝑒𝑐
′
𝕁1)

��������������→ 𝑁𝐶𝐻∗(𝑌, 𝜆2; 𝕁2)‖‖‖ 𝑠
𝑒𝑐−𝑐

′

⏐⏐⏐⏐⏐⏐⏐
↓

‖‖‖
𝑁𝐶𝐻∗(𝑌, 𝜆1; 𝕁1)

𝑠𝑒𝑐
��→ 𝑁𝐶𝐻∗(𝑌, 𝑒

𝑐𝜆1;
𝑒𝑐𝕁1)

Φ(𝑋,𝜆;𝕁2,
𝑒𝑐 𝕁1)

�������������→ 𝑁𝐶𝐻∗(𝑌, 𝜆2; 𝕁2).

Here the top row is the map (3.10) defined using 𝑐′, and the bottom row is the map (3.10)
defined using 𝑐. The left square commutes because the composition of two scaling isomor-
phisms is, by definition, a scaling isomorphism. Commutativity of the right square follows
from both parts of Proposition 3.15 and the fact that the cobordism 𝑋′ is the composition of
𝑋 with the trivial cobordism(

{(𝑟, 𝑦) ∈ ℝ × 𝑌 ∣ 𝑓(𝑦) + 𝑐 ⩽ 𝑟 ⩽ 𝑓(𝑦) + 𝑐′}, 𝑒𝑟𝜆2
)
≃
(
[𝑐, 𝑐′] × 𝑌, 𝑒𝑟(𝑒𝑐𝜆1)

)
.

(ii) This follows from the Scaling property in Proposition 3.15.
(iii) Write 𝜆1 = 𝑒𝑓1𝜆2 and 𝜆2 = 𝑒𝑓2𝜆3. By arguments as in the proof of part (i), we can assume

without loss of generality that the contact forms have been scaled so that 𝑓1 > 𝑓2 > 0 every-
where. We can then define all of the maps in (3.12) using 𝑐 = 0. Equation (3.12) now follows
from the Composition property in Proposition 3.15.

□

3.6 Proof of the scaling property

Proof of Proposition 3.15(a).We can identify the completion 𝑋 of the trivial cobordism (3.9) with
ℝ × 𝑌, so that (−∞, 0] × 𝑌 is identified with (−∞, 𝑎] × 𝑌 by shifting the ℝ coordinate by 𝑎, and
[0,∞) × 𝑌 is identified with [𝑏,∞) × 𝑌 by shifting the ℝ coordinate by 𝑏. We now define an 𝑆1-
family 𝕁𝑋 = {𝐽𝑋𝑡 }𝑡∈𝑆1 of cobordism-compatible almost complex structures on𝑋 as follows. Choose
a positive function 𝑓 ∶ ℝ → ℝ with 𝑓(𝑟) = 𝑒−𝑎 for 𝑟 ⩽ 𝑎 and 𝑓(𝑟) = 𝑒−𝑏 for 𝑟 ⩾ 𝑏. There is then a
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unique cobordism-compatible almost complex structure 𝐽𝑋𝑡 on 𝑋 such that

𝐽𝑋𝑡 (𝑣) = 𝐽𝑡(𝑣)

for 𝑣 ∈ 𝜉 = Ker(𝜆), and

𝐽𝑋𝑡 (𝜕𝑟) = 𝑓(𝑟)𝑅.

Now let g ∶ ℝ → ℝ be an antiderivative of 𝑓. Then the diffeomorphism 𝜙 of ℝ × 𝑌 sending
(𝑟, 𝑦) ↦ (g(𝑟), 𝑦)) satisfies 𝑑𝜙 ◦ 𝐽𝑋𝑡 = 𝐽𝑡 ◦𝑑𝜙. Thus, if 𝛾+ and 𝛾− are Reeb orbits of 𝛾, we obtain a
diffeomorphism of moduli spaces

Φ𝕁
𝑋
(
𝑒𝑏𝛾+,

𝑒𝑎𝛾−

)
≃ ̃𝕁(𝛾+, 𝛾−).

If 𝛾+ ≠ 𝛾−, then after choosing a smooth slice of the ℝ action on the right-hand side, we obtain a
diffeomorphism

Φ𝕁
𝑋

𝑑

(
𝑒𝑏𝛾+,

𝑒𝑎𝛾−

)
≃ ℝ ×𝕁

𝑑−1
(𝛾+, 𝛾−). (3.13)

And if 𝛾+ = 𝛾−, then we have a canonical diffeomorphism

Φ𝕁
𝑋

𝑑

(
𝑒𝑏𝛾, 𝑒

𝑎
𝛾
)
=

{
𝛾, 𝑑 = 1,

∅, 𝑑 ≠ 1. (3.14)

Moreover, the diffeomorphisms (3.13) and (3.14) are orientation preserving, as shown in
Lemma A.31. These orientation preserving diffeomorphisms imply that in the terminology of
[29, Example 2.8], the pushforwards under 𝜙 of the moduli spaces Φ𝕁𝑋

𝑑
(𝑒
𝑏
𝛾+,

𝑒𝑎𝛾−) constitute
the identity morphism on the Morse–Bott system determined by (𝑌, 𝜆; 𝕁). It then follows from
Theorem 3.1(b)(ii) that Φ(𝑋, 𝜆; 𝕁𝑋) agrees with the scaling isomorphism 𝑠𝑒𝑎−𝑏 . □

3.7 Proof of the composition property

Proof of Proposition 3.15(b). If 𝑅 ⩾ 0 is a nonnegative real number (here 𝑅 does not denote a Reeb
vector field), define a ‘stretched composition’

𝑋− ◦ 𝑅𝑋+ = 𝑋− ⊔𝑌2 ([−𝑅, 𝑅] × 𝑌2) ⊔𝑌2 𝑋+.

Define a 1-form 𝜆𝑅 on 𝑋− ◦ 𝑅𝑋+ by

𝜆𝑅 =

⎧⎪⎨⎪⎩
𝑒−𝑅𝜆− on 𝑋−,
𝑒𝑟𝜆2 on [−𝑅, 𝑅] × 𝑌2,
𝑒𝑅𝜆+ on 𝑋+.

This makes (𝑋− ◦ 𝑅𝑋+, 𝜆𝑅) into an exact symplectic cobordism from (𝑌1, 𝑒𝑅𝜆1) to (𝑌3, 𝑒−𝑅𝜆3).
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Generically choose 𝑆1-families 𝕁± = {𝐽±𝑡 }𝑡∈𝑆1 of cobordism-compatible almost complex struc-
tures on 𝑋± that agree with 𝕁2 near 𝑌2. Define an 𝑆1-family 𝕁𝑅 = {𝐽𝑅𝑡 }𝑡∈𝑆1 of almost complex
structures on 𝑋− ◦ 𝑅𝑋+ by

𝐽𝑅𝑡 =

⎧⎪⎨⎪⎩
𝐽−𝑡 on ((−∞, 0] × 𝑌3) ⊔𝑌3 𝑋−,
𝐽2,𝑡 on [−𝑅, 𝑅] × 𝑌2,
𝐽+𝑡 on 𝑋+ ⊔𝑌1 ([0,∞) × 𝑌1).

Note that 𝐽𝑅𝑡 is not quite cobordism-compatible for 𝑅 ≠ 0, because on (−∞, 0] × 𝑌3 and [0,∞) ×
𝑌1, we have that 𝐽𝑅𝑡 (𝜕𝑟) is 𝑒

±𝑅 timeswhat it should be.However, this does not affect our arguments.
If 𝛾+ is a Reeb orbit for 𝜆1 and 𝛾− is a Reeb orbit for 𝛾3, define 𝐾(𝛾+, 𝛾−) to be the set of pairs

(𝑅, 𝑢) where 𝑅 > 0 and 𝑢 ∶ ℝ × 𝑆1 → 𝑋− ◦ 𝑅𝑋+ satisfies

𝜕𝑠𝑢 + 𝐽
𝑅
𝑡 𝜕𝑡𝑢 = 0,

𝑢(𝑠, 𝑡) ∈ [0,∞) × 𝑌1 for 𝑠 >> 0,

𝑢(𝑠, 𝑡) ∈ (−∞, 0] × 𝑌3 for 𝑠 << 0,

lim𝑠→+∞ 𝜋𝑌1(𝑢(𝑠, ⋅)) is a parameterization of 𝛾+,

lim𝑠→−∞ 𝜋𝑌3(𝑢(𝑠, ⋅)) is a parameterization of 𝛾−,

modulo ℝ translation in the domain. As usual we have evaluation maps

𝑒± ∶ 𝐾(𝛾+, 𝛾−)⟶ 𝛾±.

If 𝑑 is an integer, let 𝐾𝑑(𝛾+, 𝛾−) denote the set of (𝑅, 𝑢) ∈ 𝐾(𝛾+, 𝛾−) with

CZ𝜏(𝛾+) − CZ𝜏(𝛾−) + 2𝑐1(𝑢
∗𝑇(𝑋− ◦ 𝑅𝑋+), 𝜏) = 𝑑 − 2.

(Here we are continuing to assume that 𝜆± are nondegenerate so that this makes sense.) Similarly
to Lemma 3.14, we have:

Lemma 3.16. Under the assumptions of Proposition 3.15, suppose that 𝕁+ and 𝕁− are generic. Given
𝐿 > 0, there exists 𝑅0 ⩾ 0 such that after a small perturbation of the family {𝕁𝑅}𝑅⩾0 supported where
𝑅 ⩽ 𝑅0, the following is true. Let 𝛾+ be a Reeb orbit for 𝜆1 with action less than 𝐿, and let 𝛾− be a Reeb
orbit for 𝜆3. Then:

(a) The moduli space𝐾𝑑(𝛾+, 𝛾−) is a smooth manifold of dimension 𝑑 with a canonical orientation
taking values in 𝑒∗+𝛾+ ⊗ 𝑒∗−𝛾− , and the evaluation maps 𝑒± on it are smooth.

(b) Transversality as in (3.4) holds, with 𝕁+ replaced by 𝕁1, with 𝕁− replaced by 𝕁3, and with
Φ𝕁
𝑑0
(𝛾+
0
, 𝛾−
0
) replaced by 𝐾𝑑0(𝛾

+
0
, 𝛾−
0
).

(c) 𝐾0(𝛾+, 𝛾−) is finite.
(d) If 𝛾0 is a Reeb orbit for 𝜆2, then the fiber product

Φ𝕁
+

𝑑+
(𝛾+, 𝛾0) ×𝛾0 Φ

𝕁−

𝑑−
(𝛾0, 𝛾−)
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is cut out transversely. The same also holds for more general such fiber products in which some
moduli spaces𝕁1 ,𝕁2 , and/or𝕁3 are inserted.

(e) 𝐾1(𝛾+, 𝛾−) has a compactification to a compact oriented topological one-manifold 𝐾1(𝛾+, 𝛾−)
with oriented boundary

𝜕𝐾1(𝛾+, 𝛾−) = − Φ
𝕁0

0 (𝛾+, 𝛾−)⨆∐
𝛾0

Φ𝕁
+

0 (𝛾+, 𝛾0) ×𝛾0 Φ
𝕁−

0 (𝛾0, 𝛾−)

⨆ ∐
𝛾′+≠𝛾+
𝑑++𝑑=1

(−1)𝑑+𝕁1
𝑑+
(𝛾+, 𝛾

′
+) ×𝛾′+

𝐾𝑑(𝛾
′
+, 𝛾−)

⨆ ∐
𝛾′−≠𝛾−
𝑑+𝑑−=1

(−1)𝑑𝐾𝑑(𝛾+, 𝛾
′
−) ×𝛾′−

𝕁3
𝑑−
(𝛾′−, 𝛾−).

(3.15)

(f) We also have analogues of (3.15) with point constraints as in [29, equations (2.35)–(2.37)].

Part (d) implies that if we restrict to Reeb orbits of 𝜆+ with action less than 𝐿, then the mor-
phisms of Morse–Bott systems given by the moduli spaces Φ𝕁+ and Φ𝕁− are composable in the
sense of [29, Definition 2.10]. The rest of Lemma 3.16 then implies that, again restricting to
Reeb orbits of 𝜆+ with action less than 𝐿, the moduli spaces 𝐾𝑑 give a homotopy between the
composition and the morphism given by the moduli spaces Φ𝕁0 . It then follows by applying
Theorem 3.1(b)(iii,iv) and taking the direct limit as 𝐿 → ∞ that the Composition property in
Proposition 3.15 holds. □

4 𝑺𝟏-EQUIVARIANT CONTACT HOMOLOGY

Continue to assume that 𝜆 is a nondegenerate hypertight contact form on a closed manifold 𝑌.
We now define the 𝑆1-equivariant contact homology 𝐶𝐻𝑆1∗ (𝑌, 𝜆;𝔍), where 𝔍 is a generic 𝑆1-
equivariant 𝑆1 × 𝐸𝑆1 family of 𝜆-compatible almost complex structures, and we prove that the
𝑆1-equivariant contact homology depends only on 𝑌 and 𝜉 = Ker(𝜆). This construction closely
parallels the definition of nonequivariant contact homology in Sections 2 and 3, with minor
modifications which we will explain.

4.1 𝑺𝟏-equivariant moduli spaces

We regard 𝐸𝑆1 = lim𝑁→∞ 𝑆2𝑁+1. Let 𝜋 ∶ 𝐸𝑆1 → 𝐵𝑆1 = ℂ𝑃∞ denote the projection.
Let

𝔍 =
{
𝔍𝑡,𝑧 ∣ 𝑡 ∈ 𝑆

1, 𝑧 ∈ 𝐸𝑆1
}

be an 𝑆1 × 𝐸𝑆1 family of 𝜆-compatible almost complex structures on ℝ × 𝑌. We assume that 𝔍
is smooth in the sense that its restriction to 𝑆1 × 𝑆2𝑁+1 is smooth for each 𝑁. We further assume
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that𝔍 is 𝑆1-equivariant in the sense that

𝔍𝑡,𝑧 = 𝔍𝑡+𝜑,𝜑⋅𝑧 (4.1)

for each 𝑡, 𝜑 ∈ 𝑆1 and 𝑧 ∈ 𝐸𝑆1
Define a function 𝑓𝑁 ∶ 𝑆2𝑁+1 → ℝ by

𝑓𝑁(𝑧0, … , 𝑧𝑁) =
1

2

𝑁∑
𝑖=1

𝑖|𝑧𝑖|2.
Under the projection 𝜋 ∶ 𝑆2𝑁+1 → ℂ𝑃𝑁 , the function 𝑓𝑁 descends to a Morse function 𝑓𝑁 ∶
ℂ𝑃𝑁 → ℝ with one critical point of each index 0, 2, … , 2𝑁. If we write points in ℂ𝑃𝑁 in the form
[𝑧0 ∶ 𝑧1 ∶ ⋯ ∶ 𝑧𝑁], then the critical point of index 2𝑘 has 𝑧𝑗 = 0 for 𝑗 ≠ 𝑘.
Let𝑉𝑁 denote the gradient of 𝑓𝑁 with respect to the standardmetric on 𝑆2𝑁+1. Our convention

is that a ‘parameterized flow line’ of 𝑉𝑁 is a map 𝜂 ∶ ℝ → 𝑆2𝑁+1 such that 𝜂′(𝑠) = 𝑉𝑁(𝜂(𝑠)) for
all 𝑠. For such a parameterized flow line, if we write 𝜂(0) = (𝑧0, … , 𝑧𝑁) ∈ ℂ𝑁+1, then we have

𝜂(𝑠) =

(
𝑧0, 𝑒

𝑠𝑧1, … , 𝑠
𝑁𝑠𝑧𝑁

)√|𝑧0|2 + 𝑒2𝑠|𝑧1|2 +⋯ + 𝑒2𝑁𝑠|𝑧𝑁|2 . (4.2)

Let 𝑓 ∶ 𝐸𝑆1 → ℝ denote the direct limit of the functions 𝑓𝑁 , and let 𝑓 ∶ 𝐵𝑆1 → ℝ denote the
direct limit of the functions 𝑓𝑁 . The vector field𝑉𝑁 pushes forward, under the inclusion 𝑆2𝑁+1 →
𝑆2𝑁+3, to the vector field 𝑉𝑁+1; thus we can regard the vector fields 𝑉𝑁 as defining a ‘direct limit
vector field’𝑉 on 𝐸𝑆1. In particular, we use the terminology ‘parameterized flow line of𝑉’ to refer
to a parameterized flow line of 𝑉𝑁 for some 𝑁.

Definition 4.1. Let 𝛾+ and 𝛾− be Reeb orbits, and let 𝑥+ and 𝑥− be critical points of 𝑓. Define̂𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−)) to be the set of pairs (𝜂, 𝑢), where:

∙ 𝜂 ∶ ℝ → 𝐸𝑆1 is a parameterized flow line of 𝑉 with lim𝑠→±∞ 𝜂(𝑠) ∈ 𝜋−1(𝑥±).
∙ 𝑢 ∶ ℝ × 𝑆1 → ℝ × 𝑌 satisfies the equation

𝜕𝑠𝑢 + 𝔍𝑡,𝜂(𝑠)𝜕𝑡𝑢 = 0. (4.3)

∙ lim𝑠→±∞ 𝜋ℝ(𝑢(𝑠, ⋅)) = ±∞, and lim𝑠→±∞ 𝜋𝑌(𝑢(𝑠, ⋅)) is a parameterization of the Reeb orbit 𝛾±.

Definition 4.2. Observe that ℝ acts on ̂𝔍 by translation of the parameter 𝑠 in 𝜂 and 𝑢
simultaneously. Moreover, it follows from (4.1) that 𝑆1 acts on ̂𝔍 by

(𝜑 ⋅ (𝜂, 𝑢))(𝑠, 𝑡) = (𝜑 ⋅ 𝜂(𝑠), 𝑢(𝑠, 𝑡 − 𝜑)). (4.4)

Let ̃𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−)) denote the quotient of ̂𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−)) by this ℝ × 𝑆1 action.

Finally, if the pairs (𝑥+, 𝛾+) and (𝑥−, 𝛾−) are distinct, then ℝ acts freely on
̃𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−)) by composing 𝑢 with translations in the target ℝ × 𝑌, and we let
𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−)) denote the quotient by this ℝ action.
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If 𝑥 ∈ Crit(𝑓) and 𝛾 is a Reeb orbit, define

(𝑥, 𝛾) =
(
𝜋−1(𝑥) × 𝛾

)
∕𝑆1,

where 𝑆1 acts on 𝜋−1(𝑥) × 𝛾 as follows: If 𝛾 has period 𝑇, meaning that 𝛾 ∶ ℝ∕𝑇ℤ → 𝑌, and if
𝑡 ∈ ℝ∕𝑇ℤ, then 𝜑 ∈ 𝑆1 = ℝ∕ℤ acts by

𝜑 ⋅ (𝑥, 𝛾(𝑡)) = (𝜑 ⋅ 𝑥, 𝛾(𝑡 − 𝑇𝜑)). (4.5)

We then have well-defined evaluation maps

𝑒± ∶𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−))⟶ (𝑥±, 𝛾±)

defined by

𝑒±(𝜂, 𝑢) =
(
lim
𝑠→±∞

𝜂(𝑠), lim
𝑠→±∞

𝜋𝑌(𝑢(𝑠, 0))
)
. (4.6)

If 𝑑 is an integer, let 𝔍

𝑑
((𝑥+, 𝛾+), (𝑥−, 𝛾−)) denote the set of (𝜂, 𝑢) in the moduli space

𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−)) such that

CZ𝜏(𝛾+) − CZ𝜏(𝛾−) + 2𝑐1(𝑢
∗𝜉, 𝜏) + ind(𝑓, 𝑥+) − ind(𝑓, 𝑥−) = 𝑑.

Here ind(𝑓, 𝑥) denotes the Morse index of 𝑓 at the critical point 𝑥, which is a nonnegative
even integer.
Analogously to Proposition 2.2, we have:

Proposition 4.3. If𝔍 is generic, then:

(a) If 𝛾+, 𝛾− are Reeb orbits and 𝑥+, 𝑥− are critical points of 𝑓, such that the pairs (𝑥+, 𝛾+) and
(𝑥−, 𝛾−) are distinct, and if 𝑑 is an integer, then the moduli space𝔍

𝑑
((𝑥+, 𝛾+), (𝑥−, 𝛾−)) is cut

out transversely and is a smooth manifold of dimension 𝑑, and the evaluation maps 𝑒+ and 𝑒−
on it are smooth.

(b) Each 𝑘-fold fiber product

𝔍

𝑑1
((𝑥0, 𝛾0), (𝑥1, 𝛾1)) ×(𝑥1,𝛾1)

𝔍

𝑑2
((𝑥1, 𝛾1), (𝑥2, 𝛾2))

×
(𝑥2,𝛾2)

⋯×
(𝑥𝑘−1,𝛾𝑘−1)

𝔍

𝑑𝑘
((𝑥𝑘−1, 𝛾𝑘−1), (𝑥𝑘, 𝛾𝑘))

is cut out transversely, and in particular is a smooth manifold of dimension
∑𝑘
𝑖=1 𝑑𝑖 − 𝑘 + 1.

The precise meaning of transversality in part (a) is that each element of the moduli space is
‘regular’ in the sense of Definition A.32.
Assume for the rest of this subsection that 𝔍 is generic in the above sense. Analogously to

Proposition 2.3, we have the following proposition, which is proved in Section A.6:
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Proposition 4.4. For each critical point 𝑥 of 𝑓 and each Reeb orbit 𝛾, there is a canonical local
system (𝑥,𝛾) over (𝑥, 𝛾), locally isomorphic to ℤ, such that:
(a) the local system (𝑥,𝛾) is trivial if and only if 𝛾 is a good Reeb orbit;
(b) the moduli space 𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−)) has a canonical orientation with values in

𝑒∗+(𝑥+,𝛾+) ⊗ 𝑒∗−(𝑥−,𝛾−).

Definition 4.5. Let𝔍

𝑑 ((𝑥+, 𝛾+), (𝑥−, 𝛾−)) denote the set of 𝑘-tuples (𝑢1, … , 𝑢𝑘) such that:

∙ there exist distinct pairs (𝑥+, 𝛾+) = (𝑥0, 𝛾0), (𝑥1, 𝛾1), … , (𝑥𝑘, 𝛾𝑘) = (𝑥−, 𝛾−) such that
𝑢𝑖 ∈𝔍

𝑑𝑖
((𝑥𝑖−1, 𝛾𝑖−1), (𝑥𝑖, 𝛾𝑖)) for 𝑖 = 1, … , 𝑘.

∙ 𝑒−(𝑢𝑖) = 𝑒+(𝑢𝑖+1) for 𝑖 = 1, … , 𝑘 − 1.
∙
∑𝑘
𝑖=1 𝑑𝑖 = 𝑑.

Define the topology and evaluation maps on𝔍

𝑑 ((𝑥+, 𝛾+), (𝑥−, 𝛾−)) as in Definition 2.5.

Analogously to Proposition 2.6, we have:

Proposition 4.6. If the pairs (𝑥+, 𝛾+) and (𝑥−, 𝛾−) are distinct and 𝑑 is an integer, then
𝔍

𝑑 ((𝑥+, 𝛾+), (𝑥−, 𝛾−)) is compact.

Define constrained moduli spaces𝔍

𝑑
((𝑥+, 𝛾+), 𝑝+, (𝑥−, 𝛾−)) for 𝑝+ ∈ (𝑥+, 𝛾+) and so on as in

Section 2.5. We now have the following analogue of Proposition 2.7:

Proposition 4.7. Let (𝑥+, 𝛾+) and (𝑥−, 𝛾−) be distinct pairs of a critical point of 𝑓 and a Reeb orbit.
Let 𝑝± ∈ (𝑥±, 𝛾±). Assume that the pair (𝑝+, 𝑝−) is generic so that:

∙ 𝑝+ is a regular value of all evaluation maps

𝑒+ ∶𝔍

𝑑
((𝑥+, 𝛾+), (𝑥0, 𝛾0))⟶ (𝑥+, 𝛾+)

for 𝑑 ⩽ 2;
∙ 𝑝− is a regular value of all evaluation maps

𝑒− ∶𝔍

𝑑
((𝑥0, 𝛾0), (𝑥−, 𝛾−)⟶ (𝑥−, 𝛾−)

for 𝑑 ⩽ 2;
∙ (𝑝+, 𝑝−) is a regular value of all products of evaluation maps

𝑒+ × 𝑒− ∶𝔍

𝑑
((𝑥+, 𝛾+), (𝑥−, 𝛾−))⟶ (𝑥+, 𝛾+) × (𝑥−, 𝛾−)

for 𝑑 ⩽ 3.

Then:

(a) 𝔍
0
((𝑥+, 𝛾+), (𝑥−, 𝛾−)) is finite.
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(b) Analogously to (2.6), 𝔍

1 ((𝑥+, 𝛾+), (𝑥−, 𝛾−)) is a compact oriented topological one-manifold
with oriented boundary

𝜕𝔍

1 ((𝑥+, 𝛾+), (𝑥−, 𝛾−)) =
∐

(𝑥0,𝛾0)≠(𝑥+,𝛾+),(𝑥−,𝛾−)
𝑑++𝑑−=1

(−1)𝑑+𝔍

𝑑+
((𝑥+, 𝛾+), (𝑥0, 𝛾0))

×
(𝑥0,𝛾0)

𝔍

𝑑−
((𝑥0, 𝛾0), (𝑥−, 𝛾−)).

(c) Likewise, analogues of (2.7) and (2.8) hold with 𝕁
2
(𝛾+, 𝑝+, 𝛾−) replaced by

𝔍

2 ((𝑥+, 𝛾+), 𝑝+, (𝑥−, 𝛾−)), and so forth.
(d) Likewise, an analogue of (2.9) holds with𝕁

3
(𝛾+, 𝑝+, 𝛾−, 𝑝−) replaced by

𝔍

3 ((𝑥+, 𝛾+), 𝑝+, (𝑥−, 𝛾−), 𝑝−)), and so forth.

Proof. (a) This is analogous to the proof of Proposition 2.7(a).
(b)–(d). This follows from an analogue of Proposition A.28. □

4.2 Definition of 𝑺𝟏-equivariant contact homology

Continue to assume that 𝔍 is generic. By analogy with Section 2.6, define a Morse–Bott system
(𝑋, | ⋅ |, 𝑆,,𝑀∗, 𝑒±) as follows.
∙ 𝑋 is the set of pairs (𝑥, 𝛾) where 𝑥 is a critical point of 𝑓 on 𝐵𝑆1 and 𝛾 is a Reeb orbit.
∙ If (𝑥, 𝛾) ∈ 𝑋, then |(𝑥, 𝛾)| is the mod 2 Conley–Zehnder index CZ(𝛾); 𝑆(𝑥,𝛾) = (𝑥, 𝛾); and (𝑥,𝛾)
is the local system in Proposition 4.4.

∙ If (𝑥+, 𝛾+), (𝑥−, 𝛾−) ∈ 𝑋 are distinct and 𝑑 ∈ {0, 1, 2, 3}, then

𝑀𝑑((𝑥+, 𝛾+), (𝑥−, 𝛾−)) =𝔍

𝑑
((𝑥+, 𝛾+), (𝑥−, 𝛾−)).

The evaluation maps 𝑒± on 𝑀𝑑 are defined by (4.6), and the orientation on 𝑀𝑑 is given by
Proposition 4.4.

Proposition 4.8. If𝔍 is generic, then the above data constitute a Morse–Bott system.

Proof. This parallels the proof of Proposition 2.8. The one new ingredient is that in the proof of the
Finiteness axiom, we need to know that if𝔍

𝑑
((𝑥+, 𝛾+)(𝑥−, 𝛾−)) is nonempty, then ind(𝑓, 𝑥+) ⩾

ind(𝑓, 𝑥−) and(𝛾+) ⩾ (𝛾−). The inequality on Morse indices holds because the vector field 𝑉
on 𝐸𝑆1 projects to a Morse–Smale vector field on 𝐵𝑆1.
To prove the action inequality, suppose that (𝜂, 𝑢) ∈𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−)). For 𝑠 ∈ ℝ, define

a map 𝛾𝑠 ∶ 𝑆1 → ℝ × 𝑌 by 𝛾𝑠(𝑡) = 𝑢(𝑠, 𝑡). Then

lim
𝑠→±∞∫𝑆1 𝛾

∗
𝑠 𝜆 = (𝛾±),
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so it is enough to show that 𝑑
𝑑𝑠

∫𝑆1 𝛾∗𝑠 𝜆 ⩾ 0. We compute that
𝑑

𝑑𝑠 ∫𝑆1 𝛾
∗
𝑠 𝜆 = ∫𝑆1 𝑑𝜆(𝜕𝑠𝑢, 𝜕𝑡𝑢)𝑑𝑡

= ∫𝑆1 𝑑𝜆(−𝔍𝑡,𝜂(𝑠)𝜕𝑡𝑢, 𝜕𝑡𝑢)𝑑𝑡.

The integrand is pointwise nonnegative because the almost complex structure 𝔍𝑡,𝜂(𝑠) is
𝜆-compatible. □

Definition 4.9. We define the 𝑆1-equivariant contact homology 𝐶𝐻𝑆1∗ (𝑌, 𝜆;𝔍) to be the cascade
homology𝐻�

∗ (defined in [29]) of the above Morse–Bott system.

Concretely, 𝐶𝐻𝑆1∗ (𝑌, 𝜆;𝔍) is the homology of a chain complex (𝐶𝐶
𝑆1

∗ (𝑌, 𝜆), 𝜕
𝑆1,𝔍) over ℤ. The

module𝐶𝐶𝑆1∗ (𝑌, 𝜆) has a ‘check’ and a ‘hat’ generator for each pair (𝑥, 𝛾)where 𝑥 is a critical point
of 𝑓 and 𝛾 is a Reeb orbit. For convenience, we denote these generators by �𝛾 ⊗ 𝑈𝑘 and 𝛾 ⊗ 𝑈𝑘,
respectively, where 2𝑘 is the Morse index of 𝑥. Equivalently we can write

𝐶𝐶𝑆
1

∗ (𝑌, 𝜆) = 𝑁𝐶𝐶∗(𝑌, 𝜆) ⊗ ℤ[𝑈].

The mod 2 gradings of the generators are given by

|�𝛾 ⊗ 𝑈𝑘| = CZ(𝛾),
|𝛾 ⊗ 𝑈𝑘| = CZ(𝛾) + 1.

The differential 𝜕𝑆1,𝔍 is defined by counting cascades just as in Sections 3.2 and 3.3, except that
now the cascades are defined using the moduli spaces𝔍

𝑑
((𝑥+, 𝛾+), (𝑥−, 𝛾−)) instead of the mod-

uli spaces𝕁
𝑑
(𝛾+, 𝛾−). Here one needs to choose a base point 𝑝(𝑥,𝛾) ∈ (𝑥, 𝛾) for each pair (𝑥, 𝛾) to

define the cascades. One also needs to choose a generator of (𝑥,𝛾)(𝑝(𝑥,𝛾)) for each pair (𝑥, 𝛾) to
fix the signs in the differential.
We now proceed to show that 𝐶𝐻𝑆1∗ is an invariant of the contact structure. (For the

computation of 𝐶𝐻𝑆1∗ in the main example of interest, see Proposition 5.7)

4.3 Cobordismmaps

Proposition 4.10. Let (𝑋, 𝜆) be an exact symplectic cobordism from (𝑌+, 𝜆+) to (𝑌−, 𝜆−), where the
contact forms 𝜆± are nondegenerate and hypertight. Assume further that every Reeb orbit for 𝜆+ is
noncontractible in 𝑋. Let 𝔍± be 𝑆1 × 𝐸𝑆1-families of almost complex structures as needed to define
the 𝑆1-equivariant contact homology of (𝑌±, 𝜆±). Then (𝑋, 𝜆) induces a well-defined map

Φ(𝑋, 𝜆;𝔍−,𝔍+) ∶ 𝐶𝐻
𝑆1

∗ (𝑌+, 𝜆+;𝔍+)⟶ 𝐶𝐻𝑆
1

∗ (𝑌−, 𝜆−;𝔍−).

Proof. This parallels the proof of Proposition 3.9.
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Let 𝔍 be an 𝑆1 × 𝐸𝑆1-family of cobordism-compatible almost complex structures on 𝑋 such
that 𝔍𝑡,𝑧 agrees with 𝔍+,𝑡,𝑧 on [0,∞) × 𝑌 and 𝔍𝑡,𝑧 agrees with 𝔍−,𝑡,𝑧 on (−∞, 0] × 𝑌−. Assume
that𝔍 is 𝑆1-equivariant as in (4.1).
If 𝑥± are critical points of 𝑓 on 𝐵𝑆1 and if 𝛾± are Reeb orbits for 𝜆±, let Φ̂𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−))

denote the set of pairs (𝜂, 𝑢) such that:

∙ 𝜂 ∶ ℝ → 𝐸𝑆1 is a flow line of 𝑉 with lim𝑠→±∞ 𝜂(𝑡) ∈ 𝜋−1(𝑥±);
∙ 𝑢 ∶ ℝ × 𝑆1 → 𝑋 satisfies the equation

𝜕𝑠𝑢 + 𝔍𝑡,𝜂(𝑠)𝜕𝑡𝑢 = 0;

∙ 𝑢(𝑠, 𝑡) ∈ [0,∞) × 𝑌+ for 𝑠 >> 0 and 𝑢(𝑠, 𝑡) ∈ (−∞, 0] × 𝑌− for 𝑠 << 0;
∙ lim𝑠→±∞ 𝜋ℝ(𝑢(𝑠, ⋅)) = ±∞;
∙ lim𝑠→±∞ 𝜋𝑌±(𝑢(𝑠, ⋅)) is a parameterization of the Reeb orbit 𝛾±.

Observe thatℝ acts on Φ̂𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−)) by translating the 𝑠 coordinate in the domain of both
𝜂 and 𝑢; and 𝑆1 acts on Φ̂𝔍 by (4.4). Let Φ𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−)) denote the quotient by ℝ × 𝑆1. We
have well-defined evaluation maps

𝑒± ∶ Φ
𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−))⟶ (𝑥±, 𝛾±)

defined by (4.6). If 𝑑 is an integer, let Φ𝔍
𝑑
((𝑥+, 𝛾+), (𝑥−, 𝛾−)) denote the set of 𝑢 ∈

Φ𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−)) such that

CZ𝜏(𝛾+) − CZ𝜏(𝛾−) + 2𝑐1(𝑢
∗𝑇𝑋, 𝜏) + ind(𝑓, 𝑥+) − ind(𝑓, 𝑥−) = 𝑑 − 1.

Similarly to Lemmas 3.11 and 3.13, the moduli spaces Φ𝔍
𝑑
((𝑥+, 𝛾+), (𝑥−, 𝛾−)) constitute a mor-

phism, in the sense of [29, Definition 2.7], from the Morse–Bott system for (𝑌+, 𝜆+;𝔍+) to the
Morse–Bott system for (𝑌−, 𝜆−;𝔍−). It then follows from Theorem 3.1(b)(i) that we have an
induced map

Φ(𝑋, 𝜆;𝔍) ∶ 𝐶𝐻𝑆
1

∗ (𝑌+, 𝜆+;𝔍+)⟶ 𝐶𝐻𝑆
1

∗ (𝑌−, 𝜆−;𝔍−).

Similarly to Lemma 3.14, this map does not depend on the choice of 𝑆1-equivariant 𝑆1 ×
𝐸𝑆1-family of almost complex structures 𝔍 extending 𝔍+ and 𝔍−, so we can denote it by
Φ(𝑋, 𝜆;𝔍+,𝔍−). □

4.4 Invariance of 𝑺𝟏-equivariant contact homology

If 𝔍 is an 𝑆1-equivariant 𝑆1 × 𝐸𝑆1-family of 𝜆-compatible almost complex structures on 𝑌, and
if 𝑐 > 0, then there is a unique 𝑆1-equivariant 𝑆1 × 𝐸𝑆1-family of 𝑐𝜆-compatible almost complex
structures 𝑐𝔍which agrees with𝔍 on 𝜉. As in Section 3.5, we have canonical diffeomorphisms of
moduli spaces

𝔍

𝑑
((𝑥+, 𝛾+), (𝑥−, 𝛾−)) ≃𝑐𝔍((𝑥+,

𝑐 𝛾+), (𝑥−,
𝑐 𝛾−))
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which preserve the orientations and evaluation maps. As a result, we have a canonical
isomorphism of chain complexes(

𝐶𝐶𝑆
1

∗ (𝑌, 𝜆), 𝜕
𝑆1,𝔍
)
=
(
𝐶𝐶𝑆

1

∗ (𝑌, 𝑐𝜆), 𝜕
𝑆1,𝑐𝔍

)
.

We denote the induced map on homology by

𝑠𝑐 ∶ 𝐶𝐻
𝑆1

∗ (𝑌, 𝜆;𝔍)
≃
⟶ 𝐶𝐻𝑆

1

∗ (𝑌, 𝑐𝜆;
𝑐𝔍). (4.7)

Proposition 4.11. The cobordism maps in Proposition 4.10 have the following properties.

(a) (Scaling) Suppose (𝑌, 𝜆0) is nondegenerate andhypertight. Let𝔍 be an 𝑆1-equivariant𝑆1 × 𝐸𝑆1-
family of 𝜆0-compatible almost complex structures as needed to define 𝐶𝐻𝑆

1

∗ (𝑌, 𝜆0;𝔍). Then for
the trivial cobordism (3.9), the cobordism map

Φ(𝑋, 𝜆; 𝑒
𝑎
𝔍, 𝑒

𝑏
𝔍) ∶ 𝑁𝐶𝐻∗(𝑌, 𝑒

𝑏𝜆0;
𝑒𝑏𝔍)⟶ 𝑁𝐶𝐻∗(𝑌, 𝑒

𝑎𝜆0;
𝑒𝑎𝔍)

agrees with the scaling isomorphism 𝑠𝑒𝑎−𝑏 in (4.7).
(b) (Composition) Let (𝑌𝑖, 𝜆𝑖) be nondegenerate and hypertight, and let 𝔍𝑖 be an 𝑆1-equivariant

𝑆1 × 𝐸𝑆1-family of 𝜆𝑖-compatible almost complex structures as needed to define𝐶𝐻𝑆
1

∗ (𝑌, 𝜆𝑖; 𝔍𝑖),
for 𝑖 = 1, 2, 3. Let (𝑋+, 𝜆+) be an exact symplectic cobordism from (𝑌1, 𝜆1) to (𝑌2, 𝜆2), and let
(𝑋−, 𝜆−) be an exact symplectic cobordism from (𝑌2, 𝜆2) to (𝑌3, 𝜆3). Assume further that every
Reeb orbit for 𝜆1 is noncontractible in 𝑋− ◦𝑋+, and every Reeb orbit for 𝜆2 is noncontractible in
𝑋−. Then

Φ(𝑋− ◦𝑋+, 𝜆;𝔍3,𝔍1) = Φ(𝑋−, 𝜆−;𝔍3,𝔍2) ◦Φ(𝑋+, 𝜆+;𝔍2,𝔍1).

Proof. This follows the proof of Proposition 3.15, modified as in the proof of Proposition 4.10. □

We can now deduce that 𝑆1-equivariant contact homology depends only on 𝑌 and 𝜉.

Proof of Theorem 1.6.. This follows from Proposition 4.11 in the same way that Theorem 1.4 is
deduced from Proposition 3.15 in Section 3.5. □

5 COMPUTATIONS IN THE AUTONOMOUS CASE

Continue to assume that 𝜆 is a nondegenerate hypertight contact form on a closed manifold 𝑌.
In this section, we study the nonequivariant and 𝑆1-equivariant contact homology in the special
case when the 𝑆1-family of almost complex structures 𝕁 or the 𝑆1 × 𝐸𝑆1-family of almost complex
structures 𝔍 is constant, given by a single almost complex structure 𝐽 on ℝ × 𝑌. Here we need
to assume that 𝐽 satisfies suitable transversality conditions, namely that 𝐽 is ‘admissible’ in the
sense of Definition 5.1, which also implies that cylindrical contact homology is defined. We use
these calculations to prove Theorem 1.9, asserting that if 𝐽 is admissible, then cylindrical contact
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homology is canonically isomorphic to 𝑆1-equivariant contact homology tensor ℚ. Finally, we
show that admissibility holds for generic 𝐽 when dim(𝑌) = 3.

5.1 Nonequivariant contact homology in the autonomous case

Let 𝐽 be a 𝜆-compatible almost complex structure onℝ × 𝑌.We now study nonequivariant contact
homology for the constant 𝑆1-family of almost complex structures 𝕁 = {𝐽𝑡}𝑡∈𝑆1 where 𝐽𝑡 ≡ 𝐽. Note
that in this case, if 𝛼 and 𝛽 are distinct Reeb orbits and 𝑑 is an integer, then 𝑆1 acts on𝕁

𝑑
(𝛼, 𝛽)

by precomposing maps 𝑢 ∶ ℝ × 𝑆1 → ℝ × 𝑌 with rotations of the 𝑆1 factor, and we have†

𝐽
𝑑
(𝛼, 𝛽) =𝕁

𝑑
(𝛼, 𝛽)∕𝑆1. (5.1)

Definition 5.1. Let 𝐽 be a 𝜆-compatible almost complex structure onℝ × 𝑌. Let 𝕁 be the constant
𝑆1-family {𝐽𝑡}𝑡∈𝑆1 where 𝐽𝑡 ≡ 𝐽. Let  be a choice of base point 𝑝𝛼 ∈ 𝛼 for each Reeb orbit 𝛼. We
say that the pair (𝐽,) is admissible if the following hold for every pair of distinct Reeb orbits
𝛼, 𝛽.

(a) If 𝑑 ⩽ 0, then𝕁
𝑑
(𝛼, 𝛽) = ∅.

(b) 𝕁
1
(𝛼, 𝛽) is cut out transversely, that is, each cylinder in this moduli space is regular in the

sense of Definition A.20.
(c) 𝕁

1
(𝛼, 𝑝𝛼, 𝛽, 𝑝𝛽) = ∅.

(d) 𝕁
2
(𝛼, 𝑝𝛼, 𝛽, 𝑝𝛽) is cut out transversely. That is, for each 𝑢 ∈𝕁

2
(𝛼, 𝑝𝛼, 𝛽, 𝑝𝛽), the moduli

space𝕁
2
(𝛼, 𝛽) is cut out transversely in a neighborhood of 𝑢, and (𝑝𝛼, 𝑝𝛽) is a regular value

of 𝑒+ × 𝑒− on this neighborhood.
(e) If 𝛾 is a Reeb orbit distinct from 𝛼 and 𝛽, then

𝕁
1(𝛼, 𝑝𝛼, 𝛾) ×𝛾 𝕁

1(𝛾, 𝛽, 𝑝𝛽) = ∅.

We say that 𝐽 is admissible if there exists  such that (𝐽,) is admissible.
Recall from Section 3.3 that 𝑁𝐶𝐶∗(𝑌, 𝜆) denotes the free ℤ-module with two generators �𝛾 and

𝛾 for each Reeb orbit 𝛾. Proposition 5.2(a) asserts that an admissible pair (𝐽,) determines a well-
defined cascade differential on 𝑁𝐶𝐶∗(𝑌, 𝜆). By this we mean that if 𝛼 is a Reeb orbit, then there
are only finitely many cascades that contribute to the cascade differential of �𝛼 or 𝛼̂ as defined in
Section 3.3 using 𝕁 = {𝐽} and  ; and each of these cascades, regarded as an element of a (product
of) moduli space(s) of holomorphic cylinders, is cut out transversely. We denote this cascade dif-
ferential by 𝜕𝐽

�
. With respect to the decomposition into check and hat generators, we can write 𝜕𝐽

�

in block matrix form as

𝜕𝐽
�
=

(
�𝜕 𝜕+
𝜕− 𝜕

)
, (5.2)

where each entry in the block matrix sends the free ℤ-module generated by the set of Reeb orbits
to itself; ⟨𝜕𝐽

�
�𝛼, 𝛽⟩ = ⟨𝜕−𝛼, 𝛽⟩, and so forth.

† See Sections 1.1 and 2.2 for the notation in equation (5.1).
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Proposition 5.2. Suppose the pair (𝐽,) is admissible. Fix a generator of𝛾(𝑝𝛾) for each Reeb orbit
𝛾. Then:

(a) For the constant family 𝕁 = {𝐽}, the moduli spaces𝕁
𝑑
(𝛼, 𝛽), with or without point constraints

at 𝑝𝛼 and/or 𝑝𝛽 , determine a well-defined cascade differential 𝜕𝐽� on 𝑁𝐶𝐶∗(𝑌, 𝜆) that counts
elements of cascade moduli spaces�

0
as in Definition 3.6.

(b) (𝜕𝐽
�
)2 = 0.

(c) The homology of the chain complex (𝑁𝐶𝐶∗(𝑌, 𝜆), 𝜕𝐽�) is canonically isomorphic to the
nonequivariant contact homology𝑁𝐶𝐻∗(𝑌, 𝜉).

(d) In the block matrix (5.2), we have:
(i)

𝜕+𝛼 =

{
0, if 𝛼 is good
−2𝛼, if 𝛼 is bad.

(5.3)

(ii) If 𝛼 and 𝛽 are distinct Reeb orbits with 𝛽 good, then†

⟨
�𝜕𝛼, 𝛽

⟩
=

{⟨𝛿𝜅𝛼, 𝛽⟩, 𝛼 good
0, 𝛼 bad.

(5.4)

(iii) If 𝛼 and 𝛽 are distinct Reeb orbits with 𝛼 good, then

⟨
𝜕𝛼, 𝛽

⟩
=

{⟨−𝜅𝛿𝛼, 𝛽⟩, 𝛽 good
0, 𝛽 bad.

(5.5)

Proof. (a) Note that we cannot apply Proposition 3.4(a) directly, because we are not assuming all
the transversality conditions (for example, regarding three-dimensional moduli spaces) for this
proposition to be applicable. Instead we argue more explicitly.
By part (a) of Definition 5.1, if (𝑢1, … , 𝑢𝑘) is a cascade, then each 𝑢𝑖 is in a moduli space 𝕁

𝑑

with 𝑑 ⩾ 1. It follows that the cascade moduli spaces�

0
(𝛼̃, 𝛽) for 𝛼 ≠ 𝛽 are described simply as

follows:

�

0

(
𝛼̂, �𝛽
)
=∅,

�

0

(
�𝛼, �𝛽
)
=𝕁

1(𝛼, 𝑝𝛼, 𝛽), (5.6)

�

0

(
𝛼̂, 𝛽
)
=𝕁

1

(
𝛼, 𝛽, 𝑝𝛽

)
, (5.7)

�

0

(
�𝛼, 𝛽
)
=𝕁

2

(
𝛼, 𝑝𝛼, 𝛽, 𝑝𝛽

)
(5.8)⨆ ∐

𝛾≠𝛼,𝛽
𝕁

1(𝛼, 𝑝𝛼, 𝛾) ↺
𝛾
𝕁

1

(
𝛾, 𝛽, 𝑝𝛽

)
.

The notation in the last line indicates the set of pairs

(𝑢1, 𝑢2) ∈𝕁
1(𝛼, 𝑝𝛼, 𝛾) ×𝕁

1(𝛾, 𝛽, 𝑝𝛽)

† See Section 1.2 for the notation 𝛿 and 𝜅.
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such that the points 𝑝𝛾, 𝑒−(𝑢1), and 𝑒+(𝑢2) are distinct and positively cyclically ordered with
respect to the orientation of 𝛾 given by the Reeb vector field.
We claim next that all of the cascade moduli spaces �

0
are cut out transversely. To see this,

recall that 𝕁
1
(𝛼, 𝛽) is cut out transversely by part (b) of Definition 5.1. Then 𝕁

1
(𝛼, 𝑝𝛼, 𝛽) and𝕁

1
(𝛼, 𝛽, 𝑝𝛽) are also cut out transversely, because the evaluation maps 𝑒± on𝕁

1
(𝛼, 𝛽) are sub-

mersions as in (5.1). It follows from this and part (d) of Definition 5.1 that the remaining cascade
moduli space�

0
(�𝛼, 𝛽) is cut out transversely.

To complete the proof of assertion (a), we need to show that each cascade moduli space �

0
is finite.
To show that the cascade moduli spaces (5.6) and (5.7) are finite, we first note that by Proposi-

tion 2.6 and part (a) of Definition 5.1, the moduli spaces𝕁
1
(𝛼, 𝛽) are compact. Finiteness of (5.6)

and (5.7) then follows from the above transversality. This finiteness also implies finiteness of the
second term on the right-hand side of (5.8).
Finiteness of the first term on the right-hand side of (5.8) follows similarly, with the help of part

(e) of Definition 5.1.
(b) As in part (a), we cannot apply Proposition 3.4(b) directly. However, we can perturb the

constant 𝑆1-family 𝕁 = {𝐽} to a nonconstant 𝑆1-family 𝕁′which is generic so that Proposition 3.4(b)
applies to show that (𝜕𝕁′

�
)2 = 0. To deduce (𝜕𝐽

�
)2 = 0 from this, it is enough to show that for every

real number 𝐿, if the perturbation is sufficiently small with respect to 𝐿, then 𝜕𝕁′
�
agrees with 𝜕𝐽

�

when applied to generators �𝛼 or 𝛼̂ for which the Reeb orbit 𝛼 has action(𝛼) < 𝐿.
To prove the above claim, suppose to get a contradiction that there exist a real number 𝐿, and a

sequence of generic 𝑆1-families {𝕁𝑘}𝑘=1,… converging to the constant 𝑆1-family 𝕁 = {𝐽}, such that
for each 𝑘, the cascade differential 𝜕𝕁𝑘

�
disagrees with 𝜕𝐽

�
on some generator 𝛼̃ (equal to �𝛼 or 𝛼̂)

with(𝛼) < 𝐿. Since there are only finitely many Reeb orbits with action less than 𝐿, by passing
to a subsequence we may assume that there are fixed generators 𝛼̃ and 𝛽 with (𝛼),(𝛽) < 𝐿
such that ⟨

𝜕𝕁
𝑘

�
𝛼̃, 𝛽
⟩ ≠ ⟨𝜕𝐽

�
𝛼̃, 𝛽
⟩

(5.9)

for all 𝑘.
Since each cascade in�

0
(𝛼̃, 𝛽) for 𝕁 = {𝐽} is cut out transversely, the implicit function theorem

gives an injective, orientation-preserving map from the set of such cascades for 𝕁 = {𝐽} to the set
of such cascades for 𝕁𝑘 when 𝑘 is sufficiently large. We claim that this map is also surjective for 𝑘
sufficiently large, which will then give a contradiction to (5.9).
Suppose to get a contradiction that this surjectivity does not hold for all sufficiently large 𝑘.

Then after passing to a subsequence, for each 𝑘 there is a cascade which is counted by ⟨𝜕𝕁𝑘
�
𝛼̃, 𝛽⟩

but which is not a perturbation (coming from the implicit function theorem as above) of a cascade
counted by ⟨𝜕𝐽

�
𝛼̃, 𝛽⟩. We claim that we can pass to a subsequence so that these cascades for each

𝑘 converge to a cascade counted by ⟨𝜕𝐽
�
𝛼̃, 𝛽⟩, which will give the desired contradiction.

We will just explain the trickiest case of this, which is when 𝛼̃ = �𝛼 and 𝛽 = 𝛽. Then the
cascade counted by ⟨𝜕𝕁𝑘

�
𝛼̃, 𝛽⟩ has the form (𝑢𝑘

1
, … , 𝑢𝑘𝑚𝑘

), where there are distinct Reeb orbits
𝛼 = 𝛾𝑘,0, 𝛾𝑘,1, … , 𝛾𝑘,𝑚𝑘 = 𝛽, and integers 𝑑𝑘,𝑖 for 𝑖 = 1, … ,𝑚𝑘 with

∑𝑚𝑘
𝑖=1
𝑑𝑘,𝑖 = 2, such that 𝑢𝑘𝑖 ∈

𝕁𝑘

𝑑𝑘,𝑖
(𝛾𝑘,𝑖−1, 𝛾𝑘,𝑖) for 𝑖 = 1, … ,𝑚𝑘. By passing to a subsequence wemay assume that𝑚𝑘 = 𝑚 does

not depend on 𝑘, and the Reeb orbit 𝛾𝑘,𝑖 = 𝛾𝑖 and the integer 𝑑𝑘,𝑖 = 𝑑𝑖 do not depend on 𝑘 either.
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As in Proposition 2.6, we may pass to a further subsequence such that for each 𝑖 = 1, … ,𝑚,
the sequence {𝑢𝑘

𝑖
}𝑘=1,… converges to an element of𝕁

𝑑𝑖
(𝛾𝑖−1, 𝛾𝑖). Since

∑𝑚
𝑖=1 𝑑𝑖 = 2, by part (a) of

Definition 5.1, we must have either𝑚 = 1 and 𝑑1 = 2, or𝑚 = 2 and 𝑑1 = 𝑑2 = 1.
If𝑚 = 1 and𝑑1 = 2, then by parts (a) and (e) ofDefinition 5.1, the limit of the sequence {𝑢𝑘1 }𝑘=1,…

is an element of 𝕁
2
(𝛼, 𝑝𝛼, 𝛽, 𝑝𝛽), and thus a cascade in the first term on the right-hand side of

(5.8).
If𝑚 = 2 and 𝑑1 = 𝑑2 = 1, then the sequence {𝑢𝑘1 }𝑘=1,… converges to an element 𝑢

∞
1
∈𝕁

1
(𝛼, 𝛾),

and the sequence {𝑢𝑘
2
}𝑘=1,… converges to an element 𝑢∞2 ∈𝕁

1
(𝛾, 𝛽), where we are writing 𝛾 = 𝛾1.

By parts (c) and (e) of Definition 5.1, the three points 𝑝𝛾, 𝑒−(𝑢∞1 ), and 𝑒+(𝑢
∞
2
) in 𝛾 are distinct.

Since the three points 𝑝𝛾, 𝑒−(𝑢𝑘1 ), and 𝑒+(𝑢
𝑘
2
) are positively cyclically ordered for each 𝑘, it follows

that the three points 𝑝𝛾, 𝑒−(𝑢∞1 ), and 𝑒+(𝑢
∞
2
) are also positively cyclically ordered. Thus, the pair

(𝑢∞
1
, 𝑢∞
2
) is a cascade in the second term on the right-hand side of (5.8).

(c) As shown in the proof of part (b), for any real number 𝐿 we can choose a generic 𝑆1-family
𝕁′ close to 𝕁 = {𝐽} such that 𝜕𝕁′

�
= 𝜕𝐽

�
on all generators 𝛼̃ with(𝛼) < 𝐿. It follows that there is a

canonical isomorphism

𝑁𝐶𝐻𝐿∗(𝑌, 𝜆) = 𝐻∗
(
𝑁𝐶𝐶𝐿∗ (𝑌, 𝜆), 𝜕

𝐽
�

)
. (5.10)

Here 𝑁𝐶𝐶𝐿∗ (𝑌, 𝜆) denotes the free ℤ-module generated by �𝛾 and 𝛾 for Reeb orbits 𝛾 with action(𝛾) < 𝐿. On the left-hand side,𝑁𝐶𝐻𝐿∗(𝑌, 𝜆) denotes the ‘filtered nonequivariant contact homol-
ogy’, which is the homology of (𝑁𝐶𝐶𝐿∗ (𝑌, 𝜆), 𝜕

𝕁′

�
) for any generic 𝕁′. The proof of Theorem 1.4

shows that this depends only on (𝑌, 𝜆); see [31, Theorem 1.3] for a similar argument. More-
over, if 𝐿 < 𝐿′, then inclusion of chain complexes induces a well-defined map 𝑁𝐶𝐻𝐿∗(𝑌, 𝜆) →
𝑁𝐶𝐻𝐿

′

∗ (𝑌, 𝜆), and the canonical isomorphisms (5.10) fit into a commutative diagram

𝑁𝐶𝐻𝐿∗(𝑌, 𝜆)
=

�������→ 𝐻∗
(
𝑁𝐶𝐶𝐿∗ (𝑌, 𝜆), 𝜕

𝐽
�

)
⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
↓

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
↓

𝑁𝐶𝐻𝐿
′

∗ (𝑌, 𝜆)
=

�������→ 𝐻∗

(
𝑁𝐶𝐶𝐿

′

∗ (𝑌, 𝜆), 𝜕
𝐽
�

)
.

Taking the direct limit over 𝐿 in (5.10) then proves (c).
(d) (i) We have seen that �

0
(𝛼̂, �𝛽) = ∅ when 𝛼 ≠ 𝛽, so equation (5.3) follows from Defini-

tion 3.2.
(ii) Let 𝛼 and 𝛽 be distinct Reeb orbits, and assume that 𝛽 is good. Recall from the proof of part

(a) that

�

0

(
�𝛼, �𝛽
)
=𝕁

1(𝛼, 𝑝𝛼, 𝛽). (5.11)

The coefficient ⟨
�𝜕𝛼, 𝛽

⟩
=
⟨
𝜕𝐽
�
�𝛼, �𝛽
⟩

that we need to understand is a signed count of points in the moduli space (5.11).
To review how the signs work, recall from Section 3.3 that we are fixing generators of 𝛼(𝑝𝛼)

and 𝛽(𝑝𝛽). Since 𝛽 is good, the local system 𝛽 is trivial by Proposition 2.3(a), and our choice
of generator of 𝛽(𝑝𝛽) trivializes it. By Proposition 2.3(b), the moduli space 𝕁

1
(𝛼, 𝛽) has a
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canonical orientationwith values in 𝑒∗+𝛼 ⊗ 𝑒∗−𝛽 . Using the above trivialization of𝛽 , we obtain
an orientation of𝕁

1
(𝛼, 𝛽)with values in 𝑒∗+𝛼. Using the chosen generator of𝛼(𝑝𝛼), each point

in the right-hand side of (5.11) then has a sign associated to it by the convention in [29, Con-
vention 2.2]. This convention says here that the sign is positive if and only if the derivative of
𝑒+ ∶𝕁

1
(𝛼, 𝛽) → 𝛼 is orientation preserving with respect to the orientation of 𝛼 determined by

the Reeb vector field. By the sign convention in [29, Section 3.2], the corresponding point on the
left-hand side of (5.11) is counted with the same sign.
By (5.1), the moduli space 𝕁

1
(𝛼, 𝛽) consists of a circle for each 𝑢 ∈𝐽

1
(𝛼, 𝛽). Fix such a 𝑢

and let 𝑀𝑢 denote the corresponding circle. The map 𝑒+ ∶ 𝑀𝑢 → 𝛼 is a submersion of degree
𝑑(𝛼)∕𝑑(𝑢) (see Section 1.2 for this notation). Thus, the subset of the moduli space (5.11) coming
from𝑀𝑢 consists of 𝑑(𝛼)∕𝑑(𝑢) points.
If 𝛼 is bad, then the local system𝛼 is nontrivial, whichmeans that when one travels 𝑑(𝑢)∕𝑑(𝛼)

rotations around the circle𝑀𝑢, the orientation of𝑀𝑢with values in 𝑒∗+𝛼, because it is continuous,
must switch sign. Thus, consecutive points in the subset of (5.11) coming from𝑀𝑢 have opposite
signs. It follows that the signed count of these points is zero. Since the same is true for every
𝑢 ∈𝐽

1
(𝛼, 𝛽), we conclude that ⟨𝜕𝐽

�
�𝛼, �𝛽⟩ = 0.

If 𝛼 is good, then the local system 𝛼 is trivial, so all of the points in (5.11) coming from 𝑀𝑢
count with the same sign. Moreover, by the convention in Definition A.26, this sign agrees with
the sign 𝜖(𝑢) in (1.8). We conclude that⟨

𝜕𝐽
�
�𝛼, �𝛽
⟩
=

∑
𝑢∈𝐽

1
(𝛼,𝛽)

𝜖(𝑢)𝑑(𝛼)

𝑑(𝑢)
= ⟨𝛿𝜅𝛼, 𝛽⟩.

(iii) This is proved by a symmetric argument to (ii). Note that there is an extra minus sign in
[29, Convention 2.2] in this case, which is why there is a minus sign in (5.5) which is not present
in (5.4). □

Corollary 5.3. If the pair (𝐽,) is admissible, and if 𝜕𝐸𝐺𝐻 denotes the cylindrical contact homology
differential determined by 𝐽 as in Section 1.2, then (𝜕𝐸𝐺𝐻)2 = 0.

Proof. By Proposition 5.2(a), we can use the pair (𝐽,) to define a cascade differential 𝜕𝐽
�
. By

Proposition 5.2(d), the part of 𝜕𝐽
�
going from good Reeb orbits to good Reeb orbits, again written

as a block matrix with respect to check and hat generators, has the form

(
𝜕𝐽
�

)good
good

=

(
𝛿𝜅 0

� −𝜅𝛿

)
.

Here the biohazard symbol� indicates an unknown matrix. Likewise, the parts of 𝜕𝐽
�
going from

bad to good orbits and from good to bad orbits have the form

(
𝜕𝐽
�

)bad
good

=

(
0 0

� �

)
,

(
𝜕𝐽
�

)good
bad

=

(
� 0

� 0

)
.

It follows that the part of (𝜕𝐽
�
)2 going from good to good orbits has the form

((
𝜕𝐽
�

)2)good
good

=

(
(𝛿𝜅)2 0

� (𝜅𝛿)2

)
.
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It then follows from Proposition 5.2(b) that (𝛿𝜅)2 = 0. Since 𝜕EGH = 𝛿𝜅 (after tensoring with ℚ),
the result follows. □

Remark 5.4. The above calculations show that if (𝐽,) is admissible, then the part of �𝜕 mapping
between good Reeb orbits is a differential, which after tensoring with ℚ agrees with 𝜕EGH. By
contrast, if 𝕁 is a generic 𝑆1-family of 𝜆-compatible almost complex structures, if  is a generic
choice of base points, and if we write the associated cascade differential in check-hat block form
as

𝜕𝕁
�
=

(
�𝜕 𝜕+
𝜕− 𝜕

)
,

then �𝜕 does not always give a differential. We know from (𝜕𝕁
�
)2 = 0 that

(
�𝜕
)2
+ 𝜕+𝜕− = 0,

but in general 𝜕+𝜕− can be nonzero, even between good Reeb orbits.

5.2 𝑺𝟏-equivariant contact homology in the autonomous case

Let 𝐽 be a 𝜆-compatible almost complex structure on ℝ × 𝑌, let  be a choice of base points, and
assume that the pair (𝐽,) is admissible. Use these to define a differential 𝜕𝐽

�
on 𝑁𝐶𝐶∗(𝑌, 𝜆) by

Proposition 5.2(a).

Definition 5.5. Define a ‘BV operator’

𝜕1 ∶ 𝑁𝐶𝐶∗(𝑌, 𝜆)⟶ 𝑁𝐶𝐶∗(𝑌, 𝜆)

by equation (1.13). Define a differential 𝜕𝑆1,𝐽 on

𝐶𝐶𝑆
1

∗ (𝑌, 𝜆) = 𝑁𝐶𝐶∗(𝑌, 𝜆) ⊗ ℤ[𝑈]

by

𝜕𝑆
1,𝐽 = 𝜕𝐽

�
⊗ 1 + 𝜕1 ⊗ 𝑈

−1. (5.12)

Here 𝑈−1 denotes the operator sending 𝑈𝑘 ↦ 𝑈𝑘−1 when 𝑘 > 0 and sending 1 ↦ 0.

Lemma 5.6. Suppose that the pair (𝐽,) is admissible. Then (𝜕𝑆1,𝐽)2 = 0.
Proof. This can be shown indirectly using the proof of Proposition 5.7, similarly to the proof of
Proposition 5.2(b), but we will give a direct proof here for clarity.
By (5.12), we have(

𝜕𝑆
1,𝐽
)2
=
(
𝜕𝐽
�

)2
⊗ 1 +

(
𝜕𝐽
�
𝜕1 + 𝜕1𝜕

𝐽
�

)
⊗𝑈−1 + (𝜕1)

2 ⊗ 𝑈−2.
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We know fromProposition 5.2 that (𝜕𝐽
�
)2 = 0, and it follows immediately from (1.13) that (𝜕1)2 = 0.

So, we just need to check that

𝜕𝐽
�
𝜕1 + 𝜕1𝜕

𝐽
�
= 0.

As a block matrix with respect to check and hat generators, we have

𝜕1 =

(
0 0

𝜅 0

)
,

where we define 𝜅 of a bad Reeb orbit to be zero. By (5.2), we then have

𝜕𝐽
�
𝜕1 + 𝜕1𝜕

𝐽
�
=

(
𝜕+𝜅 0

𝜅�𝜕 + 𝜕𝜅 𝜅𝜕+

)
.

It follows from (5.3) that 𝜕+𝜅 = 𝜅𝜕+ = 0. It follows from (5.4) that 𝜅�𝜕 = 𝜅𝛿𝜅, and it follows from
(5.5) that 𝜕𝜅 = −𝜅𝛿𝜅. Hence, the above matrix is 0. □

Proposition 5.7. Suppose that the pair (𝐽,) is admissible. Then the homology of the chain complex
(𝐶𝐶𝑆

1

∗ (𝑌, 𝜆), 𝜕
𝑆1,𝐽) is canonically isomorphic to the equivariant contact homology 𝐶𝐻𝑆1∗ (𝑌, 𝜉).

Proof. We proceed in five steps.
Step 1: Let 𝔍 be the constant 𝑆1 × 𝐸𝑆1-family of 𝜆-compatible almost complex structures on

ℝ × 𝑌 given by 𝔍𝑡,𝑧 ≡ 𝐽. The family 𝔍 is automatically 𝑆1-equivariant as in (4.1) since 𝔍𝑡,𝑧 does
not depend on 𝑡 ∈ 𝑆1 or 𝑧 ∈ 𝐸𝑆1. Given distinct pairs (𝑥+, 𝛾+) and (𝑥−, 𝛾−), we now describe the
moduli space𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−)).
Let 𝕁 denote the constant 𝑆1-family {𝐽} as before. It follows from Definition 4.1 that

̂𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−)) is the set of pairs (𝜂, 𝑢) where 𝜂 is a parameterized flow line of 𝑉 from

a lift of 𝑥− to a lift of 𝑥+, and 𝑢 ∈
˜̃𝕁

(𝛾+, 𝛾−); here the latter space is defined like ̃𝕁(𝛾+, 𝛾−) but
without modding out by ℝ translation in the domain, cf. Section A.2. We can write this as

̂𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−)) = ̃Morse
𝑉

(𝜋−1(𝑥+), 𝜋
−1(𝑥−)) ×

˜̃𝕁

(𝛾+, 𝛾−), (5.13)

where ̃Morse
𝑉

denotes the set of parameterized flow lines of𝑉 as above. In particular, if 𝑖± denotes
the Morse index of 𝑥±, then

̂𝔍

𝑑
((𝑥+, 𝛾+), (𝑥−, 𝛾−)) = ̃Morse

𝑉
(𝜋−1(𝑥+), 𝜋

−1(𝑥−)) ×
˜̃𝕁

𝑑−𝑖++𝑖−
(𝛾+, 𝛾−). (5.14)

Taking the quotient of (5.14) by the ℝ × 𝑆1 action in Definition 4.2, we obtain a fiber bundle

̃𝕁
𝑑−𝑖++𝑖−

(𝛾+, 𝛾−) �����→ ̃𝔍

𝑑
((𝑥+, 𝛾+), (𝑥−, 𝛾−))

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
↓̃Morse

𝑉
(𝑥+, 𝑥−).

(5.15)

Here ̃Morse
𝑉

(𝑥+, 𝑥−) denotes the moduli space of parameterized flow lines of 𝑉 from 𝑥− to 𝑥+.
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An important special case of (5.15) is when 𝑥+ = 𝑥− = 𝑥, so that the base of (5.15) is a sin-
gle point. In this case, after choosing a lift 𝑥 ∈ 𝐸𝑆1 of 𝑥, the constant flow line from 𝑥 to itself
determines a diffeomorphism

̃𝔍

𝑑
((𝑥, 𝛾+), (𝑥, 𝛾−)) ≃ ̃𝕁

𝑑
(𝛾+, 𝛾−).

We can further mod out by the ℝ action in the target to obtain a diffeomorphism

𝔍

𝑑
((𝑥, 𝛾+), (𝑥, 𝛾−)) ≃𝕁

𝑑
(𝛾+, 𝛾−). (5.16)

This last diffeomorphism is orientation preserving, by Lemma A.33.
Another important special case of (5.15) is when 𝛾+ = 𝛾− = 𝛾. In this case, every curve 𝑢 ∈

̃𝕁(𝛾, 𝛾) maps to the ‘trivial cylinder’ ℝ × 𝛾. Thus, modding out by the ℝ action on ̃𝔍 by
translation of the targets is equivalent to modding out by the reparameterization action on
̃Morse

𝑉
(𝑥+, 𝑥−), so we can replace the bundle (5.15) by

̃𝕁
𝑑−𝑖++𝑖−

(𝛾, 𝛾) �����→𝔍

𝑑
((𝑥+, 𝛾), (𝑥−, 𝛾))

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
↓Morse

𝑉
(𝑥+, 𝑥−).

(5.17)

HereMorse
𝑉

(𝑥+, 𝑥−) denotes the space of flow lines of 𝑉 from 𝑥− to 𝑥+ modulo reparameteriza-
tion. The fiber

̃𝕁
𝑑−𝑖++𝑖−

(𝛾, 𝛾) ≃

{
𝑆1, 𝑑 = 𝑖+ − 𝑖−,

∅, otherwise.
(5.18)

When 𝑑 = 𝑖+ − 𝑖−, the 𝑆1 above is just the set of parameterizations of 𝛾.
Step 2. Recall that we are given a set  , consisting of a choice of base point 𝑝𝛾 ∈ 𝛾 for each

Reeb orbit 𝛾, for the purpose of defining nonequivariant cascades. To make an analogous choice
to define equivariant cascades, for each critical point 𝑥 of 𝑓 on 𝐵𝑆1, fix a lift 𝑥 ∈ 𝐸𝑆1. For each
pair (𝑥, 𝛾) where 𝑥 is a critical point of 𝑓 and 𝛾 is a Reeb orbit, fix the base point

𝑝(𝑥,𝛾) = [(𝑥, 𝑝𝛾)] ∈ (𝑥, 𝛾).

Let𝔓 denote the set of these choices.
We claim that the pair (𝔍,𝔓) satisfies an analogue of the admissibility in Definition 5.1. That

is, for all distinct pairs (𝑥+, 𝛾+) and (𝑥−, 𝛾−), we have the following.

(a) If 𝑑 ⩽ 0, then𝔍

𝑑
((𝑥+, 𝛾+), (𝑥−, 𝛾−)) = ∅.

(b) 𝔍
1
((𝑥+, 𝛾+), (𝑥−, 𝛾−)) is cut out transversely.

(c) 𝔍
1
((𝑥+, 𝛾+), 𝑝(𝑥+,𝛾+), (𝑥−, 𝛾−), 𝑝(𝑥−,𝛾−)) = ∅.

(d) 𝔍
2
((𝑥+, 𝛾+), 𝑝(𝑥+,𝛾+), (𝑥−, 𝛾−), 𝑝(𝑥−,𝛾−)) is cut out transversely.

(e) If (𝑥0, 𝛾0) is distinct from (𝑥+, 𝛾+) and (𝑥−, 𝛾−), then

𝔍
1

(
(𝑥+, 𝛾+), 𝑝(𝑥+,𝛾+), (𝑥0, 𝛾0)

)
×
(𝑥0,𝛾0)

𝔍
1

(
(𝑥0, 𝛾0), (𝑥−, 𝛾−), 𝑝(𝑥−,𝛾−)

)
= ∅.
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To prove (a), observe by (5.15) that if𝔍

𝑑
((𝑥+, 𝛾+), (𝑥−, 𝛾−)) is nonempty, then𝕁

𝑑′
(𝛾+, 𝛾−) is

nonempty for some 𝑑′ ⩽ 𝑑. Since (𝐽,) is admissible, we have 𝑑′ ⩾ 0, so 𝑑 ⩾ 0.
Next, observe that by (5.15) and (5.16), we have

𝔍
1
((𝑥+, 𝛾+), (𝑥−, 𝛾−)) ≃

{𝕁
1
(𝛾+, 𝛾−), if 𝑥+ = 𝑥−,
∅, if 𝑥+ ≠ 𝑥−. (5.19)

Given (5.19), assertions (b), (c), and (e) follow from the hypothesis that the pair (𝐽,) is admissible.
To prove assertion (d), if 𝑥+ = 𝑥− then we are done by (5.16) and the admissibility of (𝐽,). If

𝑥+ ≠ 𝑥−, then by (5.15), the moduli space𝔍
2
((𝑥+, 𝛾+), (𝑥−, 𝛾−)) is empty unless 𝛾+ = 𝛾−. (Oth-

erwise the fiber in (5.15) would have the form ̃𝕁
𝑑′
(𝛾+, 𝛾−)with 𝑑′ ⩽ 0 and 𝛾+ ≠ 𝛾−, contradicting

the hypothesis that (𝐽,) is admissible.) When 𝛾+ = 𝛾− we must have ind(𝑥+) − ind(𝑥−) = 2
by (5.18). In this case, assertion (d) follows from (5.21) below, together with the transversality
calculation in Example A.21.
Step 3.We now show that if ind(𝑥+) − ind(𝑥−) = 2 and 𝛾 is any Reeb orbit, then

𝑒+ × 𝑒− ∶𝔍
2
((𝑥+, 𝛾), (𝑥−, 𝛾))⟶ (𝑥+, 𝛾) × (𝑥−, 𝛾) (5.20)

is a covering space of degree 𝑑(𝛾).
We can identify (𝑥±, 𝛾) with 𝛾 by sending the equivalence class of (𝑥±, 𝑦) to 𝑦.
If 𝜂 is a flow line of 𝑉 from 𝜋−1(𝑥−) to 𝜋−1(𝑥+), that is lim𝑠→±∞ 𝜂(𝑠) ∈ 𝜋−1(𝑥±), define

𝑒±(𝜂) = lim
𝑠→±∞

𝜂(𝑠) ∈ 𝜋−1(𝑥±).

If 𝜂 ∈Morse
𝑉

(𝑥+, 𝑥−), then since the vector field 𝑉 is 𝑆1-invariant, there is a unique 𝜂 ∈
Morse

𝑉
(𝜋−1(𝑥+), 𝜋

−1(𝑥−)) lifting 𝜂 with 𝑒−(𝜂) = 𝑥−. We can then identify

𝔍
2
((𝑥+, 𝛾), (𝑥−, 𝛾)) ≃Morse

𝑉 (𝑥+, 𝑥−) × ̃𝕁
0(𝛾, 𝛾) (5.21)

by sending (𝜂, 𝑢) on the right-hand side to the equivalence class of the pair (𝜂, 𝑢) on the left-
hand side.
Now define a map

Δ ∶Morse
𝑉 (𝑥+, 𝑥−)⟶ 𝑆1 (5.22)

by

Δ(𝜂) = 𝑒+(𝜂) − 𝑥+.

It then follows from (4.4) that under the identification (5.21), the map (5.20) is given by

(𝑒+ × 𝑒−)(𝜂, 𝑢) =
(
𝑒+(𝑢) + 𝑑(𝛾)Δ(𝜂), 𝑒−(𝑢)

)
∈ 𝛾 × 𝛾. (5.23)

It follows from equation (4.2) that themap (5.22) is a diffeomorphism.Moreover, because of the
sign conventions for the 𝑆1 action in (4.4), this diffeomorphism is orientation preserving.
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In addition, we know from (5.18) that the map

𝑒± ∶ ̃𝕁
0(𝛾, 𝛾)⟶ 𝛾 (5.24)

is a diffeomorphism. Moreover, this diffeomorphism is orientation preserving, by the argument
in the proof of Lemma A.31.
Under the identifications (5.22) and (5.24), we can rewrite (5.23) as

𝑒+ × 𝑒− ∶ 𝑆
1 × 𝛾⟶ 𝛾 × 𝛾,

(𝑡, 𝑦)⟼ (𝑑(𝛾)𝑡 + 𝑦, 𝑦).
(5.25)

This is an orientation preserving covering of degree 𝑑(𝛾).
Step 4. We claim now that the moduli spaces 𝔍

𝑑
((𝑥+, 𝛾+), (𝑥−, 𝛾−)), with or without point

constraints at 𝑝(𝑥+,𝛾+) and/or 𝑝(𝑥−,𝛾−), determine a well-defined cascade differential 𝜕𝔍
�
on

𝑁𝐶𝐶∗(𝑌, 𝜆) ⊗ ℤ[𝑈]. The proof closely follows the proof of Proposition 5.2(a), with the following
three modifications. First, in place of conditions (a)–(e) in Definition 5.1, one uses the corre-
sponding conditions (a)–(e) in Step 2 above. Second, in place of equation (5.1) when 𝑑 = 1 or
𝑑 = 2, one uses equations (5.19) and (5.21), respectively. Third, in place of Proposition 2.6 one uses
Proposition 4.6.
We now show that

𝜕
𝔍

�
= 𝜕𝑆

1,𝐽 .

More precisely, let (𝑥+, 𝛾+) and (𝑥−, 𝛾−) be distinct. Write ind(𝑥±) = 2𝑘±. We need to show that⟨
𝜕
𝔍

�

(
𝛾+ ⊗ 𝑈

𝑘+
)
, 𝛾− ⊗ 𝑈

𝑘−
⟩
=
⟨
𝜕𝑆

1,𝐽
(
𝛾+ ⊗ 𝑈

𝑘+
)
, 𝛾− ⊗ 𝑈

𝑘−
⟩
. (5.26)

Here 𝛾+ denotes �𝛾+ or 𝛾+, and 𝛾− denotes �𝛾− or 𝛾−. The left-hand side of (5.26) counts cascades
from (𝑥+, 𝛾+) to (𝑥−, 𝛾−), and the right-hand side of (5.26) is defined by equation (5.12).
If 𝑥+ = 𝑥−, then equation (5.26) follows from the orientation preserving diffeomorphism (5.16).

If 𝑥+ ≠ 𝑥−, then by (5.12) and (5.15), both sides of (5.26) are zero except when ind(𝑥+) − ind(𝑥−) =
2 and there is a Reeb orbit 𝛾 such that 𝛾+ = �𝛾 and 𝛾− = 𝛾. So, by (1.13), to complete the proof of
(5.26), we need to check that if 𝑘 ⩾ 1 and 𝛾 is any Reeb orbit, then

⟨
𝜕
𝔍

�

(
�𝛾 ⊗ 𝑈𝑘

)
, 𝛾 ⊗ 𝑈𝑘−1

⟩
=

{
𝑑(𝛾), 𝛾 good,
0, 𝛾 bad.

(5.27)

By Step 3, the left-hand side of (5.27) is a signed count of 𝑑(𝛾) points. These points are the
𝑑(𝛾) inverse images of (𝑝(𝑥+,𝛾), 𝑝(𝑥−,𝛾)) under the map (5.20). In the notation of (5.25), these
inverse images all have the same 𝑦 coordinate, while their 𝑡 coordinates are evenly spaced
around 𝑆1.
If 𝛾 is a bad orbit, then if we rotate 𝑡 from one such point to the next, the signs alternate as in the

proof of (5.3), because 𝑒+ rotates once around (𝑝+, 𝛾) ≃ 𝛾, while 𝑒− stays fixed. Thus, the signed
count is zero.
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If 𝛾 is a good orbit, then the signs are all the same.Moreover, these signs are all positive, because
the diffeomorphism (5.21) is orientation preserving†. This last statement follows from the fact that
the diffeomorphism (5.24) is orientation preserving, together with the exact sequence (A.40) used
to orient the left-hand side of (5.21).
Step 5.We now conclude the proof, similarly to Proposition 5.2(c).
As in the proof of Proposition 5.2(b), for any real number 𝐿 and any integer 𝐾, we can choose

a generic 𝑆1-equivariant 𝑆1 × 𝐸𝑆1-family of almost complex structures 𝔍′ which is close on 𝑆1 ×
𝑆2𝐾+1 to 𝔍 = {𝐽}, such that 𝜕𝔍

′

�
= 𝜕𝐽,𝑆

1 on all generators 𝛼̃ ⊗ 𝑈𝑘 with (𝛼) < 𝐿 and 𝑘 ⩽ 𝐾. It
follows that

𝐶𝐻𝑆
1,𝐿,𝐾
∗ (𝑌, 𝜆) = 𝐻∗

(
𝑁𝐶𝐶𝐿∗ (𝑌, 𝜆) ⊗ ℤ[𝑈]∕𝑈𝐾+1, 𝜕𝑆

1,𝐽
)
. (5.28)

Here 𝐶𝐻𝑆
1,𝐿,𝐾
∗ (𝑌, 𝜆) denotes the homology of (𝑁𝐶𝐶𝐿∗ (𝑌, 𝜆) ⊗ ℤ[𝑈]∕𝑈𝐾+1, 𝜕

𝔍′

�
) for generic 𝔍′;

the proof of Theorem 1.6 shows that this depends only on (𝑌, 𝜆). Taking the direct limit over 𝐿
and 𝐾 in (5.28) completes the proof of the proposition. □

5.3 Comparison with cylindrical contact homology

We now prove Theorem 1.9, asserting that equivariant contact homology tensor ℚ agrees with
cylindrical contact homology, when the latter is defined.

Proof of Theorem 1.9.. Assume that the pair (𝐽,) is admissible. The pair (𝐽,) determines
operators 𝜕𝐽

�
and 𝜕𝐽,𝑆1 as in Sections 5.1 and 5.2. By Proposition 5.7, we have a canonical

isomorphism

𝐶𝐻𝑆
1

∗ (𝑌, 𝜉) = 𝐻∗

(
𝐶𝐶𝑆

1

∗ (𝑌, 𝜆), 𝜕
𝑆1,𝐽
)
.

So, to complete the proof of Theorem 1.9, we need to show that there is a canonical isomorphism

𝐻∗

(
𝐶𝐶𝑆

1

∗ (𝑌, 𝜆), 𝜕
𝑆1,𝐽
)
⊗ℚ = 𝐶𝐻EGH∗ (𝑌, 𝜆; 𝐽).

We proceed in three steps.
Step 1. Recall that 𝐶𝐶𝑆1∗ (𝑌, 𝜆) is the free ℤ-module generated by symbols �𝛼 ⊗𝑈

𝑘 and 𝛼̂ ⊗ 𝑈𝑘
where 𝛼 is a Reeb orbit and 𝑘 is a nonnegative integer. Let 𝐶′∗ denote the submodule generated by
all of the above generators except generators of the form �𝛽 ⊗ 1 where 𝛽 is a good Reeb orbit. We
claim that 𝐶′∗ is a subcomplex of 𝐶𝐶

𝑆1

∗ (𝑌, 𝜆).
To prove this, let 𝛽 be a good Reeb orbit. We need to show that �𝛽 ⊗ 1 does not appear in 𝜕𝑆1,𝐽

of any generator that does not have the form �𝛼 ⊗ 1where 𝛼 is a good Reeb orbit. That is, we need
to show the following.

(i) If 𝛼 is a bad Reeb orbit, then ⟨
𝜕𝑆

1,𝐽(�𝛼 ⊗ 1), �𝛽 ⊗ 1
⟩
= 0.

†Note that this statement only makes sense when 𝛾 is good, because the local system in which the orientation of the
left-hand side of (5.21) takes values is trivial if and only if 𝛾 is good.
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(ii) If 𝛼 is any Reeb orbit and 𝑘 is a positive integer, then⟨
𝜕𝑆

1,𝐽
(
�𝛼 ⊗𝑈𝑘

)
, �𝛽 ⊗ 1

⟩
= 0.

(iii) If 𝛼 is any Reeb orbit and 𝑘 is a nonnegative integer, then⟨
𝜕𝑆

1,𝐽
(
𝛼̂ ⊗ 𝑈𝑘

)
, �𝛽 ⊗ 1

⟩
= 0.

Assertion (i) follows from equation (5.4). Assertion (ii) follows from the definition of 𝜕𝑆1,𝐽 .
Assertion (iii) follows from the definition of 𝜕𝑆1,𝐽 when 𝑘 > 0, and from equation (5.3) when 𝑘 = 0.
Step 2.We now show that the homology of the subcomplex 𝐶′∗ vanishes after tensoring with ℚ,

that is

𝐻∗

(
𝐶′ ⊗ ℚ, 𝜕𝑆

1,𝐽 ⊗ 1
)
= 0. (5.29)

To see this, note that 𝜕𝑆1,𝐽 does not increase symplectic action, where the ‘symplectic action’ of
a generator 𝛼̃ ⊗ 𝑈𝑘 is understood to be the symplectic action of the Reeb orbit 𝛼. Let 𝜕𝑆

1,𝐽
0

denote
the part of 𝜕𝑆1,𝐽 that fixes symplectic action. By a spectral sequence argument†, it is enough to
show that

𝐻∗

(
𝐶′∗ ⊗ ℚ, 𝜕𝑆

1,𝐽
0

⊗ 1
)
= 0. (5.30)

The chain complex (𝐶′∗, 𝜕
𝑆1,𝐽
0
) splits into a direct sum over subcomplexes indexed by the set

of Reeb orbits. For a Reeb orbit 𝛼, the corresponding subcomplex is the span of the generators
�𝛼 ⊗𝑈𝑘 for 𝑘 > 0 (and also 𝑘 = 0 if 𝛼 is bad) and 𝛼̂ ⊗ 𝑈𝑘 for 𝑘 ⩾ 0. We need to show that the
homology of this subcomplex vanishes after tensoring withℚ. When 𝛼 is good, the subcomplex is
the sum over nonnegative integers 𝑘 of two-term complexes

�𝛼 ⊗𝑈𝑘+1
𝑑(𝛼)
⟶ 𝛼̂ ⊗𝑈𝑘.

Thus, the homology of the subcomplex is an infinite direct sum of copies of ℤ∕𝑑(𝛼)ℤ, which
vanishes after tensoring with ℚ. If 𝛼 is bad, then the subcomplex is the sum over nonnegative
integers 𝑘 of two-term complexes

𝛼̂ ⊗ 𝑈𝑘
2
⟶ �𝛼 ⊗𝑈𝑘.

Thus, the homology of the subcomplex is an infinite direct sum of copies of ℤ∕2ℤ, which again
vanishes after tensoring withℚ. (Similar calculations appeared previously in [12, Section 3.2] and
[22, Section 3.2].)

†Concretely, let 0 < 𝐴1 < 𝐴2 < ⋯ denote the (discrete) values of the symplectic action. We then define an integer-valued
filtration on the complex in (5.29), where the 𝑖th filtration level is spanned by generators 𝛼̃ ⊗ 𝑈𝑘 with(𝛼) ⩽ 𝐴𝑖 . If (5.30)
holds, then the homology of the associated graded complex vanishes, so by induction on 𝑖, the homology of the 𝑖th filtered
subcomplex also vanishes.
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Step 3.Wenow complete the proof. It follows from Step 2 that after tensoringwithℚ, the homol-
ogy of the chain complex (𝐶𝐶𝑆1∗ (𝑌, 𝜆), 𝜕

𝑆1,𝐽) is canonically isomorphic to the homology of the
quotient complex by 𝐶′∗. That is,

𝐶𝐻𝑆
1

∗ (𝑌, 𝜉) ⊗ ℚ = 𝐻∗

((
𝐶𝐶𝑆

1

∗ (𝑌, 𝜆)∕𝐶
′
∗

)
⊗ℚ, 𝜕𝑆

1,𝐽 ⊗ 1
)
. (5.31)

A basis for the quotient complex by 𝐶′∗ is given by the generators �𝛼 ⊗ 1 where 𝛼 is good. By the
definition of 𝜕𝑆1,𝐽 , the differential on the quotient complex is induced by �𝜕. By equation (5.4), this
differential agrees with 𝜕𝐸𝐺𝐻 after tensoring with ℚ. Thus, we have a canonical isomorphism of
chain complexes((

𝐶𝐶𝑆
1

∗ (𝑌, 𝜆)∕𝐶
′
∗

)
⊗ℚ, 𝜕𝑆

1,𝐽 ⊗ 1
)
=
(
𝐶𝐶𝐸𝐺𝐻∗ (𝑌, 𝜆; 𝐽), 𝜕𝐸𝐺𝐻

)
. (5.32)

Theorem 1.9 now follows from (5.31) and (5.32). □

5.4 Existence of admissible 𝑱 in dimension 3

Proposition 5.8. Suppose that dim(𝑌) = 3. Then a generic 𝜆-compatible almost complex structure
𝐽 on ℝ × 𝑌 is admissible.

To prove Proposition 5.8, we will use the following facts from [28]:

Lemma 5.9. Let (𝑌, 𝜆) be a nondegenerate† contact three-manifold, and let 𝐽 be a generic 𝜆-
compatible almost complex structure on ℝ × 𝑌. Then for distinct Reeb orbits 𝛼, 𝛽, we have the
following.

(a) If 𝑢 ∈𝐽(𝛼, 𝛽) with 𝛼 ≠ 𝛽, and if 𝑢 is the somewhere injective curve underlying 𝑢, then
1 ⩽ ind(𝑢) ⩽ ind(𝑢).

(b) 𝐽
1
(𝛼, 𝛽) is cut out transversely. More precisely, each 𝑢 ∈𝐽

1
(𝛼, 𝛽) is an immersion, whose

normal deformation operator (see Remark A.22) is surjective.
(c) For each 𝑢 ∈𝐽

2
(𝛼, 𝛽), if 𝑢 is not a double cover of an index 1 cylinder 𝑢, then 𝐽

2
(𝛼, 𝛽) is a

smooth manifold near 𝑢 cut out transversely.

Proof of Lemma 5.9.

(a) This is [28, Lemma 2.5(a)].
(b) This is [28, Lemma 4.2(a)].
(c) This follows from the proof of [28, Lemma 4.2(b)]. □

Remark 5.10. In part (c), if 𝑢 ∈𝐽
2
(𝛼, 𝛽) is a double cover of an index 1 cylinder 𝑢, then 𝑢may be

an orbifold point of𝐽
2
(𝛼, 𝛽). We expect that𝕁

2
(𝛼, 𝛽) is still a manifold near 𝑢.

† Lemma 5.9 does not require 𝜆 to be hypertight.
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Proof of Proposition 5.8. Choose generic 𝐽 as in Lemma 5.9. We claim that 𝐽 is admissible.
Note that if 𝑢 ∈𝕁

𝑑
(𝛼, 𝛽), then 𝕁

𝑑
(𝛼, 𝛽) is cut out transversely near 𝑢, that is, 𝑢 is regu-

lar in the sense of Definition A.20, if 𝐽
𝑑
(𝛼, 𝛽) is cut out transversely near 𝑢 (more precisely

the equivalence class of 𝑢 in equation (5.1)) in the sense of Lemma 5.9. This is explained in
Remark A.22.
Admissibility conditions (a) and (b) in Definition 5.1 now follow from parts (a) and (b) of

Lemma 5.9. By Sard’s theorem, we can then choose  generically so that admissibility conditions
(c) and (e) hold.
Next observe that 𝕁

2
(𝛼, 𝛽) is a smooth manifold cut out transversely near each 𝑢 ∈

𝕁
2
(𝛼, 𝑝𝛼, 𝛽, 𝑝𝛽). Otherwise, by Lemma 5.9, 𝑢 would be a cover of an index 1 curve 𝑢 ∈

𝕁
1
(𝛼, 𝑝𝛼, 𝛽, 𝑝𝛽), but the latter cannot exist by admissibility condition (c).
By Sard’s theorem again, we can then choose  generically so that admissibility condition (d)

holds also. □

6 EXAMPLES

The nonequivariant and 𝑆1-equivariant contact homology that we have defined have integer coef-
ficients and contain some interesting torsion. We now compute some examples of this, and we
also explain more about how to define local versions of these contact homologies, as sketched in
Section 1.6.

6.1 Prequantization spaces

Let Σ be a Riemann surface of genus g > 0, let 𝜌 ∶ 𝑌 → Σ be an 𝑆1-bundle over Σ with Euler
class −𝑒 where 𝑒 > 0, and let 𝜆0 be a connection 1-form on 𝑌 with positive curvature. Then 𝜆0 is
a contact form; let 𝜉 denote the contact structure Ker(𝜆0). The simple Reeb orbits of 𝜆0 consist of
the fibers of 𝜌, which all have action 2𝜋, so that 𝜆0 is hypertight, although degenerate. Let Γ be
the free homotopy class of loops in 𝑌 given by 𝑑 times a fiber where 𝑑 > 0. We now sketch how to
compute the nonequivariant and equivariant contact homologies of (𝑌, 𝜉) in the class Γ. A related
calculation was given in [36, Theorem 1.19].
By the discussion in Section 1.6, we have

𝑁𝐶𝐻∗(𝑌, 𝜉, Γ) = 𝑁𝐶𝐻
<𝐿
∗ (𝑌, 𝜆, Γ),

where 𝐿 > 2𝜋𝑑, and 𝜆 is a nondegenerate perturbation of 𝜆0 which is small with respect to 𝐿. An
analogous equation holds for equivariant contact homology.
The usual approach for perturbing 𝜆0 is to take

𝜆 = (1 + 𝜌∗𝐻)𝜆0,

where 𝐻 ∶ Σ → ℝ is a 𝐶2-small Morse function. The Reeb orbits of 𝜆 in the class Γ of action less
than 𝐿 then consist of the 𝑑-fold covers of the fibers over the critical points of𝐻. These Reeb orbits
are all good.
As explained in Section 1.6, since 𝑐1(𝜉) vanishes on toroidal classes in 𝐻2(𝑌) ≃ 𝐻1(Σ), we can

noncanonically refine the canonical ℤ∕2 grading on 𝑁𝐶𝐶∗ to a ℤ grading. We can choose this ℤ
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grading such that if 𝑝 is a critical point of𝐻, and if 𝛾𝑝 denotes the 𝑑-fold cover of the fiber over 𝑝,
then |||�𝛾𝑝||| = ind(𝐻, 𝑝) − 1,|||𝛾𝑝||| = ind(𝐻, 𝑝),
where ind(𝐻, 𝑝) denotes the Morse index of 𝐻 at 𝑝.
Next, by Proposition 5.8, we can choose an admissible 𝜆-compatible almost complex structure 𝐽

on ℝ × 𝑌, which is close to an 𝑆1-invariant 𝜆0-compatible almost complex structure coming from
a Riemannian metric on Σ. For suitable orientation choices, if 𝑝 and 𝑞 are critical points of 𝐻,
then there is an orientation-preserving bijection

𝐽(𝛾𝑝, 𝛾𝑞) =Morse(𝑝, 𝑞), (6.1)

where the left-hand side is the moduli space of 𝐽-holomorphic cylinders (1.7), while the right-
hand side denotes the moduli space of downward gradient flow lines of 𝐻 from 𝑝 to 𝑞, modulo
reparameterization. Furthermore, each of the holomorphic cylinders on the left-hand side is a
𝑑-fold cover which is cut out transversely. The above is proved by Moreno [34, Sections 3.5.1 and
6.1], modifying the classic arguments of Salamon–Zehnder [38] computing Hamiltonian Floer
homology of 𝐶2-small autonomous Hamiltonians.
By Proposition 5.2, we can now computemost of the nonequivariant differential (5.2) as follows:

𝜕+ = 0,

�𝜕 = 𝜕Morse,

𝜕 = −𝜕Morse,

(6.2)

where 𝜕Morse denotes the differential on the Morse complex for 𝐻.
For simplicity, we can choose𝐻 to be a perfect Morse function with one index 2 critical point 𝑝,

with 2g index 1 critical points 𝑞1, … , 𝑞2g , and with one index 0 critical point 𝑟. Then by (6.2), the
only possibly nonzero block in the cascade differential (5.2) is 𝜕−. Moreover, for grading reasons,
the only possible nonzero coefficient of 𝜕− is the coefficient from �𝑝 to 𝑟̂. A calculation similar to
the proof of equation (5.27) shows that this coefficient is given by

⟨𝜕−�𝑝, 𝑟̂⟩ = ±𝑑𝑒. (6.3)

We conclude that the nonequivariant contact homology is generated by 𝑝, �𝑞𝑖, 𝑞𝑖, �𝑟, which are
free, and 𝑟̂, which is 𝑑𝑒-torsion. Thus,

𝑁𝐶𝐻∗(𝑌, 𝜉, Γ) ≃

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐻2(Σ), ∗= 2,

𝐻1(Σ), ∗= 1,

𝐻1(Σ) ⊕ ℤ∕𝑑𝑒, ∗= 0,

𝐻0(Σ), ∗= −1,

0, else.
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Nextwe can compute the equivariant contact homology. By Proposition 5.7, this is the homology
of the differential 𝜕𝑆1,𝐽 in equation (5.12). By (6.2) and (6.3), this differential is given by

𝜕𝑆
1,𝐽(�𝑝 ⊗ 1) = ±𝑑𝑒𝑟̂ ⊗ 1,

𝜕𝑆
1,𝐽(�𝑝 ⊗ 𝑈𝑘) = ±𝑑𝑒𝑟̂ ⊗ 𝑈𝑘 + 𝑑𝑝 ⊗𝑈𝑘−1, 𝑘 > 0,

𝜕𝑆
1,𝐽(�𝑞𝑖 ⊗ 𝑈

𝑘) = 𝑑𝑞𝑖 ⊗ 𝑈
𝑘−1, 𝑘 > 0,

𝜕𝑆
1,𝐽(�𝑟 ⊗ 𝑈𝑘) = 𝑑𝑟̂ ⊗ 𝑈𝑘−1, 𝑘 > 0,

and 𝜕𝑆1,𝐽 sends all other generators, namely �𝑞𝑖 ⊗ 1, �𝑟 ⊗ 1 and𝑝 ⊗𝑈𝑘, 𝑞𝑖 ⊗ 𝑈𝑘, 𝑟̂ ⊗ 𝑈𝑘 with 𝑘 ⩾ 0,
to zero. It follows that the homology is generated by �𝑝 ⊗ 1 ∓ 𝑒�𝑟 ⊗ 𝑈, �𝑞𝑖 ⊗ 1, and �𝑟 ⊗ 1, each of
which is free, together with 𝑝 ⊗𝑈𝑘, 𝑞𝑖 ⊗ 𝑈𝑘, 𝑟̂ ⊗ 𝑈𝑘 for 𝑘 ⩾ 0, each of which is 𝑑-torsion. We
conclude the following:

Proposition 6.1. Let Σ be a Riemann surface of genus g > 0, let 𝜌 ∶ 𝑌 → Σ be an 𝑆1-bundle over
Σ with negative Euler class, let 𝜉 be the corresponding prequantization contact structure on 𝑌, and
let Γ be the free homotopy class of loops in 𝑌 given by 𝑑 times a fiber where 𝑑 > 0. Then as ℤ-graded
ℤ-modules we have

𝐶𝐻𝑆
1

∗ (𝑌, 𝜉, Γ) ≃ 𝐻∗(Σ)[−1] ⊕ (𝐻∗(Σ; ℤ∕𝑑) ⊗ ℤ[𝑈]), (6.4)

where the formal variable𝑈 has degree 2.

Remark 6.2. Strictly speaking, we have not defined the cylindrical contact homology
𝐶𝐻EGH∗ (𝑌, 𝜉, Γ); we have only defined cylindrical contact homology for pairs (𝜆, 𝐽) satisfying the
hypotheses of Corollary 1.10. But if we define 𝐶𝐻EGH∗ (𝑌, 𝜉, Γ) to be the 𝑆1-equivariant contact
homology tensor ℚ as in Theorem 1.9, then it follows from (6.4), as one might expect from (6.1),
that

𝐶𝐻EGH∗ (𝑌, 𝜉, Γ) ≃ 𝐻∗(Σ;ℚ)[−1]. (6.5)

6.2 Local contact homology

Let 𝜆0 be a contact form on a manifold 𝑌 (not necessarily compact), let 𝛾0 be a simple Reeb
orbit of 𝜆0, and let 𝑑 be a positive integer. Assume that the Reeb orbits 𝛾𝑘0 are isolated in the
loop space for 1 ⩽ 𝑘 ⩽ 𝑑 (but not necessarily nondegenerate). We now explain how to define the
local nonequivariant contact homology 𝑁𝐶𝐻∗(𝑌, 𝜆0, 𝛾0, 𝑑) and the local 𝑆1-equivariant contact
homology 𝐶𝐻𝑆1∗ (𝑌, 𝜆0, 𝛾0, 𝑑).

Isolating neighborhood
As in [25, Section 3], let 𝑁 ⊂ 𝑌 be a compact tubular neighborhood of (the image of) 𝛾0. Choose
𝑁 sufficiently small so that:

∙ there exists a closed 1-form 𝜃 on 𝑁 which pairs positively with the Reeb vector field;
∙ the only Reeb orbits in 𝑁 in the homotopy class 𝑘[𝛾0] for 1 ⩽ 𝑘 ⩽ 𝑑 are the iterates 𝛾𝑘0 .
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Let 𝜆 be a nondegenerate perturbation of 𝜆0 on𝑁. Assume that the perturbation is small enough
so that 𝜃 pairs positively with the Reeb vector field of 𝜆. (We may need to choose the perturbation
smaller below.) Then 𝜆 is hypertight on 𝑁.

Local nonequivariant contact homology
Let 𝕁 be a generic 𝑆1-family of 𝜆-compatible almost complex structures onℝ × 𝑁. If 𝛾+ and 𝛾− are
Reeb orbits of 𝜆, let𝕁(𝛾+, 𝛾−) denote themoduli space of holomorphic cylinders as in Section 2,
where now

𝑢 ∶ ℝ × 𝑆1 → ℝ × 𝑁.

A compactness argument as in [25, Lemma 3.4] shows that if 𝜆 is sufficiently close to 𝜆0, and if 𝛾+
and 𝛾− are Reeb orbits of 𝜆 in the class 𝑑[𝛾0], then for any generic 𝕁 as above, every holomorphic
cylinder in 𝕁(𝛾+, 𝛾−) avoids ℝ × 𝜕𝑁. We then have compactness as in Proposition 2.6, that is,
the moduli spaces have no additional boundary points arising from holomorphic curves hitting
ℝ × 𝜕𝑁. We then obtain a well-defined local nonequivariant contact homology as in Section 3.3,
using only Reeb orbits in the class 𝑑[𝛾0], which we denote by 𝑁𝐶𝐻∗(𝑁, 𝜆, 𝑑; 𝕁). Similarly, if 𝜆+
and 𝜆− are two sufficiently small perturbations of 𝜆 as above, and if 𝕁± is a generic 𝑆1-family of
𝜆±-compatible almost complex structures on ℝ × 𝑁, then as in Sections 3.4 and 3.5, we obtain a
canonical isomorphism

𝑁𝐶𝐻∗(𝑁, 𝜆+, 𝑑; 𝕁+) ≃ 𝑁𝐶𝐻∗(𝑁, 𝜆−, 𝑑; 𝕁−). (6.6)

Consequently, the local nonequivariant contact homology does not depend on the choice of
sufficiently small perturbation 𝜆 or 𝕁, and we can denote this homology by 𝑁𝐶𝐻∗(𝑌, 𝜆0, 𝛾0, 𝑑).

Local 𝑆1-equivariant contact homology
The local 𝑆1-equivariant contact homology𝐶𝐻𝑆1∗ (𝑌, 𝜆0, 𝛾0, 𝑑) is defined likewise, by repeating the
construction in Section 4, where 𝜆 is a sufficiently small nondegenerate perturbation of 𝜆0 in𝑁 as
above, 𝔍 is a generic 𝑆1-equivariant 𝑆1 × 𝐸𝑆1 family of 𝜆-compatible almost complex structures
on ℝ × 𝑁, and we consider Reeb orbits in the class 𝑑[𝛾0] and moduli spaces of pairs (𝜂, 𝑢) where
𝑢 ∶ ℝ × 𝑆1 → ℝ × 𝑁.

Local cylindrical contact homology
Finally, suppose that 𝜆 is a sufficiently small nondegenerate perturbation of 𝜆0 on 𝑁 as above,
and suppose that there exists an admissible 𝜆-compatible almost complex structure 𝐽 on ℝ × 𝑁
as in Definition 5.1. (As in Proposition 5.8, we can always find such a 𝐽 when dim(𝑌) = 3.) Then
the cylindrical contact homology 𝐶𝐻EGH∗ (𝑁, 𝜆, 𝑑; 𝐽) is defined, where we just consider good Reeb
orbits in the class 𝑑[𝛾0]. The proof of Theorem 1.9 carries over to show that there is a canonical
isomorphism

𝐶𝐻EGH∗ (𝑁, 𝜆, 𝑑; 𝐽) = 𝐶𝐻𝑆
1

∗ (𝑌, 𝜆0, 𝛾0, 𝑑) ⊗ ℚ.

Grading
Each of the above versions of local contact homology has a noncanonical ℤ-grading, as in Sec-
tion 1.6. In fact, a symplectic trivialization 𝜏0 of 𝛾∗0𝜉 determines a choice of this ℤ-grading, in
which the grading of a Reeb orbit 𝛾 in cylindrical contact homology, or the corresponding gen-
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erator 𝛾 or 𝛾 ⊗ 1 of nonequivariant or 𝑆1-equivariant contact homology, is the Conley–Zehnder
index CZ𝜏(𝛾), where 𝜏 is a trivialization of 𝛾∗𝜉 in a homotopy class determined by 𝜏0.

Remark 6.3. There is an alternate and very simple definition of local contact homology over
ℤ, introduced in [27], which avoids transversality difficulties without using 𝑆1-equivariant the-
ory. Here one replaces the neighborhood 𝑁 by a 𝑑-fold cyclic cover, considers the cylindrical
contact homology of this cover in degree 1 (for which no multiply covered holomorphic cylin-
ders can arise), and takes the ℤ∕𝑑-invariant part of this cylindrical contact homology. Let us
denote the resulting local contact homology by 𝐶𝐻ℤ∗ (𝑌, 𝜆0, 𝛾0, 𝑑). Simple examples show that
𝐶𝐻ℤ∗ does not agreewith𝐶𝐻

𝑆1

∗ (the former has less torsion), butwe expect that there is a canonical
isomorphism

𝐶𝐻ℤ∗ (𝑌, 𝜆0, 𝛾0, 𝑑) ⊗ ℚ = 𝐶𝐻𝑆
1

∗ (𝑌, 𝜆0, 𝛾0, 𝑑) ⊗ ℚ.

6.3 The period doubling bifurcation

On a three-manifold 𝑌, a one-parameter family of contact forms {𝜆𝑡}𝑡∈ℝ can undergo a period-
doubling bifurcation in which the following happens.†

∙ The contact form 𝜆0 has an simple Reeb orbit 𝛾0 for which the linearized return map (1.4) has
−1 as a single eigenvalue. In particular, the double cover of 𝛾0 is degenerate. However, 𝛾0 and its
double cover are isolated Reeb orbits in the loop space of 𝑌. Let𝑁 be a small tubular neighbor-
hood of 𝛾0 as in the definition of local contact homology for𝑑 = 2.We can choose a trivialization
𝜏0 of 𝛾∗0𝜉 with respect to which the linearized Reeb flow along 𝛾0 has rotation number 1∕2.

∙ For 𝑡 < 0 small, the only Reeb orbit in 𝑁 in the homotopy class [𝛾0] is an elliptic Reeb orbit 𝑒1
for which the rotation number with respect to 𝜏0 is slightly less than 1∕2. The only Reeb orbit
in 𝑁 in the homotopy class 2[𝛾0] is the double cover of 𝑒1, which we denote by 𝐸1.

∙ For 𝑡 > 0 small, the only Reeb orbit in 𝑁 in the homotopy class [𝛾0] is a negative hyperbolic
Reeb orbit ℎ1 (this means that the linearized return map has distinct negative eigenvalues)
with rotation number 1∕2 with respect to 𝜏0; and the only Reeb orbits in the homotopy class
2[𝛾0] are the double cover of ℎ1, which we denote by𝐻1, together with a simple elliptic orbit 𝑒2
whose rotation number with respect to 𝜏0 is slightly less than 1.

For explicit formulae for this bifurcation, see [1, Section 8.3.2]. The above bullet points are all
that we need to know here, but the following picture might be helpful. Let 𝐷 be a disk transverse
to 𝛾0. Then the Reeb flow of 𝜆𝑡 induces a partially defined returnmap 𝜙𝑡 ∶ 𝐷 → 𝐷. One canmodel
the period-doubling bifurcation with

𝜙𝑡 =

(
−1 0

0 −1

)
◦𝜑𝑋𝑡𝜖 ,

where 𝜖 > 0 is small, and𝜑𝑋𝑡𝜀 is the time 𝜀 flow of a vector field𝑋𝑡 which is invariant under rotation
by 𝜋 and illustrated in Figures 1–3.

† There is another version of period-doubling, inwhich 𝑒1 has rotationnumber slightly greater than 1∕2, and 𝑒2 has rotation
number slightly greater than 1. This other version behaves similarly and we will not consider it here.
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F IGURE 1 Flow of 𝑋−1; before the bifurcation

F IGURE 2 Flow of 𝑋0; at the bifurcation

F IGURE 3 Flow of 𝑋1; after the bifurcation

The critical point of𝑋−1 in Figure 1 is a fixed point of𝜙−1, which corresponds to the elliptic orbit
𝑒1. The critical point of𝑋0 in Figure 2 is a fixed point of𝜙0which corresponds to the nondegenerate
Reeb orbit 𝛾0. The central critical point of 𝑋1 in Figure 3 is a fixed point of 𝜙1 which corresponds
to the negative hyperbolic orbit ℎ1. In addition, the left and right critical points of 𝑋1 in Figure 3
are exchanged by 𝜙1, and so they constitute a period 2 orbit of the map 𝜙1, which corresponds to
the elliptic orbit 𝑒2.
It follows from [28, equation (2.3)] that the Conley–Zehnder indices of the above Reeb orbits

with respect to 𝜏0 are given by CZ(𝑒1) = CZ(ℎ1) = 1, CZ(𝐸1) = CZ(𝑒2) = 1, and CZ(𝐻1) = 2.
Let 𝜆+ = 𝜆𝑡 for some small 𝑡 > 0, and let 𝜆− = 𝜆𝑡 for some small 𝑡 < 0. It is instructive to com-

pute the different versions of local contact homology of (𝑌, 𝜆0, 𝛾0, 𝑑 = 2) using 𝜆− and 𝜆+. For this
purpose, we can use admissible 𝜆±-compatible almost complex structures 𝐽± on ℝ × 𝑁.

Local cylindrical contact homology
For 𝜆−, the local cylindrical chain complex just has the one generator𝐸1 (this is a goodReeb orbit).
Thus, the cylindrical contact homology is given by

𝐶𝐻EGH∗ (𝑁, 𝜆−, 𝑑 = 2; 𝐽−) ≃

{
ℚ, ∗= 1,

0, otherwise.
(6.7)
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For 𝜆+, the local cylindrical chain complex has just the one generator 𝑒2, because 𝐻2 is a bad
Reeb orbit. Thus, we get the same answer†.

Local nonequivariant contact homology
For 𝜆−, the local nonequivariant chain complex has the two generators �𝐸1 and 𝐸1 of gradings 1
and 2, respectively. Since 𝐸1 is a good Reeb orbit, the differential (5.2) is zero by equation (5.3).
Thus, we obtain

𝑁𝐶𝐻∗(𝑌, 𝜆0, 𝛾0, 𝑑 = 2) ≃

{
ℤ, ∗= 1, 2,

0, otherwise.
(6.8)

For 𝜆+, the local nonequivariant chain complex now has four generators: �𝑒2 which has grad-
ing 1; 𝑒2 and �𝐻1 which have grading 2; and 𝐻̂1 which has grading 3. By Proposition 5.2(c), the
differential (5.2) satisfies

𝜕
𝐽+
�
𝐻1 = −2�𝐻1 + 𝑐𝑒2,

and the differential of all other generators is zero. Here 𝑐 ∈ ℤ is determined by a count of holo-
morphic cylinders in the moduli space𝐽(𝐻1, 𝑒2). We will not compute 𝑐 here, but we do know
that 𝑐 is odd, by equation (6.8) and the invariance (6.6) of local nonequivariant contact homology.

Local 𝑆1-equivariant contact homology
For 𝜆−, the 𝑆1-equivariant chain complex has the generators�𝐸1 ⊗𝑈𝑘 of grading 2𝑘 + 1, and 𝐸1 ⊗
𝑈𝑘 of grading 2𝑘 + 2, for each 𝑘 ⩾ 0. By equation (5.12), the differential is given by

𝜕𝑆
1,𝐽−
(
�𝐸1 ⊗𝑈

𝑘
)
= 2
(
𝐸1 ⊗ 𝑈

𝑘−1
)
, 𝑘 > 0,

and the differentials of all other generators are zero. It follows that the homology is generated by
the cycle�𝐸1, which is free, and the cycles 𝐸1 ⊗ 𝑈𝑘 for 𝑘 ⩾ 0, which are 2-torsion. Thus,

𝐶𝐻𝑆
1

∗ (𝑌, 𝜆0, 𝛾0, 𝑑 = 2) ≃

⎧⎪⎨⎪⎩
ℤ, ∗= 1,

ℤ∕2, ∗= 2, 4, … ,

0, otherwise.
(6.9)

Note that tensoring this with ℚ correctly recovers (6.7).
For 𝜆+, the 𝑆1-equivariant chain complex has generators �𝑒2 ⊗ 𝑈𝑘 of grading 2𝑘 + 1, generators

𝑒2 ⊗ 𝑈
𝑘 and �𝐻1 ⊗𝑈𝑘 of grading 2𝑘 + 2, and generators𝐻1 ⊗𝑈𝑘 of grading 2𝑘 + 3, for each 𝑘 ⩾

0. By equation (5.12), the differential is given by

𝜕𝑆
1,𝐽+
(
�𝑒2 ⊗ 𝑈

𝑘
)
= 𝑒2 ⊗ 𝑈

𝑘−1, 𝑘 > 0,

𝜕𝑆
1,𝐽+
(
𝐻1 ⊗𝑈

𝑘
)
= −2

(
�𝐻1 ⊗𝑈

𝑘
)
+ 𝑐
(
𝑒2 ⊗ 𝑈

𝑘
)
, 𝑘 ⩾ 0,

† This is one of the reasons why bad orbits have to be discarded in the definition of cylindrical contact homology; otherwise
one would not have invariance under this bifurcation.
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and the differentials of all other generators are zero. It follows that the homology is generated by
the cycle �𝑒2 ⊗ 1, which is free, and the cycles �𝐻1 ⊗𝑈𝑘 for 𝑘 ⩾ 0, which are 2-torsion since

𝜕𝑆
1,𝐽+
(
𝑐
(
�𝑒2 ⊗ 𝑈

𝑘+1
)
−𝐻1 ⊗ 𝑈

𝑘
)
= 2
(
�𝐻1 ⊗𝑈

𝑘
)
.

Thus, we again obtain (6.9).

APPENDIX A: ORIENTATIONS

In this section, we define the orientations on the moduli spaces that we consider, and we justify
the claims that wemake about signs. (We omit a few cases which do not involve additional ideas.)
The main references that we will use are [16], which first introduced coherent orientations in
the context of Hamiltonian Floer theory; [9], which extended [16] to the case of symplectic field
theory; and [30], which worked out more details in connection with obstruction bundle gluing.

A.1 Orienting the operators

We first review how to orient the various Fredholm operators that we need to consider, spelling
out the conventions that we will be using. We will consider a very general class of Fredholm
operators, and not just the specific operators that arise from holomorphic curves in ℝ × 𝑌. The
conclusion that we need is stated in Proposition A.16 . This discussion follows [30, Section 9] with
minor modifications.

Preliminaries. If 𝑉 is a finite-dimensional real vector space, define (𝑉) to be the (two-element)
set of orientations of 𝑉. If 𝔬 ∈ (𝑉), denote the opposite orientation by −𝔬. If 𝑊 is another
finite-dimensional real vector space, define(𝑉) ⊗ (𝑊) to be the set of pairs (𝔬𝑉, 𝔬𝑊) ∈ (𝑉) ×
(𝑊), modulo the relation (𝔬𝑉, 𝔬𝑊) ∼ (−𝔬𝑉,−𝔬𝑊). We denote the equivalence class of (𝔬𝑉, 𝔬𝑊)
by 𝔬𝑉 ⊗ 𝔬𝑊 . There is a canonical bijection

(𝑉 ⊕𝑊) = (𝑉) ⊗ (𝑊).
Note that switching the order of 𝑉 and 𝑊 multiplies this bijection by (−1)dim(𝑉) dim(𝑊). More
generally, a finite exact sequence of finite-dimensional real vector spaces

0 → 𝑉1
𝑓1
→ 𝑉2

𝑓2
→ ⋯

𝑓𝑘−1
→ 𝑉𝑘 → 0 (A.1)

induces a canonical element

𝔬(𝑓1, … , 𝑓𝑘−1) ∈ (𝑉1) ⊗⋯⊗ (𝑉𝑘), (A.2)

which is invariant under homotopy of exact sequences. If orientations 𝔬𝑖 ∈ (𝑉𝑖) have already
been chosen for 𝑖 = 1, … , 𝑘, we say that the exact sequence (A.1) is orientation preserving if the
canonical element (A.2) agrees with 𝔬1 ⊗⋯⊗ 𝔬𝑘.
If 𝐷 is a real linear Fredholm operator, define

(𝐷) = (Ker(𝐷)) ⊗ (Coker(𝐷)).
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W e d efi n e a n ori e nt ati o n of t h e  Fr e d h ol m o p er at or 𝐷 t o b e a n el e m e nt of t h e t w o- el e m e nt s et

 ( 𝐷 ).  A h o m ot o p y of  Fr e d h ol m o p er at or s fr o m 𝐷 t o 𝐷 ′ i n d u c e s a bij e cti o n  ( 𝐷 )
≃
→  ( 𝐷 ′ ); s e e

t h e r e vi e w i n [3 0 , S e cti o n 9.1].

I ntr o d u ci n g t h e o p er at ors. W e n o w i ntr o d u c e t h e ki n d s of  Fr e d h ol m o p er at or s t h at  w e  will n e e d

t o ori e nt.

D efi niti o n  A. 1. A n ori e nt ati o n l o o p i s a p air  = ( 𝐸,  ∇) w h er e:

∙ 𝐸 i s a r a n k 𝑛 H er miti a n v e ct or b u n dl e o v er 𝑆 1 ;
∙ ∇ i s a  H er miti a n c o n n e cti o n o n 𝐸 .

A s s o ci at e d t o t h e ori e nt ati o n l o o p  i s a diff er e nti al o p er at or

𝐴  = 𝑖 ∇ 𝑡 ∶ 𝐶 ∞ ( 𝑆 1 , 𝐸 ) ⟶ 𝐶∞ ( 𝑆 1 ,  𝐸 ),

w h er e ∇ 𝑡 d e n ot e s t h e c o v ari a nt d eri v ati v e al o n g 𝑆 1 .  W e s a y t h at  i s n o n d e g e n er at e if K er( 𝐴  ) =

{ 0}.  Al s o,  w e d efi n e 𝛿 + ( ) > 0 t o b e t h e s m all e st p o siti v e ei g e n v al u e of t h e o p er at or 𝐴  , a n d

𝛿 − ( ) < 0 t o b e t h e l ar g e st n e g ati v e ei g e n v al u e.

D efi niti o n  A. 2. A n ori e nt ati o n s urf a c e i s a q u a dr u pl e  = ( 𝐶,  𝐸, L + , L − ) w h er e:

∙ 𝐶 i s a ( p o s si bl y di s c o n n e ct e d) p u n ct ur e d c o m p a ct  Ri e m a n n s urf a c e  wit h 𝑘 + 𝑙 ⩾ 0 or d er e d

p u n ct ur e s ( w hi c h  w e  will r e g ar d a s e n d s), of  w hi c h t h e fir st 𝑘 ar e d e si g n at e d ‘ p o siti v e’ a n d

t h e l a st 𝑙 ar e d e si g n at e d ‘ n e g ati v e’.  E a c h p o siti v e e n d i s c o nf or m all y i d e ntifi e d  wit h [ 0,  ∞)  × 𝑆 1 ,

a n d e a c h n e g ati v e e n d i s c o nf or m all y i d e ntifi e d  wit h ( − ∞, 0]  × 𝑆 1 .  O n e a c h e n d, d e n ot e t h e

[ 0,  ∞) or ( − ∞, 0] c o or di n at e b y 𝑠 a n d t h e 𝑆 1 c o or di n at e b y 𝑡;
∙ L + i s a li st of 𝑘 ori e nt ati o n l o o p s  +

𝑗
= ( 𝐸 +

𝑗
, ∇+

𝑗
), a n d L − i s a li st of 𝑙 ori e nt ati o n l o o p s  −

𝑗
=

( 𝐸 −
𝑗

, ∇−
𝑗
);

∙ 𝐸 i s a r a n k 𝑛 H er miti a n v e ct or b u n dl e o v er 𝐶 .  A n i d e ntifi c ati o n i s fi x e d b et w e e n t h e r e stri c-

ti o n of 𝐸 t o t h e 𝑗 t h p o siti v e e n d of 𝐶 a n d t h e p ull b a c k of t h e b u n dl e 𝐸 +
𝑗

o v er 𝑆 1 .  Li k e wi s e, t h e

r e stri cti o n of 𝐸 t o t h e 𝑗 t h n e g ati v e e n d of 𝐶 i s i d e ntifi e d  wit h t h e p ull b a c k of 𝐸 −
𝑗

.

I n t hi s p a p er,  w e  will o nl y n e e d t o c o n si d er t h e c a s e s  w h er e 𝐶 i s t h e pl a n e, c yli n d er, or s p h er e,

b ut o n e c a n al s o c o n si d er  m or e g e n er al  Ri e m a n n s urf a c e s a s i n [ 9, 3 0 ].

D efi niti o n  A. 3. F or a n ori e nt ati o n s urf a c e  = ( 𝐶,  𝐸, L + , L − ) a s a b o v e, d efi n e  ( ) t o b e t h e

s et of diff er e nti al o p er at or s

𝐷 ∶ 𝐶 ∞ ( 𝐸 ) ⟶ 𝐶 ∞ ( 𝑇 0, 1 𝐶  ⊗  𝐸 )

s u c h t h at:

∙ i n a c o m pl e x l o c al c o or di n at e o n 𝐶 a n d a l o c al tri vi ali z ati o n of 𝐸 , t h e o p er at or 𝐷 e q u al s 𝜕 pl u s

a 0t h or d er t er m;
∙ o n t h e 𝑗 t h p o siti v e e n d of 𝐶 ,  writ e

𝐷 =
1

2
( 𝑑 𝑠  − 𝑖 𝑑𝑡)  ⊗ ( 𝜕𝑠 + 𝑖 ∇ 𝑡 + 𝑀 𝑗 (𝑠, 𝑡)),
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w h er e 𝑆 𝐷 (𝐷, 𝐷) i s a n e n d o m or p hi s m of t h e r e al v e ct or s p a c e ( 𝐷 +
𝐷

)𝐷 .  T h e n

li m
𝐸 → ∞

𝐸 𝑛 (𝑆, ⋅) = 0

i n t h e s e n s e of [1 6, S e cti o n 2].  Li k e wi s e f or t h e n e g ati v e e n d s  wit h 𝐸  →  − ∞.

Gi v e n a n ori e nt ati o n s urf a c e  = ( 𝐴,  𝑖, L + , L − ), l et 𝑡  = ( 𝐶 +
1

, … , 𝑆+
𝐸

, 𝐶−
1

, … , 𝑆−
𝐸

) b e a t u pl e of

r e al n u m b er s s u c h t h at 𝑡 +
𝑆

i s n ot a n ei g e n v al u e of 𝐴  +
𝛿

f or a n y 𝐴  =  1, … , 𝛿 , a n d 𝐶 −
𝐸

i s n ot a n ei g e n-

v al u e of − 𝐶  −
𝑘

f or a n y 𝑙  =  1, … , 𝑘 .  T h e n it a st a n d ar d f a ct t h at a n y o p er at or 𝑙 ∈  ( ) e xt e n d s t o a

Fr e d h ol m o p er at or

𝑆 ∶ 𝑆 2, 𝑠
1

( 𝑆 ) ⟶ 𝑡 2, 𝑘 ( 𝑗 0, 1 𝐸  ⊗  𝑗 ). ( A. 3)

H er e 𝑗 2, 𝑙
1

d e n ot e s t h e e x p o n e nti all y  w ei g ht e d S o b ol e v s p a c e c o n si sti n g of s e cti o n s 𝑗 s u c h t h at

𝐸 𝑗  ∈  𝑗 2
1
,  w h er e 𝐸 ∶ 𝑛 → ℝ i s a p o siti v e s m o ot h f u n cti o n s u c h t h at o n t h e 𝐶 t h p o siti v e e n d  w e

h a v e 𝐸 = 𝑗
𝐶 +

𝐸
𝑗
f or 𝑆 l ar g e, a n d o n t h e 𝐸 t h n e g ati v e e n d  w e h a v e 𝑗 = 𝐶

𝐸 −
𝑗

|𝐶 |
f or |𝐶 | l ar g e.

A s s u m e f urt h er t h at 0 ⩽ 𝐸 +
𝐷

< 𝐶 + ( +
𝐸
) f or e a c h 𝐶  =  1, … , 𝑇 , a n d 0 ⩽ 𝐶 −

𝐸
<  − 𝐶 − ( −

𝐸
) f or e a c h 𝐷 =

1, … , 𝜕 . ( N ot e h er e t h at 𝑗 ±
𝐶

= 0 i s all o w e d o nl y if t h e ori e nt ati o n l o o p  ±
𝐷

i s n o n d e g e n er at e.)  W e  will

c all s u c h a c h oi c e of e x p o n e nti al  w ei g ht s a d missi bl e .  T h e n t h e s et of ori e nt ati o n s of t h e  Fr e d h ol m

o p er at or ( A. 3 ) d o e s n ot d e p e n d† o n 𝑑 , a n d i n f a ct d e p e n d s o nl y o n t h e ori e nt ati o n s urf a c e  ; s e e

t h e r e vi e w i n [3 0 , S e cti o n 9. 2].  D e n ot e t hi s s et of ori e nt ati o n s b y  ( ).

R e m ar k A. 4. It i s s o m eti m e s u s ef ul t o eli mi n at e t h e e x p o n e nti al  w ei g ht s a s f oll o w s. If 𝑠 ∶ 𝑖 → ℝ

i s a f u n cti o n a s i n t h e d efi niti o n of 𝑑 2, 𝑡
1

, t h e n t h e o p er at or (A. 3 ) i s c o nj u g at e t o t h e o p er at or

𝜕 𝑠 𝑖 − 1 ∶ 𝑡 2
1 ( 𝑀 ) ⟶ 𝑗 2 ( 𝑠 0, 1 𝑡  ⊗  𝐸 ).

T hi s c o nj u g at e o p er at or i s it s elf t h e e xt e n si o n of a diff er e nti al o p er at or

𝛽 𝐷 𝛽 − 1 ∈  ( 𝛿 ),

w h er e  𝛿 i s a n ori e nt ati o n s urf a c e o bt ai n e d b y s hifti n g t h e ori e nt ati o n l o o p s b y 𝛿 .  N a m el y,

 𝛿 = ( 𝐶,  𝐸, {( 𝐸 +
𝑗

, ∇+
𝑗

+ 𝑖 𝛿 +
𝑗

)}, {( 𝐸 −
𝑗 , ∇−𝑗 − 𝑖 𝛿 −

𝑗 )}).

T h e ori e nt ati o n s urf a c e  𝛿 h a s all ori e nt ati o n l o o p s at it s e n d s n o n d e g e n er at e, a n d t h e a b o v e

c o nj u g ati o n o p er ati o n i n d u c e s a c a n o ni c al bij e cti o n  ( 𝛿 ) ≃  ( ).

Gl ui n g ori e nt ati o ns. T h e k e y o p er ati o n i s n o w t o ‘ gl u e’ ori e nt ati o n s.  L et  ′ =

( 𝐶 ′ , 𝐸′ , (L ′ )+ , (L ′ )− ) b e a n ot h er ori e nt ati o n s urf a c e. S u p p o s e t h at  −
𝑗

= (  ′ )+
𝑗

f or 𝑗  =  1, … , 𝑙 .

W e c a n t h e n gl u e t h e fir st 𝑙 n e g ati v e e n d s of  t o t h e fir st 𝑙 p o siti v e e n d s of  ′ t o o bt ai n a n e w

ori e nt ati o n s urf a c e,  w hi c h  w e d e n ot e b y  # 𝑙
′ .  T hi s gl u e d ori e nt ati o n s urf a c e al s o d e p e n d s o n a

† O n e c o ul d al s o u s e S o b ol e v s p a c e s 𝐿
𝑝, 𝛿

𝑘
; t h e c h oi c e of 𝑝 a n d 𝑘 i s i m m at eri al f or ori e nt ati o n s a s it d o e s n ot aff e ct t h e k er n el

or ( u p t o c a n o ni c al i s o m or p hi s m) t h e c o k er n el of t h e o p er at or.
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p ar a m et er R > 0 ,  w hi c h d et er mi n e s  w h er e t o c ut off t h e e n d s of  a n d  ′ b ef or e gl ui n g;  w e o mit

t hi s p ar a m et er fr o m t h e n ot ati o n.

Gi v e n o p er at or s 𝐷 ∈  ( ) a n d 𝐷 ′ ∈  ( ′ ),  w e c a n u s e c ut off f u n cti o n s  wit h d eri v ati v e s of or d er

R − 1 t o p at c h t h e m t o a ‘ gl u e d’ o p er at or

𝐷 # 𝐷 ′ ∈  ( # 𝐷
′ ).

L e m m a  A. 5. Fi x o p er at ors 𝐷,  𝐸 ′ as a b o v e. S u p p os e t h at f or e a c h 𝐸  =  1, … , 𝑛 , t h e ori e nt ati o n l o o p

 −
𝑆

= (  ′ )+
𝐸

is n o n d e g e n er at e.  C h o os e a d missi bl e e x p o n e nti al  w ei g hts 𝐴 a n d 𝑖 ′ s u c h t h at f or e a c h

𝑡  =  1, … , 𝐶 w e h a v e 𝑆 −
𝐸

= ( 𝐶 ′ )+
𝑆

= 0 .  T h e n if t h e gl ui n g p ar a m et er R is s uffi ci e ntl y l ar g e, t h er e is u p

t o h o m ot o p y a c a n o ni c al† e x a ct s e q u e n c e

0  →  K er( 𝐸 # 𝑡 ′ )
𝑆
→  K er( 𝐴 )  ⊕  K er( 𝛿 ′ )

g
→  C o k er( 𝐴 )  ⊕  C o k er( 𝛿 ′ )

ℎ
→  C o k er( 𝐶 # 𝐸 ′ ) → 0.

Pr o of. B y  R e m ar k A. 4 ,  w e c a n a s s u m e  wit h o ut l o s s of g e n er alit y t h at all t h e ori e nt ati o n l o o p s ar e

n o n d e g e n er at e a n d t h er e ar e n o e x p o n e nti al  w ei g ht s.  T h e l e m m a i n t hi s c a s e n o w f oll o w s fr o m

[3 0 , Pr o p o siti o n 9. 3]. □

R e m ar k A. 6.  T h e e x a ct s e q u e n c e i n  L e m m a A. 5 d e s cri b e s a li n e ar v er si o n of o b str u cti o n b u n dl e

gl ui n g, i n  w hi c h o n e att e m pt s t o gl u e el e m e nt s of K er( 𝐶 ) a n d K er( 𝑘 ′ ) t o o bt ai n a n el e m e nt of

K er( 𝑙 # 𝑘 ′ ).  T h e o b str u cti o n t o t hi s gl ui n g i s a n el e m e nt of C o k er( 𝑙 )  ⊕  C o k er( 𝑆 ′ ), s p e cifi e d b y

t h e  m a p g i n t h e e x a ct s e q u e n c e.

A s i n ( A. 2 ), t h e a b o v e e x a ct s e q u e n c e d et er mi n e s a bij e cti o n

𝑆( 𝑠, g ,  ℎ) ∶  ( 𝑆 )  ⊗  ( 𝑡 ′ )
≃

⟶  ( 𝑘 # 𝑗 ′ ). ( A. 4)

L e m m a  A. 7. U n d er t h e ass u m pti o ns of L e m m a A. 5 , t h e bij e cti o n

( − 1)di m( K er( 𝐸 ′ )) di m( C o k er( 𝑗 )) 𝑗( 𝑙, g ,  ℎ) ∶  ( 𝑗 )  ⊗  ( 𝐸 ′ )
≃

⟶  ( 𝑗 # 𝑗 ′ ) ( A. 5)

is i n v ari a nt u n d er h o m ot o p y of 𝐸 a n d 𝑛 ′ a n d d ef or m ati o n of t h e gl ui n g p ar a m et er, a n d t h us

d et er mi n es a c a n o ni c al bij e cti o n

 ( ) ⊗  ( ′ )
≃

⟶  ( # 𝐶
′ ). ( A. 6)

Pr o of. T hi s f oll o w s t h e pr o of ‡ of [ 3 0 ,  L e m m a 9. 6]. □

R e m ar k A. 8.  T h e gl ui n g of ori e nt ati o n s i n ( A. 6 ) d e p e n d s o n o ur c h oi c e of c o n v e nti o n f or  writi n g

𝐸 fir st a n d 𝑗 ′ s e c o n d i n t h e dir e ct s u m s i n  L e m m a A. 5 .  O ur c o n v e nti o n h er e a gr e e s  wit h [9 ] a n d

di s a gr e e s  wit h [ 3 0 ]. S wit c hi n g t hi s c o n v e nti o n  w o ul d  m ulti pl y t h e  m a p (A. 6 ) b y ( − 1)i n d( 𝐶 ) i n d( 𝐸′ ) .

† T h e e x a ct s e q u e n c e j u st d e p e n d s o n t h e c h oi c e of gl ui n g p ar a m et er a n d c ut off f u n cti o n s; diff er e nt c h oi c e s  will gi v e

h o m ot o pi c e x a ct s e q u e n c e s.

‡ T h e st at e m e nt of [ 3 0 ,  L e m m a 9. 6] n e e d s t o b e c orr e ct e d b y i n cl u di n g a si g n a s i n (A. 5 ).  T h e l a st s e nt e n c e of St e p 1 of t h e

pr o of al s o n e e d s t o b e c orr e ct e d a c c or di n gl y.  F ort u n at el y, t h e  mi s si n g si g n i n [ 3 0 ,  L e m m a 9. 6] h a s n o eff e ct o n t h e u s e of

t hi s l e m m a i n t h e r e st of [3 0 ].
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L e m m a  A. 9. T h e gl ui n g of ori e nt ati o ns i n ( A. 6 ) is ass o ci ati v e.  T h at is, if  ′′ is a n ot h er ori e nt ati o n

s urf a c e, f or  w hi c h t h e ori e nt ati o n l o o ps of t h e first 𝑆′ p ositi v e e n ds ar e n o n d e g e n er at e a n d a gr e e  wit h

t h os e of t h e first 𝐷′ n e g ati v e e n ds of  ′ , t h e n  w e h a v e a  w ell- d efi n e d bij e cti o n

 ( ) ⊗  ( ′ ) ⊗  ( ′′ )
≃

⟶  ( # 𝐷
′ # 𝐷′ 

′′ ).

Pr o of. T hi s f oll o w s t h e pr o of of [ 3 0 ,  L e m m a 9. 7] ( wit h si g n c orr e cti o n s a s f or t h e pr o of of [3 0 ,

L e m m a 9. 6]). □

I n  L e m m a A. 7 ,  w e c a n  w e a k e n ( b ut n ot c o m pl et el y dr o p) t h e a s s u m pti o n t h at t h e ori e nt ati o n

l o o p s  −
𝐷

= (  ′ )+
𝐷

ar e n o n d e g e n er at e.  N a m el y:

D efi niti o n  A. 1 0. A n ori e nt ati o n l o o p  = ( 𝐷,  ∇) i s w e a kl y n o n d e g e n er at e if K er( 𝐸  ) i s a c o m-

pl e x v e ct or s p a c e,  wit h r e s p e ct t o  m ulti pli c ati o n b y 𝐸 o n 𝑛 ∞ ( 𝑆 1 ,  𝐸 ). ( T hi s i n cl u d e s t h e c a s e  w h e n

K er( 𝐴  )  = { 0} a n d  i s n o n d e g e n er at e.)

L e m m a  A. 1 1. L et  = ( 𝑖,  𝑡, L + , L − ) a n d  ′ = ( 𝐶 ′ , 𝑆′ , (L ′ )+ , (L ′ )− ) b e ori e nt ati o n s urf a c es

s u c h t h at  −
𝐸

= (  ′ )+
𝐶

f or 𝑆  =  1, … , 𝐸 .  Ass u m e t h at  −
𝑡

is  w e a kl y n o n d e g e n er at e f or e a c h 𝑆  =  1, … , 𝐴 .

T h e n t h er e is still a c a n o ni c al bij e cti o n as i n ( A. 6 )  w hi c h is ass o ci ati v e i n t h e s e ns e of L e m m a A. 9 .

T o pr o v e  L e m m a A.11 w e  will n e e d t h e f oll o wi n g:

L e m m a  A. 1 2. S u p p os e  = ( 𝛿,  ∇) is  w e a kl y n o n d e g e n er at e. L et 𝐴 + ∈ ( 0,  − 𝛿 − ( )) a n d l et 𝐶 − ∈

( 0, 𝐸+ ( )). L et

 = ( ℝ × 𝐶 1 , 𝑘, ( 𝑙, ∇ − 𝑘 𝑙+ ), ( 𝑆,  ∇  + 𝑆 𝑠− )).

T h e n t h er e is a c a n o ni c al ori e nt ati o n i n  ( ).

Pr o of. T h er e i s a di sti n g ui s h e d cl a s s of o p er at or s 𝑆 ∈  ( ).  N a m el y,  writ e 𝑡  = 𝑘 ∇ 𝑗 .  C h o o s e a

s m o ot h f u n cti o n 𝐸 ∶ ℝ → ℝ s u c h t h at 𝑗(𝑗)  = 𝑙 + 𝑗 f or 𝐸  > > 0 a n d 𝑗(𝑗)  =  − 𝐸 − 𝑛 f or 𝐶  < < 0.  W e c a n

t h e n t a k e

𝐸 =
1

2
( 𝑗𝐶 +  𝐸  +  𝑗(𝑆)).

( W e o mit 𝐸 𝑗  − 𝐶 𝐸𝑗 fr o m t h e n ot ati o n h er e a n d b el o w.)  Of c o ur s e 𝐶 d e p e n d s o n t h e c h oi c e of

f u n cti o n 𝐶 , b ut diff er e nt c h oi c e s  will b e c a n o ni c all y h o m ot o pi c a n d t h u s  will h a v e c a n o ni c all y

i s o m or p hi c s et s of ori e nt ati o n s.

T h e o p er at or

𝐸 ∶ 𝐷 2
1 ( 𝐶 )  ⟶ 𝐸 2 ( 𝐶 0, 1 (ℝ × 𝑇 1 ) ⊗ 𝐶 )

i s c o nj u g at e t o t h e o p er at or

𝐸 𝐶(𝐸) 𝐷 𝜕 − 𝑗(𝐶) =
1

2
( 𝐷𝑑 +  𝑠)
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acting on Sobolev spaces with exponential weights −𝛿+ on the positive end and −𝛿− on the neg-
ative end. Any element of the kernel of this operator is a linear combination of functions of the
form

𝜓(𝑠, 𝑡) = 𝑒−𝜆𝑠𝜙(𝑡),

where 𝜙 is an eigenfunction of𝐴with eigenvalue 𝜆. Because of our choice of exponential weights,
𝜓 is in the domain of the operator only when 𝜆 = 0. Thus, Ker(𝐷) is canonically identified with
Ker(𝐴). A similar argument shows thatCoker(𝐷) = {0}. By hypothesis,Ker(𝐴) is a complex vector
space, so it has a canonical orientation. We conclude that 𝐷 has a canonical orientation, and thus
there is a canonical orientation in (). □

Proof of Lemma A.11. By Remark A.4, we can assume without loss of generality that each +
𝑗

is nondegenerate, each (′)−
𝑗
is nondegenerate, and +

𝑗
is nondegenerate when 𝑗 > 𝑙. Choose

admissible exponentialweights 𝛿 and 𝛿′ such that allweights are zero except possibly for 𝛿−
1
, … , 𝛿−

𝑙
and (𝛿′)+

1
, … , (𝛿′)+

𝑙
. (The weights 𝛿−

𝑗
and (𝛿′)+

𝑗
must be positive when −

𝑗
= (′)+

𝑗
is degenerate.)

To reduce to Lemma A.7, we would like to replace  and ′ by 𝛿 and ′
𝛿′
as in Remark A.4.

However, this does not work directly because the first 𝑙 negative ends of 𝛿 do not agree with the
first 𝑙 negative ends of ′

𝛿′
(as the orientation loops are shifted in opposite directions), so these two

orientation surfaces cannot be glued. The trick is to glue in a third orientation surface and write

#𝑙′ ≃ 𝛿#𝑙′′#𝑙′𝛿′ .
Here ′′ consists of 𝑙 cylinders. On the 𝑗th cylinder, the bundle 𝐸 is the pullback of the bundle
𝐸−
𝑗
= (𝐸′)+

𝑗
. The notation ‘≃’ means that the orientation surfaces are homotopic so that there is a

canonical bijection between the orientations. Now by Lemmas A.7 and A.9, we have a canonical
bijection

(#𝑙′) ≃
⟶(𝛿) ⊗ (′′) ⊗ (′

𝛿
)

= () ⊗ (′′) ⊗ (′).
(A.7)

By Lemma A.12, there is a canonical orientation in (′′). Putting this canonical orientation into
(A.7) gives the desired canonical bijection (A.6). This is associative by Lemma A.9. □

Choosing orientations. Wenowexplainwhat choices are needed to orient the operators of interest.

Lemma A.13. Let  be an orientation surface with no ends. Then there is a canonical orientation
in ().
Proof. If 𝐷 ∈ (), then 𝐷 is homotopic to a complex linear operator 𝐷′, which has a canonical
orientation. This induces an orientation of𝐷, which does not depend on the choice of homotopy or
on the choice of complex linear operator 𝐷′, because the spaces of real-linear and complex-linear
operators in() are both contractible. □
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Definition A.14. Let  = (𝐸,∇) be a weakly nondegenerate orientation loop.
∙ Let + = (𝐶+, 𝐸+, ∅, ()) be an orientation surface such that 𝐶+ is a plane with one negative
end, on which 𝐸+ is pulled back from 𝐸. Define +() = (+).

∙ Let − = (𝐶−, 𝐸−, (), ∅) be an orientation surface such that 𝐶− is a plane with one positive
end, on which 𝐸− is pulled back from 𝐸. Define −() = (−).

Lemma A.15. Let  be a weakly nondegenerate orientation loop. Then:

(a) the sets +() and −() do not depend on the choices of orientation surfaces + and − in
Definition A.14;

(b) there is a canonical bijection +() = −().
Proof. Let + and − be orientation surfaces as in DefinitionA.14. By LemmasA.11 andA.13, there
is a canonical bijection

(+) ≃ (−). (A.8)

It follows that if we fix a choice of −, then the sets of orientations(+) for different choices of +
are identified with each other. To prove that this identification does not depend on the choice of
−, one can use the argument in [37, Lemma 2.46] and [40, Proposition 2.8]. Thus,+() is well-
defined, and likewise −() is defined. Moreover, the bijection (A.8) descends to a well-defined
bijection +() = −(). □

In light of Lemma A.15, if  is a weakly nondegenerate orientation loop, we define () =
±(). We can now prove the conclusion of this subsection:

Proposition A.16. Let +, 0, and − be weakly nondegenerate orientation loops.
(a) If  = (𝐶, 𝐸, (+), (−)) is an orientation surface in which 𝐶 is a cylinder with one positive and

one negative end, then there is a canonical bijection

() ≃ (+) ⊗ (−).
(b) Let + = (𝐶+, 𝐸+, (+), (0)) and − = (𝐶−, 𝐸−, (0), (−)) be cylindrical orientation surfaces

as above, so that by part (a) we have canonical bijections

(+) ≃ (+) ⊗ (0),
(−) ≃ (0) ⊗ (−).

Then the identification

() ≃ (+) ⊗ (−)
given by the above three equations agrees with the canonical identification given by LemmaA.11.

Proof. (a) Let + be as in the definition of +(+), and let − be as in the definition of −(+).
Then +#1#1− is an orientation surface in which the underlying surface is a sphere, and it has
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a canonical orientation by Lemma A.13. Then by Lemma A.11 there is a canonical bijection

() ≃ (+) ⊗ (−).
By Lemma A.15, this implies part (a). Part (b) then follows from the definitions. □

A.2 The tangent space to the moduli space

Let (𝑌2𝑛−1, 𝜆) be a closed nondegenerate contact manifold. (For this discussion we do not need
to assume that 𝜆 is hypertight.) Let 𝕁 = {𝐽𝑡}𝑡∈𝑆1 be a generic 𝑆1-family of 𝜆-compatible almost
complex structures on ℝ × 𝑌 as in Section 2. To prepare to orient the moduli space𝕁(𝛾+, 𝛾−),
we now discuss its tangent space.

If 𝛾+ and 𝛾− are distinct Reeb orbits, let
˜̃𝕁

(𝛾+, 𝛾−) denote the space of maps 𝑢 ∶ ℝ × 𝑆1 →
ℝ × 𝑌 satisfying equations (2.1)–(2.3). Here we do not mod out by ℝ translation in the domain, so
that

̃𝕁(𝛾+, 𝛾−) =
˜̃𝕁

(𝛾+, 𝛾−)∕ℝ.

If 𝑢 ∈ ˜̃𝕁

(𝛾+, 𝛾−), then the derivative of the Cauchy–Riemann equation (2.1) defines a
linearized operator

𝐷𝑢 ∶ 𝐿
2,𝛿
1
(𝑢∗𝑇(ℝ × 𝑌))⟶ 𝐿2,𝛿(𝑢∗𝑇(ℝ × 𝑌)). (A.9)

Here 𝛿 > 0 is a small exponential weight, smaller than the smallest positive eigenvalue of the
asymptotic operator associated to 𝛾+ and 𝕁, orminus the largest negative eigenvalue of the asymp-
totic operator associated to 𝛾− and 𝕁, see below. Thus, the kernel of 𝐷𝑢 consists of infinitesimal
deformations of 𝑢 which suitably decay on the ends of 𝑢.

Definition A.17. We define ℝ-linear maps

𝜏+, 𝜏− ∶ ℂ⟶ Coker(𝐷𝑢) (A.10)

as follows. Recall that 𝑟 denotes the ℝ coordinate on ℝ × 𝑌, while 𝑅 denotes the Reeb vector field
on 𝑌. Let 𝜓+

1
be a smooth section of 𝑢∗𝑇(ℝ × 𝑌) with 𝜓+

1
= 𝜕𝑟 for 𝑠 >> 0 and 𝜓+1 = 0 for 𝑠 << 0.

Let 𝜓+
2
be a smooth section of 𝑢∗𝑇(ℝ × 𝑌)with 𝜓+

2
= 𝑅 for 𝑠 >> 0 and 𝜓+

2
= 0 for 𝑠 << 0. Choose

𝜓−
1
and 𝜓−

2
analogously with the sign of 𝑠 switched. If 𝑎, 𝑏 ∈ ℝ, we define

𝜏+(𝑎 + 𝑏𝑖) = 𝜋Coker(𝐷𝑢)‘𝐷𝑢(𝑎𝜓
+
1
+ 𝑏𝜓+

2
)’.

There are quotation marks on the right-hand side because 𝑎𝜓+
1
+ 𝑏𝜓+

2
is not in the domain of 𝐷𝑢

as in (A.9). To interpret the right-hand side, if we regard 𝐷𝑢 as a differential operator on smooth
sections, then𝐷𝑢(𝑎𝜓+1 + 𝑏𝜓

+
2
) is awell-defined smooth section 𝜂 ∈ 𝐿2,𝛿(𝑢∗𝑇(ℝ × 𝑌)), by standard

asymptotics of holomorphic curves. We define 𝜏+(𝑧) to be the projection of 𝜂 to Coker(𝐷𝑢). Note
that this does not depend on the choice of 𝜓+

1
and 𝜓+

2
, because different choices will differ by a

compactly supported section which is in the domain of 𝐷𝑢 as in (A.9). We likewise define

𝜏−(𝑎 + 𝑏𝑖) = 𝜋Coker(𝐷𝑢)‘𝐷𝑢(𝑎𝜓
−
1
+ 𝑏𝜓−

2
)’.
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Proposition A.18. If 𝕁 is generic, then ˜̃𝕁

(𝛾+, 𝛾−) is naturally a smooth manifold, and there is a
canonical exact sequence

0⟶ Ker(𝐷𝑢)⟶ 𝑇𝑢
˜̃𝕁

(𝛾+, 𝛾−)
(𝜎+,𝜎−)
⟶ ℂ⊕ℂ

(𝜏+,𝜏−)
⟶ Coker(𝐷𝑢)⟶ 0. (A.11)

Remark A.19. The proof of Proposition A.18 will show that the maps 𝜎± are described

as follows: If {𝑢𝜏}𝜏∈ℝ is a smooth family in ˜̃𝕁

(𝛾+, 𝛾−), with 𝑢0 = 𝑢, and if we write
𝑢̇ = 𝑑

𝑑𝜏
|𝜏=0𝑢𝜏 ∈ 𝑢∗𝑇(ℝ × 𝑌), then

𝜎±(𝑢̇) = lim
𝑠→±∞

(𝑑𝑟(𝑢̇) + 𝑖𝜆(𝑢̇)).

Proof of PropositionA.18. Fix 𝑝 > 2. Note that the kernel and cokernel of𝐷𝑢 are unchanged if one
replaces 𝐿2,𝛿

1
and 𝐿2

1
in (A.9) by 𝐿𝑝,𝛿

1
and 𝐿𝑝,𝛿, and we will do this below.

Let(𝛾+, 𝛾−) denote the set of continuous maps 𝑢 ∶ ℝ × 𝑆1 → ℝ × 𝑌 satisfying the asymptotic
conditions (2.2) and (2.3) such that for |𝑠| large, 𝑢 is the exponential of an 𝐿𝑝,𝛿

1
section of the

normal bundle to ℝ × 𝛾. We define a map

𝐿
𝑝,𝛿
1
(𝑢∗(𝑇(ℝ × 𝑌))) ⊕ ℂ⊕ ℂ⟶ (𝛾+, 𝛾−) (A.12)

by

(𝜓, 𝑎+ + 𝑏+𝑖, 𝑎− + 𝑏−𝑖)⟼ exp𝑢(𝜓 + 𝑎+𝜓
+
1
+ 𝑏+𝜓

+
2
+ 𝑎−𝜓

−
1 + 𝑏−𝜓

−
2 ),

where 𝜓±
1
and 𝜓±

2
are chosen as in the definition of 𝜏±. Any element of

˜̃𝕁

(𝛾+, 𝛾−) near 𝑢 is in

the image of the map (A.12). Thus, a neighborhood of 𝑢 in ˜̃𝕁

(𝛾+, 𝛾−) can be described as the
zero set of a section of a Banach space bundle over the left side of (A.12), whose fiber over 𝑢 is
𝐿𝑝,𝛿(𝑢∗𝑇(ℝ × 𝑌)). The derivative of this section at 𝑢 is the map

Φ ∶ 𝐿
𝑝,𝛿
1
(𝑢∗(𝑇(ℝ × 𝑌))) ⊕ ℂ⊕ ℂ⟶ 𝐿𝑝,𝛿(𝑢∗𝑇(ℝ × 𝑌)),

(𝜓, 𝑎+ + 𝑏+𝑖, 𝑎− + 𝑏−𝑖)⟼ ‘𝐷𝑢(𝜓 + 𝑎+𝜓+1 + 𝑏+𝜓
+
2
+ 𝑎−𝜓

−
1
+ 𝑏−𝜓

−
2
)’.

(A.13)

Here, as in Definition A.17, although 𝜓±
1
and 𝜓±

2
are not in the domain of 𝐷𝑢, the map (A.13) is

still well-defined by regarding 𝐷𝑢 as a differential operator.
A standard transversality argument, which proves Proposition 2.2(a), shows that if 𝕁 is generic,

then for each 𝑢 the operator Φ in (A.13) is surjective, which in turn implies that ˜̃𝕁

(𝛾+, 𝛾−) is
naturally a smooth manifold near 𝑢 whose tangent space at 𝑢 is Ker(Φ).
To complete the proof of the proposition, we now define a sequence

0⟶ Ker(𝐷𝑢)⟶ Ker(Φ)
(𝜎+,𝜎−)
⟶ ℂ⊕ℂ

(𝜏+,𝜏−)
⟶ Coker(𝐷𝑢)⟶ 0 (A.14)

and show that it is exact ifΦ is surjective.Wedefine the first arrow to be the inclusion𝜓 ↦ (𝜓, 0, 0),
and we define the second arrow by

𝜎±(𝜓, 𝑧+, 𝑧−) = 𝑧±.
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By the definitions of 𝜏± and Φ, we have

(𝜋Coker(𝐷𝑢) ◦Φ)(𝜓, 𝑧+, 𝑧−) = 𝜏+(𝑧+) + 𝜏−(𝑧−).

It follows that the sequence (A.14) is exact, except possibly for surjectivity of the last arrow. If Φ is
surjective, then the last arrow is also surjective. □

For reference elsewhere, we now clarify the criteria for transversality.

Definition A.20. An element 𝑢 of ˜̃𝕁

(𝛾+, 𝛾−), or its equivalence class in𝕁(𝛾+, 𝛾−), is regular
if the operator (A.13) above is surjective. Note that while the operator (A.13) itself depends on the
choices of 𝑝, 𝜓±

1
, and 𝜓±

2
, its surjectivity does not.

ExampleA.21. While we usually assume that 𝛾+ ≠ 𝛾−, it is instructive to consider the casewhere
𝛾+ = 𝛾− = 𝛾 and 𝑢 is a ‘trivial cylinder’; that is,𝜋𝑅 ◦𝑢 is a linear function of 𝑠 and does not depend
on 𝑡, while 𝜋𝑌 ◦𝑢 does not depend on 𝑠 and as a function of 𝑡 is a parameterization of 𝛾.
In this case, the operator 𝐷𝑢 has the form 𝜕𝑠 + 𝐽𝑡∇𝑡 where ∇ is the connection on 𝛾∗𝑇(ℝ × 𝑌)

defined in Definition A.23 . Direct calculation shows that 𝐷𝑢 is injective with two-dimensional
cokernel. The cokernel is spanned by the images of𝜓+

1
and𝜓+

2
under𝐷𝑢 (regarded as a differential

operator). One can choose 𝜓±
1
and 𝜓±

2
so that 𝜓+

1
+ 𝜓−

1
≡ 𝜕𝑟 and 𝜓+2 + 𝜓−2 ≡ 𝑅. Then the operator

(A.13) is surjective with a two-dimensional kernel consisting of triples (0, 𝑧, 𝑧) for 𝑧 ∈ ℂ.

In particular, the moduli space ˜̃𝕁

(𝛾, 𝛾) is a two-dimensional manifold cut out transversely,
consisting of compositions of 𝑢 with automorphisms of ℝ × 𝑆1. However,𝕁(𝛾, 𝛾) is not cut out

transversely, because theℝ action on ˜̃𝕁

(𝛾, 𝛾) by translations of the target is not free. In particular
𝐽(𝛾, 𝛾) =𝕁

0
(𝛾, 𝛾) is one-dimensional, although its expected dimension is zero. (We usually

assume that 𝛾+ ≠ 𝛾− in order to ensure that this ℝ action is free.)

Remark A.22. In the special case when 𝕁 does not depend on 𝑆1, that is 𝕁 = {𝐽𝑡} where 𝐽𝑡 ≡ 𝐽,
and when 𝑢 is an immersion, there is an alternate notion of regularity used in [28, Section 4].
In this case, let 𝑁 denote the normal bundle to 𝑢 in ℝ × 𝑌. Then deformations of 𝑢, regarded
as an immersed submanifold of ℝ × 𝑌, are equivalent to sections of 𝑁, and there is a ‘normal
deformation operator’

𝐷𝑁 ∶ 𝐿
𝑝,𝛿
1
(𝑁)⟶ 𝐿𝑝,𝛿(𝑁),

which measures the failure of these deformations to be 𝐽-holomorphic. We claim now that 𝑢 is
regular as in Definition A.20 if 𝐷𝑁 is surjective.
To see this, note that with respect to the direct sum decomposition

𝑢∗𝑇(ℝ × 𝑌) = 𝑇(ℝ × 𝑆1) ⊕ 𝑁,

and the corresponding direct sum decompositions of spaces of sections, the linearized operator
𝐷𝑢 in (A.9) can be written as a triangular block matrix

𝐷𝑢 =

(
𝐷𝑇 �

0 𝐷𝑁

)
.
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Here 𝐷𝑇 is the restriction of 𝐷𝑢 to 𝐿
𝑝,𝛿
1
(𝑇(ℝ × 𝑆1)), which maps to 𝐿𝑝,𝛿(𝑇(ℝ × 𝑆1)). Similarly to

Example A.21, the operator 𝐷𝑇 is injective with a two-dimensional cokernel. Thus, surjectivity of
𝐷𝑁 implies that 𝐷𝑢 has a two-dimensional cokernel, and this cokernel is covered by the images
of 𝜓+

1
and 𝜓+

2
under 𝐷𝑢 (regarded as a differential operator), so that (A.13) is surjective.

A.3 Orienting the moduli space

Let 𝕁 = {𝐽𝑡}𝑡∈𝑆1 be a generic 𝑆1-family of 𝜆-compatible almost complex structures. We are now
ready to orient the moduli space𝕁(𝛾+, 𝛾−).

Definition A.23. Let 𝕁 = {𝐽𝑡}𝑡∈𝑆1 be any 𝑆1-family of 𝜆-compatible almost complex structures
(not necessarily generic). Let 𝛾 ∶ ℝ∕𝑇ℤ → 𝑌 be a Reeb orbit, and let 𝑝 ∈ 𝛾 = im(𝛾). We define an
orientation loop 𝛾,𝑝,𝕁 = (𝐸,∇) as follows.
First fix 𝑡0 ∈ ℝ∕𝑇ℤ with 𝛾(𝑡0) = 𝑝, and define a map 𝛾 ∶ 𝑆1 = ℝ∕ℤ → 𝑌 by

𝛾(𝑡) = 𝛾(𝑡0 + 𝑇𝑡).

∙ Define 𝐸 = 𝛾∗𝑇(ℝ × 𝑌). We have a direct sum decomposition

𝐸 = 𝛾∗𝜉 ⊕ ℂ, (A.15)

where we identify 𝑎 + 𝑏𝑖 ∈ ℂ with 𝑎𝜕𝑟 + 𝑏𝑅 ∈ 𝑇(ℝ × 𝑌). Then 𝐸 is a Hermitian vector bundle
over 𝑆1 with the almost complex structure and metric on 𝜉𝛾(𝑡) determined by 𝐽𝑡 and 𝑑𝜆.

∙ The linearized Reeb flow determines a connection ∇𝑅 on 𝛾∗𝜉. With respect to the direct sum
decomposition (A.15), define∇ = ∇𝑅 ⊕ ∇0, where∇0 denotes the trivial connection on 𝑆1 × ℂ.

Lemma A.24.

(a) The orientation loop 𝛾,𝑝,𝕁 is weakly nondegenerate.
(b) If 𝕁 and 𝕁′ are two 𝑆1-families of 𝜆-compatible almost complex structures, then there is a

canonical bijection

(𝛾,𝑝,𝕁) ≃ (𝛾,𝑝,𝕁′ ),
so we can denote this set of orientations by 𝛾,𝑝.

Proof.

(a) Sincewe are assuming that theReeb orbit 𝛾 is nondegenerate, the kernel of the operator𝐴𝛾,𝑝,𝕁
is canonically identified with the ℂ summand in (A.15).

(b) This holds because the set of 𝑆1-families 𝕁 of 𝜆-compatible almost complex structures is con-
tractible, and a homotopy of such 𝕁 defines a homotopy of the Fredholm operators used to
define the orientation set 𝛾,𝑝,𝕁 . □

Definition A.25. If 𝛾 is a Reeb orbit and 𝑝 ∈ 𝛾, define

𝛾(𝑝) = 𝛾,𝑝 ⊗ ℤ.
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Here, the right-hand side denotes the set of pairs (𝔬, 𝑘) ∈ 𝛾,𝑝 × ℤ modulo the equivalence
relation (−𝔬, 𝑘) ∼ (𝔬, −𝑘).

Observe that the assignment to 𝑝 of 𝛾(𝑝) defines a local system over 𝛾, since a homotopy of
Fredholm operators induces a bijection on orientations.

Proof of Proposition 2.3. Assertion (a) is proved in [9, Section 5]. The conventions in [9] are slightly
different, but the argument given there is still valid here.

To prove assertion (b), let𝑢 ∈ ˜̃𝕁

(𝛾+, 𝛾−), and consider its equivalence class [𝑢] ∈𝕁(𝛾+, 𝛾−).
From Definition A.23, we have orientation loops

± = 𝛾±,𝑒±(𝑢),𝕁.
We need to show that there is a canonical bijection between orientations of the tangent space
𝑇[𝑢]𝕁(𝛾+, 𝛾−) and the orientation set (+) ⊗ (−), and we need to check that this bijection
depends continuously on [𝑢].
Define an orientation surface

 = (ℝ × 𝑆1, 𝑢∗𝑇(ℝ × 𝑌), (+), (−)).
The operator 𝐷𝑢 in (A.9), regarded as a differential operator, is an element of the set (). Note
here that we are implicitly trivializing 𝑇0,1(ℝ × 𝑆1) using 1

2
(𝑑𝑠 − 𝑖𝑑𝑡), so that the 𝑇0,1 factor in

Definition A.3 is not needed in (A.9).
By Proposition A.16, there is a canonical bijection

(+) ⊗ (−) ≃ (𝐷𝑢).

By Proposition A.18, an orientation of𝐷𝑢 canonically determines an orientation of 𝑇𝑢 ˜̃𝑀
𝕁
(𝛾+, 𝛾−).

(Here we use the canonical orientation of ℂ⊕ ℂ in the exact sequence (A.11).) The latter deter-
mines an orientation of 𝑇[𝑢]̃𝕁(𝛾+, 𝛾−) by the ‘ℝ-direction first’ convention, where ℝ acts on ˜̃
by

(𝑟 ⋅ 𝑢)(𝑠, 𝑡) = 𝑢(𝑟 + 𝑠, 𝑡). (A.16)

This in turn determines an orientation of 𝑇[𝑢]𝕁(𝛾+, 𝛾−), by the ℝ-direction first conven-
tion again.
Finally, we need to prove that the orientation of 𝑇[𝑢]𝕁(𝛾+, 𝛾−) determined by an element

of (+) ⊗ (−) depends continuously on [𝑢]. As one varies [𝑢], if the dimension of Ker(𝐷𝑢)
does not jump, then the exact sequences used to define the orientation vary continuously, so the
orientation does not change. In the general case one uses a stabilization argument to arrange that
the dimensions of the kernels of the operators in question do not jump; cf. [30, Section 9.1]. □

We can now define the orientation convention in equation (1.8) in the definition of cylindrical
contact homology.
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Definition A.26. Let 𝐽 be a 𝜆-compatible almost complex structure on ℝ × 𝑌. Let 𝛼 and 𝛽 be
good Reeb orbits, so that the local systems 𝛼 and 𝛽 are trivial (and thus can be regarded as
ℤ-modules which are noncanonically isomorphic to ℤ). Assume that the moduli space𝐽

1
(𝛼, 𝛽)

is cut out transversely (and in particular is a discrete set). For each 𝑢 ∈𝐽
1
(𝛼, 𝛽), we define an

isomorphism of ℤ-modules

𝜖(𝑢) ∶ 𝛼 ≃
⟶ 𝛽 (A.17)

as follows.
Let 𝕁 be the constant family of almost complex structures 𝐽𝑡 ≡ 𝐽. By definition,

𝐽
𝑑
(𝛼, 𝛽) =𝕁

𝑑
(𝛼, 𝛽)∕𝑆1,

where 𝑆1 acts on𝕁
𝑑
by reparameterization. Our convention is that 𝜑 ∈ 𝑆1 = ℝ∕ℤ acts by

(𝜑 ⋅ 𝑢)(𝑠, 𝑡) = 𝑢(𝑠, 𝑡 + 𝜑).

Transversality of 𝐽
𝑑
is equivalent to transversality of 𝕁

𝑑
, see Section 5.4. By Proposition 2.3,

when this transversality holds, the moduli space 𝕁
𝑑
(𝛼, 𝛽) has an orientation with values in

𝛼 ⊗ 𝛽 . The orientation of 𝕁
𝑑
then induces an orientation of 𝐽

𝑑
by the ‘𝑆1-direction first’

convention. When 𝑑 = 1, the latter orientation simply assigns to each 𝑢 ∈𝐽
1
a generator of

𝛼 ⊗ 𝛽 , which is equivalent to an isomorphism (A.17).

A.4 Properties of the moduli space orientations

Scaling. We now prove the following lemma which is needed in Section 3.5.

Lemma A.27. Let 𝑐 > 0.

(a) If 𝛾 is a Reeb orbit of 𝜆, and if 𝑐𝛾 denotes the corresponding Reeb orbit of 𝑐𝜆, then there is a
canonical isomorphism of local systems 𝛾 = 𝑐𝛾.

(b) With respect to the isomorphism in (a), the scaling diffeomorphism (3.7) is orientation preserving.

Proof.

(a) Let 𝑐𝕁 be the family of 𝑐𝜆-compatible almost complex structures in (3.7). It follows from Defi-
nitionA.23 that if𝑝 ∈ 𝛾 = 𝑐𝛾, then there is a canonical isomorphism𝛾,𝑝,𝕁 = 𝑐𝛾,𝑝,𝑐𝕁. Then by
Definition A.25, we obtain a canonical isomorphism𝛾(𝑝) = 𝑐𝛾(𝑝), which by the reasoning
after Definition A.25 depends continuously on 𝑝.

(b) Let 𝜙 be the diffeomorphism of ℝ × 𝑌 defined above (3.7). The diffeomorphism (3.7) lifts to a
diffeomorphism

˜̃𝕁

(𝛾+, 𝛾−)
≃
⟶ ˜̃

𝑐𝕁

(𝑐𝛾+,
𝑐𝛾−) (A.18)

sending 𝑢 ↦ 𝜙 ◦𝑢. We have a commutative diagram

𝐿2,𝛿
1
(𝑢∗𝑇(ℝ × 𝑌))

𝐷𝑢
��→ 𝐿2,𝛿(𝑢∗𝑇(ℝ × 𝑌))

≃
⏐⏐⏐⏐⏐⏐⏐
↓ ≃

⏐⏐⏐⏐⏐⏐⏐
↓

𝐿2,𝛿
1
((𝜙 ◦𝑢)∗𝑇(ℝ × 𝑌))

𝐷𝜙 ◦𝑢
�����→ 𝐿2,𝛿((𝜙 ◦𝑢)∗𝑇(ℝ × 𝑌)).
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This induces isomorphisms Ker(𝐷𝑢) ≃ Ker(𝐷𝜙 ◦𝑢) and Coker(𝐷𝑢) ≃ Coker(𝐷𝜙 ◦𝑢), and thus
a bijection (𝐷𝑢) ≃ (𝐷𝜙 ◦𝑢). It follows from the definitions that this bijection respects
the canonical isomorphism in (a). On the other hand, these isomorphisms of kernels
and cokernels and the exact sequences from Proposition A.18 fit into a commutative
diagram

0 �����→ Ker(𝐷𝑢) �����→ 𝑇𝑢
˜̃𝕁

(𝛾+, 𝛾−)
(𝜎+,𝜎−)
�������→ ℂ⊕ ℂ

(𝜏+,𝜏−)
������→ Coker(𝐷𝑢) �����→ 0

≃
⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
↓

≃
⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
↓

≃
⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
↓
𝑐 ≃

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
↓

0 �����→Ker(𝐷𝜙 ◦𝑢) �����→ 𝑇𝜙 ◦𝑢
˜̃

𝑐𝕁

(𝑐𝛾+,
𝑐𝛾−)

(𝜎+,𝜎−)
�������→ ℂ⊕ ℂ

(𝜏+,𝜏−)
������→Coker(𝐷𝜙 ◦𝑢) �����→ 0.

Here the second vertical arrow is the derivative of the diffeomorphism (A.18), and the third
vertical arrow is multiplication by 𝑐. It follows from this isomorphism of exact sequences
that the second vertical arrow is orientation preserving. Thus, the diffeomorphism (A.18)
is orientation preserving. After modding out by the two ℝ actions, we conclude that the
diffeomorphism (3.7) is orientation preserving. □

Gluing and boundary signs. We now justify the signs that appear in Proposition 2.7. Continue to
make the assumptions from the beginning of Section A.3.

Proposition A.28. Let 𝛾+, 𝛾0, and 𝛾− be distinct Reeb orbits. Let 𝑑+ and 𝑑− be nonnegative integers
and let 𝑑 = 𝑑+ + 𝑑−. Let

([𝑢+], [𝑢−]) ∈𝕁
𝑑+
(𝛾+, 𝛾0) ×𝛾0 𝕁

𝑑−
(𝛾0, 𝛾−).

Then there is a neighborhood

𝑈 ⊂𝕁
𝑑
(𝛾+, 𝛾−)

of ([𝑢+], [𝑢−]), which has the structure of a smooth manifold with boundary, and a neighborhood

𝑉 ⊂ (−1)𝑑+𝕁(𝛾+, 𝛾0) ×𝛾0 𝕁(𝛾0, 𝛾−) (A.19)

of ([𝑢+], [𝑢−]), with a canonical orientation preserving diffeomorphism

𝜕𝑈 ≃ 𝑉.

Proof. Aside from the signs in (A.19), this follows from standard gluing arguments. So, we will
sketch one approach to the gluing and justify the signs.

To set the notation, regard 𝑢+ as an element of ˜̃𝕁

(𝛾+, 𝛾0), and regard 𝑢− as an element

of ˜̃𝕁

(𝛾0, 𝛾−). To simplify notation, we will just consider the case where Ker(𝐷𝑢+) = 0 and
Ker(𝐷𝑢−) = 0; the general case can be handled similarly. By Proposition A.18, we have short exact
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sequences

0⟶ 𝑇𝑢+
˜̃𝕁

(𝛾+, 𝛾0)
(𝜎++,𝜎

+
0
)

⟶ ℂ+ ⊕ ℂ0

(𝜏++,𝜏
+
0
)

⟶ Coker(𝐷𝑢+)⟶ 0, (A.20)

0⟶ 𝑇𝑢−
˜̃𝕁

(𝛾0, 𝛾−)
(𝜎−
0
,𝜎−−)

⟶ ℂ0 ⊕ ℂ−

(𝜏−
0
,𝜏−−)

⟶ Coker(𝐷𝑢−)⟶ 0. (A.21)

Here ℂ+, ℂ0, and ℂ− are copies of ℂ, which one should think of as being associated with 𝛾+,
𝛾0, and 𝛾−, respectively. Here and below, in the notation for the maps 𝜎, and so on, we use the
convention that where we previously indicated a Reeb orbit with + or −, now we indicate it +, 0,
or −.

Step 1. We now consider how to glue 𝑢+ and 𝑢− to obtain elements of ˜̃𝕁

(𝛾+, 𝛾−). To start,
translate 𝑢+ in the target up by >> 0 in the ℝ direction, and translate 𝑢− in the target down by in theℝ direction.On𝑢+, choose sections𝜓

+,+
1

,𝜓+,+
2

,𝜓+,0
1
, and𝜓+,0

2
as in SectionA.2whose first

derivatives have order 𝑂(−1). Likewise choose sections 𝜓−,0
1
, 𝜓−,0
2
, 𝜓−,−
1

, and 𝜓−,−
2

on 𝑢−. Given
small complex numbers 𝑧+ = 𝑎+ + 𝑖𝑏+, 𝑧0 = 𝑎0 + 𝑖𝑏0, and 𝑧− = 𝑎− + 𝑖𝑏−, we can ‘preglue’ 𝑢+
and 𝑢− as follows: We replace 𝑢+ by the exponential of 𝑎+𝜓

+,+
1

+ 𝑏+𝜓
+,+
2

+ 𝑎0𝜓
+,0
1
+ 𝑏0𝜓

+,0
2
, we

replace 𝑢− by the exponential of 𝑎0𝜓
−,0
1
+ 𝑏0𝜓

−,0
2
+ 𝑎−𝜓

−,−
1

+ 𝑏−𝜓
−,−
2

, and then we patch using
appropriate cutoff functions. As in [30, Section 5], one can perturb the preglued curve to a curve
which solves the Cauchy–Riemann equation (2.1), up to an error in Coker(𝐷𝑢+) ⊕ Coker(𝐷𝑢−),
which we denote by 𝔰(𝑧+, 𝑧0, 𝑧−). We can package these errors for different choices of 𝑧+, 𝑧0, and
𝑧− into an ‘obstruction section’

𝔰 ∶ 𝑁+ ⊕𝑁0 ⊕𝑁−⟶ Coker(𝐷𝑢+) ⊕ Coker(𝐷𝑢−).

Here, 𝑁+, 𝑁0, and 𝑁− are small neighborhoods of the origin in ℂ. As in [30, Lemma 6.3], the
obstruction section 𝐬 is smooth; and as in [30, Section 10.5], its zero set is cut out transversely. The
gluing construction then defines a ‘gluing map’

𝐺 ∶ 𝔰−1(0)⟶ ˜̃𝕁

(𝛾+, 𝛾−).

As in [30, Theorem 7.3], the gluing map is a local diffeomorphism. In particular, if 𝑢 is in the
image of the gluing map, then we obtain a short exact sequence

0⟶ 𝑇𝑢
˜̃(𝛾+, 𝛾−)

𝑑𝐺−1

⟶ ℂ+ ⊕ ℂ0 ⊕ ℂ−
∇𝔰
⟶ Coker(𝐷𝑢+) ⊕ Coker(𝐷𝑢−)⟶ 0. (A.22)

Moreover, an analogue of [30, Lemma 10.5] shows that if we choose 𝔬± ∈ (𝛾±) and 𝔬0 ∈
(𝛾0), and use these to orient Coker(𝐷𝑢±) and 𝑇𝑢˜̃

𝕁

(𝛾+, 𝛾−), then the exact sequence (A.22) is
orientation preserving in the sense of (A.2).
Step 2. The obstruction section can be approximated, in a sense to be specified below, by a

‘linearized section’

𝔰0 ∶ 𝑁+ ⊕𝑁0 ⊕ 𝑁−⟶ Coker(𝐷𝑢+) ⊕ Coker(𝐷𝑢−)
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defined by

𝔰0(𝑧+, 𝑧0, 𝑧−) = (𝜏
+
+(𝑧+) + 𝜏

+
0
(𝑧0), 𝜏

−
0 (𝑧0) + 𝜏

−
−(𝑧−)).

The zero set of 𝔰0 is also cut out transversely. More precisely, define

𝑉 =

{
(𝜂+, 𝜂−) ∈ 𝑇𝑢+

˜̃𝐽

(𝛾+, 𝛾0) ⊕ 𝑇𝑢−
˜̃𝕁

(𝛾0, 𝛾−)
|||| 𝜎+0 (𝜂+) = 𝜎−0 (𝜂−)

}
.

Here the right-hand side is oriented as a level set of the linear map

𝜎+
0
− 𝜎−0 ∶ 𝑇𝑢+

˜̃𝐽

(𝛾+, 𝛾0) ⊕ 𝑇𝑢−
˜̃𝕁

(𝛾0, 𝛾−)⟶ ℂ0. (A.23)

This makes sense because we are assuming that 𝕁 is generic so that the fiber product

𝕁(𝛾+, 𝛾0) ×𝛾0 𝕁(𝛾0, 𝛾−)

is cut out transversely, which means that the linear map (A.23) is surjective. It also follows
from this surjectivity and the short exact sequences (A.20) and (A.21) that we have a short exact
sequence

0⟶ 𝑉
(𝜎++,𝜎

+
0
=𝜎−

0
,𝜎−−)

⟶ ℂ+ ⊕ ℂ0 ⊕ ℂ−
∇𝔰0
⟶ Coker(𝐷+) ⊕ Coker(𝐷−)⟶ 0. (A.24)

Here of course, ∇𝔰0 is defined by the same formula as 𝔰0 since 𝔰0 is linear. Moreover, the exact
sequence (A.24) is orientation preserving in the sense of (A.2).
One can argue as in [30, Corollary 8.6] that if is sufficiently large, then 𝔰−1(0) is 𝐶1 close to

𝔰−1
0
(0). In particular, if 𝑢 ∈ ˜̃𝐽

(𝛾+, 𝛾−) is in the image of the gluing map, then by comparing the
exact sequences (A.22) and (A.24), we obtain, up to homotopy, a canonical orientation-preserving
isomorphism

𝑇𝑢
˜̃𝕁

(𝛾+, 𝛾−) ≃ 𝑉. (A.25)

Step 3.We now use (A.25) to justify the signs in (A.19).

First note that in the exact sequence (A.20), the tangent vector to ˜̃𝕁

(𝛾+, 𝛾0) corresponding to
the derivative of the ℝ action (by translation of the domain) has 𝜎++ = (𝛾+) and 𝜎+0 = (𝛾0),
where  denotes the symplectic action (period) of a Reeb orbit. Thus, projection defines an
orientation preserving isomorphism

𝑇[𝑢+]̃𝕁(𝛾+, 𝛾0) ≃ (Re 𝜎
+
0
)−1(0) ⊂ 𝑇𝑢+

˜̃𝕁

(𝛾+, 𝛾0). (A.26)

Likewise, we have an orientation preserving isomorphism

𝑇[𝑢−]̃𝕁(𝛾0, 𝛾−) ≃ (Re 𝜎
−
0 )
−1(0) ⊂ 𝑇𝑢−

˜̃𝕁

(𝛾0, 𝛾−). (A.27)
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Combining the above two isomorphisms, we obtain an orientation preserving isomorphism

𝑇[𝑢+]̃⊕ 𝑇[𝑢−]̃ ≃ (−1)𝑑++1(Re 𝜎+
0
× Re 𝜎−0 )

−1(0, 0) ⊂ 𝑇𝑢+
˜̃⊕ 𝑇𝑢−

˜̃. (A.28)

On the other hand, we can rewrite (A.25) as

𝑇𝑢
˜̃ ≃ ((Re 𝜎+

0
− Re𝜎−0 ) × (Im𝜎

+
0
− Im𝜎−0 ))

−1(0, 0) ⊂ 𝑇𝑢+
˜̃⊕ 𝑇𝑢−

˜̃. (A.29)

In this isomorphism, the tangent vector to 𝑇𝑢
˜̃ corresponding to the derivative of the ℝ action

(by translation of the domain) has 𝜎+
0
and 𝜎−

0
close to(𝛾0). It follows that we have an orientation

preserving isomorphism

𝑇[𝑢]̃ ≃ (Re 𝜎+
0
× Re 𝜎−0 × (Im𝜎

+
0
− Im𝜎−0 ))

−1(0, 0, 0) ⊂ 𝑇𝑢+
˜̃⊕ 𝑇𝑢−

˜̃. (A.30)

Comparing (A.28) with (A.30), we obtain an orientation preserving isomorphism

𝑇[𝑢]̃ ≃ (−1)𝑑++1(Im𝜎+
0
− Im𝜎−0 )

−1(0) ⊂ 𝑇[𝑢+]̃⊕ 𝑇[𝑢−]̃. (A.31)

In the isomorphism (A.31), the derivative of the ℝ action (by translation of the target) on the
left-hand side corresponds to the direct sum of the derivative of the ℝ action on both summands
on the right-hand side. On the other hand, when > 0 is large, the direction pointing ‘out of the
boundary’ of the left-hand side corresponds to the derivative of theℝ action on the first summand
on the right-hand side, minus the derivative of the ℝ action on the second summand. It follows
that there is a neighborhood 𝑈 of ([𝑢+], [𝑢−]) in𝕁

𝑑(𝛾+, 𝛾−) and a neighborhood

𝑉 ⊂ −(𝑒+
0
− 𝑒−0 )

−1(0) ⊂𝕁(𝛾+, 𝛾0) ×𝕁(𝛾0, 𝛾−) (A.32)

of ([𝑢+], [𝑢−]) with a canonical orientation preserving diffeomorphism 𝜕𝑈 ≃ 𝑉. Here

𝑒+
0
∶𝕁(𝛾+, 𝛾0)⟶ 𝛾0,

𝑒−0 ∶𝕁(𝛾0, 𝛾−)⟶ 𝛾0

denote the evaluationmaps. According to the convention from [29, Section 2.1]whichwe are using
to orient fiber products, the middle of (A.32) agrees with the right-hand side of (A.19). □

A.5 Cobordism orientations

We now explain the orientations of the cobordism moduli spaces in Section 3.4.
Using the notation of Section 3.4, let Φ̃𝕁(𝛾+, 𝛾−) denote the moduli space of maps 𝑢 ∶ 𝑅 × 𝑆1 →

𝑋 satisfying the conditions (3.2)–(3.3), but without modding out by ℝ translation in the domain.
Thus,

Φ𝕁(𝛾+, 𝛾−) = Φ̃
𝕁(𝛾+, 𝛾−)∕ℝ,

where ℝ acts by translating the domain as in (A.16).
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Given 𝑢 ∈ Φ̃𝕁(𝛾+, 𝛾−), we have maps 𝜏± ∶ ℂ → Coker(𝐷𝑢) as in (A.10). This definition still
make sense, where now 𝜓±

1
and 𝜓±

2
are sections of 𝑢∗𝑇𝑋, since 𝑢 maps to ℝ × 𝑌+ for 𝑠 >> 0 and

to ℝ × 𝑌− for 𝑠 << 0. In this situation, we have the following analogue of Proposition A.18, with
the same proof:

Proposition A.29. If 𝕁 is generic, then Φ̃𝕁(𝛾+, 𝛾−) is naturally a smooth manifold, and there is a
canonical exact sequence

0⟶ Ker(𝐷𝑢)⟶ 𝑇𝑢Φ̃
𝕁(𝛾+, 𝛾−)

(𝜎+,𝜎−)
⟶ ℂ⊕ℂ

(𝜏+,𝜏−)
⟶ Coker(𝐷𝑢)⟶ 0. (A.33)

Given Proposition A.29, the argument at the end of Section A.3 shows that Φ̃𝕁(𝛾+, 𝛾−)
has a canonical orientation with values in 𝑒∗+𝛾+ ⊗ 𝑒∗−−. This then determines an ori-
entation of Φ𝕁(𝛾+, 𝛾−), with values in the same local system, by the ‘ℝ direction first’
convention.
We now have the following analogue of Proposition A.28.

Proposition A.30. With the notation and hypotheses of Lemma 3.13:

(a) let

([𝑢+], [𝑢0]) ∈𝕁+
𝑑+
(𝛾+, 𝛾0) ×𝛾0 Φ

𝕁
𝑑0
(𝛾0, 𝛾−),

then there is a neighborhood

𝑈 ⊂ Φ
𝕁

𝑑++𝑑0
(𝛾+, 𝛾−)

of ([𝑢+], [𝑢0]), which is naturally a smooth manifold with boundary, and a neighborhood

𝑉 ⊂𝕁+
𝑑+
(𝛾+, 𝛾0) ×𝛾0 Φ

𝕁
𝑑0
(𝛾0, 𝛾−) (A.34)

of ([𝑢+], [𝑢0]), with a canonical orientation preserving diffeomorphism 𝜕𝑈 ≃ 𝑉;
(b) let

([𝑢0], [𝑢−]) ∈ Φ
𝕁
𝑑0
(𝛾+, 𝛾0) ×𝛾0 𝕁−

𝑑−
(𝛾0, 𝛾−),

then there is a neighborhood

𝑈 ⊂ Φ
𝕁

𝑑0+𝑑−
(𝛾+, 𝛾−)

of ([𝑢0], [𝑢−]), which is naturally a smooth manifold with boundary, and a neighborhood

𝑉 ⊂ (−1)𝑑0Φ𝕁
𝑑0
(𝛾+, 𝛾0) ×𝛾0 𝕁−

𝑑−
(𝛾0, 𝛾−) (A.35)

of ([𝑢0], [𝑢−]), with a canonical orientation preserving diffeomorphism 𝜕𝑈 ≃ 𝑉.
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Proof. This follows the proof of Proposition A.28, with minor modifications. There are some sign
changes at the very end due to the fact that the cobordismmoduli spaces Φ̃𝕁 do not haveℝ actions
by translation in the target. These sign changes work as follows.

(a) Up to (A.31), the proof follows the proof of Proposition A.28, with ˜̃𝕁

(𝛾+, 𝛾0) replaced by
˜̃𝕁+

(𝛾+, 𝛾0), and with
˜̃𝕁

(𝛾0, 𝛾−) replaced by Φ̃𝕁(𝛾0, 𝛾−). The analogue of (A.31) here is

𝑇[𝑢]Φ
𝕁(𝛾+, 𝛾−) ≃ (−1)

𝑑++1(Im𝜎+
0
− Im𝜎00)

−1(0) ⊂ 𝑇[𝑢+]̃𝕁+(𝛾+, 𝛾0) ⊕ 𝑇𝑢0Φ
𝕁(𝛾0, 𝛾−). (A.36)

In the isomorphism (A.36), the direction pointing ‘out of the boundary’ on the left-hand side
corresponds to the derivative of the ℝ action on the first summand on the right-hand side. It
follows that there is a neighborhood 𝑈 of ([𝑢+], [𝑢0]) in Φ

𝕁

𝑑++𝑑0
(𝛾+, 𝛾−) and a neighborhood

𝑉 ⊂ (−1)𝑑++1(𝑒+
0
− 𝑒00)

−1(0) ⊂𝕁+
𝑑+
(𝛾+, 𝛾0) × Φ

𝕁
𝑑0
(𝛾0, 𝛾−) (A.37)

of ([𝑢+], [𝑢0]) with a canonical orientation preserving diffeomorphism 𝜕𝑈 ≃ 𝑉. Here

𝑒+
0
∶𝕁+

𝑑+
(𝛾+, 𝛾0)⟶ 𝛾0,

𝑒00 ∶ Φ
𝕁
𝑑0
(𝛾0, 𝛾−)⟶ 𝛾0

denote the evaluation maps. According to the fiber product orientation convention from [29,
Section 2.1], this means that the middle of (A.37) agrees with the right-hand side of (A.34).
(b) In this case the analogue of (A.31) is

𝑇[𝑢]Φ
𝕁(𝛾+, 𝛾−) ≃ (−1)

𝑑0+1(Im𝜎00 − Im𝜎
−
0 )
−1(0) ⊂ 𝑇𝑢Φ

𝕁(𝛾+, 𝛾0) ⊕ 𝑇[𝑢−]̃𝕁−(𝛾0, 𝛾−). (A.38)

In the isomorphism (A.38), the direction pointing ‘out of the boundary’ on the left-hand side cor-
responds to minus the derivative of the ℝ action on the second summand on the right-hand side.
Because of this minus sign, and because the first summand on the right-hand side has dimension
𝑑0, this results in an extra factor of (−1)𝑑0 in (A.35) as compared with (A.34). □

We can now prove the following lemma which is needed in Section 3.6.

Lemma A.31. Under the identifications in Lemma A.27(a):

(a) the diffeomorphism (3.13) is orientation preserving;
(b) the diffeomorphism (3.14) is orientation preserving with respect to the orientation of 𝛾 given by

the Reeb vector field.

Proof.

(a) The proof of Lemma A.27(b) shows that the diffeomorphism 𝜙 in Section 3.6 induces an
orientation preserving isomorphism

Φ̃𝕁
𝑋
(
𝑒𝑏𝛾+,

𝑒𝑎𝛾−

) ≃
⟶ ˜̃𝕁

(𝛾+, 𝛾−)
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sending 𝑢 ↦ 𝜙 ◦𝑢. By our convention at the end of Section A.3, it follows that the
diffeomorphism (3.13) is orientation preserving.

(b) For a single Reeb orbit 𝛾 of 𝜆, composition with 𝜙 likewise gives an orientation preserving
diffeomorphism

Φ̃𝕁
𝑋
(
𝑒𝑏𝛾, 𝑒

𝑎
𝛾
) ≃
⟶ ˜̃𝕁

(𝛾, 𝛾).

By symplectic action considerations, the elements of the right-hand side consist of holomor-
phic maps

𝑢 ∶ ℝ × 𝑆1 → ℝ × 𝛾

of degree 𝑑(𝛾). We then obtain an orientation preserving diffeomorphism

˜̃𝕁

(𝛾, 𝛾)
≃
⟶ ℝ× 𝛾

sending 𝑢 ↦ 𝑢(0, 0). By our convention at the end of Section A.3, it follows that the
diffeomorphism (3.14) is orientation preserving. □

A.6 Family orientations

We now explain the orientations of the 𝑆1-equivariant moduli spaces defined in Section 4.1, and
we use the notation from that section.

Proof of Proposition 4.4.. Let 𝑥 be a critical point of 𝑓 ∶ 𝐵𝑆1 → ℝ and let 𝛾 be a Reeb orbit. We
first define the local system (𝑥,𝛾).
Recall from Proposition 2.3 that there is a canonical local system 𝛾 over 𝛾. Let ̃ denote the

pullback of this local system to 𝜋−1(𝑥) × 𝛾 via the projection

𝜋−1(𝑥) × 𝛾⟶ 𝛾.

Weclaim that the restriction of the local system ̃ to each fiber of the 𝑆1 action (4.4) on𝜋−1(𝑥) ×
𝛾 is trivial. If the Reeb orbit 𝛾 is good, then by Proposition 2.3(a), the local system ̃ is trivial
over all of 𝜋−1(𝑥) × 𝛾. If the Reeb orbit 𝛾 is bad, then the local system ̃ is nontrivial over each
circle {𝑧} × 𝛾, and trivial over each circle 𝜋−1(𝑥) × {𝑝}. But for a bad Reeb orbit 𝛾, the covering
multiplicity 𝑑(𝛾) ∈ ℤ is even, so each orbit of the 𝑆1 action (4.4) wraps an even number of times
around the 𝛾 direction, and the restriction of  to the orbit is still trivial.
It follows from the previous paragraph that  descends to a well-defined local system over

(𝑥, 𝛾), which we denote by (𝑥,𝛾).
Assertion (a) in Proposition 4.4 now follows from the above discussion.

To prove assertion (b), let ˜̃𝔍

((𝑥+, 𝛾+), (𝑥−, 𝛾−)) denote the quotient of the moduli space̂𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−)) by the 𝑆1 action (4.4). Thus,

̃𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−)) =
˜̃𝔍

((𝑥+, 𝛾+), (𝑥−, 𝛾−))∕ℝ,

where ℝ acts by translation of the parameter 𝑠.
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Let (𝜂, 𝑢) ∈ ̂𝔍. We can then describe the tangent space 𝑇[(𝜂,𝑢)]
˜̃𝔍

as follows. Let
̃Morse(𝑥+, 𝑥−) denote the moduli space of parameterized flow lines of 𝑉 asymptotic to 𝑥+ and
𝑥−. Let ̃Morse(𝜋−1(𝑥+), 𝜋

−1(𝑥−)) denote the moduli space of parameterized flow lines of 𝑉
asymptotic to points in 𝜋−1(𝑥+) and 𝜋−1(𝑥−). Thus,

̃Morse(𝑥+, 𝑥−) = ̃Morse(𝜋−1(𝑥+), 𝜋
−1(𝑥−))∕𝑆

1.

It follows from equation (4.2) that ̃Morse(𝑥+, 𝑥−) is identified with a complex linear subspace
of a projective space (minus the points 𝑥+ and 𝑥− when these are distinct) via the map sending
𝜂 ↦ 𝜂(0). Thus, ̃Morse(𝑥+, 𝑥−) has a canonical complex orientation.
Let

𝑊 ⊂ 𝑇𝜂̃Morse(𝜋−1(𝑥+), 𝜋
−1(𝑥−))

be a lift of 𝑇𝜋 ◦ 𝜂̃Morse(𝑥+, 𝑥−). The derivative of the parameterized Cauchy–Riemann equa-
tion (4.3) at (𝜂, 𝑢) is described by an operator

𝑊⊕ 𝐿
𝑝,𝛿
1
(𝑢∗𝑇(ℝ × 𝑌)) ⊕ ℂ⊕ ℂ⟶ 𝐿𝑝,𝛿(𝑢∗𝑇(ℝ × 𝑌)). (A.39)

This operator is defined analogously to (A.13), with the domain extended by𝑊 to allow for 𝜂 to
move in its moduli space of Morse flow lines. As in Proposition A.18, if𝔍 is generic, then for each

(𝜂, 𝑢) the operator (A.39) is surjective,which implies that themoduli space ˜̃𝔍

((𝑥+, 𝛾+), (𝑥−, 𝛾−))

is naturally a smooth manifold whose tangent space is the kernel of (A.39). There is then a
canonical exact sequence

0⟶ Ker(𝐷𝑢)⟶ 𝑇[(𝜂,𝑢)]
˜̃𝔍

((𝑥+, 𝛾+), (𝑥−, 𝛾−))⟶𝑊⊕ℂ⊕ℂ⟶Coker(𝐷𝑢)⟶ 0. (A.40)

Here 𝐷𝑢 as in (A.9) is now the derivative of the parameterized Cauchy–Riemann equation (4.3)
with respect to deformations of 𝑢 alone.
Since𝑊 has a canonical orientation as noted above, it follows that the exact sequence (A.40)

determines an orientation of ˜̃𝔍

with values in 𝑒∗+(𝑥+,𝛾+) ⊗ 𝑒∗−(𝑥−,𝛾−), by the same argument
as used in Section A.3 to prove Proposition 2.3(b). We then orient ̃𝔍 = ˜̃𝔍

∕ℝ using the ‘ℝ-
direction first’ convention, and finally orient𝔍 = ̃𝔍 using the ‘ℝ-direction first’ convention
again. □

Analogously to Definition A.20, we formulate:

Definition A.32. A pair (𝜂, 𝑢) ∈ ˜̃𝔍

((𝑥+, 𝛾+), (𝑥−, 𝛾−)), or its equivalence class in
𝔍((𝑥+, 𝛾+), (𝑥−, 𝛾−)), is regular if the operator (A.39) is surjective.

We can now prove the following lemma which is needed in Section 5.2. To prepare to state the
lemma, let𝑥 ∈ Crit(𝑓) and let 𝑧 be a lift of𝑥 to𝐸𝑆1. Given aReeb orbit 𝛾, define a diffeomorphism

𝜌𝑧 ∶ 𝛾
≃
⟼ (𝑥, 𝛾)
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by sending 𝑝 ↦ [(𝑧, 𝑝)]. By the definitions of the local systems𝛾 and(𝑥,𝛾), the diffeomorphism
𝜌𝑧 has a canonical lift† to an isomorphism

𝜌𝑧 ∶ 𝛾 ≃
⟶ (𝑥,𝛾). (A.41)

Lemma A.33. Let 𝜂 be the constant flow line of 𝑉 from 𝑧 to itself. Given 𝔍, define 𝕁 = {𝐽𝑡} by 𝐽𝑡 =
𝔍𝑡,𝑧. Suppose that 𝕁 is generic in the sense of Proposition 2.2. Let 𝛾+, 𝛾− be distinct Reeb orbits. Then
the diffeomorphism

𝕁
𝑑
(𝛾+, 𝛾−)

≃
⟶𝔍

𝑑
((𝑥, 𝛾+), (𝑥, 𝛾−)) (A.42)

sending [𝑢] ↦ [(𝜂, 𝑢)] is orientation preserving with respect to (A.41).

Proof. We have a diffeomorphism

˜̃𝕁

𝑑(𝛾+, 𝛾−)
≃
⟶ ˜̃𝔍

𝑑 ((𝑥, 𝛾+), (𝑥, 𝛾−)) (A.43)

sending 𝑢 ↦ [(𝜂, 𝑢)]. Under the diffeomorphism (A.43), the exact sequences (A.11) and (A.40)
used to orient its two sides agree, since𝑊 here is a 0-dimensional vector space oriented positively.
Finally, the same convention is used to pass from the orientations of the two sides of (A.43) to the
orientations of the two sides of (A.42). □
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