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Abstract Quasi-Monte Carlo (QMC) points are a substitute for plain Monte Carlo
(MC) points that greatly improve integration accuracy under mild assumptions on the
problem. Because QMC can give errors that are o(1/n) as n — 00, and randomized
versions can attain root mean squared errors that are o(1/n), changing even one point
can change the estimate by an amount much larger than the error would have been
and worsen the convergence rate. As a result, certain practices that fit quite naturally
and intuitively with MC points can be very detrimental to QMC performance. These
include thinning, burn-in, and taking sample sizes such as powers of 10, when the
QMC points were designed for different sample sizes. This article looks at the effects
of a common practice in which one skips the first point of a Sobol” sequence. The
retained points ordinarily fail to be a digital net and when scrambling is applied,
skipping over the first point can increase the numerical error by a factor proportional
to «/n where n is the number of function evaluations used.
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1 Introduction

A Sobol’ sequence is an infinite sequence of points uy, u5, ... € [0, 11¢ constructed

to fill out the unit cube with low discrepancy, meaning that a measure of the distance

between the discrete uniform distribution on 1, . . ., u, and the continuous uniform

distribution on [0, 1]¢ is made small. These points are ordinarily used to approximate
1 n
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The reason for calling this estimate 1, | will become apparent later. Sobol” sequences
are often used to estimate expectations with respect to unbounded random variables,
such as Gaussians. In such cases f subsumes a transformation from the uniform
distribution on [0, 1] to some other more appropriate distribution. This article uses
1-based indexing, so that the initial point is #;. Sometimes 0-based indexing is used,
and then the initial point is denoted u(. Both indexing conventions are widespread in
mathematics and software for Sobol’ points and both have their benefits. Whichever
convention is used, the first point should not be dropped.

The initial point of the Sobol’ sequenceisu; = (0,0, ..., 0). A common practice
is to skip that point, similar to the burn-in practice in Markov chain Monte Carlo
(MCMQ). One then estimates u by

n+1

. . 1
=y = Zf(ui)-
i—2

One reason to skip the initial point is that a transformation to a Gaussian distribu-
tion might make the initial Gaussian point infinite. That is problematic not just for
integration problems but also when f is to be evaluated at the design points to create
surrogate models for Bayesian optimization [1, 13]. If one skips the initial point,
then the next point in a Sobol’ sequence is usually (1/2,1/2, ..., 1/2). While that
is an intuitively much more reasonable place to start, starting there has detrimental
consequences and there are better remedies, described here.

A discussion about whether to drop the initial point came up in the plenary tutorial
of Fred Hickernell at MCQMC 2020 about QMCPy [5] software for QMC, discussed
in [6]. The issue has been discussed by the pytorch [39] community at https://github.
com/pytorch/pytorch/issues/32047, and the scipy [47] community at https://github.
com/scipy/scipy/pull/10844, which are both incorporating QMC methods. QMC and
RQMC code for scipy is documented at https://scipy.github.io/devdocs/reference/
stats.qmc.html.

This article shows that skipping even one point of the Sobol’ sequence can be
very detrimental. The resulting points are no longer a digital net in general, and in
the case of scrambled Sobol’ points, skipping a point can bring about an inferior
rate of convergence, making the estimate less accurate by a factor that is roughly
proportional to /7.

A second difficulty with Sobol’ sequence points is that it is difficult to estimate the
size |t — u| of the integration error from the data. The well-known Koksma-Hlawka
inequality [15] bounds | — | by the product of two unknown quantities that are
extremely hard to compute, and while tight for some worst case integrands, it can
yield an extreme overestimate of the error, growing ever more conservative as the
dimension d increases.

Randomly scrambling the Sobol” sequence points preserves their balance prop-
erties and provides a basis for uncertainty quantification. Scrambling turns points
u; into random points x; ~ U[O0, 11¢. The points x1, ..., x, are not independent.
Instead they retain the digital net property of Sobol’ points and consequent accu-
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racy properties. The result is randomized QMC (RQMC) points. RQMC points also
have some additional accuracy properties stemming from the randomization. With
scrambled Sobol’ points, we estimate p by

PN 1<
= = — Xi).
= ey = — ;:1 f(xi)

One can estimate the mean squared error using R independent replicates of the n-
point RQMC estimate fi, ;. It is also possible to drop the first point in RQMC,
estimating u by

n+1

o 1
== 30

The purpose of this paper is to show that [i, ; is a much better choice than i, ,.

Many implementations of a Sobol’ sequence will produce n = 2™ points u; €
{0,1/n,2/n,...,(n — 1)/n}d C [0, 1)?. In that case, there is a safer way to avoid
having a point at the origin than skipping the first point. We can use u; + 1/(2n)
componentwise and still have a digital net. This is reasonable if we have already
decided on the value of n to use. It does not work to add that same value 1/(2n)
to the next 2™ points and subsequent values. For one thing, the result may produce
values on the upper boundary of [0, 1]¢ in the very next batch and will eventually
place points outside of [0, 1]¢. It remains better to scramble the Sobol’ points.

We will judge the accuracy of integration via scrambled Sobol’ points through
E((ft — 1)*)'/?, the root mean squared error (RMSE). Plain Monte Carlo (MC)
attains an RMSE of O (n~!/?) for integrands f € L?[0, 1719

This paper is organized as follows. Section 2 defines digital nets and shows that
skipping over the first point can destroy the digital net property underlying the analy-
sis of Sobol’ sequences. It also presents properties of scrambled digital nets. Section 3
shows some empirical investigations on some very simple and favorable integrands
where /i, ; has an RMSE very near to the rate O (n=3?) while x> has an RMSE
very near to O(n~"). These are both in line with what we expect from asymptotic
theory. The relevance is not that our integrands are as trivial as those examples, but
rather that when realistic integrands are well approximated by such simple ones we
get accuracy comparable to using those simple functions as control variates [16]
but without us having to search for control variates. In skipping the first point we
stand to lose a lot of accuracy in integrating the simple functions and others close
to them. There is also no theoretical reason to expect [i, » to have a smaller RMSE
than (i, ; does, and so there is a Pascal’s wager argument against dropping the first
point. Section 4 looks at a ten dimensional function representing the weight of an
airplane wing as a function of the way it was made. We see there that skipping the
first point is very detrimental. Section 5 considers some very special cases where
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burn-in might be harmless, recommends against using round number sample sizes
and thinning for QMC points, and discusses distributing QMC points over multiple
parallel processors.

2 Digital Nets and Scrambling

In this section we review digital nets and describe properties of their scrambled
versions. The points from Sobol’ sequences provide the most widely used example
of digital nets. For details of their construction and analysis, see the monographs
[11, 28]. There are numerous implementations of Sobol” sequences [2, 18, 45]. They
differ in what are called ‘direction numbers’ and they can also vary in the order with
which the points are generated. The numerical results here use direction numbers
from [18] via an implementation from Nuyens’ magic point shop, described in [22]
and scrambled as in [29]. The Sobol’ and scrambled Sobol’ points in this paper were
generated using the R function rsobol that appears in http://statweb.stanford.edu/
~owen/code/ along with some documentation. That code also includes the faster and
more space efficient scrambling of Matousek [26].

We begin with the notion of elementary intervals, which are special hyper-
rectangular subsets of [0, 1)4. For an integer base b > 2, adimensiond > 1, a vector
k= (ki, ..., kq) of integers k; > 0 and a vector ¢ = (cy, ..., ¢g) of integers with
0 < ¢; < bY, the Cartesian product

Jj=1

is an elementary interval in base b. It has volume b~ where |k| = Z?:l kj.
Speaking informally, the set E(k, ¢) has a proportion b~ of the volume of

[0, 1] and so it ‘deserves’ to get (i.e., contain) nb Ikl points when we place n points

inside [0, 1]¢. Digital nets satisfy that condition for certain k. We use the following

definitions from Niederreitter [27].

Definition 1 For integers m >t > 0, the n = b™ points uy, ..., u, € [0, 119 are a
(t,m, d)-netin base b > 2, if every elementary interval E(k, ¢) C [0, 11 of volume
b'~™ contains exactly b’ of the points uy, ..., u,.

Every elementary interval that ‘deserves’ b’ points of the digital net, gets that many
of them. When we speak of digital nets we ordinarily mean (¢, m, d)-nets though
some authors reserve the term ‘digital’ to refer to specific construction algorithms
rather than just the property in Definition 1.

Definition 2 Forintegerst > 0,b > 2andd > 1, theinfinite sequence uy, u,, ... €
[0, 1]%is a (¢, d)-sequence in base b if u_jypmyi1, ..., Uppn 1S a (¢, m, d)-net in base
b for any integersm > tandr > 1.
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Sobol’ sequences [42] are (¢, d)-sequences in base 2. From Definition 2, we
see that the first 2™ points of a Sobol’ sequence are a (¢, m, d)-net in base 2 for
any m > t. So are the second 2™ points, and if we merge both of those point sets,
we get a (f,m + 1, d)-net in base 2. We can merge the first two of those to get a
(t, m 4+ 2, d)-net in base 2 and so on ad infinitum.

Given b, m and d, smaller values of ¢ are better. It is not always possible to have
t = 0 and the best possible ¢ increases monotonically with d. The best known values
of t for (¢, d)-sequences and (¢, m, d)-nets are given in the online MinT web site
[40]. The published ¢ value for a Sobol’ sequence might be conservative in that the
first ™ points of the Sobol’ sequence can possibly be a (¢, m, d)-net for some ¢’ < ¢.

The proven properties of digital nets including those taken from Sobol’ sequences
derive from their balanced sampling of elementary intervals. The analysis path can
be via discrepancy [28] or Haar wavelets [43] or Walsh functions [11].

The left panel in Fig. 1 shows the first 16 points of a Sobol’ sequence in two
dimensions. Fifteen of them are small solid disks and one other is represented by
concentric circles at the origin. Those points form a (0, 4, 2)-net in base 2. Reference
lines divide the unit square into a4 x 4 grid of elementary intervals of size 1/4 x 1/4.
Each of those has one of the 16 points, often at the lower left corner. Recall that
elementary intervals include their lower boundary but not their upper boundary.
Finer reference lines partition the unit square into 16 strips of size 1 x 1/16. Each of
those has exactly one point of the digital net. The same holds for the 16 rectangles of
each of these shapes: 1/2 x 1/8,1/8 x 1/2 and 1/16 x 1. All told, those 16 points
have balanced 80 elementary intervals and the number of balanced intervals grows
rapidly with m and d.

The point u; = (0, 0) is problematic as described above. If we skip it and take
points u, . .., uj7 then we replace it with the large solid disk at (1/32, 17/32). Doing
that leaves the lower left 1/4 x 1/4 square empty and puts two points into a square
above it. The resulting 16 points now fail to be a (0, 4, 2)-net.

The introduction mentioned some randomizations of digital nets. There is a survey
of RQMC in [24]. For definiteness, we consider the nested uniform scramble from
[29]. Applying a nested uniform scramble to a (¢, d)-sequence uy, u,, ... in base b
yields points x1, X, . . . that individually satisfy x; ~ U[0, 1]¢ and collectively are a
(t, d)-netin base b with probability one. The estimate [i, | then satisfies E(iiy 1) = u
by uniformity of x;. The next paragraphs summarize some additional properties of
scrambled nets.

If f € L'*[0, 1]¢ for some € > 0 then [37] show that Pr(lim,,_, o Mx1 = 1) =
1, where the limit is through (¢, m, d)-nets formed by initial b™ subsequences the
(¢, d)-sequence of x;. If f e L?[0, 1]¢ then var(fiy.|) = o(1/n) as n = b™ — oo
[30]. That is, the RMSE is o(n~'/?), superior to MC. Evidence of convergence rates
for RQMC better than n~!/2 have been seen for some unbounded integrands from
financial problems. For instance variance reduction factors with respect to MC have
been seen to increase with sample size in [23].

The usual regularity condition for plain MC is that f (x) has finite variance o> and
the resulting RMSE is on~!/2. When f € L?[0, 1]¢ with variance o> then scrambled
net sampling with n = b™ satisfies
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RMSE(fiy,1) < T2on™'/? (1)

for some I' < oo [32]. For digital nets in base 2, such as those of Sobol’, it is known
that T" is a power of two no larger than 2/*¢~! [38]. Equation (1) describes a worst
case f € L?[0, 1]¢ that maximizes the ratio of the RMSE for RQMC to that of MC.

The accuracy of QMC points is most commonly described by a worst case analysis
with | — | = O(m~'log(n)?~") when f has bounded variation in the sense of
Hardy and Krause (BVHK). These powers of log(n) are not negligible for practically
relevant values of n, when d is moderately large. Then the bound gives a misleadingly
pessimistic idea of the accuracy one can expect. The bound in (1) shows that the
RMSE of scrambled nets is at most I''/25/\/n, a bound with no powers of log(n).
This holds for f € L?, which then includes any f in BVHK as well as many others
of practical interest, such as some unbounded integrands. Note that integrands in
BVHK must be bounded and they are also Riemann integrable [37], and so they are
in L2,

Under further smoothness conditions on f, RMSE(fi,. ;) = O(n=>3?
(logn)@=Y/2) This was first noticed in [31] with a correction in [33]. The weak-
est known sufficient conditions are a generalized Lipschitz condition from [48].
The condition in [33] is that for any nonempty u C {1, ...,d} the mixed par-
tial derivative of f taken once with respect to each index j € u is continuous
on [0, 1]4. To reconcile the appearance and non-appearance of logarithmic fac-
tors, those two results give RMSE(fi,.1) < min(I''/2on~1/2, A,) for some sequence
A, = O(m~3?1og(n)?~1/2). The logarithmic factor can degrade the n~%/? rate but
only subject to a cap on performance relative to plain MC. Finally, Loh [25] proves
a central limit theorem for /i, ; when r = 0.

The right panel of Fig. 1 shows a nested uniform scramble of the points in the
left panel. The problematic point #; becomes a uniformly distributed point in the
square, and is no longer on the boundary. If we replace it by u;7 then just as in the
unscrambled case, there is an empty 1/4 x 1/4 elementary interval, and another one
with two points.

There is a disadvantage to ji,, compared to (i, ; when the latter attains a root
mean squared error O (n~>/2*€), for then

1
/lx,Z = /lx,l + ;l(f(xn-&-l) - f(xl)) (2)

The term (f(x,+1) — f(x1))/n = O(1/n) will ordinarily decay more slowly than
|itx.1 — 1|. Then skipping the first point will actually make the rate of convergence
worse. A similar problem happens if one simply ignores x; and averages the n — 1
points f(x,) through f(x,). Arelated issue is that when equally weighted integration
rules have errors O(n™") for r > 1, this rate can only realistically take place at
geometrically separated values of n. See [34, 44]. The higher order digital nets of
[9] attain o(1/n) errors under suitable regularity conditions and their randomizations
in [10] attain RMSEs of o(1/r). The argument against skipping the first point also
applies to these methods.
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17 Sobol’ points 17 scrambled Sobol’ points

&

Fig.1 The left panel shows the first 17 Sobol’ points in [0, 1]2. The initial point at (0, 0) is shown
in concentric circles. The 17°th point is shown as a large disk. Solid reference lines partition [0, 1]
into 16 congruent squares. Dashed reference lines partition it into 256 congruent squares. The right
panel shows a nested uniform scramble of these 17 points

3 Synthetic Examples

Here we look at some very simple modest dimensional integrands. They fit into a
‘best case’ case analysis for integration, motivated as follows. We suppose that some
sort of function g(x) is extremely favorable for a method and also that it resembles
the actual integrand. We may write

fx) = g(x) 4 e(x).

In the favorable cases, ¢ is small and g is easily integrated. For classical quadratures
g may be a polynomial [8]. For digital nets, some functions g may have rapidly
converging Walsh series [11], others are sums of functions of only a few variables
at a time [3]. For lattice rules [41], a favorable g has a rapidly converging Fourier
series. The favorable cases work well because

n

% Yo fen = % >+ % 2 et

i=1 i=1 i=1

with the first term having small error because it is well suited to the method and
the second term having small error because €(-) has a small norm and we take an
equal weight sample of it instead of using large weights of opposite signs. A good
match between method and g saves us the chore of searching for one or more control
variates. Choosing cases where a method ought to work is like the positive controls
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Fig. 2 Solid points show Sum of 5 centered exp(x)
RMSE for scrambled Sobol’
estimate [l | versus n from
R = 10 replicates. A
reference line parallel to
n=3/2 goes through the first
solid point. Open points
show RMSE for scrambled
Sobol’ estimates fix 2 which
drop the initial zero. A
reference line parallel to n™
goes through the first open
point

RMSE

1
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Sample size n

used in experimental science. We can use them to verify that the method or its
numerical implementation work as expected on the cases they were designed for.
There can and will be unfavorable cases in practice. Measuring the sample variance
under replication provides a way to detect that.

Here we consider some cases where scrambled nets should work well. The first is

d

go(x) =Y (e —e+1), 3)

j=1

which clearly has ;1 = 0. This sum of centered exponentials is smooth and additive. It
is thus very simple for QMC and RQMC. It is unlikely that anybody turns to RQMC
for this function but as remarked above the integrand one has may be close to such
a simple function.

Figure 2 shows the RMSE for this function gy based on R = 10 independent
replicates of both [i,; and fi,,. Reference lines show a clear pattern. The error
follows a reference line parallel to n~*/? on a log-log plot for fi, 1. For fix», the
reference line is parallel to n~!. These slopes are exactly what we would expect
from the underlying theory, the first from [31] and the second from Equation (2).
In both cases the line goes through the data for n = 32 and is then extrapolated to
n = 2'% = 16,384 with the given slopes. That is a more severe test for the asymptotic
theory than fitting by least squares would be. In this instance, the asymptotic theory
is already close to the measurements by n = 32.

An earlier version of this article used go(x) = Z?:, xj instead of the function go
above. The RMSE:s for that function also closely follow the predicted rates. It is not
however as good a test case because it is antisymmetric about x = (1/2,...,1/2),
meaning that (go(x) 4+ go(x))/2 = u for all x, where X = 1 — x componentwise.
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Fig. 3 Solid points show Square of sum of 5 unifs
RMSE for scrambled Sobol’

estimate [l | versus n from c!’., h
R = 10 replicates. A -
reference line parallel to $ i
n=3/2 goes through the first 2
solid point. Open points @
show RMSE for scrambled oo ]
Sobol’ estimates fix 2 which z
drop the initial zero. A 3 |
reference line parallel to n~! <
goes through the first open 9
point o
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If we use such an antisymmetric function, then we will get highly accurate results
just from having a nearly antithetic set of evaluation points that may or may not be
equidistributed.

The second function is

d 2
g1(x) = (Zx,-) : )

Jj=1

Unlike g this function is not additive. It has interactions of order 2 but no higher in
the functional ANOVA decomposition [17, 43] and it also has a substantial additive
component. It is not antisymmetric about (1/2,1/2,...,1/2). It has u =d/3 +
d(d — 1)/4. Figure 3 shows the RMSE for [, ; and (i, . Once again they follow
reference lines parallel to n~*/? and n~! respectively. Asymptotic theory predicts a
mean squared error with a component proportional to n~* and a second component
proportional to log(n)n=> that would eventually dominate the first, leading to an
RMSE that approaches n=%/2log(n)'/>.
Next we look at a product

d
g0 =[] —e+D.

j=1

This function has = 0 for any d. It is surprisingly hard for (R)YQMC to handle
this function for modest d, much less large d. It is dominated by 2¢ spikes of oppo-
site signs around the corners of [0, 1]¢. It may also be extra hard for Sobol’ points
compared to alternatives, because Sobol’ points often have rectangular blocks that
alternate between double the uniform density and emptiness. In a functional ANOVA
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Product of 3 centered exp
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Fig.4 The integrand is a product of 3 centered exponentials. Solid points show RMSE for scram-
bled Sobol” estimate /i1 versus n from R = 10 replicates. A reference line parallel to n73/2 goes
through the first solid point. Open points show RMSE for scrambled Sobol’ estimates /i, » which
drop the initial zero. A reference line parallel to n ! goes through the first open point. A dashed
reference line through the first solid point decays as log(n)/n3/?

decomposition, it is purely d-dimensional in that the only non-zero variance com-
ponent is the one involving all d variables. Asymptotic theory predicts an RMSE of
0 (n=3?1og(n)=172),

Figure 4 shows results for d = 3 and this g>(x). The rate for i, ; shows up as
slightly worse than n=3/2 while the one for [i,, appears to be slightly better than
n~!. Both are much better than O (n~'/?). Putting in the predicted logarithmic factor
improves the match between asymptotic prediction and empirical outcome for fiy ;.
It is not clear what can explain (i, » doing better here than the asymptotic prediction.
Perhaps the asymptotics become descriptive of actual errors at much larger n for this
function than for the others. Judging by eye it is possible that the convergence rate is
worse when the first point is dropped, but the evidence is not as clear as in the other
figures where the computed values so closely follow theoretical predictions. There
is an evident benefit to retaining the initial point that at a minimum manifests as a
constant factor of improvement.

In some of the above examples the asymptotic theory fit very well by n = 32.
One should not expect this in general. It is more reasonable to suppose that that
is a consequence of the simple form of the integrands studied in this section. For
these integrands the strong advantage of retaining the original point shows in both
theory and empirical values. There is no countervailing theoretical reason to support
dropping the first point.
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Table 1 Variables and their ranges for the wing weight function

81

Variable Range Meaning

Sw [150, 200] Wing area (ft2)

Wrw [220, 300] Weight of fuel in the wing (Ib)
A [6, 10] Aspect ratio

A [—10, 10] Quarter-chord sweep (degrees)
q [16, 45] Dynamic pressure at cruise (Ib/ft?)
A [0.5, 1] Taper ratio

te [0.08, 0.18] Aerofoil thickness to chord ratio
N, [2.5, 6] Ultimate load factor

Wag [1700,2500] Flight design gross weight (1b)
Wp [0.025, 0.08] Paint weight (Ib/ft?)

4 Wing Weight Function

The web site [46] includes a 10 dimensional function that computes the weight of an
airplane’s wing based on a physical model of the way the wing is manufactured. While
one does not ordinarily want to know the average weight of a randomly manufactured
wing, this function is interesting in that it has a real physical world origin instead of
being completely synthetic. It is easily integrated by several QMC methods [36] and
so it is very likely that it equals g + ¢ for a favorable g and a small ¢.

The wing weight function is

0.0365275 W 0035( A )0'6‘10.006)\0.04( 100z, )‘0'3(wadg)o.49 + SuW,.
cos2(A) cos(A)

The definition and uniform ranges of these variables are given in Table 1.

For this function the standard deviation among 10 independent replicates is used
instead of the RMSE. The results are in Fig. 5. Once again there is a strong disad-
vantage to dropping the first Sobol’ point. The RMSE when dropping the first point
is very nearly O (n~!). The RMSE for not dropping the first point is clearly better.
The pattern there is not linear on the log-log scale so we cannot confidently conclude
what convergence rate best describes it.

5 Discussion

MC and QMC and RQMC points all come as an n x d matrix of numbers in [0, 1]
that we can then pipe through several functions to change the support set and dis-
tribution and finally evaluate a desired integrand. Despite that similarity, there are
sharp differences in the properties of QMC and RQMC points that affect how we
should use them.
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Fig. 5 Solid points show Wing weight function
standard deviation for
scrambled Sobol’ estimate
flx.1 versus n from R = 10
replicates. A reference line
parallel to n=3/2 goes
through the first solid point.
Open points show standard
deviation for scrambled
Sobol’ estimates fiy » which
drop the initial zero. A
reference line parallel to n™
goes through the first open
point
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This paper has focussed on a small burn-in, dropping just one of the points and
picking up the next n. Burn-in makes no difference to plain MC apart from doing
some unneeded function evaluations, and it can bring large benefits to MCMC. See
the comment by Neal in the discussion [19]. Burn-in typically spoils the digital net
property. It is safer to scramble the points which removes the potentially problematic
first point at the origin while also increasing accuracy on very favorable functions
like those in the examples and also on some unfavorable ones having singularities
or other sources of infinite variation in the sense of Hardy and Krause. See [37].

There are some exceptional cases where burn-in of (R)QMC may be harmless. For
d =1, any consecutive 2" points of the van der Corput sequence [7] are a (0, m, 1)-
netin base 2. As we saw in Fig. 1 that is not always true for d > 1. Dropping the first
N = 2" points of a Sobol” sequence for m’ > m should cause no problems because
the next 2™ points are still a (z, m, s)-net. Most current implementations of Sobol’
sequences are periodic with x; = x;,u for a value of M that is typically close to
30. Then one could take m’ = M — 1 allowing one to use m up to M — 1.

The Halton sequence [14] has few if any especially good sample sizes n and
large burn-ins have been used there. For plain MC points it is natural to use a round
number like 1000 or 10° of sample points. That can be very damaging in (R)QMC
if the points were defined for some other sample size. Using 1000 points of a Sobol’
sequence may well be less accurate than using 512. Typical sample sizes are powers
of 2 for digital nets and large prime numbers for lattice rules [24, 41]. The Faure
sequences [12] use b = p > d where p is a prime number. With digital nets as with
antibiotics, one should take the whole sequence.

Another practice that works well in MCMC, but should not be used in (R)QMC is
‘thinning’. In MCMC, thinning can save storage space and in some cases can improve
efficiency despite increasing variance [35]. One takes every k’th point, x; for some
integer k > 1, or in combination with burn-in x p1; for some integer B > 1. To
see the problem, consider the very basic van der Corput sequence x; € [0, 1]. If
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Fig. 6 The left panel shows a histogram of every 10’th x;; from the first 220 Sobol’ points. The
right panel shows a histogram of every 10’th x;5 from the first 22° Sobol’ points

x; € [0, 1/2) then x;; € [1/2, 1). For instance [4] use that observation to point out
that simulating a Markov chain with van der Corput points can be problematic. Now
suppose that one thins the van der Corput sequence to every second point using k = 2.
All of the retained points are then in either [0, 1/2) orin [1/2, 1). One will estimate
either 2 fol/ : f(x)dxor2 f 11/2 f(x) dx by using that sequence. The first component
of a Sobol” sequence is usually a van der Corput sequence.

Thinning for QMC was earlier considered by [21] who called it ‘leaping’. They
find interesting results taking every L’th point from a Halton sequence, taking L to be
relatively prime to all the bases used in the Halton sequence. Empirically, L = 409
was one of the better values. They also saw empirically that leaping in digital nets
of Sobol” and Faure lead to non-uniform coverage of the space.

The Matlab R2020a sobolset function https://www.mathworks.com/help/
stats/sobolset.html as of August 11, 2020 includes a thinning/leaping option through
a parameter Leap which is an interval between points, corresponding to k — 1 in the
discussion above. It also has a parameter Skip, corresponding to burn-in, which is a
number of initial points to omit. Fortunately both Leap and Skip are turned off by
default. However even having them present is problematic. It is not clear how one
should use them safely. The left panel of Fig. 6 shows a histogram of the values x0; 1
for 1 <i < |22°/10]. The right panel shows a histogram of the values x; 2.

Another area where QMC requires more care than plain MC is in parallel com-
puting where a task is to be shared over many processors. When there are p proces-
sors working together, one strategy from [20] is to use a d + 1 dimensional QMC
construction of which one dimension is used to assign input points to processors.
Processor k € {0, 1, ..., p — 1} gets all the points u; with | px; .| = k for some
cef{l,2,...,d+ 1}. It then uses the remaining d components of u; in its computa-
tion. With this strategy each processor gets a low discrepancy sequence individually
which is better than thinning to every p’th point would be. They collectively have a
complete QMC point set. See [20] for this and for more references about parallelizing
QMC.


https://www.mathworks.com/help/stats/sobolset.html
https://www.mathworks.com/help/stats/sobolset.html
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